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ABSRACT 

 

In this research, we developed a numerical human model for comprehensive human exposure risk 

assessment based on fluid engineering and a mathematical epidemic model for infectious disease control 

assessment based on statistical physics. The contents of each chapter are summarized below. 

As an introduction, Chapter 1 clarifies the research background and the purpose of this research on the 

exposure phenomenon hidden in the living environment. In particular, in this study, we will tackle the 

three individual issues: (1) prediction of epidemic spreading for infectious diseases and elucidation of 

vaccination dilemma by mathematical epidemic model and multi-agent simulation (MAS), (2) 

development of a numerical human model for indoor environment analysis that enables risk assessment 

of inhalation and dermal exposure, (3) development of a model for predicting the amount of carbon 

dioxide emitted form humans by subjective experiments. in addition, we also clarify the importance, 

necessity, and academic novelty of this research. 

In Chapter 2, we developed a mathematical epidemic model by a closed ordinary differential equation 

whose solution can be uniquely determined if the initial value is given. Firstly, we reviewed three 

mathematical models that capture the infection transmission phenomenon on networks from the 

previous studies, and determined the infection parameters from the final epidemic size. In addition to 

incorporating the effects of vaccination into these mathematical models, we developed a mathematical 

model that takes into account the probability of immunity associated with vaccination and the reduction 

of infection probability due to protective behavior such as mask use. Furthermore, by integrating the 

transmission dynamics and the vaccination decision-making dynamics, it is adapted to the framework 

of vaccination games. The prediction accuracy of these developed mathematical models has been 

verified by comparison with the corresponding MAS results. 

In Chapter 3, applying the mathematical model developed in Chapter 2, we investigated the optimal 

design of subsidizing policy for vaccination. To minimize the total social cost, which includes all illness 

costs, vaccination costs, and the tax burden imposed on all social members, four subsidy policy were 

prepared and explored. Furthermore, this mathematical model quantitatively evaluates the impact of the 

effectiveness of vaccination on subsidy policy for vaccination. In addition, MAS investigated the effect 

of difference of network topologies. 

In vivo studies targeting mammalian surrogate models for toxicity studies have various limitations due 

to animal protection and ethical problems. On the other hand, the so-called in silico model based on the 

numerical analysis model has a great potential to contribute to the understanding of heat and mass 

transport phenomena in the respiratory tract, and can be an alternative method for in vivo and in vitro 

tests. In Chapter 4, a numerical airway model for the upper airways of rat, dog, monkey, and humans 

were created based on CT data. We analyzed the heat and mass transport in each upper airway model by 

applying it to CFD technique. The convective heat transfer coefficient corresponding to the breathing 
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flow rate was calculated and organized by various dimensionless numbers. We confirmed that the heat 

transfer efficiency in the upper airways of dog is approximately the same as that of the human, while 

the rat and monkey monkeys are significantly different from the human. Identification of the basic state 

of convective heat transfer in the upper airway of rats, dogs, monkeys, and humans is an important 

finding in discussing the quantitative difference in heat and mass transfer efficiency between different 

species. 

In Chapter 5, focusing on the high-concentration short-term exposure problem caused by environmental 

tobacco smoke, a risk assessment for first- and second hand exposure due to the use of electronic 

cigarettes was conducted by using the numerical analysis method. Due to lack of combustion process, 

e-cigarette has been perceived hermless than conventional cigarettes, and the number of users has been 

increasing in recent years. However, e-cigarettes have the potential to release hermful substances by the 

components of vapor, and the significant number of epidemiological studies have been conducted and 

the health effects of using e-cigarettes have been shown. On the other hand, there was no debate about 

the effects of contaminants emitted by e-cigarette users on indoor air quality and second hand exposure 

to nonsmokers. In this chapter, we develop a new numerical human model integrated with the numerical 

human respiratory tract model. The physiological pharmacokinetic (PBPK) model was newly developed, 

which reproduces inhalation exposure through the respiration and dermal exposure from the skin surface 

in order to study the absorption mechanism of pollutants into local tissues. By integrating these models 

into the developed numerical human model and reproducing transient puffing of e-cigarettes, the 

numerical simulations reproduced the exposure process from (i) the first-hand exposure by inhalation 

of e-cigarettes, (ii) the dispersion of contaminants exhaled by e-cigarette user in the indoor environment, 

up to (iii) the second hand exposure by inhalation or dermal absorption of passive smoker. 

In Chapter 6, focusing on the gas exchange in the respiratory system from the viewpoint of improving 

the accuracy of the physiological model of the numerical human model, the effects of indoor carbon 

dioxide concentration and room temperature on the carbon dioxide production from the human body 

were investigated by subjective experiments using a small chamber in the Technical University of 

Denmark. For the subjective experiments, six male subjects were recruited and each had a small chamber 

of 1.7 m3 for light office work. Five different environmental conditions with two temperature levels and 

three carbon dioxide concentration levels are prepared to study the effects of indoor environmental 

conditions. The CO2 concentration is adjusted by dosing CO2 gas or changing the ventilation rate. 

Moreover, the carbon dioxide concentration is monitored and the carbon dioxide emission rate is 

calculated by the mass balance equation. In addition to carbon dioxide concentration, physiological 

response parameters such as respiratory rate and end-tidal carbon dioxide partial pressure ETCO2 were 

also measured. 

Chapter 7 summarized the results obtained throughout this paper, mentioned academic and engineering 

contributions, and organized future works. 
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Nomenclature 

 

Chapter 2 and 3 

S(t)  The fraction of susceptible individuals at time t ([0,1] for non-vaccination case, [0, 1 

– x] for vaccination case) 

I(t)  The fraction of infected individuals at time t [0,1] 

R(t)  The fraction of recovered individuals at time t [0, 1] 

V(t)  The fraction of vaccinated individuals at time t [0,1] 

β  Disease transmission rate (person–1 day–1) 

γ  Recovery ratge (day–1) 

R0  Basic reproduction number (= β/γ) 

x  Vacciantion coverage, which means the fraction of initial vaccinatied individuals or 

individuals prepared intermediate protective measure [0,1] 

e Effectiveness of vaccination 

η Efficiency of intermediate protective measure 

k  The number of degree (connectivity with neighbers) 

P(k)  Degree distribution, which means the probability that an arbitral individual has 

degerr k 

<k>  Average degree 

λ  Disease transmission rate used in network model  

Q  The number of degree (connectivity with neighbers) used in pair approximation 

model 

[X](t)  The fraction of individuals in state X at time t [0,1] 

[XY](t)  The number of X – Y edges (pairs) linking a node in state X with a node in state Y on 

networks at time t 

( )Q I SS   The average number of infected neighbors of a susceptible, given that the susceptible 

already has at least one susceptible neighbor 

( )Q I SI   The average number of infected neighbors of a susceptible, given that the susceptible 

already has at least one infected neighbor 

( )Q I SR   The average number of infected neighbors of a susceptible, given that the susceptible 

already has at least one recovered neighbor 

α  The vaccinator-nonvaccinator connection coefficient, which can be said dissortativity 

observed at initial moment of every season (time-evolved in repeating seasons), and is 

less than x and 1 – x 

 

Cv  Vaccination cost 
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Ci  Infection cost 

Cr  Relative cost of vaccination (Cr = Cv / Ci, Ci = 1) [0,1] 

<π>  The average social payoff 

<πC>  The average corporative (vaccinated) payoff 

<πD>  The average defective (non-vaccinated) payoff 

( )i jP s s  The probability that individual i adopts the selected neighbor j’s strategy 

si   The strategy of i 

κ  the strength of selection (the sensitivity of individuals to differences in their payoffs); 

smaller κ means that an individual is more sensitive to a payoff difference (κ > 0) 

SFR  Successful free-rider who pays nothing 

FFR  Failed free-rider who pays −1 

IV  Infected vaccinator who pays −Cr−1 

HV  Healthy vaccinator who pays −Cr 

( )P A V AB  The transition probability that the focal A of pair AB change to the opposite strategy 

(vaccinator) 

Subscripts 

V  Vaccinated individauls 

N  Non-vaccianted individuals 

 

σ  The population fraction to be subsidized 

TAX   Tax burden per capita, (TAX = Cr σ) 

TSP  Total social payoff per capita due to an epidemic 

SB  Total subsidy budget 

σ’  Subsidy distribution ratio 

fC  The fraction of voluntary vaccinators (corparator) 

fD  The fraction of non-vaccinators (defector), fD=1−fC 

 

Chapter 4 

ν   Kinematic viscosity  

ρ  Air density 

τw  Wall shear stress 

*u   Friction velocity ( w  ) 

hc   Respiratory convective heat transfer coefficient 

Qc   Heat flux 

Tw  Respiratory wall temperature (K) 
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Tair  inhaled air temperature (K) 

Nu   Nusselt number 

λ  Thermal conductivity of the air (W/m-K) 

DT  Representative diameter (m), the diameters in the trachea 

Re  Reynolds number 

Pr  Prandtl numbers  

u   Representative axial velocity 

α  Thermal diffusivity 

 

Chapter 5 

aC   Ensemble mean contaminant concentration in a grid point 

Da  Diffusion coefficient of contaminant in air 

νt  Turbulent viscosity 

σ  Turbulent Schmidt number. 

Hm
  Thickness of mucus (μm) 

Ht  Thickness of epithelium (μm) 

Hb  Thickness of sub-epithelium (μm) 

Cm  Contaminant concentrations in the mucus (μg/m3), 

Ct  Contaminant concentrations in the epithelium (μg/m3), 

Cb  Contaminant concentrations in the sub-epithelium (μg/m3), 

Dm  Diffusion coefficients in the mucus (m2/s) 

Dt  Diffusion coefficients in the epithelium (m2/s) 

Db  Diffusion coefficients in the sub-epithelium (m2/s) 

Qb  Blood flow rate in the sub-epithelium (ml/s) 

Vb  Volume of sub-epithelium (ml) 

y  Distance in the respiratory tissue from the interface between air and mucus (m) 

Pma  Mucus-air partition coefficient 

Ptm  Tissue-mucus partition coefficient 

Pbt  Blood-tissue partition coefficient  

kf   Non-specific first-order metabolic clearance 

VmaxC   Coefficient that represents saturable metabolism per unit volume of tissue 

Km  Michaelis constant 

K  Boltzmann constant 

η  Viscosity of water 

rs   Solute radius (Å) 

MW  Molecular weight of chemicals 
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Pba  Blood-air partition coefficient 

a   The fraction of neutral lipids in blood 

b   The fraction of phospholipids in blood 

c   The fraction of water in blood 

Pow  Octanol-water partition coefficient. 

I  Turbulent intensity 

Tsk  Skin surface temperature (K) 

Qt  The amount of sensible heat flux from the skin surface (W/m2) 

Rcl  Thermal resistance of the clothes ((m2 K)/W) (reciprocal of the heat conductance 

value) 

CSSL  Contaminant concentrations in the skin surface lipid (μg/m3) 

CSC  Contaminant concentrations in the stratum corneum (μg/m3) 

DSSL  Diffusion coefficients in the skin surface lipid (m2/s) 

DSC  Diffusion coefficients in the stratum corneum (m2/s) 

HSSL  Thickness of the skin surface lipid (m) 

HSC  Thickness of the stratum corneum (m) 

y  Distance in the respiratory tissue from the interface between air and skin surface lipid 

(m) 

PSSL:a  Lipid-air partition coefficient 

PSC:SSL  Stratum corneum-lipid partition coefficient 

 

Chapter 6 

Cin  Indoor CO2 concentration at steady state (ppm) 

Q  Volumetric airflow rate (m3/h) 

Cout  Outdoor CO2 concentration (ppm) 

G  CO2 emission rate (mL/h) 

Cpure+met  CO2 concentration comprising the pure CO2 delivered from the cylinder and the 

metabolically generated CO2 that was emitted by the subject 

Cpure  CO2 concentration contributed only by pure CO2, which was measured from the 

indoor CO2 level that was reached within a few minutes after the subject had left the 

chamber. 
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CHAPTER 1 

 

Chapter 1: General introduction 

 

1.1 Background and Motivation 

In our life, there are multiple exposure risks on various scales from social scale to indoor scale. 

Taking the problem of epidemic spreading of infectious diseases caused by contact between people as 

an example of exposure in social scale, this dynamics is on complicated and wide scale such as human 

relations and society. Kermack and McKendrick [1] developed a mathematical general theory of 

epidemics of infectious diseases and compared them with actual data. Their work provided a modern 

basis for subsequent mathematical models of epidemics [2-5]. Based on them, the theoretical epidemic 

model (macro model) using the differential equations has been used. Moreover, various infectious 

disease epidemic models have been proposed, including an agent-based simulation model (micro model). 

Recently, based on the complicated network science that represents individual contact relationships with 

nodes and edges, multi agent simulations (MAS) have been conducted with relatively easy analysis and 

a certain reality [6]. In addition, although there are many infectious diseases in which preemptive 

vaccination such as influenza is effective for public health, the vaccination is generally self-paid and not 

compulsory. Therefore, the vaccination coverage and morbidity in the entire society strongly depends 

on individual decision making. To reproduce this decision-making dilemma associated with vaccination, 

a framework for “vaccination game” has been proposed that incorporates the effects of vaccination into 

a mathematical epidemic model and integrates evolutionary game theory [7,8]. To date, the stochastic 

MAS has been adopted for modeling and analysis of vaccination games, which can flexibly predict 

dynamics only by accumulating a priori local rules based on the bottom-up principle. However, because 

it is a stochastic method, it requires a sufficient number of trials, and the analysis takes much time. Thus, 

the theoretical (deterministic) epidemic model corresponding to the stochastic MAS approach must be 

developed to quickly analyze the epidemic spreading. In addition, the theoretical epidemic model can 

help us deeply understand the epidemic dynamics compared to the stochastic MAS approach. 

Focusing on relatively small scale, indoor environment, most of modern people spend more than 

90% of their time indoors. Thus, the indoor air quality (IAQ) greatly affects the quality of life. Because 

people now stay indoors much time compared to the past, IAQ issues are becoming increasingly 

important in terms of the health risks of building occupants [9,10]. Although human health problems 

caused by various types of indoor air pollutions, they can be classified in terms of the level of 

contaminant concentration, exposure time, types of contaminants. We listed three as representative 

cases: (i) highly concentrated short-term exposure to environmental tobacco smoke (ETS), including 

mainstream smoke (first-hand smoke) and side-stream smoke (second-hand smoke), and exhaust gas 
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from combustion equipment; (ii) low-concentration long-term revelation by a very small amount of 

volatile organic compounds (VOCs) represented by the sick-house syndrome; and (iii) air pollution 

caused by various fine/ultrafine particles, biological aerosols, and infectious contaminants (e.g., PM2.5, 

PM10, fungal spores, pollen, and influenza virus via coughing and sneezing). 

First, focusing on the impact of ETS in indoor environments as an example of highly concentrated 

short-term exposure, smoking is one of the leading risk factors for premature death and disability. The 

mortality and morbidity associated with cigarette smoking is caused by the inhalation of various highly 

concentrated contaminants, which are generated through the tobacco combustion process. In addition to 

the effects of direct inhalation of first-hand smoke, the impacts of second-hand smoke on IAQ after 

being used indoors have been recognized. 

Second, paying attention to low-concentration long-term exposure, in recent years, the number of 

houses that are airtight, have effective thermal insulation, and are insufficiently ventilated has been 

increasing [11]. As a result of this, residents are exposed to VOCs emitted from new building materials 

used in new construction methods. Although the concentration of VOCs is relatively low, people inhale 

them by constant respiration and absorb them through the skin for a long time and suffer from sick-

house syndrome. 

Finally, recent epidemiological studies indicate that exposure to particulate air pollution (e.g., 

PM2.5 and PM10) is associated with increased risk of lung cancer, asthma, and chronic diseases, as well 

as increased risk of induced mortality and morbidity in humans [12-15]. When individuals are indoors, 

they can be exposed to particulate matter that originates from the outdoor environment and penetrates 

the indoor environment through ventilation. Moreover, in public accommodations, which an unspecified 

number of people use, the spread of infectious diseases caused by droplets or air infections, such as 

influenza, tuberculosis, or measles, is a concern. 

In order to solve these problems and realize a good indoor air environment design, it is essential 

accurately predict concentration distributions for various gaseous and aerosol pollutants existing in the 

indoor environment is essential. It is important research issue to establish the technology for reducing 

contaminant concentration based on the prediction results. For realizing the good indoor air environment, 

the design goal should be the minimization of the human exposure of the occupants. Considering that 

non-uniform flow patterns and contaminant concentration distribution are formed in the indoor 

environment, it is essential to incorporate the human model into the predictive design method. Many 

numerical human models for prediction of thermal comfort and indoor air quality have been proposed 

[16-19]. However, the numerical human model has not been developed for risk assessment of inhalation 

exposure due to breathing indoor air and dermal exposure due to contact between air and skin or the 

building surface materials and furniture and the skin. 

In addition to risk assessment of inhalation and dermal exposures, to further expand the numerical 

human model to indoor environmental design, it is important to precisely reproduce the relationship 
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between the indoor environment and the human physiological mechanism. Focusing on carbon dioxide 

emission from humans as a future work, we will develop a mathematical model that describes the 

generation, release, and transport mechanism of carbon dioxide and integrate it into the numerical human 

model. In this way, the research approaches that have been conducted is so-called numerical analysis. It 

is essential to validate the prediction accuracy of the model by experiments because the numerical 

analysis reproduces the phenomenon based on the model after modeling the phenomenon in advance. 

On the other hand, targeting exposure risks and health effects, there are physical parameters that are 

difficult to observe and measure due to ethical problems and limitations of measuring instruments. With 

regard to such parameters, we have to rely on the development and numerical analysis of mathematical 

models. In order to solve the problems by these two research approaches, the numerical analysis 

approach and the experimental approach should be incorporated so as to complement each other from 

the planning stage of the research. 

 

1.2 Structure of thesis 

This thesis is organized into seven chapters as follows: 

 In Chapter 2, we developed a mathematical epidemic model by a closed ordinary differential 

equation whose solution can be uniquely determined if the initial value is determined. Firstly, we 

reviewed three mathematical models that capture the infection transmission phenomenon on 

networks from the previous studies, and determined the infection parameters from the final 

epidemic size. In addition to incorporating the effects of vaccination into these mathematical 

models, we developed a mathematical model that takes into account the probability of immunity 

associated with vaccination and the reduction of infection probability due to protective behavior 

such as mask use. Furthermore, by integrating the transmission dynamics and the vaccination 

decision-making dynamics, it is adapted to the framework of vaccination games. The prediction 

accuracy of these developed mathematical models has been verified by comparison with the 

corresponding MAS results. 

 In Chapter 3, applying the mathematical model developed in Chapter 2, we investigated the optimal 

design of subsidizing policy for vaccination. To minimize the total social cost, which includes all 

illness costs, vaccination costs, and the tax burden imposed on all social members, four subsidy 

policy were prepared and explored. Furthermore, this mathematical model quantitatively evaluates 

the impact of the effectiveness of vaccination on subsidy policy for vaccination. In addition, MAS 

investigated the effect of difference of network topologies. 

 In vivo studies targeting mammal surrogate models for toxicity studies have various limitations due 

to animal protection and ethical problems. On the other hand, the so-called in silico model based 

on the numerical analysis model has a great potential to contribute to the deep understanding of 

heat and mass transport phenomena in the respiratory tract, and can be an alternative method for in 
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vivo and in vitro tests. In Chapter 4, a numerical airway model for the upper airways of rats, dogs, 

monkeys, and humans was developed based on CT data, and by applying it to computational fluid 

dynamics (CFD), heat and mass transport in each upper airway model were analyzed. The 

convective heat transfer coefficient corresponding to the respiratory flow rate is calculated and 

arranged by various dimensionless numbers. 

 In Chapter 5, focusing on the high-concentration short-term exposure problem caused by 

environmental tobacco smoke, a risk assessment for first- and second hand exposure due to the use 

of electronic cigarettes was conducted by using the numerical analysis method. Due to lack of 

combustion process, e-cigarette has been perceived hermless than conventional cigarettes, and the 

number of users has been increasing in recent years. However, e-cigarettes have the potential to 

release hermful substances by the components of vapor, and the significant number of 

epidemiological studies have been conducted and the health effects of using e-cigarettes have been 

shown. On the other hand, there was no debate about the effects of contaminants emitted by e-

cigarette users on indoor air quality and second hand exposure to nonsmokers. In this chapter, we 

develop a new numerical human model integrated with the numerical human respiratory tract model. 

The physiological pharmacokinetic (PBPK) model was newly developed, which reproduces 

inhalation exposure through the respiration and dermal exposure from the skin surface in order to 

study the absorption mechanism of pollutants into local tissues. By integrating these models into 

the developed numerical human model and reproducing transient puffing of e-cigarettes, the 

numerical simulations reproduced the exposure process from (i) the first-hand exposure by 

inhalation of e-cigarettes, (ii) the dispersion of contaminants exhaled by e-cigarette user in the 

indoor environment, up to (iii) the second hand exposure by inhalation or dermal absorption of 

passive smoker.  

 In Chapter 6, focusing on the gas exchange in the respiratory system from the viewpoint of 

improving the accuracy of the physiological model of the numerical human model, the effects of 

indoor carbon dioxide concentration and room temperature on the carbon dioxide production from 

the human body were investigated by subjective experiments using a small chamber in the 

Technical University of Denmark. For the subjective experiments, six male subjects were recruited 

and each had a small chamber of 1.7 m3 for light office work. Five different environmental 

conditions with two temperature levels and three carbon dioxide concentration levels are prepared 

to study the effects of indoor environmental conditions. The CO2 concentration is adjusted by 

dosing CO2 gas or changing the ventilation rate. Moreover, the carbon dioxide concentration is 

monitored and the carbon dioxide emission rate is calculated by the mass balance equation. In 

addition to carbon dioxide concentration, physiological response parameters such as respiratory 

rate and end-tidal carbon dioxide partial pressure ETCO2 were also measured. 

 Chapter 7 summarized the results obtained throughout this paper, mentioned academic and 
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engineering contributions, and organized future works. 

 

Figure 1.1 shows the structure of this thesis. 
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Figure 1.1. Structure of thesis 
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CHAPTER 2 

 

Chapter 2: Epidemic dynamics with consideration of imperfect vaccination  

 

2.1 Introduction 

Human society has long suffered from the spread of infectious diseases such as measles, 

influenza, Ebola and SARS. To help reduce the impact of these infections disease, several mathematical 

models and methods have been developed to understand epidemic dynamics and the effect of preventive 

strategies. Pre-emptive vaccination is one of the most effective preventative measures in modern society 

to control the epidemic and reduce morbidity and mortality [1,2]. However, voluntary vaccination 

policies pose a social dilemma, which is difficult to resolve in normal social situations [3,4]. With 

increased vaccination coverage and achieved herd immunity, there are no new infections. Therefore, 

these vaccinated individuals can help non-vaccinated individuals escape the infection and save 

vaccination costs. As a result, a significant number of people stopped vaccinating and benefiting from 

the efforts of the remaining vaccinators. Under such a voluntary vaccination policy, people decide 

whether to vaccinate or not depending on various factors such as the cost of vaccination, self-interest, 

potential risk entailed with vaccination, and how others in their social environment behave toward 

vaccination.  

To model this vaccination dilemma, researchers have studied vaccination games, which can 

predict the dynamics of (i) epidemic spread in complex social networks and (ii) decision making on 

whether to undergo vaccination depending on the status of the epidemic. Epidemic dynamics are 

predicted using mathematical epidemic models such as the susceptible–infected–recovered (SIR) model 

[5], and decision making is modeled on evolutionary game theory. Bauch et al. [6] and Fu et al. [7] 

published a pioneering works for a vaccination game. A significant number of researchers have studied 

various frameworks to quantitatively investigate multiple effects on vaccination behavior [8–12]. Most 

research on vaccination games relies on multi-agent simulation (MAS), which allows for a more flexible 

and realistic modeling approach. In addition to MAS approach, Fu et al. [7] proposed a mathematical 

framework for a mixed-population vaccination game that assumes complete vaccination. A theoretical 

approach based on a set of ordinary differential equations (ODEs) can be a powerful tool to explicitly 

demonstrate the dynamics of both epidemic spread and human decision making. 

Most studies on the vaccination game have assumed that vaccinations provide perfect 

immunity to each vaccinator. In reality, vaccinations can only impart partial protection against many 

infectious diseases, such as measles, influenza, malaria, and HIV. In addition to vaccinations, there are 

other protective measures from infectious diseases, such as mask wearing, gargling, and hand washing, 

which are called intermediate protective measures. Although these protective measures come at a more 
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reasonable cost than vaccinations, they cannot block the transmission of infections to the body as 

effectively as vaccinations. Therefore, the stochastic effects of imperfect vaccination and intermediate 

protective measures need to be considered. On the basis of this background, Cardillo et al. [13] analyzed 

the effects of imperfect vaccination on immunization behavior in Erdős–Rényi random graph (ER–RG) 

[14] and Barabasi–Albert scale free (BA–SF) [15] networks by using the MAS approach. Iwamura et al. 

[16] and Ida and Tanimoto [17] used MAS to investigate the effect of intermediate protective measures 

on square lattice and BA–SF networks. Wu et al. [18] developed a new mathematical framework of the 

vaccination game that considered imperfect vaccination in an infinite and well-mixed population 

corresponding with a perfect graph by using mean-field approximation. Several studies have recently 

used the same concept and investigated the multiple effects of imperfect vaccination and other 

parameters on vaccination behavior [19–30]. Therefore, the modeling and analysis of the vaccination 

game can be enriched by the abundant quantity and quality of studies that have followed an MAS or 

theoretical approach. 

 

2.2 Basic theoretical epidemic models 

Theoretical epidemic models corresponding to the spread of diseases in some network 

topologies have developed. The epidemic dynamics in well-mixed population corresponding to the 

perfect graph are presented by the most fundamental epidemic model proposed by Kermack and 

McKendrick [5]. In terms of heterogeneous networks (i.e. Barabasi Albert Scale-free network and ER 

random graph), which have each degree distribution, Moreno et al. [31] developed the network model. 

Furthermore, for the more precise modeling of epidemic spreading on complex networks, Keeling [32] 

developed the pair approximation model. In this study, we focused on regular random graph. Figure 4.1 

schematically presents the correspondence between epidemic spreading on the complex networks and 

the theoretical models. In this section, we reviewed the three theoretical models and determined 

epidemic parameters by solving the theoretical models. 
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Figure 4.1. Schematic of correspondence between epidemic spreading on complex networks and 

theoretical models. 

 

2.2.1 SIR model in well-mixed population 

In general, the epidemic dynamics in well-mixed population are often described by 

susceptible-infected-recovered (SIR) model proposed by Kermack and McKendrick [5]. When the 

population dynamics due to birth and death are ignored, individuals in a population can be classified 

into susceptible (S), infected (I), recovered (R) states. A susceptible individual may become infected if 

he/she is exposed to infectious individuals at the disease transmission rate β (day-1 person-1). An infected 

individual recovers at the recovery rate γ (day-1). The SIR model is expressed as: 

( )
( ) ( )

dS t
S t I t

dt
  ,        (2-1) 

( )
( ) ( ) ( )

dI t
S t I t I t

dt
   ,        (2-2) 

( )
( )

dR t
I t

dt
 ,         (2-3) 

with the assumed set of initial values S(0) = 1, I(0) ≈ 0, R(0) = 0. The following constraint is requisite: 

S(t) + I(t) + R(t) = 1.        (2-4) 

Dividing Eq. (2-1) by Eq. (2-3), we obtain 

0

dS
R S

dR
  .         (2-5) 

Here, R0 = β/γ is called the basic reproduction number, which is the number of secondary 

infections caused by a single infected individual. Integrating above equation from time 0 to ∞, the 

transcendental equation for the FES R(∞) are expressed as: 
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S(∞) = exp[–R0R(∞)],        (2-6) 

R(∞) = 1 – S(∞) = 1 – exp[–R0R(∞)].       (2-7) 

Fig 2.2 shows the FES as a function of the basic reproduction number R0 in an infinite and 

well-mixed population. Differentiating both sides of Eq. (2-7) with respect to R(∞), we can see that the 

final size is positive if and only if R0 > 1. If R0 < 1, the disease does not spread.

( ) (0)exp[ ( )] (1 )exp[ ( )],k k kS t S k t x k t          Moreover, the basic reproduction numbers for 

representative diseases are summarized in Table 2.1. For example, the range of R0 for Influenza is 2 to 

3. If R0 is set as 2.5 for Influenza, the FES in the well-mixed population will be approximately 0.9. 

 

 
Figure 2.2. Final epidemic size as a function of the basic reproduction number R0 in an infinite and well-

mixed population. 

 

2.2.2 Network model 

At each time step, each node adopts one of the three possible states, and during one time-step, 

the susceptible node that is connected to the infected one is infected with a rate β. Meanwhile, the 

infected nodes are recovered with a rate γ. Defining the effective spreading rate λ = β/γ, without losing 

generality, we set γ = 1. To take into account the heterogeneity induced by the presence of nodes with 

different degrees, we consider the time evolution of the density of susceptible Sk(t), as well as infected 

Ik(t) and recovered Rk(t), which are the infected and recovered nodes of degree k at time t, respectively. 

These variables are connected through normalization as follows: 

( ) ( ) ( ) 1k k kS t I t R t   .        (2-8) 

Using mean field approximation, we form the following set of coupled differential equations: 

( )
( ) ( )k

k

dS t
kS t t

dt
   ,        (2-9) 
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( )
( ) ( ) ( )k

k k

dI t
kS t t I t

dt
   ,        (2-10) 

( )
( )k

k

dR t
I t

dt
 ,         (2-11) 

where Θ(t) represents the probability that any given link points to an infected site. This quantity can be 

computed in a self-consistent way. The probability that a link points to a node with s links is proportional 

to ( )sP s . Thus, the probability that a randomly chosen link points to an infected node is given by 

[31,33]; 

( 1) ( ) ( ) ( 1) ( ) ( )
( )

( )

k kk k

s

k P k I t k P k I t
t

sP s k

 
  

 

 


.     (2-12) 

In this approximation, the connectivity correlations in the network were neglected, i.e., the 

probability that a link points to an infected node is considered independent of the connectivity of the 

node from which the link is emanating. Combined with the initial conditions, Sk(0) = 1, Ik(0) ~ 0, and 

Rk(0) = 0, we obtain  

( ) (0)exp[ ( )] exp[ ( )]k kS t S k t k t       ,      (2-13) 

where the auxiliary function ( )t  is defined as: 

0 0
1 1

1 1
( ) ( ( ')) ' ( 1) ( ) ( ') ' ( 1) ( ) ( )

t t

k k

k k

t I t dt k P k I t dt k P k R t
k k


 

 

     
   
    .   (2-14) 

Focusing on the time evolution ( )t , we derive its time derivation as follows: 

 

 

1

1

1

1

1

( )( ) 1
( 1) ( )

1
        ( 1) ( ) ( )

1
        ( 1) ( )(1 ( ) ( ))

1
        ( 1) ( ) 1 ( ) ( )

1
        ( 1) ( ) 1 exp[ ( )] ( ).

k

k

k

k

k k

k

k

k

k

dR td t
k P k

dt k dt

k P k I t
k

k P k S t R t
k

k P k S t t
k

k P k k t t
k





  





















 
 

 
 

   
 

   
 

    
 











     (2-15) 

Since Ik(∞) = 0 and lim ( ) 0
t

d t dt


  are intuitively approved, we obtain from Eq. (2-15) the 

following self-consistent equation for ( )  : 

 
1 1

1 1 1
( ) ( 1) ( ) 1 exp[ ( )] 1 ( 1) ( )exp[ ( )].

k k

k P k k k P k k
k k k

    
 

 

           
     
     (2-16) 

The final fractions are expressed as: 

( ) (0)exp[ ( )] exp[ ( )]k kS S k k          .      (2-17)

( ) 1 ( ) 1 exp[ ( )]k kR S k         .      

 (2-18) 
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With respect to Eq. (2-15), there is a trivial solution ( ) 0   . To obtain a non-zero solution, 

the condition 

1 ( ) 0

1 1
1 ( 1) ( )exp[ ( )] 1,

( ) k

d
k P k k

d k k


 




  

 
      

     
       (2-19) 

must be satisfied, leading to 

2

1.
k k

k

    


 

          (2-20) 

This inequality defines the epidemic threshold 

2
.c

k

k k


 

    

         (2-21) 

 

In this study, two of the most typical degree spatial structures were considered, the Poisson 

degree distribution and the power law degree distribution which are, respectively, associated with 

Erdős–Rényi random graph (ER-RG) [14] and Barabasi-Albert scale free (BA-SF) [15] networks. In 

Poisson’s degree distribution ( ) exp( ) !kP k k k k     , most of the modes have a connectivity k close 

to the mean value ( )
k

k kP k   . On the other hand, the power law degree distribution P(k) ~ k-3 is often 

used for reproducing real-world networks observed in complex social networks. To reveal how different 

degree distribution patterns from a homogeneous distribution quantitatively affect disease spreading, 

these two degree distributions was focused on. Thus, for comparison, the average connectivity of the 

degree distributions is assimilated to <k> = 3, 4, 6, and 8 for actual numerical analysis. Assuming the 

approximation ( ) ( 1)( 2)P k A k k k    (A is a normalized constant) derived by a master equation [34], 

and setting the minimum and maximum degrees, the power law degree distribution reproduced BA-SF 

with <k> = 4, 6, and 8. 

Figure 2.3 shows the FES as a function of transmission rate λ when no individual is vaccinated 

on each network, following the power law degree distribution and Poisson’s degree distribution. From 

this figure, we confirm that the epidemic threshold described by Eq. (2-21) is consistent with the critical 

point of transmission rate, which can lead to epidemic spreading. Moreover, we calibrate the 

transmission rate λ such that the final epidemic size across a network becomes 0.9 [7], which is 0.39 for 

Poisson’s degree distribution and 0.48 for the power law degree distribution with <k> = 8.  
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Figure 2.3.  FES as a function of the transmission rate λ, when no individual is vaccinated on each 

network, following the power law degree distribution and Poisson’s degree distribution, which have an 

average number of degrees of <k> = 3, 4, 6, and 8. The arrows point to the critical points of the 

transmission rate, which can lead to epidemic spreading, called the epidemic threshold. 

 

2.2.3 Pair approximation SIR model 

Through a brief review of the pair approximation SIR model [32,35], the dynamics of epidemic 

spreading on the regular random network with the number of degree k was determined. The fraction of 

individuals in state S, I, and R at time t are represented by [S](t), [I](t), and [R](t), respectively. In addition, 

the pair [XY](t) represents the number of X – Y edges (pairs) linking a node in state X with a node in 

state Y on networks at time t. At each time step, each node adopts one of the three possible states: 

susceptible (S), infected (I), and recovered (R), and during one time step, the susceptible individual that 

is connected to the infected one is infected with an infection rate β per S – I link. Meanwhile, the infected 

individuals are recovered with a recovery rate γ. Based on the above disease spreading mechanism of 

SIR model, we can represent the dynamics by the following ODEs: 

[ ]( ) [ ]( )
d

S t SI t
dt

  ,         (2-22) 

[ ]( ) [ ]( ) [ ]( )
d

I t SI t I t
dt

   ,        (2-23) 

[ ]( ) [ ]( )
d

R t I t
dt

 ,         (2-24) 

[ ]( ) 2 [ ]( ) ( )
d

SS t SS t Q I SS
dt

  ,       (2-25) 
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[ ]( ) [ ]( ) ( ) [ ]( ) ( ) [ ]( )
d

SI t SI t Q I SI SS t Q I SS SI t
dt

      ,    (2-26) 

[ ]( ) [ ]( ) ( ) [ ]( )
d

SR t SR t Q I SR SI t
dt

    ,      (2-27) 

[ ]( ) 2 [ ]( ) ( ) 2 [ ]( )
d

II t SI t Q I SI II t
dt

   ,      (2-28) 

[ ]( ) [ ]( ) ( ) [ ]( ) [ ]( )
d

IR t SR t Q I SR II t IR t
dt

     ,     (2-29) 

[ ]( ) 2 [ ]( )
d

RR t IR t
dt

 ,         (2-30) 

where ( )Q I SS  is the average number of infected neighbors of a susceptible, given that the susceptible 

already has at least one susceptible neighbor, ( )Q I SI  is the average number of infected neighbors of 

a susceptible, given that the susceptible already has at least one infected neighbor, ( )Q I SR   is the 

average number of infected neighbors of a susceptible, given that the susceptible already has at least one 

recovered neighbor. 

The set of initial conditions was assumed: [S](0) = 1, [I](0) ~ 0, [R](0) = 0, [SS](0) ~ Q[S](0) 

= Q and [SR](0) = 0. The following constraints are requisite: 

[S](t) + [I](t) + [R](t) = 1,        (2-31) 

[SS](t) + [SI](t) + [SR](t) = Q[S](t),       (2-32) 

[SI](t) + [II](t) + [IR](t) = Q[I](t),       (2-33) 

[SR](t) + [IR](t) + [RR](t) = Q[R](t).       (2-34) 

These equations are exact but unclosed. In order to close Eqs. (2-25) – (2-30), the third-order 

quantities ( )Q I SS , ( )Q I SI  and ( )Q I SR  must be expressed in terms of second-order state variables.  

1 1[ ]( ) [ ]( )
( ) 1 ( ) 1 1

[ ]( ) [ ]( )

Q Q SI t SI t
Q I SI Q I S

Q Q S t S t


 
      ,     (2-35) 

1 1[ ]( ) [ ]( )
( ) ( ) ( )

[ ]( ) [ ]( )

Q Q SI t SI t
Q I SS Q I SR Q I S

Q Q S t S t


 
    .     (2-36) 

Here, μ is defined as . 

To solve this set of equations, we started to substitute [ ]( )SI t from Eq. (2-22) into Eq. (2-25) 

with combination of Eq. (2-36) to obtain 

[ ]( ) [ ]( )
2

[ ]( ) [ ]( )

d SS t SS t

d S t S t
 .       (2-37) 

By using the initial conditions, [S](0) = 1, [SS](0) ~ Q[S](0) = Q, integration leads to  

2[ ]( ) [ ] ( )SS t Q S t .        (2-38) 

In addition, substituting [SI](t)from Eq. (2-22) into Eq. (2-27) with combination of Eq. (2-36) 

yields 

( 1)Q Q
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[ ]( ) [ ]( )

[ ]( ) [ ]( )

d SR t SR t
r

d S t S t
  ,        (2-39) 

where r = γ/β is the relative recovery rate which means the inverse of basic reproduction number R0. 

By using the initial conditions, [S](0) = 1, [SR](0) = 0, integration leads to 

[ ]( ) ([ ] ( ) [ ]( ))SR t Qr S t S t  .       (2-40) 

At steady state ( t  ), there will be no infected individuals because they become recovered 

individuals spontaneously. Therefore, the constraints (2-31) – (2-34) can be rewritten as the following 

equations: 

[S](∞) + [R](∞) = 1,        (2-41) 

[SS](∞) + [SR](∞) = Q[S](∞),       (2-42) 

[SR](∞) + [RR](∞) = Q[R](∞).       (2-43) 

Substituting [SS](∞) and [SR](∞) from Eqs. (2-38) and (2-40) into Eq. (2-42) yields 

2[ ] ( ) [ ] ( ) (1 )[ ]( ) 0S r S r S        .       (2-44) 

By defining 1[ ] ( )Qs S t   and taking into account definition of μ, the following algebraic 

equation can written: 

1 (1 ) 0Qs r s r             (2-45) 

,which is equivalent to 

2 2( 1)( ) 0Qs s s s r      .       (2-46) 

The nontrivial solution is then given by  

2 2Qs s s r             

 (2-47) 

In the interval 0s  , the polynomial on the left-hand side is an increasing function of s that 

vanishes at 0s    and attains the value 2Q    at 1s   . Therefore, a real solution in the interval 

0 1s   exists and is the only solution as long as 2r Q  . Therefore, there is a phase transition that 

occurs at the critical relative recovery rate 

2cr Q            (2-48) 

The final fractions are expressed as 

[ ]( ) QS s           (2-49) 

[ ]( ) 1 [ ]( ) 1 QR S s              (2-50) 

Figure 2.4 shows the FES as a function of the inverse of the relative recovery rate when no 

individual is vaccinated on each regular random network which have different degree Q. From this figure, 

we can confirm that the epidemic threshold described by Eq. (2-48) is consistent with the critical point 

of the relative recovery rate, which can lead to epidemic spread. Furthermore, we can calibrate the 

relative recovery rate r such that the FES across a network becomes 0.9 [7], but is 0.46, 0.87, 1.66, or 



18 

 

2.44 when Q is 3, 4, 6, or 8, respectively. To validate the theoretical results, we performed MAS on 

regular random graphs with a population size N = 104 averaged over 100 independent realizations. The 

MAS results are in fairly good agreement with the theoretical results. When the degree number was low 

(i.e., Q = 3), the discrepancy between the numerical simulation and the MAS approach was relatively 

high because of the effect of network topology. 

 

 

Figure 4.4.  Final epidemic size as a function of the inverse of effective recovery rate 1/r, which means 

the basic reproduction number R0, when there is no vaccinated individual on regular random network 

with the number of degree Q = 3, 4, 6, 8. The arrows point to the critical points of the transmission rate, 

which can lead to epidemic spreading, called the epidemic threshold. 

 

2.3 Impact of imperfect vaccination and intermediate protecting measure 

Taking the SIR models described in Section 2.2 as the baseline, the Susceptible-Vaccinated-

Infected-Recovered (SVIR) dynamics was developed. The SVIR model was modified to reproduce the 

two different scenarios, namely imperfect vaccination (the effectiveness model) and intermediate 

protective measure (the efficiency model). Figure 2.5 shows schematic of two types of concepts for 

avoiding infection. In the effectiveness scenario, a vaccinated population is separated into two classes: 

immune individuals obtaining perfect immunity and non-immune individuals failing to get immunity. 

Let the effectiveness of the vaccination and the vaccination coverage be e (0 ≤ e ≤ 1) and x, respectively. 

The fraction of vaccinated individuals with immunity must be ex, while the fraction of non-immune 

individuals is (1 – ex). On the other hand, the efficiency model defined the efficiency of an intermediate 

protective measure to avoid infection as a parameter η (0 ≤ η ≤ 1), meaning how the defense measure 

can reduce the probability of being infected. While a non-vaccinated (more precisely, non-prepared with 

the defense against contagion) susceptible individual may become infected if he/she is exposed to 
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infectious individuals at the disease transmission rate β, an individual prepared with the intermediate 

protective measure who is in S may also become infectious at the rate (1−η)β.  

 

 
Figure 2.5. Schematic of two types of concepts for avoiding infection: (a) effectiveness model; (b) 

efficiency model. 

 

2.3.1 Infinite and well-mixed population 

In the effectiveness model, the SVIR model we use to describe such a condition is 

( )
( ) ( )

dS t
S t I t

dt
  ,        (2-51) 

 
( )

( ) (0) ( )
dV t

V t eV I t
dt

   ,       (2-52) 

 
( )

( ) ( ) ( ) (0) ( ) ( )
dI t

S t I t V t eV I t I t
dt

     ,      (2-53) 

( )
( )

dR t
I t

dt
 .         (2-54) 

with the assumed set of initial values S(0) = 1 – x, V(0) = x, I(0) ≈ 0, R(0) = 0. The following constraint 

is requisite: 

S(t) + V(t) + I(t) + R(t) = 1.        (2-55) 

The final epidemic size R(∞) can be expressed in relation to both x and time t at equilibrium (t 

= ∞) as: 

R(∞) = (1 – ex)(1 – exp[–R0R(∞)]),       (2-56) 

R(∞) gives the respective fractions of four different types of individual depending on whether 

they are vaccinated or non-vaccinated and whether they are healthy or infected as summarized in 

Table 2.1. 



20 

 

 

Table 2.1.  Fractions of four types of individual using the effectiveness model. 

Strategy/state Healthy Infected 

Vaccinated x(e + (1 – e)exp[–R0R(∞)]) x(1 – e)(1 – exp[–R0R(∞)]) 

Non-vaccinated (1 – x)exp[–R0R(∞)] (1 – x)(1 – exp[–R0R(∞)]) 

 

In the efficiency model, the SVIR model we use to describe such a condition is  

( )
( ) ( )

dS t
S t I t

dt
  ,        (2-57) 

( )
(1 ) ( ) ( )

dV t
V t I t

dt
    ,        (2-58) 

( )
( ) ( ) (1 ) ( ) ( ) ( )

dI t
S t I t V t I t I t

dt
       ,      (2-59) 

( , )
( , )

dR x t
I x t

dt
 ,         (2-60) 

with the assumed set of initial values S(0) = 1 – x, V(0) = x, I(0) ≈ 0, R(0) = 0. The following constraint 

is requisite: 

S(t) + V(t) + I(t) + R(t) = 1.        (2-61) 

Because the population is not completely susceptible, it is accurate to use a control 

reproduction number Rc instead of the basic reproduction number R0. In this case, Rc can be estimated 

as 

Rc = R0[S(0) + (1 – η)V(0)].        (2-62) 

The final epidemic size and other fractions can be expressed as  

S(∞) = (1 – x) exp[–R0R(∞)],       (2-63) 

V(∞) = x exp[–(1 – η)R0R(∞)],       (2-64) 

R(∞) = 1 – (1 – x) exp[–R0R(∞)] – x exp[–(1 – η)R0R(∞)].    (2-65) 

In the limit of this process, the respective fractions of the four different types of individual at 

equilibrium are as summarized in Table 2.2. Comparing Tables 2.1 and 2.2, it is worth noting that the 

“success probability of free-riding” is always given by exp[–R0R(∞)] irrespective of whether we assume 

a perfect vaccination, an imperfect one, or even a defense against contagion. 

 

Table 2.2.  Fractions of four types of individual using the efficiency model. 

Strategy/state Healthy Infected 

Vaccinated x exp[–(1 – η)R0R(∞)] x(1– exp[–(1 – η)R0R(∞)]) 

Non-vaccinated (1 – x)exp[–R0R(∞)] (1 – x)(1 – exp[–R0R(∞)]) 

 

Figure 2.5 shows the final epidemic size for different levels of vaccination coverage using the 



21 

 

effectiveness and efficiency models. From Figure 2.4, the so-called critical vaccination coverage that 

eradicates an epidemic spread can be read from the border of the extinct phase at which FES = 0. This 

border suggests the critical vaccination coverage for suppressing the spread of infection, which can be 

determined analytically as 
0(1 1 )cx R     for the efficiency model and 

0(1 1 )cx R e    for the 

effectiveness model. Clearly, as long as a less-reliable defense measure is provided, say η < 0.6, we 

cannot avoid the breakout of an epidemic even if all individuals use that particular defense measure. 

 

 

Figure 2.5.  Final epidemic size according to vaccination coverage and (a) effectiveness e 

(effectiveness of a vaccination) or (b) efficiency η (efficiency of a defense against contagion). We 

assume R0 = 2.5, which is applied consistently in this study.  

 

2.3.2 Network model 

Let the effectiveness of the vaccine, the density of a healthy vaccinated individual of degree k, 

and the vaccination coverage of that individual with degree k be e ( 10  e ), Vk, and xk, respectively. 

The fraction of vaccinated individuals with perfect immunity must be exk, while that of non-immune 

individuals is (1 – exk). The differential equations of the SIR model under the vaccination policy 

presented by the effectiveness model are 

( )
( ) ( )k

k

dS t
kS t t

dt
   ,        (2-66) 

 
( )

( ) (0) ( )k

k k

dV t
k V t eV t

dt
    ,       (2-67) 

 
( )

( ) ( ) ( ) (0) ( ) ( )k

k k k k

dI t
kS t t k V t eV t I t

dt
       ,     (2-68) 

( )
( )k

k

dR t
I t

dt
 ,         (2-69) 

with the assumed set of initial conditions: Sk (0) = 1 – xk, Vk (0) = xk, Ik (0) ≈ 0, Rk (0) = 0. The following 

constraint is requisite: 

Sk (t) + Vk (t) + Ik (t) + Rk (t) = 1.       (2-70) 
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Combined with these initial conditions and after normalization, we obtain 

( ) (0)exp[ ( )] (1 )exp[ ( )],k k kS t S k t x k t             (2-71) 

( ) (0)( (1 )exp[ ( )]) ( (1 )exp[ ( )]).k k kV t V e e k t x e e k t               (2-72) 

Focusing on the time evolution of ( )t , as depicted in Eq. (2-15), we modify it as 
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  ] (0)( (1 )exp[ ( )]) ( ).kV e e k t t      

   (2-73) 

Because of Ik (∞) = 0 and lim ( ) 0t d t dt   , from Eq. (2-73) the following self-consistent 

equation for ( )   can be obatined: 

 

 

1

1

1
( ) ( 1) ( ) 1 (0)exp[ ( )] (0)( (1 )exp[ ( )])

1 1
       1 ( 1) ( ) (0)exp[ ( )] (0)( (1 )exp[ ( )])

1 1
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k
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 (2-74) 

The final epidemic size and the other fractions can be expressed as 

( ) (0)exp[ ( )] (1 )exp[ ( )],k k kS S k x k                (2-75) 

( ) (0)( (1 )exp[ ( )]) ( (1 )exp[ ( )]),k k kV V e e k x e e k                 (2-76) 

( ) (1 )(1 exp[ ( )]).k kR ex k              (2-77) 

As explained in the previous sub-section 2.2.2, the condition having a non-zero solution 

imposes the following inequality: 

 
1 ( ) 0

1 1
1 ( 1) ( ) (1 )exp[ ( )] ( (1 )exp[ ( )]) 1.

( )
k k

k

d
k P k x k x e e k t

d k k


   




  

 
           

     
  (2-78) 

Assuming no dependence on degree k of the vaccinated individuals, 

2

(1 ) 1.
k k

ex
k


    

 
 

         (2-78) 

This inequality defines the critical vaccination coverage, which can eradicate epidemic 

spreading 

2
1 .

( )
c

k
x e

k k

  
  

     

        (2-79) 
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The respective fractions of four different types of individuals, depending on whether they are 

vaccinated or non-vaccinated and whether they are healthy or infected, are summarized in Table 2.3. 

 

Table 2.3.  Fractions of four types of individuals in the effectiveness model 

Strategy/state Healthy Infected 

Vaccinated ( (1 )exp[ ( )])kx e e k      (1 )(1 exp[ ( )])kx e k      

Non-vaccinated (1 )exp[ ( )]kx k     (1 )(1 exp[ ( )])kx k      

 

Let the efficiency of a defense against contagion to avoid infection be η ( 10  ), meaning 

how much can the defense measure decrease the probability of infection. In the following formulation 

for the efficiency model, we temporarily regard the vaccinated state V as the state prepared with an 

intermediate defense measure, for comparison with the effectiveness model. A non-vaccinated (more 

precisely, non-prepared with defense against contagion) susceptible individual may become infected if 

he/she is exposed to infectious individuals with disease transmission rate λk. Vaccinated (that is, 

prepared) individuals by the intermediate defense measure, who are in S, may also become infectious 

with  1– k  . 

The SVIR model we use to describe such a condition is expressed as 

( )
( ) ( )k

k

dS t
kS t t

dt
   ,        (2-80) 

( )
(1 ) ( ) ( )k

k

dV t
kV t t

dt
     ,       (2-81) 

( )
( ) ( ) (1 ) ( ) ( ) ( )k

k k k

dI t
kS t t kV t t I t

dt
        ,     

 (2-82) 

( )
( )k

k

dR t
I t

dt
 ,        (2-83) 

with the assumed set of initial conditions Sk (0) = 1 – xk, Vk (0) = xk, Ik (0) ≈ 0, Rk (0) = 0. The following 

constraint is requisite: 

Sk (t) + Vk (t) + Ik (t) + Rk (t) = 1.       (2-84) 

Combined with these initial conditions and through normalization, we obtain 

( ) (0)exp[ ( )] (1 )exp[ ( )],k k kS t S k t x k t             (2-85) 

( ) (0)exp[ (1 ) ( )] exp[ (1 ) ( )].k k kV t V k t x k t                (2-86) 

Focusing on the time evolution of ( )t , as depicted in Eq. (2-15), we modify it as 
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  (2-87) 

Because of Ik (∞) = 0 and lim ( ) 0t d t dt  , we obtain from Eq. (2-87) the following self-

consistent equation for ( )  : 

 

 

1

1

1
( ) ( 1) ( ) 1 (0)exp[ ( )] (0)exp[ (1 ) ( )]

1 1
       1 ( 1) ( ) (0)exp[ ( )] (0)exp[ (1 ) ( )]

1 1
       1 ( 1) ( ) (1 )exp[ ( )] exp[ (1 )

k k

k

k k

k

k k

k P k S k V k
k

k P k S k V k
k k

k P k x k x k
k k

     

    

    









         
 

         
   

         
   





 
1

( )] .
k







  (2-88) 

The final epidemic size and other fractions can be expressed as: 

( ) (0)exp[ ( )] (1 )exp[ ( )]k k kS S k x k           .     (2-89) 

( ) (0)exp[ (1 ) ( )] exp[ (1 ) ( )]k k kV V k x k              .     (2-90) 

( ) 1 (1 )exp[ ( )]) exp[ (1 ) ( )])k k kR x k x k              .     (2-91) 

As in the previous sub-section 2.2.2, the condition having a non-zero solution imposes the 

following inequality: 

 
1 ( ) 0

1 1
1 ( 1) ( ) (1 )exp[ ( )] exp[ (1 ) ( )] 1

( )
k k

k

d
k P k x k x k

d k k


    




  

 
           

     
 . (2-92) 

Assuming no dependence on the degree k of the vaccinated individuals, 

2

(1 ) 1
k k

x
k

 
    

 
 

         (2-93) 

This inequality defines the critical vaccination coverage, which can eradicate the epidemic 

spreading 

2
1

( )
c

k
x

k k




  
  

     

        (2-94) 

The respective fractions of the four individuals, depending on whether they are vaccinated or 

non-vaccinated and whether they are healthy or infected, are summarized in Table 2.4. 

Figure 2.6 gives the final epidemic size depending on the vaccination level in both the 

effectiveness and efficiency models for three different population structures: power law degree 

distribution, Poisson’s degree distribution, and well-mixed population. Although each vaccination 

coverage xk depends on degree k in a real decision-making process on whether to take the vaccination, 
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as we discuss later, we hypothetically assume uniform vaccination coverage here. From Figure 2.5, the 

so-called critical vaccination coverage that eradicates an epidemic spreading can be read from the border 

of the extinct phase, where the final epidemic size is equal to zero. These borders suggest the critical 

vaccination coverage to oppress infection spreading, which can be analytically drawn as Eqs. (2-79) and 

(2-94), respectively. Notably, in power law degree distribution, infectious diseases can easily spread 

vis-à-vis the other two spatial structures, a result that is consistent with those of previous studies (e.g., 

[13]). Because of this, the protective effect of vaccination and defense against contagion in case of power 

law distribution is relatively low compared to that in Poisson’s degree distribution and well-mixed 

population. 

 

Table 2.4.  Fractions of four individuals in case of the efficiency model 

Strategy/state Healthy Infected 

Vaccinated exp[ (1 ) ( )]kx k       (1 exp[ (1 ) ( )])kx k       

Non-vaccinated (1 )exp[ ( )]kx k     (1 )(1 exp[ ( )])kx k      

 

 
Figure 2.6. Final epidemic size according to vaccination coverage and (1-*) effectiveness e 

(effectiveness of a vaccination) or (2-*) efficiency η (efficiency of a defense against contagion) in three 

different population structures: (*-A) power law degree distribution, (*-B) Poisson’s degree distribution, 

and (*-C) well-mixed population described in the Section 2.3.1. We assume λ = 4.8 and 3.9 for power 

law degree distribution and Poisson degree distribution, respectively. In the case of the well-mixed 

population, the reproduction number R0 = 2.5 is applied. 
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2.3.3 Pair approximation model 

In the effectiveness model, the population is subdivided into the following: nonvaccinated 

susceptible individual SN, nonvaccinated infected individual IN, nonvaccinated recovered individual RN, 

vaccinated susceptible individual SV, vaccinated infected individual IV, vaccinated recovered individual 

RV, and vaccinated individual with perfect immunity PV. Let the effectiveness of the vaccination and the 

VC be e ( 10  e ) and x, respectively. The fraction of vaccinated individuals with perfect immunity 

[PV](t) must be ex, whereas that of nonimmune individuals [SV](t) + [IV](t) + [RV](t) is (1 – e)x. On the 

basis of the above assumptions, the dynamics of the SVIR model with imperfect vaccination can be 

described by the following ODEs: 

 [ ]( ) [ ]( ) [ ]( )N N N N V

d
S t S I t S I t

dt
   ,       (2-95) 

 [ ]( ) [ ]( ) [ ]( ) [ ]( )N N N N V N

d
I t S I t S I t I t

dt
    ,      (2-96) 

[ ]( ) [ ]( )N N

d
R t I t

dt
 ,         (2-97) 

 [ ]( ) [ ]( ) [ ]( )V V N V V

d
S t S I t S I t

dt
   ,      

 (2-98) 

 [ ]( ) [ ]( ) [ ]( ) [ ]( )V V N V V V

d
I t S I t S I t I t

dt
    ,      (2-99) 

[ ]( ) [ ]( )V V

d
R t I t

dt
 ,         (2-100) 

[ ]( ) 0V

d
P t

dt
 ,         (2-101) 

 [ ]( ) 2 [ ]( ) ( ) ( )N N N N N N N V N N

d
S S t S S t Q I S S Q I S S

dt
   ,    

 (2-102) 

 

 

[ ]( ) [ ]( ) ( ) ( )

[ ]( ) ( ) ( ) [ ]( )

N N N N N N N V N N

N N N N N V N N N N

d
S I t S S t Q I S S Q I S S
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S I t Q I S I Q I S I S I t



 

 

  

,    (2-103) 

 [ ]( ) [ ]( ) [ ]( ) ( ) ( )N N N N N N N N N V N N

d
S R t S I t S R t Q I S R Q I S R

dt
    ,   (2-104) 

 [ ]( ) 2 [ ]( ) ( ) ( ) 2 [ ]( )N N N N N N N V N N N N

d
I I t S I t Q I S I Q I S I I I t

dt
    ,   (2-105) 

 [ ]( ) [ ]( ) ( ) ( ) [ ]( ) [ ]( )N N N N N N N V N N N N N N

d
I R t S R t Q I S R Q I S R I I t I R t

dt
      ,  (2-106) 

[ ]( ) 2 [ ]( )N N N N

d
R R t I R t

dt
 ,        (2-107) 
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 [ ]( ) 2 [ ]( ) ( ) ( )V V V V N V V V V V

d
S S t S S t Q I S S Q I S S

dt
   ,     (2-108) 
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dt
    ,    (2-110) 

 [ ]( ) [ ]( ) ( ) ( )V V V V N V V V V V

d
S P t S P t Q I S P Q I S P

dt
   ,     (2-111) 

 [ ]( ) 2 [ ]( ) ( ) ( ) 2 [ ]( )V V V V N V V V V V V V

d
I I t S I t Q I S I Q I S I I I t

dt
    ,    (2-112) 

 [ ]( ) [ ]( ) ( ) ( ) [ ]( ) [ ]( )V V V V N V V V V V V V V V

d
I R t S R t Q I S R Q I S R I I t I R t

dt
      ,  (2-113) 

 [ ]( ) [ ]( ) ( ) ( ) [ ]( )V V V V N V V V V V V V

d
I P t S P t Q I S P Q I S P I P t

dt
    ,    (2-114) 

[ ]( ) 2 [ ]( )V V V V

d
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dt
 ,        (2-115) 
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 [ ]( ) [ ]( ) [ ]( ) ( ) ( )N V N V N V N N V V N V

d
S R t S I t S R t Q I S R Q I S R

dt
    ,    (2-121) 

 [ ]( ) [ ]( ) [ ]( ) ( ) ( )V N V N V N N V N V V N

d
S R t S I t S R t Q I S R Q I S R

dt
    ,    (2-122) 

 [ ]( ) [ ]( ) ( ) ( )N V N V N N V V N V

d
S P t S P t Q I S P Q I S P

dt
   ,     (2-123) 
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[ ]( ) [ ]( ) ( ) ( )

[ ]( ) ( ) ( ) 2 [ ]( )

N V N V N N V V N V

N V N V N V V N N V

d
I I t S I t Q I S I Q I S I

dt
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,    (2-124) 

 [ ]( ) [ ]( ) [ ]( ) ( ) ( ) [ ]( )N V N V N V N N V V N V N V

d
I R t I I t S R t Q I S R Q I S R I R t

dt
      ,  (2-125) 

 [ ]( ) [ ]( ) [ ]( ) ( ) ( ) [ ]( )V N N V V N N N V V N V V N

d
I R t I I t S R t Q I S R Q I S R I R t

dt
      ,  (2-126) 

 [ ]( ) [ ]( ) ( ) ( ) [ ]( )N V N V N N V V N V N V

d
I P t S P t Q I S P Q I S P I P t

dt
    ,    (2-127) 

[ ]( ) [ ]( ) [ ]( )N V N V V N

d
R R t I R t I R t

dt
   ,      

 (2-128) 

[ ]( ) [ ]( )N V N V

d
R P t I P t

dt
 .        (2-129) 

The above set of dynamic equations should be assumed to have the following set of initial 

conditions:  

[SN](0) = 1 – x, [SV](0) = (1 – e)x, [PV](0) = ex, [IN](0) ~ 0, [IV](0) ~ 0, [RN](0) = 0, [RV](0) = 0,  

[SNSN](0) = Q(1 – x – α), [SNSV](0) = Q(1 – e)α, [SNPV](0) = Qeα, [SVSV](0) = Q(1 – e)2(x – α), 

[SVPV](0) = Qe(1 – e)(x – α), [PVPV](0) = Qe2(x – α). 

Here, α is the vaccinator-nonvaccinator connection coefficient, which can be said dissortativity 

observed at initial moment of every season (time-evolved in repeating seasons), and is less than x and 1 – x. 

If the homogeneous distribution of vaccinat or and nonvacciantor was assumed, (1 )x x   . 

The following constraints are required: 

[SN](t) + [IN](t) + [RN](t) + [SV](t) + [IV](t) + [RV](t) + [PV](t) = 1,    (2-130) 

[SNSN](t) + [SNIN](t) + [SNRN](t) + [SNSV](t) + [SNIV](t) + [SNRV](t) + [SNPV](t) = Q[SN](t), (2-131) 

[SNIN](t) + [ININ](t) + [INRN](t) + [SVIN](t) + [INIV](t) + [INRV](t) + [INPV](t) = Q[IN](t),  (2-132) 

[SNRN](t) + [INRN](t) + [RNRN](t) + [SVRN](t) + [IVRN](t) + [RNRV](t) + [RNPV](t) = Q[RN](t), (2-133) 

[SNSV](t) + [SVIN](t) + [SVRN](t) + [SVSV](t) + [SVIV](t) + [SVRV](t) + [SVPV](t) = Q[SV](t), (2-134) 

[SNIV](t) + [INIV](t) + [IVRN](t) + [SVIV](t) + [IVIV](t) + [IVRV](t) + [IVPV](t) = Q[IV](t),  (2-135) 

[SNRV](t) + [INRV](t) + [RNRV](t) + [SVRV](t) + [IVRV](t) + [RVRV](t) + [RVPV](t) = Q[RV](t), (2-136) 

[SNPV](t) + [INPV](t) + [RNPV](t) + [SVPV](t) + [IVPV](t) + [RVPV](t) + [PVPV](t) = Q[PV](t), (2-137) 

To solve the above set of equations, we add Eqs. (2-104) and (2-121), and the result is the 

following equation for the variable [SNIN](t) + [SNIV](t): 
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.  (2-138) 
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By substituting [SNIN](t) + [SNIV](t) from Eq. (2-95) into Eq. (2-138), we obtain the following: 

   [ ]( ) [ ]( ) [ ]( ) [ ]( )

[ ]( ) [ ]( )

N N N V N N N V

N N

d S R t S R t S R t S R t
r

d S t S t


 
  .     (2-139) 

By using the initial conditions [SN](0) = 1 – x, [SNRN](0) = 0, and [SNRV](0) = 0, integration 

leads to the following: 

[ ]( ) [ ]( )
[ ]( ) [ ]( ) (1 )

1 1

N N

N N N V

S t S t
S R t S R t Qr x

x x

  
         

.     (2-140) 

Likewise, by adding Eqs. (2-110) and (2-122), we obtain the following equation for the 

variable [SVIN](t) + [SVIV](t): 
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By substituting [SVIN](t) + [SVIV](t) from Eq. (2-98) into Eq. (2-141), the following is obtained: 

   [ ]( ) [ ]( ) [ ]( ) [ ]( )

[ ]( ) [ ]( )

V V V N V V V N

V V

d S R t S R t S R t S R t
r

d S t S t


 
  .     (2-142) 

By using the initial conditions [SV](0) = (1 – e)x, [SVRN](0) = 0, and [SVRV](0) = 0, integration 

leads to the following: 

[ ]( ) [ ]( )
[ ]( ) [ ]( ) (1 )

(1 ) (1 )

V V

V N V V

S t S t
S R t S R t Qr e x

e x e x

  
         

.     (2-143) 

By taking the ratio between Eqs. (2-95) and (2-102), we obtain the following: 

[ ]( ) [ ]( )
2

[ ]( ) [ ]( )

N N N N

N N

d S S t S S t

d S t S t
 .        (2-144) 

By using the initial conditions [SN](0) = 1 – x and [SNSN](0) = Q(1 – x – α), integration leads 

to the following: 

2
[ ]( )

[ ]( ) (1 )
1

N

N N

S t
S S t Q x

x




 

    
 

.       (2-145) 

In the same way, by taking the ratio between Eqs. (2-98) and (2-108), we obtain the following: 

[ ]( ) [ ]( )
2

[ ]( ) [ ]( )

V V V V

V V

d S S t S S t

d S t S t
 .        (2-146) 

By using the initial conditions [SV](0) = (1 – e)x and [SVSV](0) = Q(1 – e)2(x – α), integration 

leads to the following: 

2

2 [ ]( )
[ ]( ) (1 ) ( )

(1 )

V

V V

S t
S S t Q e x

e x




 

    
 

.      (2-147) 

By substituting [SNIN](t) + [SNIV](t) and [SVIN](t) + [SVIV](t) from Eqs. (2-95) and (2-98) into 

Eq. (2-118), we obtain the following: 
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[ ]( )1
[ ]( ) [ ]( )

[ ]( ) [ ]( ) [ ]( )

N V

N V

N V N V

d S S t d d
S t S t

S S t dt S t dt S t dt

 
  .    (2-148) 

By using the initial conditions [SN](0) = 1 – x, [SV](0) = (1 – e)x, and [SNSV](0) = Q(1 – e) α, 

integration leads to the following: 

[ ]( ) [ ]( )
[ ]( ) (1 )

1 (1 )

N V

N V

S t S t
S S t Q e

x e x




  

    
    

.      (2-149) 

By substituting [SNIN](t) + [SNIV](t) from Eq. (2-95) into Eq. (2-123), we obtain the following: 

[ ]( ) [ ]( )

[ ]( ) [ ]( )

N V N V

N N

d S P t S P t

d S t S t
 .        (2-150) 

By using the initial conditions [SN](0) = 1 – x and [SNPV](0) = Qeα, integration leads to the 

following: 

[ ]( )
[ ]( )

1

N

N V

S t
S P t Qe

x




 

  
 

.        (4-151) 

By substituting [SVIN](t) + [SVIV](t) from Eq. (2-98) into Eq. (2-111), we obtain the following: 

[ ]( ) [ ]( )

[ ]( ) [ ]( )

V V V V

V V

d S P t S P t

d S t S t
 .        (2-152) 

By using the initial conditions [SV](0) = (1 – e)x and [SVPV](0) = Qe(1 – e)(x – α), integration 

leads to the following: 

[ ]( )
[ ]( ) (1 )( )

(1 )

V

V V

S t
S P t Qe e x

e x




 

    
 

.       (2-153) 

At the steady state ( t   ), the constraints in Eq. (4-130) to (4-137) can be rewritten as 

follows: 

[SN](∞) + [RN](∞) + [SV](∞) + [RV](∞) + [PV](∞) = 1,     (2-154) 

[SNSN](∞) + [SNRN](∞) + [SNSV](∞) + [SNRV](∞) + [SNPV](∞) = Q[SN](∞),   (2-155) 

[SNRN](∞) + [RNRN](∞) + [SVRN](∞) + [RNRV](∞) + [RNPV](∞) = Q[RN](∞),   (2-156) 

[SNSV](∞) + [SVRN](∞) + [SVSV](∞) + [SVRV](∞) + [SVPV](∞) = Q[SV](∞),   (2-157) 

[SNRV](∞) + [RNRV](∞) + [SVRV](∞) + [RVRV](∞) + [RVPV](∞) = Q[RV](∞),   (2-158) 

[SNPV](∞) + [RNPV](∞) + [SVPV](∞) + [RVPV](∞) + [PVPV](∞) = Q[PV](∞),   (2-159) 

Substituting [SNRN](∞) + [SNRV](∞), [SNSN](∞), [SNSV](∞), and [SNPV](∞) from Eqs. (2-140), 

(2-145), (2-149), and (2-151) into Eq. (2-155) yields: 

2
[ ]( ) [ ]( ) [ ]( )

(1 ) (1 )
1 1 (1 )

[ ]( ) [ ]( ) [ ]( )
(1 )

1 1 1

[ ]( )
(1 )

1

N N V

N N N

N

S S S
x e

x x e x

S S S
r x e

x x x

S
x

x

 

 

 



      
        

       

      
              


 



.     (2-160) 
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Substituting [SVRN](∞) + [SVRV](∞), [SVSV](∞), [SNSV](∞), and [SVPV](∞) from Eqs. (2-143), 

(2-147), (2-149) and (2-153) into Eq. (2-157) yields: 

2

[ ]( ) [ ]( ) [ ]( ) [ ]( )

1 (1 ) (1 ) (1 )

[ ]( ) [ ]( )
(1 )( ) ( )

(1 ) (1 )

[ ]( )

(1 )

N V V V

V V

V

S t S t S t S t
rx

x e x e x e x

S t S t
e x e x

e x e x

S t
x

e x

 

 



 

     
                 

   
       

    




.     (2-161) 

By defining 

1
[ ]( )

1

Q

NS
p

x

 
  

 
, 

1

[ ]( )

(1 )

Q

VS
q

e x

 
  

 
and taking into account the definition of μ, we 

can write Eqs. (2-160) and (2-161) as follows: 

1 1(1 ) (1 )(1 ) (1 ) (1 ) 0Q Qx p r x p r x e e q              ,    (2-162) 

1 1(1 )( ) (1 ) ( ) 0Q Qe x q r xq rx e x p            .     (2-163) 

If we assumed a homogeneous distribution of vaccinators and nonvaccinators, (1 )x x   and 

p = q, the following equation is obtained: 

1(1 ) (1 ) 0Qex p r p r ex      ,       (2-164) 

which is equivalent to 

 2 2( 1) (1 )( ) 0Qp ex p p p ex r        .      (2-165) 

The nontrivial solution is then given by the following: 

2 2(1 )( )Qex p p p ex r      .       (2-166) 

When the epidemic spread is eradicated, 1p   is satisfied. Therefore, the critical vaccination 

coverage is represented by the following: 

2

( 1)
c

Q r
x

Q e

 



.         (2-167) 

The final fractions are expressed as follows: 

[ ]( ) (1 ) Q

NS x p   ,        (2-168) 

[ ]( ) (1 ) Q

VS e xq   ,        (2-169) 

[ ]( )VP ex  ,         (2-170) 

[ ]( ) 1 [ ]( ) (1 )(1 )Q

N NR x S x p        ,      (2-171) 

[ ]( ) (1 ) [ ]( ) (1 ) (1 )Q

V VR e x S e x q        .      (2-172) 

The other final pairs are hypothetically calculated as follows: 

1 [ ]( )
[ ]( ) (1 )( )

[ ]( ) [ ]( )

Q Q N

N N

N V

R
S R Qr x p p

R R

 
   

  
,     (2-173) 
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1 [ ]( )
[ ]( ) (1 )( )

[ ]( ) [ ]( )

Q Q V

N N

N V

R
S R Qr x p p

R R

 
   

  
,     (2-174) 

1 [ ]( )
[ ]( ) (1 ) ( )

[ ]( ) [ ]( )

Q Q N

V N

N V

R
S R Qr e x q q

R R

 
   

  
,     (2-175) 

1 [ ]( )
[ ]( ) (1 ) ( )

[ ]( ) [ ]( )

Q Q V

V N

N V

R
S R Qr e x q q

R R

 
   

  
,     (2-176) 

[ ]( ) [ ](0) [ ]( ) 2[ ]( )N N N N N N N NR R S S S S S R      ,     (2-177) 

[ ]( ) [ ](0) [ ]( ) 2[ ]( )V V V V V V V VR R S S S S S R      ,     (2-178) 

[ ]( ) [ ](0) [ ]( ) [ ]( ) [ ]( )N V N V N V N V V NR R S S S S S R S R        ,    (2-179) 

1[ ]( ) [ ](0) [ ]( ) (1 )(1 )Q

N V N V N VR P S P S P Qex x p        ,     (2-180) 

2 1[ ]( ) [ ](0) [ ]( ) (1 ) (1 )Q

V V V V V VR P S P S P Qe e x q        .     (2-181) 

 

In the efficiency model, the population is subdivided into the following: nonvaccinated 

susceptible individual SN, nonvaccinated infected individual IN, nonvaccinated recovered individual RN, 

vaccinated susceptible individual SV, vaccinated infected individual IV, and vaccinated recovered 

individual RV. A nonvaccinated susceptible individual SN (more precisely, an individual not prepared 

with intermediate protective measures) may become infected if he/she is exposed to infectious 

individuals with a disease transmission rate of β (day−1 person−1). A vaccinated (i.e., prepared) individual 

SV who is taking intermediate protective measures may also become infectious with (1–η) β. On the 

basis of the above assumptions, the dynamics of the SVIR model with intermediate protective measure 

can be described by the following ODEs: 

 [ ]( ) [ ]( ) [ ]( )N N N N V

d
S t S I t S I t

dt
   ,       (2-182) 

 [ ]( ) [ ]( ) [ ]( ) [ ]( )N N N N V N

d
I t S I t S I t I t

dt
    ,      (2-183) 

[ ]( ) [ ]( )N N

d
R t I t

dt
 ,         (2-184) 

 [ ]( ) (1 ) [ ]( ) [ ]( )V V N V V

d
S t S I t S I t

dt
     ,      (2-185) 

 [ ]( ) (1 ) [ ]( ) [ ]( ) [ ]( )V V N V V V

d
I t S I t S I t I t

dt
      ,      (2-186) 

[ ]( ) [ ]( )V V

d
R t I t

dt
 ,         (2-187) 

 [ ]( ) 2 [ ]( ) ( ) ( )N N N N N N N V N N

d
S S t S S t Q I S S Q I S S

dt
   ,     (2-188) 
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[ ]( ) [ ]( ) ( ) ( )

[ ]( ) ( ) ( ) [ ]( )

N N N N N N N V N N

N N N N N V N N N N

d
S I t S S t Q I S S Q I S S

dt

S I t Q I S I Q I S I S I t



 

 

  

,    (2-189) 

 [ ]( ) [ ]( ) [ ]( ) ( ) ( )N N N N N N N N N V N N

d
S R t S I t S R t Q I S R Q I S R

dt
    ,   (2-190) 

 [ ]( ) 2 [ ]( ) ( ) ( ) 2 [ ]( )N N N N N N N V N N N N

d
I I t S I t Q I S I Q I S I I I t

dt
    ,   (2-191) 

 [ ]( ) [ ]( ) ( ) ( ) [ ]( ) [ ]( )N N N N N N N V N N N N N N

d
I R t S R t Q I S R Q I S R I I t I R t

dt
      ,  (2-192) 

[ ]( ) 2 [ ]( )N N N N

d
R R t I R t

dt
 ,        (2-193) 

 [ ]( ) 2(1 ) [ ]( ) ( ) ( )V V V V N V V V V V

d
S S t S S t Q I S S Q I S S

dt
     ,    (2-194) 

 

 

[ ]( )
(1 ) [ ]( ) ( ) ( )

(1 ) [ ]( ) ( ) ( ) [ ]( )

V V

V V N V V V V V

V V N V V V V V V V

d S I t
S S t Q I S S Q I S S

dt

S I t Q I S I Q I S I S I t

 

  

  

   

,   (2-195) 

 [ ]( ) [ ]( ) (1 ) [ ]( ) ( ) ( )V V V V V V N V V V V V

d
S R t S I t S R t Q I S R Q I S R

dt
      ,   (2-196) 

 [ ]( ) 2(1 ) [ ]( ) ( ) ( ) 2 [ ]( )V V V V N V V V V V V V

d
I I t S I t Q I S I Q I S I I I t

dt
      ,   (2-197) 

 [ ]( ) (1 ) [ ]( ) ( ) ( ) [ ]( ) [ ]( )V V V V N V V V V V V V V V

d
I R t S R t Q I S R Q I S R I I t I R t

dt
        ,  (2-198) 

[ ]( ) 2 [ ]( )V V V V

d
R R t I R t

dt
 ,        (2-199) 

 

 

[ ]( ) [ ]( ) ( ) ( )

(1 ) [ ]( ) ( ) ( )

N V N V N N V V N V

N V N V N V V N

d
S S t S S t Q I S S Q I S S

dt

S S t Q I S S Q I S S



 

  

  

,    (2-200) 

 

 

[ ]( ) (1 ) [ ]( ) ( ) ( )

[ ]( ) ( ) ( ) [ ]( )

N V N V N V N V V N

N V N N V V N V N V

d
S I t S S t Q I S S Q I S S

dt

S I t Q I S I Q I S I S I t

 

 

  

  

,    (2-201) 

 

 

[ ]( ) [ ]( ) ( ) ( )

(1 ) [ ]( ) ( ) ( ) [ ]( )

V N N V N N V V N V

N V N V N V V N V N

d
S I t S S t Q I S S Q I S S

dt

S I t Q I S I Q I S I S I t



  

 

   

,   (2-202) 

 [ ]( ) [ ]( ) [ ]( ) ( ) ( )N V N V N V N N V V N V

d
S R t S I t S R t Q I S R Q I S R

dt
    ,    (2-203) 

 [ ]( ) [ ]( ) (1 ) [ ]( ) ( ) ( )V N V N V N N V N V V N

d
S R t S I t S R t Q I S R Q I S R

dt
      ,   (2-204) 
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[ ]( ) [ ]( ) ( ) ( )

(1 ) [ ]( ) ( ) ( ) 2 [ ]( )

N V N V N N V V N V

N V N V N V V N N V

d
I I t S I t Q I S I Q I S I

dt

S I t Q I S I Q I S I I I t



  

 

   

,   (2-205) 

 [ ]( ) [ ]( ) [ ]( ) ( ) ( ) [ ]( )N V N V N V N N V V N V N V

d
I R t I I t S R t Q I S R Q I S R I R t

dt
      ,  (2-206) 

 [ ]( ) [ ]( ) (1 ) [ ]( ) ( ) ( ) [ ]( )V N N V V N N N V V N V V N

d
I R t I I t S R t Q I S R Q I S R I R t

dt
        ,  (2-207) 

[ ]( ) [ ]( ) [ ]( )N V N V V N

d
R R t I R t I R t

dt
   .       (2-208) 

The above set of equations are assumed to have the following initial conditions:  

[SN](0) = 1 – x, [SV](0) = x, [IN](0) ~ 0, [IV](0) ~ 0, [RN](0) = 0, [RV](0) = 0, [SNSN](0) = Q(1 – x – α), 

[SNSV](0) = Qα, and [SVSV](0) = Q(x – α). 

The following constraints are required: 

[SN](t) + [IN](t) + [RN](t) + [SV](t) + [IV](t) + [RV](t) = 1,     (2-209) 

[SNSN](t) + [SNIN](t) + [SNRN](t) + [SNSV](t) + [SNIV](t) + [SNRV](t) = Q[SN](t),   (2-210) 

[SNIN](t) + [ININ](t) + [INRN](t) + [SVIN](t) + [INIV](t) + [INRV](t) = Q[IN](t),   (2-211) 

[SNRN](t) + [INRN](t) + [RNRN](t) + [SVRN](t) + [IVRN](t) + [RNRV](t) = Q[RN](t),  (2-212) 

[SNSV](t) + [SVIN](t) + [SVRN](t) + [SVSV](t) + [SVIV](t) + [SVRV](t) = Q[SV](t),   (2-213) 

[SNIV](t) + [INIV](t) + [IVRN](t) + [SVIV](t) + [IVIV](t) + [IVRV](t) = Q[IV](t),   (2-214) 

[SNRV](t) + [INRV](t) + [RNRV](t) + [SVRV](t) + [IVRV](t) + [RVRV](t) = Q[RV](t),  (2-215) 

To solve the above set of equations, we add Eqs. (2-190) and (2-203) to obtain the following 

equation for the variable [SNIN](t) + [SNIV](t): 

   

  

[ ]( ) [ ]( ) [ ]( ) [ ]( )

[ ]( ) [ ]( ) [ ]( ) [ ]( )

[ ]( )

N N N V N N N V

N N N V N N N V

N

d
S R t S R t S I t S I t

dt

S I t S I t S R t S R t

S t





  

 


.  (2-216) 

By substituting [SNIN](t) + [SNIV](t) from Eq. (2-182) into Eq. (2-216), we obtain the following: 

   [ ]( ) [ ]( ) [ ]( ) [ ]( )

[ ]( ) [ ]( )

N N N V N N N V

N N

d S R t S R t S R t S R t
r

d S t S t


 
  .     (2-217) 

By using the initial conditions [SN](0) = 1 – x, [SNRN](0) = 0, and [SNRV](0) = 0, integration 

leads to the following: 

[ ]( ) [ ]( )
[ ]( ) [ ]( ) (1 )

1 1

N N

N N N V

S t S t
S R t S R t Qr x

x x

  
         

.     (2-218) 

Likewise, adding Eqs. (2-196) and (2-204) yields the following equation for the variable of 

[SVIN](t) + [SVIV](t): 
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[ ]( ) [ ]( ) [ ]( ) [ ]( )

[ ]( ) [ ]( ) [ ]( ) [ ]( )
(1 )

[ ]( )

V V V N V N V V

V N V V V V V N

V

d
S R t S R t S I t S I t

dt

S I t S I t S R t S R t

S t



 

  

 
 

.  (2-219) 

By substituting [SVIN](t) + [SVIV](t) from Eq. (2-185) into Eq. (2-219), we obtain the following: 

   [ ]( ) [ ]( ) [ ]( ) [ ]( )

[ ]( ) [ ]( ) 1

V V V N V V V N

V V

d S R t S R t S R t S R t r

d S t S t




 
 


.    (2-220) 

By using the initial conditions [SV](0) = x, [SVRN](0) = 0, and [SVRV](0) = 0, integration leads 

to the following: 

[ ]( ) [ ]( )
[ ]( ) [ ]( )

1

V V

V N V V

S t S tQrx
S R t S R t

x x





  
        

.     (2-221) 

By taking the ratio between Eqs. (2-182) and (4-188), we obtain the following: 

[ ]( ) [ ]( )
2

[ ]( ) [ ]( )

N N N N

N N

d S S t S S t

d S t S t
 .        (2-222) 

By using the initial conditions [SN](0) = 1 – x and [SNSN](0) = Q(1 – x)2, integration leads to 

the following: 

2

2 [ ]( )
[ ]( ) (1 )

1

N

N N

S t
S S t Q x

x


 

   
 

.       (2-223) 

In the same way, by taking the ratio between Eqs. (2-185) and (2-194), we obtain the following: 

[ ]( ) [ ]( )
2

[ ]( ) [ ]( )

V V V V

V V

d S S t S S t

d S t S t
 .        (2-224) 

By using the initial conditions [SV](0) = x and [SVSV](0) = Qx2, integration leads to the 

following: 

2

2 [ ]( )
[ ]( ) V

V V

S t
S S t Qx

x


 

  
 

.        (2-225) 

By substituting [SNIN](t) + [SNIV](t) and [SVIN](t) + [SVIV](t) from Eqs. (2-182) and (2-185) into 

Eq. (2-200), we obtain the following: 

[ ]( )1
[ ]( ) [ ]( )

[ ]( ) [ ]( ) [ ]( )

N V

N V

N V N V

d S S t d d
S t S t

S S t dt S t dt S t dt

 
  .    (2-226) 

By using the initial conditions [SN](0) = 1 – x, [SV](0) = x, and [SNSV](0) = Qx(1 – x), integration 

leads to the following: 

[ ]( ) [ ]( )
[ ]( ) (1 )

1

N V

N V

S t S t
S S t Qx x

x x

 
   

     
   

.      (2-227) 

At the steady state ( t   ), the constraints in Eqs. (2-209) to (2-215) can be rewritten as 

follows: 

[SN](∞) + [RN](∞) + [SV](∞) + [RV](∞) = 1,      (2-228) 
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[SNSN](∞) + [SNRN](∞) + [SNSV](∞) + [SNRV](∞) = Q[SN](∞),    (2-229) 

[SNRN](∞) + [RNRN](∞) + [SVRN](∞) + [RNRV](∞) = Q[RN](∞),    (2-230) 

[SNSV](∞) + [SVRN](∞) + [SVSV](∞) + [SVRV](∞) = Q[SV](∞),    (2-231) 

[SNRV](∞) + [RNRV](∞) + [SVRV](∞) + [RVRV](∞) = Q[RV](∞),    (2-232) 

Substituting [SNSN](∞), [SNSV](∞), and [SNRN](∞) + [SNRV](∞) from Eqs. (2-218), (2-223), and 

(2-227) into Eq. (2-229) yields the following: 

2
[ ]( ) [ ]( ) [ ]( ) [ ]( ) [ ]( ) [ ]( )

(1 ) (1 ) (1 )
1 1 1 1 1

N N N N V NS S S S S S
Q x Qr x Q Q x

x x x x x x

   

 
             

                            

. (2-233) 

Substituting [ ]( )V VS S   , [ ]( )N VS S   , and [ ]( ) [ ]( )N N N VS R S R    from Eqs. (2-221), (2-225), 

and (2-227) into Eq. (2-231) yields the following: 

2
[ ]( ) [ ]( ) [ ]( ) [ ]( ) [ ]( ) [ ]( )

( )
1 1

V V V N V VS Qrx S S S S S
Q x Q Qx

x x x x x x

   

 


             
                      

.  (2-234) 

By defining 

1
[ ]( )

1

Q

NS
p

x

 
  

 
 and 

1
[ ]( )

Q

VS
q

x

 
  
 

 and by taking into account the definition 

of μ, we can write Eqs. (2-233) and (2-234) as follows: 

1 1(1 ) (1 )(1 ) (1 ) 0Q Qx p r x p r x q           ,     (2-235) 

1 1( ) 1 0
1 1

Q Qr rx
x q xq p 

 

  
      

  
.      (2-236) 

By assuming a homogeneous distribution of vaccinated and non-vaccinated individuals, (1 )x x   ,  

and taking away Eq. (2-235) from Eq. (2-236), we obtain the following equation: 

q Ap B  .         (2-237) 

Here, 
(1 )(1 )

1

r
A

r





 


 
, 

1

r
B

r






 
. 

By inserting Eq. (2-237) to Eq. (2-235), we can obtain the following algebraic equation of p: 

1 1(1 ) (1 ) ( ) 0Q Qx p r p r x Ap B        ,      (2-238) 

which is equivalent to 

   1 2 1 2 3( 1) (1 ) (1 ) ( 1) 0Q Q Q Q Qp x A x p x A x Q A B p             
  .   (2-239) 

The nontrivial solution is then given by the following: 

   1 2 1 2 3(1 ) (1 ) ( 1) 0Q Q Q Q Qx A x p x A x Q A B p            .    (2-240) 

Given that p = 1 is also satisfied, the critical VC is represented by the following: 

2 1

1

( 1) (1 )

1
( 1)

c
Q k Q k

k

Q r
x

Q
Q k A B

k

  



  


 
   

 


.      

 (2-241) 
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The final fractions are expressed as follows: 

[SN](∞) = (1 – x)pQ,        (2-242) 

[SV](∞) = xqQ,         (2-243) 

[RN](∞) = 1 – x – [SN](∞) = (1 – x)(1 – pQ),      (2-244) 

[RV](∞) = x – [SV](∞) = x(1 – qQ).       (2-245) 

The other final pairs are hypothetically calculated as follows: 

[ ]( ) [ ]( ) [ ]( )
[ ]( ) (1 )

1 1 [ ]( ) [ ]( )
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[ ]( ) [ ](0) [ ]( ) 2[ ]( )N N N N N N N NR R S S S S S R      ,     (2-250) 

[ ]( ) [ ](0) [ ]( ) 2[ ]( )V V V V V V V VR R S S S S S R      ,     (2-251) 

[ ]( ) [ ](0) [ ]( ) [ ]( ) [ ]( )N V N V N V N V V NR R S S S S S R S R        .    (2-252) 

Figure 2.7 shows the FES as a function of vaccination level in both the effectiveness and 

efficiency models shown above for the four different degrees. The figure also shows that the critical VC 

that eradicates an epidemic spread can be read from the border of the extinct phase, where FES = 0. 

These borders suggest the critical VC for preventing the spread of infection, which can be analytically 

drawn as Eqs. (2-167) and (2-241). These relationships were also confirmed in the MAS approach. 

Despite subtle discrepancies between the theoretical and MAS approaches, the simulation assumes a 

finite population size of N = 104 as opposed to infinity in pair approximation; in contrast to the 

deterministic approach of pair approximation, it assumes a stochastic process. 
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Figure 2.7. FES according to VC and the (a) effectiveness e and (b) efficiency η in four different degrees 

(Q = 3, 4, 6, 8). The upper panels represent the results of the theoretical approach, and the bottom panels 

represent the results of the MAS approach. 

 

2.4 Vaccination game model 

The underlying vaccination game model used throughout this study based on the original by 

Fu et al. [7]. In this model, each individual is placed in a social network and decides whether to get 

vaccinated or not. A seasonal infectious disease (e.g., influenza) spreads through such a population. The 

protective efficacy of the vaccine persists for less than a year because of waning antibodies and year-to-

year changes in the circulating virus strain. Therefore, under a voluntary vaccination policy, individuals 

must make their mind regarding vaccination every year. The model captured this dynamics in two stages: 

an epidemic season and a vaccination campaign. Running until reaching a social equilibrium, the model 

observed the following performance measures: vaccination coverage (VC), the final epidemic size (FES), 

and the average social payoff (ASP). Figure 2.8 schematically shows the outline of vaccination game 

model. 
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Figure 2.8. Schematic of vaccination game model 

 

2.4.1 Payoff structure 

An epidemic season continues until all infected individuals recover, meaning that the number 

of infected individuals is zero. If non-vaccinated individuals are infected, they incur the cost Ci of 

infection. By contrast, non-vaccinated individuals that fortunately remain healthy can avoid any cost 

burden. Moreover, individuals who unfortunately are infected despite taking either the vaccination or 

the defense against contagion are assigned the cost Cv + Ci of vaccination and infection. To simplify the 

evaluation of each individual’s payoff, without loss of generality, we rescale the cost by defining a 

relative cost of vaccination, namely Cr = Cv / Ci (0 ≤ Cr ≤ 1; Ci = 1). Consequently, the payoff of each 

individual at the end of an epidemic season depends on his/her final state. Table 2.5 summarizes the 

payoff whether committing to a provision (either vaccination or defense against contagion) or not and 

whether having been healthy or infected. 

 

Table 2.5.  Payoff structure determined at the end of an epidemic season. 

Strategy/state Healthy Infected 

Vaccinated −Cr −Cr−1 

Non-vaccinated 0 −1 

 

We can now evaluate the expected payoffs in the form of the average social payoff <π>, the 

average corporative (vaccinated) payoff <πC>, and the average defective (non-vaccinated) payoff <πD> 

for the respective provisions, namely imperfect vaccination and the defense against contagion: 
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2.4.1.1 Infinite and well-mixed population 

These payoffs are calculated by the following equations: 

Effectiveness model 

0 0

0

( (1 )exp[ ( )]) ( 1) (1 )(1 exp[ ( )])

(1 )(1 exp[ ( )])

r rC x e e R R C x e R R

x R R

             

    
,   (2-253) 

0 0( (1 )exp[ ( )]) ( 1)(1 )(1 exp[ ( )])C r rC e e R R C e R R              ,   (2-254) 

0(1 exp[ ( )])D R R       .        (2-255) 

Efficiency model 

0 0

0

exp[ (1 ) ( )] ( 1) (1 exp[ (1 ) ( )])

(1 )(1 exp[ ( )])

r rC x R R C x R R
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0 0exp[ (1 ) ( )] ( 1)(1 exp[ (1 ) ( )])C r rC R R C R R               ,    (2-257) 

0(1 exp[ ( )])D R R       .        (2-258) 

 

2.4.1.2 Network model 

In the network model, these payoffs are calculated by the following equations: 

Effectiveness model 
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C P k x e e k C P k x e k                   , (2-260) 

( )(1 )(1 exp[ ( )])D kk
P k x k          .      (2-261) 

Efficiency model 

( ) exp[ (1 ) ( )] ( 1) ( ) (1 exp[ (1 ) ( )])
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, (2-262) 

( ) exp[ (1 ) ( )] ( 1) ( ) (1 exp[ (1 ) ( )])C r k r kk k
C P k x k C P k x k                    , (2-263) 

( )(1 )(1 exp[ ( )])D kk
P k x k          .      (2-264) 

 

2.4.1.3 Pair approximation model 

In the pair approximation model, these payoffs are calculated by the following equations: 

Effectiveness model 
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Efficiency model 

[ ]( ) ( 1)[ ]( ) [ ]( ) ( 1) (1 ) (1 )(1 )Q Q Q

r V r V N r rC S C R R C xq C x q x p                  . (2-266) 
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2.4.2 Strategy adaptation  

In the framework of the vaccination game, when an epidemic season ends, an individual is allowed to 

alter his/her strategy whether using a provision or not by reflecting on what happened in the previous 

epidemic season. In the present study, we consider the following three types of strategy updating 

proposed respectively by Fu et al. [7], Fukuda et al. [9], and Iwamura et al. [12]. Those studies, based 

on a multi-agent simulation (MAS) approach, assumed a spatial structure among individuals by 

introducing a certain underlying network connecting individual agents. The present study does not 

consider any spatial structure. Hence, we rely on the so-called mean field approximation to evaluate a 

neighbor’s payoff. 

 

2.4.2.1 Individual-based risk assessment (IB-RA)  

As with arguably the most accepted stochastic strategy-updating rule among the usual two-

strategy and two-player (2×2) games, namely pairwise Fermi updating, every individual updates his/her 

strategy by imitating his/her neighborhood. An individual randomly selects one neighbor and then 

decides whether to adopt that neighbor’s strategy. That is, individual i will adopt the selected neighbor 

j’s strategy with probability 

1
( )

1 exp[ ( ) ]
i j

j i

P s s
  

 
  

,       (2-267) 

where si means the strategy of i, πi is i’s payoff in the previous season, and the parameter κ > 0 

characterizes the strength of selection (the sensitivity of individuals to differences in their payoffs); 

smaller κ means that an individual is more sensitive to a payoff difference. We set κ = 0.1. Following 

Ref. [9], we call this updating rule individual-based risk assessment (IB-RA).  

In the present framework, there are four classes of individual in relation to cost burden: (i) a 

successful free-rider (SFR) who pays nothing, (ii) a failed free-rider (FFR) who pays −1, (iii) an infected 

vaccinator (IV) who pays −Cr−1, and (iv) a healthy vaccinator (HV) who pays −Cr. While the strategies 

and individual can choose are two: using vaccination (V) and not using vaccination (NV). Thus, the 

transition probability that affects the time transition of x, which should be considered in the IB-RA rule, 

is covered by one of the following eight cases: 
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2.4.2.2 Strategy-based risk assessment (SB-RA)  

Fukuda et al. [9] modified the imitation probability (IB-RA) to reflect the situation in which 

an individual tends to assess the risk based on a socially averaged payoff because of the prevalence of 

information about epidemics (probably given by the media). The modified probability is 

1
( )

1 exp[ ( ) ]
i j

j i

P s s
  

 
    

,       (2-269) 

where 
j   is the average payoff obtained by averaging the collective payoff over individuals who 

adopt the same strategy as that of a randomly selected neighbor j of individual i. Following Ref. [9], we 

call this updating rule strategy-based risk assessment (SB-RA). 

The transition probability that we must consider now is one of the following: 
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1
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P FFR V
 

 
       

.     (2-270-4) 

 

2.4.2.3 Direct commitment (DC)  

Iwamura et al. [12] proposed a new updating rule that directly gives an individual’s 

“probability of using vaccination,” namely PS=V, triggered by his/her consciousness of how dangerous 

trying to be a free-rider would be. This probability is evaluated by comparing the average payoffs of 

using and not using vaccination as observed in this agent’s neighborhood:  

   /exp1

1

NVsVS

VSP





 ,  
VSNVS PP  1 ,     (2-271) 

where 
S V     and 

S NV     are the mean average payoffs of vaccinators and non-vaccinators, 

respectively, as observed in the agent’s neighborhood; taken alone, PS=NV is the probability of not using 
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vaccination. In the present model, the mean field approximation gives that those two can be alternated 

by 
C   and 

D  , respectively. We call this updating rule direct commitment (DC). 

The transition probability that we must consider now is one of the following: 

 
   /exp1

1

CD

NVVP


 ,     (2-272-1) 

 
   /exp1

1

DC

VNVP


 .     (2-272-2) 

 

2.4.3 Evolutionary system 

Strategy updating takes place after each epidemic season as defined above, thereby inevitably increasing 

or decreasing vaccination coverage x.  

 

2.4.3.1 Infinite and well-mixed population 

Effectiveness model + IB-RA: 
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, (2-273) 

Efficiency model + IB-RA: 
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Effectiveness model + SB-RA: 
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Efficiency model + SB-RA: 
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Effectiveness or efficiency model + DC: 

   (1 )
dx

xP V NV x P NV V
dt

      .      (2-277) 

Something worth noting is that Eq. (2-277) is qualitatively consistent with what are called 

replicator dynamics, one of the most common concepts in evolutionary game theory for expressing a 

system’s dynamics (e.g., [3]). All the above dynamical equations can be solved numerically. We 

introduce a so-called explicit scheme for the time-varying terms to obtain a numerical solution; a 

vaccination coverage at equilibrium. 

 

2.4.3.2 Network model 

IB-RA + effectiveness model 
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IB-RA + efficiency model 
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SB-RA + effectiveness model 
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SB-RA + efficiency model 
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All the above dynamical equations, Eqs. (2-278)–(2-281), can be solved numerically. Thus, 

the final result is affected by the two-stage process: SIR dynamics in a single season and the strategy 

adaptation process. We rely on an explicit scheme. We evaluate how this specific dynamic system 

evolves. Therefore, we observe the FES, VC, and ASP at a social equilibrium. 

 

2.4.3.3 Pair approximation model 

After the end of every epidemic season, the vaccination coverage x will increase or decrease. 
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Here, we applied the IB-RA model. To quantify this evolutionary process, we obtain the following 

equation for the dynamic system: 

Effectiveness model 
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Efficiency model 
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As a result of changing the strategy, the vaccinator-nonvaccinator connection coefficient α will 

also change. To quantify this evolutionary process, we obtain the following equation for the dynamic 

system: 

Effectiveness model 

 

    

  

  

 

[ ]( ) ( ) 1 ( )

[ ]( ) ( ) 1 ( ) ( ) 1 ( )

[ ]( ) 1 ( )

[ ]( ) 1 ( )

[ ]( ) ( ) 1 ( )

N N N N N N N N

N N N N N N N N N N N N N N

N N N N N N N N

V V V V V V V V

V V V V V V V V

d
Q S S P S V S S P S V S S

dt

S R P S V S R P R V S R P R V S R P S V S R

R R P R V R R P R V R R

S S P S NV S S P S NV S S

S R P S NV S R P R NV S R


    

        

    

    

       

  

    

    

( ) 1 ( )

[ ]( ) 1 ( )

[ ]( ) ( ) 1 ( ) ( ) 1 ( )

[ ]( ) ( ) 1 ( ) ( ) 1 ( )

[ ]( ) (

V V V V V V

V V V V V V V V

V V V V V V V V V V V V V V

V V V V V V V V V V V V V V

N V

P R NV S R P S NV S R

R R P R NV R R P R NV R R

S P P S NV S P P P NV S P P P NV S P P S NV S P

R P P R NV S P P P NV R P P P NV R P P S NV R P

S S P S

   

    

        

        

      

    

    

) 1 ( ) ( ) 1 ( )

[ ]( ) ( ) 1 ( ) ( ) 1 ( )

[ ]( ) ( ) 1 ( ) ( ) 1 ( )

[ ]( ) ( ) 1 (

N N V V N V V N V N N V

N V N N V V N V V N V N N V

V N N V N V V N V V N N V N

N V N N V V

V S S P S NV S S P S NV S S P S V S S

S R P S V S R P R NV S R P R NV S R P S V S R

S R P R V S R P S NV S R P S NV S R P R V S R

R R P R V R R P R NV

      

        

        

        

    

    

) ( ) 1 ( )

[ ]( ) ( ) 1 ( ) ( ) 1 ( )

[ ]( ) ( ) 1 ( ) ( ) 1 ( )

N V V N V N N V

N V N N V V N V V N V N N V

N V N N V V N V V N V N N V

R R P R NV R R P R V R S

S P P S V S P P P NV S P P P NV S P P S V S P

R P P R V R P P P NV R P P P NV R P P R V R P

   

        

        

          (2-284) 

Here, (  or )P A V NV AB  is a transition probability that the focal A of pair AB change to the 

opposite strategy (vaccinator or nonvaccinator). These transition probabilities were calculated as the 

following equations: 
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The transition probabilities for efficiency model were calculated as the following equations: 
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All of the above dynamic equations can be solved numerically. Therefore, the final result is affected by 

a two-stage process: single-season SIR dynamics and the strategy adaptation process. We rely on an 

explicit scheme, and we evaluate how this specific dynamic system evolves. Therefore, we can observe 

the final epidemic size, vaccination coverage, and average social payoff in social equilibrium. 
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2.4.4 Results and discussions  

2.4.4.1 The infinite and well-mixed population 

Figures 2.9 and 2.10 relating to the effectiveness model and efficiency model, respectively, 

give the FES (left-hand panels), VC (central panels), and ASP (right-hand panels) for the various 

strategy-updating rules, namely IB-RA (upper panels), SB-RA (middle panels), and DC (lower panels). 

The regions colored uniformly by light red (FES), dark blue (VC), and light blue (ASP) 

indicate a pandemic taking place, in which most individuals do not use vaccination (precisely speaking, 

not using either imperfect vaccination or a defense against contagion); thus, almost full-scale spread of 

infection occurs. Roughly speaking, these regions emerge when a smaller effectiveness (efficiency) is 

assumed or a larger cost is imposed. This seems quite natural because most individuals tend to shy away 

from vaccination if it is less reliable and/or too expensive. The border between each of these monotone 

regions and the remaining region implies a combination of critical effectiveness (efficiency) and critical 

vaccination cost to control the spread of an epidemic, bringing an obvious phase change (between 

pandemic phase and controlled phase). As far as the controlled phase is concerned, interestingly, lower 

effectiveness (efficiency) can realize higher vaccination coverage, which is also helped by the effect of 

lower cost. Even if a large fraction of individuals use vaccination, the epidemic cannot be eradicated 

because of the lower reliability of vaccination.  

Comparing the three updating rules, their detailed tendencies differ although the overall 

tendency is the same to some extent. Comparing the effectiveness model and the efficiency model, the 

latter has a wider pandemic phase at first glance. This implies that a defense against contagion with a 

certain η is less effective at suppressing the spread of an epidemic compared to imperfect vaccination, 

with e being defined as having the same numerical value as η. 

To validate our theoretical framework, we conducted a series of numerical simulations based 

on the MAS approach [7,9]. Because we assumed a well-mixed population, we assumed a perfect graph 

as the underlying network connecting the agents. Following previous studies, we set β = 0.00088, which 

was determined as the minimum transition rate β that exceeds the pre-defined [7,9] threshold final 

epidemic size of 0.9 without vaccination. The results are shown in Figs. 2.11–2.13 for effectiveness 

model, and in Figs. 2.14-2.16 for efficiency model. Generally, all six results are consistent with Fig. 

2.9(1-*), (2-*), (3-*), Fig.4.10(1-*), (2-*), and (3-*), although subtle discrepancies arise from the fact 

that the simulation assumed a finite population size of N = 1000. 
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Figure 2.9.  FES (left-hand panels; *-A), VC (central panels; *-B), and ASP (right-hand panels; *-C) 

for strategy-updating rule IB-RA (upper panels; 1-*), SB-RA (middle panels; 2-*), and DC (lower 

panels; 3-*). Effectiveness model is applied. 
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Figure 2.10.  FES (left-hand panels; *-A), VC (central panels; *-B), and ASP (right-hand panels; *-C) 

for strategy-updating rule IB-RA (upper panels; 1-*), SB-RA (middle panels; 2-*), and DC (bottom 

panels; 3-*). Efficiency model is applied. 

 

 

Figure 2.11.  Simulation results for FES (left-hand panel), VC (central panel), and ASP (right-hand 

panel) assuming IB-RA when effectiveness model is applied. We assumed a perfect graph with N =1000, 
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β= 0.00088, and γ= 1/3.  

 

 

Figure 2.12.  Counterpart result with Fig.4.9 (1-B), (2-B) and (3-B), assuming SB-RA. Other settings 

are all consistent with Fig. 2.11. 

 

 

Figure 2.13.  Counterpart result with Fig.4.9 (1-C), (2-C) and (3-C), assuming DC Other settings are 

all consistent with Fig. 2.11. 

 

Figure 2.14.  Simulation results for final epidemic size (left-hand panel), vaccination coverage (central 

panel), and average social payoff (right-hand panel) assuming IB-RA when efficiency model is applied. 

We assumed a perfect graph with N =1000, β = 0.00088, and γ = 1/3.  
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Figure 2.15.  Counterpart result with Fig.5 (1-B), (2-B) and (3-B), assuming SB-RA. Other settings 

are all consistent with Fig. 2.14. 

 

 

Figure 2.16.  Counterpart result with Fig.5 (1-C), (2-C) and (3-C), assuming DC. Other settings are all 

consistent with Fig. 2.14. 

 

2.4.4.2 Network model 

Figures 2.17–2.20 show the FES (left-hand panels), VC (central panels), and ASP, respectively. 

In addition, they show ASP (right-hand panels) drawn on the 2D plane of either relative vaccination cost 

vs. effectiveness (Figs. 2.17 and 2.19) or relative vaccination cost vs. efficiency (Figs. 2.18 and 2.20) 

for three different degree distributions: the power law degree distribution (upper panels), Poisson’s 

degree distribution (middle panels), and a well-mixed population (lower panels). Figures 2.17 and 2.18 

show results considering IB-RA, while Figs. 2.19 and 2.20 show those considering SB-RA as the 

strategy-updating rule. In all figures, light red in FES, dark blue in VC, and light red in ASP indicate a 

pandemic taking palace, in which most individuals do not rely on vaccination (more precisely, not taking 

either imperfect vaccination or defense against contagion). Thus, almost full-scale spread of infection is 

inevitable. Roughly speaking, these regions emerge when a smaller effectiveness (or efficiency) is 

assumed or a larger cost is imposed. This seems quite natural because most individuals tend to avoid 
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committing vaccination (or defense against contagion).  

The border between each of these monotone regions and the remaining area implies a critical 

line suggesting the combination of critical effectiveness (efficiency) and critical vaccination cost to 

appropriately control spreading of an epidemic, which implies a phase change between the pandemic 

and controlled phases. As long as the controlled phase is concerned, interestingly, a lower effectiveness 

(or efficiency) can realize higher vaccination coverage. Such an ironic situation can be justified by the 

following point. Namely, the lower reliability of the protecting measure (by either vaccination or defense 

against contagion) makes more individuals commit to the measure due to its uncertainty. From an 

opposite viewpoint, even if a large fraction of the individuals takes a measure (vaccination or defense 

against contagion), an epidemic cannot be eradicated because of the lower reliability of the vaccination 

itself. 

Comparing the different network topologies, the power law distribution shows the largest, 

followed by Poisson’s degree distribution, and the well-mixed population has the smallest VC in the 

region of the controlled phase. This tendency, more precisely the order of those three topologies, seems 

acceptable. It is because the more heterogeneous the degree distribution becomes, the more degree 

agents exist. Specifically, the power law distribution lets a hub agent work as a so-called super spreader. 

The tendency can be observed more or less in all cases regardless of the employed strategy update rule 

or whether the efficiency or effectiveness model is assumed, although the case presuming SB-RA with 

the effectiveness model (Fig. 2.19 (*-B)) seems subtle. The above-mentioned tendency concerning VC 

implies that the power law distribution brings less ASP than Poisson’s degree distribution does, which 

is less than the well-mixed population shows. 

To validate our theoretical result, we conducted a series of numerical simulations based on the 

MAS approach. To compare the power law degree distribution, we assumed a BA-SF network with an 

average degree 8k    as the underlying network connection of the agents. Following previous studies, 

we set β = 0.19, which was determined as the minimum transition rate β that exceeded a pre-defined 

threshold FES of 0.9 without vaccinated individuals. The shown result is obtained by an assemble 

average of 10 independent realizations starting from different initial conditions. Figures 2.21 and 2.22 

show the results for the effectiveness and efficiency models, respectively. Generally, all four results are 

consistent with Figs. 2.17 (1-*), 2.18 (1-*), 2.19 (1-*), and 2.20 (1-*), although subtle discrepancies 

arise from the fact that the simulation assumed a finite population size of N = 10000. 
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Figure 2.17. FES (left-hand panels; *-A), VC (central panels; *-B), and ASP (right-hand panels; *-C) 

in population structure: power law degree distribution (upper panels; 1-*), Poisson’s degree distribution 

(middle panels; 2-*), and well-mixed population (lower panels; 3-*) [6]. Effectiveness model is applied. 

IB-RA is applied for strategy-updating rule. 
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Figure 2.18. FES (left-hand panels; *-A), VC (central panels; *-B), and ASP (right-hand panels; *-C) 

in population structure: power law degree distribution (upper panels; 1-*), Poisson’s degree distribution 

(middle panels; 2-*), and well-mixed population (lower panels; 3-*) [6]. Efficiency model is applied. 

IB-RA is applied for strategy-updating rule. 
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Figure 2.19. FES (left-hand panels; *-A), VC (central panels; *-B), and ASP (right-hand panels; *-C) 

in population structure: power law degree distribution (upper panels; 1-*), Poisson’s degree distribution 

(middle panels; 2-*), and well-mixed population (lower panels; 3-*) [6]. Effectiveness model is applied. 

SB-RA is applied for strategy-updating rule. 
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Figure 2.20. FES (left-hand panels; *-A), VC (central panels; *-B), and ASP (right-hand panels; *-C) 

in population structure: power law degree distribution (upper panels; 1-*), Poisson’s degree distribution 

(middle panels; 2-*), and well-mixed population (lower panels; 3-*) [6]. Efficiency model is applied. 

SB-RA is applied for strategy-updating rule. 
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Figure 2.21. FES (left-hand panels; *-A), VC (central panels; *-B), and ASP (right-hand panels; *-C) 

for strategy-updating rules IB-RA (upper panels; 1-*) and SB-RA (lower panels; 2-*). Effectiveness 

model is applied. We assumed a BA-SF network with N = 10000, 8k   , β= 0.19, and γ= 1/3. 

 

 
Figure 2.22. FES (left-hand panels; *-A), VC (central panels; *-B), and ASP (right-hand panels; *-C) 

for strategy-updating rules IB-RA (upper panels; 1-*) and SB-RA (lower panels; 2-*). Efficiency model 

is applied. We assumed a BA-SF network with N = 10000, 8k   , β= 0.19, and γ= 1/3. 
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2.4.4.3 Pair approximation model 

Figures 2.23 and 2.24 show the FES (top panels), VC (middle panels), and ASP (bottom 

panels) corresponding to the relative vaccination cost Cr and the effectiveness e or efficiency η, under a 

different number of links; degree Q. The panels on the far-right show previous results based on mean-

field approximation (denoted “well mixed”). First, the present result with a lower degree shows a 

significantly different picture from the mean-field approximation prediction. A lower degree generally 

implies a robust environment for disease spreading and ironically leads to an individual shunning 

protective measures. In line with this justification, with an increase in degree, the present model’s 

prediction gets close to the prediction of the mean-field approximation. A random regular graph with 

infinite degree is quite possible because it literally means “well mixed.” Keeping this in mind, we were 

able to see how meaningful the present model is over conventional analytical approaches that rely on 

mean-field approximation. 

In all figures, the red color in FES, blue color in VC, and red color in ASP indicate a pandemic 

state, in which most individuals rely on neither vaccination nor intermediate protective measures. 

Therefore, an almost full-scale spread of infection is inevitable. Generally speaking, these regions 

emerge when the reliability of vaccinations or intermediate protective measure is low or when the cost 

is high. The border between each of these monotone regions and the remaining area represents a 

threshold that suggests a combination of critical effectiveness (efficiency) and critical cost to 

appropriately control the epidemic spread. Therefore, under a voluntary vaccination policy, we can 

confirm how the relationship between the reliability of protective measures and the cost of protection is 

an important factor in controlling the damage caused by epidemic spread. Figure 2.25 shows the 

relationship between cost and critical effectiveness (efficiency) under which no individual takes 

vaccination (or intermediate protective measures). It clearly suggests that a higher cost requires a higher 

effectiveness (efficiency) to enable individuals to commit because individuals have no incentive to take 

protective measures unless there is a sufficiently high counterbalancing effect to the high cost. An 

observation of the differences in the degree Q shows that a lower degree requires greater effectiveness 

(efficiency), i.e., lower level social networks are more robust against disease spreading than those at a 

higher level. This ironically results in a reduced incentive for individuals to vaccinate (or take 

intermediate protective measures) because of the temptation to take a free ride on herd immunity. 

A lower effectiveness (or efficiency) corresponds with a higher vaccination rate as long as the costs 

imposed are acceptable. This ironic situation can be explained as follows: when a protective measure is 

less reliable, it will create more uncertainty and fear, and more individuals will commit to the measure. 

However, even if a large proportion of individuals take protective measures, the epidemic cannot be 

eradicated if the vaccination is unreliable. 

A comparison of the effectiveness and efficiency models in Figures 2.23 and 2.24 show that 

the latter has a wider pandemic phase at first glance. This implies that intermediate protective measures 
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with certain η are less effective for suppressing an epidemic than imperfect vaccination, and this finding 

is consistent with our previous results based on mean-field approximation. 

Figure 2.26 shows the isograms of the relative vaccination cost Cr drawn on a 2D plane of VC 

and effectiveness (efficiency). The gray arrows indicate the direction of the rising slope of Cr, thus 

indicating that VC (the rate of intermediate protective measures) decreases with increasing effectiveness 

(efficiency) when the costs are kept the same. This finding confirms what we have discussed above and 

is consistent with the reports by Chen et al. [13] and Wu et al. [18]. 

 

 
Figure 2.23. FES (upper panels), VC (middle panels), and ASP (right-hand panels) for different numbers 

of degrees Q. The effectiveness model is applied. 
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Figure 2.24. FES (upper panels), VC (middle panels), and ASP (right-hand panels) for different numbers 

of degrees Q. The efficiency model is applied. 

 

 

Figure 2.25. Critical effectiveness (a) and critical efficiency (b) vs. relative vaccination cost Cr under 

different numbers of degrees Q. 

 



64 

 

 

Figure 2.26. Isogram of relative vaccination cost Cr drawn on a 2D plane of VC vs. effectiveness (a) or 

efficiency (b). The gray arrows indicate the direction of the slope. 

 

To validate the theoretical results, a series of numerical simulations based on the MAS 

approach was performed. Following the procedure in previous studies [7,9], we set β as the point at 

which FES exceeds the predefined threshold (i.e., 0.9) without any vaccinated individuals. The results 

shown below were obtained by a collective average of 100 independent realizations starting from various 

initial conditions. Figures 2.27 and 2.28 show the results for the effectiveness and efficiency models, 

respectively. Generally, all results are consistent with Figures 2.23 and 2.24, although there are subtle 

discrepancies arising from the fact that the above simulation assumed a finite population size of N = 104. 
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Figure 2.27. FES (upper panels), VC (middle panels), and ASP (right-hand panels) for different numbers 

of degrees Q. The efficiency model is applied. 

 

 
Figure 2.28. FES (upper panels), VC (middle panels), and ASP (right-hand panels) for different numbers 

of degrees Q. The efficiency model is applied. 
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To characterize the effect of infection rates on vaccination behavior, FES and VC were shown 

as a function of the inverse of the effective recovery rate 1/r and the protection quality: (a) effectiveness 

e and (b) efficiency η in Figure 2.29. We fixed the relative vaccination cost Cr = 0.1. Looking at the 

effect of the degree of Q on vaccination behavior, individuals do not vaccinate until the relative recovery 

rate r is less than the critical relative recovery rate rc, as expressed in Eq. (2-48), because the epidemic 

does not spread. Furthermore, VC increases with an increase in Q, both in terms of effectiveness and 

efficiency. This implies that a high number of degrees promote not only the epidemic spread but also 

the (cooperative) vaccination behavior. The critical value of effectiveness, below which no individual 

will be vaccinated, does not show sensitivity to the relative cost, which is expressed as e = 0.35 in this 

case. On the other hand, the critical value of efficiency, below which no individual will be vaccinated, 

increases monotonically with an increase in the relative recovery rate. This result is consistent with 

results by Cardillo et al. [12]. 

 
Figure 2.29. FES and VC as a function of the inverse of the relative recovery rate 1/r and the protection 

quality: (a) effectiveness e and (b) efficiency η for regular random networks with different numbers of 

degrees Q. We assumed Cr = 0.1. 

 

In general, most of theoretical vaccination game model using mean-field approximation ignored 

the local correlations between vaccinators and nonvaccinators and assumed a homogeneous distribution 
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of vaccinator and nonvaccinator. On the other hand, pair approximation can capture the evolution of 

heterogeneous distribution of vaccinator and nonvaccinatior caused from strategy adaptation. In the 

model formulation, we introduced new parameter; α, meaning disassortativity at the beginning of every 

season, that can be time-evolved according to Eqs. (2-284) and (2-286) when we digress from the mean-

filed approximation abovementioned. Let us name this setting ‘heterogeneous’ case. Contrariwise, when 

we follow to the conventional idea; taking mean-field approximation, α is always frozen at α = x(1 – x), 

which is called ‘homogeneous’ case. As shown in Figure 2.30, when heterogeneous setting was imposed, 

vaccination coverage is relatively high and final epidemic size is relatively low compared to the 

homogeneous one ( (1 )x x   ). Regardless of Cr, we confirmed that α is always lower than that the 

homogeneous case; x(1 – x), because of the existence of the cluster of vaccinators and nonvacciantors. 

The existence of nonvaccinators cluster with high frequency pushes up the risk of disease spreading 

shared amid nonvaccinators, which makes defectors commit vaccination. This subsequently enables less 

final epidemic size when the heterogeneous case is presumed. 

 

 

 

Figure 2-30. Differences of vaccination coverage and final epidemic size caused from whether to 

assume homogeneous or evolutionary heterogeneous distribution of vaccinator and nonvacciantior. Red 

lines present vaccination coverage and blue lines present final epidemic size. In the solid lines, we 

assumed the evolutionary heterogeneous distribution and the parameter α varied every strategy 

adaptation. On the other hand, in dash line, we assumed the homogeneous distribution ( (1 )x x   ). We 

assumed perfect vaccination. 
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2.5 Conclusions 

In this chapter, we presented three theoretical framework of the vaccination game that 

considers imperfect vaccination and intermediate protective measures corresponding to (i) an infinite 

and well-mixed population using mean field approximation, (ii) Complex networks using mean field 

approximation with different degree distributions (Poisson’s degree distribution and power law 

distribution), and (iii) Regular random graph using pair approximation. For expressing the stochastic 

effect of imperfect vaccination and intermediate protective measure on epidemic dynamics, we 

developed two scenarios: effectiveness model and efficiency model. The exact mathematical formulas 

for both dynamic processes, namely, epidemic spreading and strategy updating, are explicitly discussed. 

When solving the ODEs for three epidemic models, the critical vaccination coverage and the final 

fractions for each individual were derived. We validated our frameworks by comparing its predictions 

with simulation results. As long as the same coefficient values, namely effectiveness and efficiency, are 

assumed, an intermediate protective measure is marginally inferior to an imperfect vaccination 

In terms of possible applications from our contribution of the study, we would like to mention two points 

as below. First, our framework relying on mathematical approach may call other extended models; for 

example, where we can consider not only either committing vaccination or intermediate protective 

measure to control a disease spreading but also both vaccination and intermediate protective measure 

being applied at the same time. As the second, with respect to the standpoint of meaning implications to 

a real world, our model, which is able to deal with the framework of ‘vaccination game’ with 

consideration of vaccination effectiveness or efficiency as well as the underlying topology effect 

resulting from degree distribution, can be easily extended to a more practical situation, struck many 

people; public-health officials as well as medical doctors, as interesting, where a subsidy for helping 

vaccination to certain individuals (senior people or poor people, for example) can be quantitatively 

discussed. Those may be our future works. 
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CHAPTER 3 

 

Chapter 3: A comprehensive study of vaccination-subsidizing policies with multi-agent 

simulations and mean-field modeling 

 

3.1 Introduction and literature review 

Attempts to resolve or relax the vaccination dilemma have often assumed the availability of 

subsidies from central and/or municipal governments. In Japan, in fact, people over certain age and other 

critical groups are subsidized to vaccinate against seasonal influenza. Such subsidies have, in turn, 

widened the Japanese government's budget deficit due to the increasing costs of medical care for a 

rapidly aging population. However, if a subsidy is implemented in a way that secures herd immunity, 

then the burden imposed by the infectious disease may drastically reduce or disappear altogether, thus 

fully justifying a vaccination-subsidizing policy. It is for this reason that examining various vaccination 

subsidies represents an important research subject. 

Gavious and Yamin [1] firstly examined vaccination-subsidizing policies. Based on a macro 

model with SIR dynamics included, which was validated on a dataset of field observations, these authors 

insist that a sufficiently large subsidy is needed to contain prolonged epidemics. Interestingly, 

subsidizing young and middle-aged population is favored over subsidizing the elderly.  

A comprehensive study by Zhang et al. [2] compared two policies: (i) distributing free-tickets 

as long as the budget allows (hereafter, called the free-ticket policy) and (ii) distributing a discount 

coupon to all individuals (originally referred to as the partial-offset policy, but hereafter simply the 

discount policy). The total social cost was defined as a sum of infection-related costs and vaccination-

related costs paid individually, meaning that the subsidy was externalized as a ‘gift of nature’. A couple 

of follow-up studies [3, 4] additionally examined the performance of the free-ticket policy against the 

discount policy in various situations, as well as the performance of random subsidies against targeted 

ones. Further studies explored the viability of mutual support between neighbors instead of a central 

government [5], the effects of renewed infections by replacing an SIR model with an SIRS model [6], 

and the benefits of a free-ticket subsidy to hub agents in scale-free networks [7]. 

It is plausible that a vaccinator who is given a free-ticket may motivate neighboring agents to 

vaccinate voluntarily. This is somewhat analogous to the role of ‘stubborn vaccinators’ [8] or ‘zealot 

cooperators’ in spatial 2-strategy, 2-player (i.e., 2 × 2) games [9]. One important difference, however, is 

that a stubborn vaccinator's spatial location is determined by agent mobility, whereas a free-ticket can 

be administered where needed the most by the policy maker. 

In view of the described background, we set out to quantitatively answer whether a subsidized 

vaccination policy can really reduce the total social cost. Unlike the gift-of-nature approaches, we 
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include all relevant costs: vaccination-related, infection-related, as well as the tax burden to implement 

the subsidy. We also make a step further to examine which policy is the most suitable (free tickets vs. 

discount coupons). 

 

3.2 Vaccination game model 

The underlying vaccination game model used throughout this study closely resembles the 

original by Fu et al. [10] (but see also [11,12]). To this underlying model, we attached several plausible 

vaccination policies and examined their performance in terms of disease prevention and the total social 

cost. 

 

3.2.1. Basic assumptions 

We considered a population of size N in which each individual is placed in a social network 

and decides whether to get vaccinated or not. We assumed that a seasonal infectious disease, e.g., 

influenza, spreads through such a population. The protective efficacy of the vaccine persists for less than 

a year because of waning antibodies and year-to-year changes in the circulating virus strain. Accordingly, 

under a voluntary vaccination program, individuals must make their mind regarding vaccination every 

year. Our model captured this dynamics in two stages: an epidemic season and a vaccination campaign. 

These two stages comprise one model period. The model runs until reaching a social equilibrium in 

which we observed the following performance measures: vaccination coverage (VC; the fraction of 

vaccinators in the population), the final epidemic size (FES; the fraction recovered individuals), and the 

total social payoff (TSP; formally defined in Section 3.2.3). 

The epidemic season. At the beginning of this stage, I0 randomly selected susceptible 

individuals are identified as the initial infection carriers. Subsequently, the epidemic spreads according 

to SIR/V dynamics, which considers each individual’s one-way state-transition from a susceptible (S) 

via an infected (I) to a recovered (R) state. The parameters characterizing the disease are the transmission 

rate per day per person, β, and the recovery rate per day, γ. We set γ=1/3 throughout. A susceptible 

individual who commits to vaccination avoids the infected state for one model period. In MAS approach, 

we made a simplifying assumption that vaccination provides perfect immunity. We subsequently relaxed 

this assumption in the mean-field approach. An epidemic season lasts until the infected state disappears 

from the population. Each individual who gets infected during the epidemic season incurs the cost of 

infection, Ci. Free riding is costless for individuals who avoid infection despite refusing to vaccinate. 

The vaccination campaign. In this stage, each individual makes a decision whether to vaccinate 

or not. The decision was assumed to take place at the end of the epidemic season at which point agents 

reassess how they fared with respect to the disease spread: remained healthy, H, or suffered an infection, 

I. Adopting the game-theoretic terminology, hereafter we refer to this decision-making process as 

‘strategy updating’. Committing to vaccination introduces another dimension of agent states (beside H 
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and I). We denoted voluntary vaccinators with C for cooperation and non-vaccinators with D for 

defection. Voluntary vaccinators bear full vaccination cost Cv in each model period when they decide to 

vaccinate. Here, we assumed that Cv includes not only the monetary cost, but also other perceived risks, 

such as adverse side effects. We simplified the analysis by renormalizing this cost to reflect the relative 

cost of vaccination, Cr=Cv/Ci (0<Cr<1). Finally, we assumed that subsidy can be given to voluntary 

vaccinators to alleviate the vaccination burden (denoted SC), but also to non-vaccinators to reverse their 

decision and commit to vaccination despite their initial opposition (denoted SD). 

At the end of the model period, agents are assigned a payoff depending on how the epidemic 

affected them (healthy H or infected I), and depending on their strategic choice in conjunction with the 

subsidy (voluntary vaccinator C, non-vaccinator D, subsidized vaccinator SC, and subsidized non-

vaccinator SD). According to these definitions, under the free-ticket subsidy, HC agents pay cost −Cr, 

HD, HSC, and HSD agents pay no cost, and ID agents pay the cost of infection set to −1. In addition, 

when the vaccine efficacy is imperfect, IC agents pay cost −Cr−1, while ISC and ISD pay −1. Under the 

discount subsidy, all vaccinators are subsidized (no HC and IC agents), while non-vaccinators receive 

nothing (no HSD and ISD agents), meaning that HSC agents pay reduced cost −Cr’, Cr’<Cr, while ISC 

pay −Cr’−1.  

 

3.2.2. Strategy updating 

We examined two different strategy updating rules appearing in literature [10,11]. Individual-

based risk assessment (IB-RA) [10] is analogous to the Pairwise Fermi rule [13,14], which plays a 

prominent role in game-theoretic studies. Here, an individual randomly selects one neighbor and then 

decides whether to adopt that neighbor’s strategy. That is, if agent i selects neighbor j for comparison, i 

will copy j’s strategy (si← sj) with probability 

1
( )

1 exp[ ( ) ]
i j

j i

P s s
  

 
  

,       (3-1) 

where πi is i’s payoff in the previous model period, while parameter κ > 0 characterizes the strength of 

selection, i.e., the sensitivity of individuals to differences in their payoffs. Smaller κ means that agents 

are more sensitive to the payoff difference. We set κ=0.1. 

Strategy-based risk assessment (SB-RA) [11] is a modification of the IB-RA rule to reflect the 

situation in which agents tend to assess the risk based on a socially averaged payoff because of the 

prevalence of information about the epidemic. Such information could be circulated by the media, for 

instance. The probability of copying a neighbor’s strategy becomes  

1
( )

1 exp[ ( ) ]
i j

j i

P s s
  

 
    

,       (3-2) 

where <πj> is the average collective payoff of neighbors who adopted the same strategy as i’s randomly 

selected neighbor j. 
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3.2.3. Vaccination-subsidizing policies 

Four different vaccination subsidizing policies were considered from a policy design 

perspective. These differ by the type of subsidy (free-ticket vs. discount) and the presumed target 

individuals (voluntary vaccinators vs. non-vaccinators vs. both). Specifically: 

 Model A-1 combines the free-ticket subsidy with random target selection to spread the reach of the 

vaccination-subsidizing policy as much as the budget allows. 

 Model A-2 also implements the free-ticket subsidy, but targets (randomly) only non-vaccinators 

from the previous model period. Tickets are again distributed as widely as the subsidy budget allows. 

 Model A-3 is another implementation of the free-ticket subsidy, but targets (randomly) vaccinators 

from the previous model period. Tickets are still distributed as widely as possible given the subsidy 

budget. 

 Model B implements a discount subsidy distributed to all vaccinators. Non-vaccinators receive 

nothing. The vaccination cost is reduced, but not entirely eliminated. 

Figure 3.1 offers a schematic summary of the models listed above.  

Subsidies represent a tax burden for society. If σ denotes the population fraction to be 

subsidized, this tax burden per capita, TAX, is given by 

TAX = Cr σ.         (3-3) 

From here we can define the total social payoff per capita due to an epidemic as: 

 – – – – – –1 0r rTSP C VC FES TAX C VC FES    ,     (3-4) 

where VC is vaccination coverage and FES is the final epidemic size. The TSP is negative because it 

quantifies how much a society is burdened by an epidemic. Furthermore, TAX does not play an explicit 

role on the right-hand side of Eq. (3-4) because taxes simply redistribute the cost from those who 

vaccinate to everyone. Without such redistribution, the VC would be lower meaning that there truly is 

an extra cost associated with taxation. If a vaccination strategy is successful, however, this taxation cost 

is more than offset by a lower FES. In this sense, subsidies can be considered a ‘catalyst’ to facilitate a 

social change that makes society more resilient to infectious disease outbreaks. 

Hereafter, we made an additional assumption that the tax burden to subsidize vaccination does 

not affect an individual’s decision whether to commit to vaccination or not. This is because, in reality, 

it is exceedingly difficult to recognize the exact part of one’s taxes that ends up supporting subsidized 

vaccination programs. Taxes are for practical purposes levied in terms of general categories such as 

income tax, sales tax, property tax, etc., while a detailed breakdown remains invisible. By contrast, a 

subsidy via a free ticket or a discount coupon is manifestly visible to the subsidized individual, and thus 

relevant to decision making. That an assumption like this is reasonable is perhaps more clearly seen by 

considering the politics of ‘populism’ and its tendency to ride on various subsidies because these are 

generally favored and even enthusiastically accepted be the general population. 
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Figure 3.1. Schematic representation of four subsidy models. (a) In Model A-1 both voluntary 

vaccinators (V) and non-vaccinators (NV) may receive a subsidy, thus becoming subsidized vaccinators 

(V’). The free-ticket subsidy completely removes the vaccination cost. (b) Model A-2 is another 

implementation of the free-ticket subsidy, but targeted are only non-vaccinators from the previous model 

period. (c) Model A-3 also implements the free ticket subsidy, but in this case voluntary vaccinators 

from the previous model period are the only targets. (d) Model-B is an instance of the discount subsidy, 

whereby every vaccinator from the previous model period pays a reduced vaccination cost. 

 

  



78 

 

3.3 MAS approach 

3.3.1. Model setup 

For the MAS approach, we chose to work with a finite population containing N=104 

individuals connected into an underlying network with average degree <k>=8. Three network topologies 

were explored: lattice, random regular, and scale-free [15]. The disease transmission rate, β, was 

differently set for each topology, but in such a way that the disease without any vaccinators spreads 

through up to 90% of the total population (i.e., FES=0.9) [10,11]. Because the SIR/V dynamics in 

spatially structured populations cannot be specified by a system of differential equations, we numerically 

simulated epidemic spreading using the Gillespie algorithm [16]. We started each simulation with I0=5. 

All simulation results presented hereafter are an ensemble average of 100 independent 

realizations. We expressed the performance of a given subsidy policy by measuring vaccination 

coverage (VC), the final epidemic size (FES), and the total social payoff (TSP) as a function of the 

vaccination cost, Cr, and the subsidized population fraction, σ. To highlight how subsidies affect the 

social equilibrium, we calculated the difference from the ‘default’ situation. A natural default herein are 

the results without any subsidy implemented. 

 

3.3.2. Results and discussion 

Fig. 3.2 shows the results of Model A-1 for the subsidy policy in conjunction with the IB-RA 

strategy updating rule. Combining the free-ticket subsidy to both voluntary vaccinators and non-

vaccinators with the individual-based risk assessment mostly improves the TSP (blue color in Fig. 

3.2(c)), but there are two instances in which the TSP is worse than in the default case (red color in Fig. 

3.2(c)). 

The first of those two instances appears when the vaccination cost is low and the subsidized 

population fraction are small. Here, the low vaccination cost ensures that the VC is relatively high even 

in the default situation, meaning that the only effect of a subsidy with limited reach is to turn some 

voluntary vaccinators into non-vaccinators in hope of receiving the subsidy the next time around. This 

negative effect manifests itself in a decreased VC (Fig. 3.2(a)), and consequently an increased FES (Fig. 

3.2(b)) relative to the default setting. Interestingly, when the vaccination cost increases, even the limited 

subsidy reach has a positive effect because the VC is low in the default case.  

The second instance in which the TSP is worse than in the default case is when the vaccination 

cost is high and the subsidized population fraction is large. Here, the high vaccination cost presents a 

barrier to having a large VC in the default case, but from a societal perspective the difference between 

an agent getting infected or not is almost negligible. Therefore, even a considerable increase in the VC 

(Fig. 3.2(a)), and a consequent decrease in FES (Fig. 3.2(b)) fail to justify introducing a vaccination-

subsidizing policy. These results stress the need for a carefully optimized budget that is neither too small 

nor too large. Interestingly, directing the subsidy solely to non-vaccinators (Model A-2) changes nothing 
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in a qualitative sense (Fig. 3.3; cf. Fig. 3.2).   

 

 
Figure 3.2. MAS simulations on a lattice with Model A-1 and the IB-RA strategy updating rule. Color 

indicates the difference between the case in which vaccination is subsidized (σ>0) and the default case 

without subsidy (σ=0). Blue indicates better, white neutral, and red worse performance than the default. 

Panel (a) displays VC, panel (b) FES, and panel (c) TSP. 

 

 
Figure 3.3. MAS simulations on a lattice with Model A-2 and the IB-RA strategy updating rule. Color 

indicates the difference between the case in which vaccination is subsidized (σ>0) and the default case 

without subsidy (σ=0). Blue indicates better, white neutral, and red worse performance than the default. 

Panel (a) displays VC, panel (b) FES, and panel (c) TSP. 

 

Model A-3 reveals how a vaccination-subsidizing policy can improve the TSP in the limit of a 

low vaccination cost and a small subsidized population fraction (Fig. 3.4). Here, ‘heaven helps those 

who help themselves’ because non-vaccinators gain very little by refusing cheap vaccination in the first 

place, and the subsidy potentially erases this tiny gain. However, as evidenced by a decreased TSP 

relative to the default case, having a subsidy with wide reach when the cost of vaccination is high cannot 

be justified even if the subsidy is directed only towards voluntary vaccinators. 

Model B implements the discount policy such that the cost of vaccination is reduced for all 
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voluntary vaccinators. The results of this model and Model A-3 are qualitatively similar (Fig. 3.5; cf. 

Fig. 3.4). Such a similarity is intuitively understood by considering that the subsidy in both models is 

reserved solely for voluntary vaccinators. Therefore, as long as the sole purpose of a vaccination-

subsidizing policy is to increase the VC, putting in place a ‘priority system’ with free-tickets to a select 

group of voluntary vaccinators or an ‘egalitarian system’ with discount for all voluntary vaccinators 

makes little difference. 

Turning attention to the effects of strategy updating rules, we replaced the IB-RA rule in Model 

A-1 with a more globally oriented SB-RA rule. In the limit of low (high) vaccination cost and a small 

(large) subsidized population fraction, the area in which the model underperforms the default setting 

increases (decreases) compared to when the IB-RA rule is implemented. The overall impact on the TSP 

turns out to be small, however (Fig. 3.6; cf. Fig. 3.2). 

 
Figure 3.4. MAS simulations on a lattice with Model A-3 and the IB-RA strategy updating rule. Color 

indicates the difference between the case in which vaccination is subsidized (σ>0) and the default case 

without subsidy (σ=0). Blue indicates better, white neutral, and red worse performance than the default. 

Panel (a) displays VC, panel (b) FES, and panel (c) TSP. 

 

 
Figure 3.5. MAS simulations on a lattice with Model B and the IB-RA strategy updating rule. Color 

indicates the difference between the case in which vaccination is subsidized (σ>0) and the default case 

without subsidy (σ=0). Blue indicates better, white neutral, and red worse performance than the default. 
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Panel (a) displays VC, panel (b) FES, and panel (c) TSP. 
 

 
Figure 3.6. MAS simulations on a lattice with Model A-1 and the SB-RA strategy updating rule. Color 

indicates the difference between the case in which vaccination is subsidized (σ>0) and the default case 

without subsidy (σ=0). Blue indicates better, white neutral, and red worse performance than the default. 

Panel (a) displays VC, panel (b) FES, and panel (c) TSP. 

 

Network topology exerts a much stronger effect on the performance of vaccination subsidies 

than the strategy updating rule. Replacing the lattice in Model A-1 with a regular random network 

considerably increases the domain of the phase space where the model performs worse than in the default 

case (Fig. 3.7; cf. Fig. 3.2). This is particularly true in the zone where the vaccination cost is relatively 

low and the subsidized population fraction relatively small. When the random regular network is further 

replaced with a scale-free network, the model performance worsens even more (Fig. 3.8; cf. Fig. 3.7). 

We thus see that randomizing links between agents disrupts the free-ticket vaccination policy if this 

policy fails to prioritize voluntary vaccinators over non-vaccinators. Heterogeneity in node degree 

exacerbates this disruptive effect. Given that human social networks, in addition to the small-world 

property, often exhibit the scale-free property [17], it is important that the results in Fig. 3.8(c) point to 

societal burden above the default setting. In fact, such additional burden arises almost irrespective of the 

vaccination cost (Cr<0.9), as well as for any feasible subsidized population fraction (σ<0.5) within the 

realistic limitations on budget size. 

Because of the disruptive effect that the scale-free topology has on Model A-1 with the IB-RA 

strategy updating rule, we tested whether the SB-RA rule improves the model’s performance. The results 

remain qualitatively similar, but unlike in the regular lattice, here the more global strategy updating rule 

helps alleviate some of the burden in terms of the TSP (Fig. 3.9; cf. Fig. 3.8). Particularly, the model’s 

performance improves in the zone where the vaccination cost is relatively low and the subsidized 

population fraction relatively small.  

Finally, we checked whether subsidizing only voluntary vaccinators, either via a free-ticket 

(Model A-3) or a discount (Model B) policy, suffers from the same disruptive effect caused by the scale-
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free topology as when the subsidy is distributed non-preferentially (Model A-1). Here, we imposed the 

IB-RA strategy updating rule once again. The results of Model A-3 (Fig. 3.10), just as with agents 

arranged in a lattice, show no qualitative differences from the results of Model B (Fig. 3.11). More 

importantly, the disruptive effect of the scale-free topology disappears in the limit of a low vaccination 

cost and a small fraction of subsidized population. The overall performance of the subsidy is not as 

convincing as before, but there is a considerable range of vaccination costs and subsidy reaches in which 

the TSP improves relative to the default case. Governments should thus be guided by the ‘heaven helps 

those who help themselves’ principle, whereby either free tickets or discount coupons should be 

distributed to individuals who voluntarily commit to vaccination. 

 

 
Figure 3.7. MAS simulations on random regular networks with Model A-1 and the IB-RA strategy 

updating rule. Color indicates the difference between the case in which vaccination is subsidized (σ>0) 

and the default case without subsidy (σ=0). Blue indicates better, white neutral, and red worse 

performance than the default. Panel (a) displays VC, panel (b) FES, and panel (c) TSP. 

 

 
Figure 3.8. MAS simulations on scale-free networks with Model A-1 and the IB-RA strategy updating 

rule. Color indicates the difference between the case in which vaccination is subsidized (σ>0) and the 

default case without subsidy (σ=0). Blue indicates better, white neutral, and red worse performance than 

the default. Panel (a) displays VC, panel (b) FES, and panel (c) TSP. 
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Figure 3.9. MAS simulations on scale-free networks with Model A-1 and the SB-RA strategy updating 

rule. Color indicates the difference between the case in which vaccination is subsidized (σ>0) and the 

default case without subsidy (σ=0). Blue indicates better, white neutral, and red worse performance than 

the default. Panel (a) displays VC, panel (b) FES, and panel (c) TSP. 

 

 
Figure 3.10. MAS simulations on scale-free networks with Model A-3 and the IB-RA strategy updating 

rule. Color indicates the difference between the case in which vaccination is subsidized (σ>0) and the 

default case without subsidy (σ=0). Blue indicates better, white neutral, and red worse performance than 

the default. Panel (a) displays VC, panel (b) FES, and panel (c) TSP. 
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Figure 3.11. MAS simulations on scale-free networks with Model B and the IB-RA strategy updating 

rule. Color indicates the difference between the case in which vaccination is subsidized (σ>0) and the 

default case without subsidy (σ=0). Blue indicates better, white neutral, and red worse performance than 

the default. Panel (a) displays VC, panel (b) FES, and panel (c) TSP. 

 

3.4 Mean field approach 

There are two main differences between the MAS approach described heretofore and the mean-

field approach that follows hereafter. First, we assumed that the population of agents is infinite and 

ideally well mixed. Because under this assumption references to any particular part of the population 

are quantified in terms of fractions, the population size is said to be normalized to N=1. It is therefore 

also appropriate to consider the per capita tax burden, TAX, equivalent to the total subsidy budget, SB. 

Namely, we have TAX=Cr∙σ=Cr∙σ∙1=Cr∙σ∙N=SB. The second assumption was that immunity after 

vaccination is not guaranteed. This assumption means that a vaccinated agent becomes immune to the 

disease with some probability e, 0 ≤ e ≤ 1, because vaccines in the real world are imperfect more often 

than not. This is nicely exemplified by seasonal influenza too [18]. With remaining probability 1−e the 

agent fails to attain immunity. Apart from these two assumptions, the mean-field approach is analogous 

to the MAS approach, with the main advantage of providing generalized insights beyond what is possible 

purely by running numerical simulations.  

 

3.4.1. Epidemic dynamics 

Herein, we adopted an epidemic dynamics model described in Chapter 4. Denoting with x 

vaccination coverage (i.e., the fraction of all vaccinators, voluntary or otherwise), the fraction of immune 

individuals in the population is ex. The fraction of non-immune individuals is by extension 1−ex. 

Because we are interested only in the equilibrium state, a single relevant equation of the epidemic 

dynamics model is that for the final epidemic size, FPS. Further denoting the FPS with R(∞) to 

emphasize that this is the fraction of recovered agents conditional on the current vaccination coverage 

(x) and reached in the equilibrium state (t=∞), we have 
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0( ) (1 )(1 exp[ ( )])R ex R R      ,        (3-5) 

where R0 is the basic reproduction number of the infectious disease. We presume R0 = 2.5, which is 

applied consistently in this study. In this transcendental equation quantity R(∞) appears on both sides, 

indicating the necessity to solve the equation numerically in every model period. Once quantity R(∞) 

was calculated, we used it to express the fractions of four types of individuals appearing in the default 

model without a subsidy policy: healthy vaccinators HC, healthy non-vaccinators HD, infected 

vaccinators IC, and infected non-vaccinators ID. We afterwards used the same quantity in more complex 

models with a vaccination-subsidizing policy included.  

 

3.4.2. Payoffs 

As described in Chapter 2, agents are assigned a payoff at the end of the model period 

depending on how the epidemic season affected them, and depending on their strategic choice with 

respect to vaccination. In the default model without subsidy, infected non-vaccinators ID incur a cost of 

−1, while healthy non-vaccinators HD avoid paying any cost. Furthermore, infected vaccinators IC pay 

both the cost of vaccination and the cost of infection, −Cr−1, while healthy vaccinators HC incur only 

vaccination cost −Cr. In more complex models with a vaccination-subsidizing policy included, we 

considered additional player types whose payoffs depend on the specifics of the subsidy.   

 

3.4.3. Vaccination-subsidizing policies 

As in the MAS approach, we examined the performance of four subsidy models: Model A-1, 

Model A-2, Model A-3, and Model B. In the former three models, the limited subsidy is randomly 

distributed after each agent makes a decision whether to vaccinate or not (Fig. 3.1). The main difference 

between these models is that in Model A-1 subsidy recipients can be both voluntary vaccinators and 

non-vaccinators, in Model A-2 only non-vaccinators can receive the subsidy, while in Model A-3 only 

voluntary vaccinators have the right to receive the subsidy. In all these models, a subsidized agent always 

gets vaccinated; a voluntary vaccinator simply offsets the cost of vaccination with a free ticket, whereas 

a non-vaccinator reverses their initial decision because the obstacle to vaccination (i.e., the vaccination 

cost) disappears. In Model B with the discount policy, all voluntary vaccinators partially offset the 

vaccination cost by receiving discount coupons. Here, the amount of subsidy per vaccinator depends on 

the current vaccination coverage and thus changes in time. 

 

Model A-1. In this model, the subsidy is distributed to a certain population fraction comprising 

both voluntary vaccinators and non-vaccinators. If we let this fraction be σ’, then by definition 

σ=TAX/Cr=SB/Cr=σ’ (cf. Eq. (3-4)). Furthermore, if the fraction of voluntary vaccinators is fC and non-

vaccinators is fD=1−fC, then the vaccination coverage becomes x=fC+σ’(1−fC), where subsidized 

voluntary vaccinators σ’fC and subsidized non-vaccinators σ’(1−fC) alike get vaccinated at no personal 
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cost. During the epidemic season these player types can either stay healthy or get infected, producing 

eight possible outcomes (in shorthand notation HC, HSC, HSD, HD, IC, ISC, ISD, and ID). Each 

outcome occupies a certain fraction of the population (Table 3.1) and earns a certain payoff (Table 3.2). 

These considerations lead to expected per-capita social payoff <π>, cooperative payoff <πC>, and 

defecting payoff <πD> in the case of imperfect vaccination: 
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0 0exp[ ( )]) (1 )(1 exp[ ( )])(1 )(1D ' 'R R e R R            .    (3-8) 

From these equations, identity <π>=fC<πC>+fD<πD>−SB holds, indicating that the expected 

social payoff is not only a weighted average of cooperative and defecting payoffs, but also the subsidy, 

as a burden to society, must be subtracted. The expected per-capita social payoff, <π>, is thus equivalent 

to the total social payoff, TSP, as defined in Section 3.2.3. The reason why Eq. (3-6) explicitly contains 

the subsidy term, −SB, is the premise in Section 3.2.3 that the tax burden does not affect decision-

making of an individual. 

 

Table 3.1. Fractions of the eight types of agents appearing in Model A-1 of the analytical approach. 

  Healthy Infected 

C 
Vaccinated 

0 )( ( (1 )e [1 xp ( )]) Cf e e R R'      
0(1 )(1 exp[ ( )])(1 ) Cf e R R'      

Subsidized 
0( (1 )exp[ ( )])Cf e e R R'      

0(1 )(1 exp[ ( )])C e R'f R      

D 
Non-vaccinated 

0)exp[ ( )](1 )(1 Cf' R R    
0 )( )(1 e )1 )(1 xp[ ( ]Cf R R'      

Subsidized 
0)( (1 )exp[ ( )])(1 Cf e e R R'      

0)(1 )(1 exp[ ( )])(1 C' f e R R       

 

Table 3.2. Payoffs at the end of the model period depending on an agent’s state and the strategic choice with 

respect to vaccination in Model A-1. 

  Healthy Infected 

C 
Vaccinated −Cr −Cr−1 

Subsidized 0 −1 

D 
Non-vaccinated 0 −1 

Subsidized 0 −1 

 

Model A-2. Here, the subsidy is distributed to a certain fraction of non-vaccinators. If we let 

this fraction be σ’, then σ=TAX/Cr=SB/Cr=σ’(1−fC). Accordingly, the subsidized population fraction, 

σ=σ’(1−fC), comprises only non-vaccinators who get vaccinated at no personal cost. The corresponding 

vaccination coverage is x=fC+σ’(1−fC). Similarly as before, during the epidemic season voluntary 
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vaccinators, subsidized non-vaccinators, and non-vaccinators can either stay healthy or get infected, 

producing a total of six possible outcomes (in shorthand notation HC, HSD, HD, IC, ISD, and ID). Each 

outcome occupies a certain population fraction (Table 3.3) and earns a certain payoff (Table 3.4). The 

resulting expected per-capita social payoff <π>, cooperative payoff <πC>, and defecting payoff <πD> in 

the case of imperfect vaccination are: 

0 0

0 0
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0 0exp[ ( )]) (1 )(1 exp[ ( )])(1 )(1D ' 'R R e R R            .    (3-11) 

 

Table 3.3. Fractions of the six types of agents appearing in Model A-2 of the analytical approach. 

  Healthy Infected 

C Vaccinated 
0( (1 )exp[ ( )])Cf e e R R     

0(1 )(1 exp[ ( )])Cf e R R     

D 
Non-vaccinated 

0)exp[ ( )](1 )(1 Cf' R R    
0 )( )(1 e )1 )(1 xp[ ( ]Cf R R'      

Subsidized 
0)( (1 )exp[ ( )])(1 Cf e e R R'      

0)(1 )(1 exp[ ( )])(1 C' f e R R        

 

Table 3.4. Payoffs at the end of the model period depending on an agent’s state and the strategic choice with 

respect to vaccination in Model A-2 of the analytical approach. 

  Healthy Infected 

C Vaccinated −Cr −Cr−1 

D 
Non-vaccinated 0 −1 

Subsidized 0 −1 

 

Model A-3. In this model, the subsidy is distributed to a certain fraction of voluntary 

vaccinators. If we let this fraction be σ’, then σ=TAX/Cr=SB/Cr=σ’fC. Accordingly, the subsidized 

population fraction, σ=σ’fC, comprises only voluntary vaccinators who get vaccinated at no personal 

cost. During the epidemic season voluntary vaccinators, subsidized or not, and non-vaccinators can 

either stay healthy or get infected, producing a total of six possible outcomes (in shorthand notation HC, 

HSC, HD, IC, ISC, and ID). Each outcome occupies a certain population fraction (Table 3.5) and earns 

a certain payoff (Table 3.6). The resulting expected per-capita social payoff <π>, cooperative payoff 

<πC>, and defecting payoff <πD> in the case of imperfect vaccination are: 
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Table 3.5. Fractions of the six types of agents appearing in Model A-3 of the analytical approach. 

  Healthy Infected 

C 
Vaccinated 

0 )( ( (1 )e [1 xp ( )]) Cf e e R R'      
0(1 )(1 exp[ ( )])(1 ) Cf e R R'      

Subsidized 
0( (1 )exp[ ( )])Cf e e R R'      

0(1 )(1 exp[ ( )])C e R'f R      

D Non-vaccinated 
0)( (1 )exp[ ( )])(1 Cf e e R R     

0 )(1 )(1 )(1 exp[ ( )]Cf e R R     

 

Table 3.6. Payoffs at the end of the model period depending on an agent’s state and the strategic choice with 

respect to vaccination in Model A-3 of the analytical approach. 

  Healthy Infected 

C 
Vaccinated −Cr −Cr−1 

Subsidized 0 −1 

D Non-vaccinated 0 −1 

 

Model B. Under the discount policy, vaccination coverage equals the voluntary vaccination 

rate by definition, i.e., x=fC. Accordingly, with the passage of an epidemic season there are only four 

outcomes (shorthand notation HSC, HD, ISC, and ID). Each outcome occupies the population fraction 

as in the default setting (Table 1), where the HSC (ISC) type takes the role of the HC (IC) type. Because 

the subsidy is equally distributed equally among all voluntary vaccinators, their vaccination cost is 

reduced by SB/fC, leading to a similar but somewhat modified payoff structure (Table 3.7) relative to the 

default setting. The resulting expected per-capita social payoff <π>, cooperative payoff <πC>, and 

defecting payoff <πD> in the case of imperfect vaccination are: 
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Table 3.7.  Payoff structure under the cooperator preferential subsidy policy. 

  Healthy Infected 

C Subsidized r

C

SB
C

f
   1r

C

SB
C

f
    

D Non-vaccinated 0  1  

 

3.4.4. Strategy updating 

Strategy updates in our analytical approach are analogous to the rules already established in 

the MAS approach. Specifically, we rewrote the IB-RA equation (Eq. (5-3-1)) and the SB-RA equation 
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(Eq. (5-3-2)) in a form suitable for use in a mean-field approximation. 

IB-RA rule. Ultimately, our interest was in the fraction of voluntary vaccinators, fC, from which 

we could calculate the vaccination coverage, x. We have so far mentioned eight agent types depending 

on their decision to vaccinate or not, and depending on how they fare during an epidemic season. 

Summarizing these agent types using the shorthand notation (and the corresponding cost) gives: HC 

(−Cr), HD (0), HSC (0), HSD (0), IC (−Cr−1), ID (−1), ISC (−1), and ISD (−1). Voluntary vaccinators 

are HC, HSC, IC, and ISC, meaning that a total of 16 transitions to any of these four types from the 

remaining four types (HD, HSD, ID, and ISD) increase fC. The probabilities of these transitions are: 
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There are also 16 transition probabilities from any of the types HC, HSC, IC, and ISC to any 

of the types HD, HSD, ID, and ISD, which cause decreases in fC. These transition probabilities are: 
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1 exp 0 ( ) /r

P HC HD P HC HSD
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,    (3-19-1) 

   
 

1

1 exp 1 ( ) /r
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P IC HD P IC HSD
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1

1 exp 1 ( 1) /r

P IC ID P IC ISD
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,    (3-19-4) 
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1 exp 0 0 /
P HCS HD P HCS HSD
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P HCS ID P HCS ISD
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1 exp 0 ( 1) /
P ICS HD P ICS HSD
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P ICS ID P ICS ISD
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In Model B, agent types HC, IC, HSD, and ISD are impossible, leading to a reduced set of 

transition probabilities. Those transition probabilities that increase fC are: 
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Transition probabilities decreasing fC are: 
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SB-RA rule. Here, the assumption was that agents compare their own payoff with the expected 

per-capita payoff of everyone else. This assumption in all variants of Model A leads to a total of eight 

transition probabilities. The probabilities with a positive effect on voluntary vaccination, i.e., those 

increasing fC, are:  
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By contrast, transition probabilities that decrease fC are: 
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Finally, the fact that Model B does not contain certain agent types by definition, produces a 

total of only four transition probabilities. The two transition probabilities increasing fC are: 
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while the two remaining transition probabilities that decrease fC are:   
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Herewith we have listed all the equations that serve as a backbone of our mean-field approach. 

The last remaining step is to specify the equations for global time evolution.  

 

3.4.5. Global time evolution 

As described previously, a vaccination campaign follows after every epidemic season (Fig. 

3.1). During the vaccination campaign, willingness to voluntarily get vaccinated changes among the 

population (i.e., fC increases or decreases), thus affecting the total vaccination coverage (i.e., x also 

increases or decreases in response to the change in fC). There are in total eight different dynamical 

equations for fC because we have devised four different vaccination-subsidizing policies (Models A-1, 

A-2, A-3, and B) and envisioned two different strategy updating rules (IB-RA and SB-RA). Each of 

these equations comes with a time derivative of fC on the left-hand side and a sum of terms on the right-

hand side consisting of two elements. These two elements depend on the implemented strategy updating 

rule. With the IB-RA rule, the first element represents the interaction of a cooperative (i.e., committing) 

with a non-cooperative (i.e., abstaining) agent type in the form of a product of their fractions in the 

population, while the second term is a difference of transition probabilities that one agent type will copy 

the other and vice versa. With the SB-RA rule, the first element is a given agent type’s fraction in the 

population, while the second element is this agent’s transition probability to switch from a cooperative 

to a non-cooperative action or vice versa.  
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In Model A-1 equipped with the IB-RA rule, there are four cooperative and four non-

cooperative agent types, and thus 16 possible bidirectional interactions. The dynamical equation 

becomes 
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.          (3-26) 

In Model A-1 equipped with the SB-RA rule, four cooperative agent types can transition to a 

non-cooperative type and four non-cooperative agent types can transition to a cooperative type. The 

corresponding dynamical equation is 
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.    (3-27) 

In Model A-2 equipped with the IB-RA rule, there are two cooperative and four non-

cooperative agent types for a total of eight bidirectional interactions. The dynamical model equation is 
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In Model A-2 equipped with the SB-RA rule, there are two cooperative agent types who can 

transition to a non-cooperative type and four non-cooperative agent types who can transition to a 

cooperative type. Accordingly, the dynamical equation is 

 

 

 

 

0

0

0

0

( (1 )exp[ ( )])

(1

])

)(1 exp[

(1 )

        (1 )

        (1 (1 )exp[ ( )

        (1 )(1 )(1

 

( )])

( (1 )exp

exp[ ( )])

       ( [1 )

C

C C

C C

C C

C C

C C

d

f

e e R R

e R R

f
f f P HC D

dt

f f P IC D

f f ' R R P HD C

f f ' R R P I

' e

C

e

D

f







   

   

  

   

  

     

      

   

 

0

0        (1 ) [

( )])

(1 )(1 exp ( )])C C

P HSD C

f f ' P ISD C

R R

e R R 



 



  

.       (3-29) 

In Model A-3 equipped with the IB-RA rule, there are four cooperative and two non-

cooperative agent types, again giving rise to eight bidirectional interactions. The dynamical equation is 
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In Model A-3 equipped with the SB-RA rule, there are four cooperative agent types who can 

transition to a non-cooperative type and two non-cooperative agent types who can transition to a 

cooperative type. The corresponding dynamical equation is 
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In Model B equipped with the IB-RA rule, there are two cooperative and two non-cooperative 

agent types for a total of four bidirectional interactions. The dynamical equation becomes 
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Finally, in Model B equipped with the SB-RA rule, two cooperative agent types can transition 

to a non-cooperative type and two non-cooperative agent types can transition to a cooperative type. The 

dynamical equation is 
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All these dynamical equations can be solved numerically. We implemented an explicit scheme 

to obtain a numerical solution, and ultimately the total vaccination coverage at equilibrium. 

 

3.4.6. Results and discussion 

Before focusing on the effects of imperfect vaccine (i.e., situations with e<1), we examined 

the performance of the mean-field approximation relative to MAS simulations. Taking, for example, 

Model A-1 equipped with the IB-RA rule, the mean-field results should be comparable with the MAS 

results obtained with the random regular network (Fig. 3.12, top row; cf. Fig. 3.7). The results are indeed 

qualitatively similar. The MAS approach yields coarser images than the mean-field approach due to 

finite population, finite node degree, and finite resolution (i.e., number of simulations), but the same 

patterns are present in both cases. Namely, subsidies worsen the total social payoff (TSP) relative to the 

default case of no subsidy (i) when the vaccination cost is relatively low and the subsidized population 

fraction is relatively small or (ii) in the limit of a high vaccination cost and a large subsidized population 

fraction. This latter result is understandable because it becomes a lesser burden for society to have a few 
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more infected individuals than to secure vaccination for a sufficient number of individuals to avoid these 

infections. The former result, however, is easier to understand in the context of Model A-2.  

Subsidizing only non-vaccinators, as assumed in Model A-2, does not change the results 

qualitatively, but worsens the negative effect of subsidies in a quantitative sense (Fig. 3.12, second row). 

Specifically, vaccination coverage (VC) is lower, the final epidemic size (FES) is larger, and the TSP is 

more negative than in a comparable scenario executed with Model A-1, i.e., when the subsidy is 

distributed to both voluntary vaccinators and non-vaccinators. The reason for this dismal outcome is 

similar to what we have seen in MAS simulations. By directing subsidies to non-vaccinators, there is an 

incentive for voluntary vaccinators to abstain in hope that they can receive the subsidy and offset the 

cost of vaccination. This incentive causes harm by increasing the presence of non-vaccinators as long 

as the subsidy covers a relatively small fraction of the population. The effect is stronger with a lower 

vaccination cost because in that case, even without any subsidy, the fraction of voluntary vaccinators is 

relatively large. 

If subsidizing non-vaccinators worsens the TSP, should only voluntary vaccinators be the 

recipients of subsidies? Models A-3 and B offer a similar, positive answer to this question (Fig. 3.12, 

third and last rows, respectively). Here, the incentive for voluntary vaccinators to abstain in hope of 

receiving the subsidy completely disappears. This improves the TSP in almost all scenarios, except in 

the limit of a high vaccination cost and a large fraction of subsidized vaccinators. Once again, ‘heaven 

helps those who help themselves’. When it comes to distinguishing between the performance of Models 

A-3 and B, the former is slightly better. This is due to the fact that the IB-RA strategy updating rule 

depends on the payoff difference between alternative actions, and the free-ticket policy increases this 

difference relative to the discount-coupon policy. However, any performance improvement of Model A-

3 over Model B is quantitatively small. 

By changing the strategy updating rule from the IB-RA rule to the SB-RA rule, the results are 

qualitatively still the same, but there is a noticeable size increase of the zone in which subsidizing 

vaccination is justifiable (Fig. 3.13). This is particularly true in the limit of a high vaccination cost and 

a large vaccination coverage. Such a result is possible because under the SB-RA rule there are more 

voluntary vaccinators than in the same scenario under the IB-RA rule, meaning that a given subsidy 

secures a higher VC, reduces the FES, and finally is less burdensome to society. 

Turning attention to an imperfect vaccine (e<1), one of the most striking features is that the 

dependence on the subsidized population fraction (i.e., parameter σ) almost vanishes, while the relative 

cost of vaccination almost entirely controls the final outcome (Fig. 3.14). If Cr<0.2 then the subsidy in 

Models A-1 and A-2 slightly deteriorates the TSP regardless of the reach (i.e., budget size), while in 

Models A-3 and B, the subsidy’s effect is neutral. Even worse, if Cr>0.6 then the subsidy grossly 

deteriorates the TSP in all models regardless of the subsidy’s reach. Introducing the SB-RA rule 

deteriorates the subsidy’s performance even further (Fig. 3.15). The margin for justifying the subsidy in 
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terms of the TSP becomes extremely narrow; the maximum improvement relative to the default case is 

only 0.06 compared to 0.37 with the IB-RA rule. 

Multiple reasons conspire to produce these results. First, when relative vaccination cost Cr is 

low, the fraction of voluntary vaccinators is reasonably large even in the default case. In this situation, 

giving subsidies to non-vaccinators only creates a negative incentive to forgo vaccination in order to 

perhaps receive the subsidy next time around. If, in addition, the subsidized population fraction, σ, is 

small, the aggregate result will be a decrease in vaccination coverage compared to the default. The 

subsidy’s reach as expressed by parameter σ needs to become sufficiently large to overcome the said 

negative incentive, which is what we have seen with the perfect vaccine in Models A-1 and A-2. An 

imperfect vaccine, however, nullifies the positive effect of increasing σ, thus making the outcomes 

almost insensitive to the value of this parameter. Even when the negative incentive of subsidizing non-

vaccinators is removed, as is the case in Models A-3 and B, there is no substantial improvement over 

the default because the subsidy brings little benefit in view of the low values of parameters Cr and e. 

Introducing the SB-RA rule, which increases the fraction of voluntary vaccinators, only narrows the 

window for the subsidy to improve the situation. Finally, with high relative vaccination cost Cr and the 

insensitivity of the results to increasing subsidy reach as expressed by parameter σ, it simply becomes 

less burdensome for society to let the infection take its natural course than to try to increase the VC 

beyond voluntary vaccinators that would be present anyway. 
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Figure 3.12. Mean-field approximation with the IB-RA rule and a perfect vaccine (e=1). Color indicates 

the difference between the case in which vaccination is subsidized (σ>0) and the default case without 

subsidy (σ=0). Blue indicates better, white neutral, and red worse performance than the default. Panel 

rows display the performance of Model A-1 (top row), Model A-2 (second row), Model A-3 (third row), 

and Model B (bottom row). Panel columns display VC (left column), FES (middle column), and TSP 

(right column). Dotted rectangles emphasize the zone in which Model A-1 quantitatively outperforms 

Model A-2. Similarly, dashed rectangles single out the zone in which Model A-3 outperforms Model B.  
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Figure 3.13. Mean-field approximation with the SB-RA rule and a perfect vaccine (e=1). Color indicates 

the difference between the case in which vaccination is subsidized (σ>0) and the default case without 

subsidy (σ=0). Blue indicates better, white neutral, and red worse performance than the default. Panel 

rows display the performance of Model A-1 (top row), Model A-2 (second row), Model A-3 (third row), 

and Model B (bottom row). Panel columns display VC (left column), FES (middle column), and TSP 

(right column). 
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Figure 3.14. Mean-field approximation with the IB-RA rule and an imperfect vaccine (e<1). Color 

indicates the difference between the case in which vaccination is subsidized (σ>0) and the default case 

without subsidy (σ=0). Blue indicates better, white neutral, and red worse performance than the default. 

Panel rows display the performance of Model A-1 (top row), Model A-2 (second row), Model A-3 (third 

row), and Model B (bottom row). Panel columns display VC (left column), FES (middle column), and 

TSP (right column). Black (gray) rectangles emphasize the zone of a negative TSP in Models A-1 and 

A-2 when the relative vaccination cost is low (high). 
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Figure 3.15. Mean-field approximation with the SB-RA rule and an imperfect vaccine (e<1). Color 

indicates the difference between the case in which vaccination is subsidized (σ>0) and the default case 

without subsidy (σ=0). Blue indicates better, white neutral, and red worse performance than the default. 

Panel rows display the performance of Model A-1 (top row), Model A-2 (second row), Model A-3 (third 

row), and Model B (bottom row). Panel columns display VC (left column), FES (middle column), and 

TSP (right column). Black (gray) rectangles emphasize the zone of a negative TSP in Models A-1 and 

A-2 when the relative vaccination cost is low (high). 
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3.5 Conclusions 

To examine how societies could combat seasonal epidemics with vaccination-subsidizing 

policies, we devised a comprehensive ‘vaccination game’ with intertwined decision-making dynamics 

and epidemic dynamics. We based the former on evolutionary game theory and the latter on a typical 

SIR/V setup. In addition, we considered four subsidy variants; three free-ticket subsidies targeting 

different individuals (voluntary vaccinators, non-vaccinators, or both) and a discount subsidy aimed 

exclusively at voluntary vaccinators to partly offset their vaccination cost. We implemented these games 

as multi-agent simulations (MAS) and a mean-field approximation. The MAS approach allowed us to 

investigate how the underlying topologies of the social network affect the performance of subsidized 

vaccination. The mean-field approach helped us to independently confirm some of the key the results 

obtained using the MAS approach, and to better understand the effects of an imperfect vaccine. We 

evaluated the performance of different subsidies by tracking three quantities: vaccination coverage (VC), 

the final epidemic size (FES), and the total social payoff (TSP). The TSP in particular was an aggregate 

measure taking into account the vaccination cost, the cost of an epidemic, and the tax burden to subsidize 

vaccination. 

Our results suggest that there are two situations in which subsidies act counterproductively. 

First, subsidizing non-vaccinators creates a negative incentive for voluntary vaccinators to abstain in 

hope of receiving a subsidy. If the subsidy has a relatively small reach due to a limited budget, then this 

negative incentive may cause more people to forgo vaccination than the subsidy can motivate to 

vaccinate. Second is the situation in which overspending causes that the marginal cost of increasing the 

VC becomes higher than the marginal cost of infections that this increased coverage prevents. Taken 

together, these two situations emphasize the need for carefully targeting and budgeting vaccination 

campaigns.  

MAS simulations deepen our understanding of how the topology of the underlying social 

networks affects a subsidy’s performance. Both random and heterogeneous connections increase the 

domain of the phase space in which the subsidy’s performance is worse than in the default case of no-

subsidy policy. The mean-field approximation, on the other hand, provides an additional insight into the 

effects of an imperfect vaccine. Here, the dependence of the subsidy’s performance on its reach (i.e., 

budget size) almost entirely disappears, making the relative vaccination cost the key determinant of 

success. Subsidizing a cheap, but unreliable vaccine has an overall neutral effect at best because any 

gain from an increased coverage is usually nullified by the vaccine’s unreliability. Subsidizing an 

expensive, but unreliable vaccine, in addition to overcoming the vaccine’s unreliability, also has to 

overcome its high cost, which turns out to be too much in almost all circumstances. Imperfect vaccines, 

depending on how reliable they are, may leave a very narrow margin for improving the TSP by means 

of a vaccination-subsidizing policy.  

When it comes to whom a subsidy should target, our results clearly indicate that the guiding 
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principle is ‘heaven helps those who help themselves’. By trying to motivate non-vaccinators to commit 

to vaccination, society actually creates the aforementioned negative incentive whereby someone who 

would normally get vaccinated at their own cost, now waits for the subsidy to offset that cost. Such a 

negative incentive is most simply avoided by distributing subsidies only to voluntary vaccinators. Once 

this decision is reached, it is less important whether the subsidy is implemented in the form of free 

tickets to a certain fraction of voluntary vaccinators or discount coupons to all voluntary vaccinators. 

There is only a minor difference in the performance of these two approaches, which arises due to a 

clearer benefit from receiving a free ticket (fully offsets the cost) than a discount coupon (partly offsets 

the cost). 
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CHAPTER 4 

 

Chapter 4: Fundamental analyses of heat and mass transfer in animal upper airways 

 

4.1 Introduction and literature review 

The respiratory system is one of the most essential processes in the human body. The basic 

functions of the respiratory system are gas exchange (supply oxygen from ambient air and remove 

carbon dioxide from the blood) and air conditioning via the exchange of heat and moisture through the 

mucous surfaces of the airway. Furthermore, the respiratory system is also the primary interface between 

the human body and indoor environment, in which various contaminants exist. Hence, indoor air quality 

has a crucial impact on human health. To understand the transfer of heat, moisture, and contaminants 

inside the respiratory tract and to predict toxic inhalation risks, a number of researchers conducted in 

vivo studies involving human volunteers and/or mammal surrogate models, such as rats and monkey 

[1–4]. Although in inhalation toxicological studies and the development of respiratory drug delivery 

systems (DDS), animal and biological testing will always be needed, in vivo studies are restricted in 

terms of animal protection and ethical problems. From this viewpoint, computer simulation models (i.e., 

in silico respiratory tract models) have great potential to contribute to the essential understanding of heat 

and contaminant transfer phenomena in the respiratory tract, in place of in vivo and in vitro studies. 

From this background, various types of numerical respiratory tract models have been developed. 

The human respiratory tract consists of the nasal cavity, oral cavity, pharynx, larynx, trachea, 

bronchiole, and alveoli, and can be classified into three domains: (i) the upper airway from the nasal 

cavity and oral cavity to the trachea, (ii) the lower airway from the trachea to the terminal bronchioles, 

and (iii) the alveolar region. Generally, numerical respiratory tract models do not reproduce the geometry 

of the whole airway from the nasal or oral cavity to the alveolar region because of limitations in 

computer resources. Researchers select the reproduced airway region depending on the purpose of their 

simulation. 

 

4.1.1. Upper airway models (nasal and oral airway) 

The nose and mouth openings are the primary entrance and exit of various gases and particle 

matter between the human airway and the indoor environment by respiration. Thus, the study of airflow 

and contaminant transport and exposure in the upper airway is considerably important compared to that 

of the lower airway and alveolar region. This pathway of airflow is classified as the nasal airway and 

oral airway in terms of breathing methods (nasal breathing and oral breathing). The nasal cavity is 

composed of two narrow passages that are separated by the nasal septum. Each nasal passage is a 

complicated geometry divided by three curved fin-like airway protrusions known as the superior, middle, 
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and inferior meatus. This complexity of the nasal cavity promotes the transfer of heat and moisture, and 

the nasal cavity plays a role in the conditioning of inhaled air. Most researchers have developed realistic 

nasal cavity models by using high-resolution computed tomography (CT) and magnetic resonance 

imaging (MRI) [5–9]. On the other hand, the geometry of the oral cavity, excluding the teeth, is relatively 

simple compared to that of the nasal cavity. The geometry of the oral cavity is usually modeled by 

excluding the teeth. Xi and Longest [10] used surface geometries for the oral cavity based on 

measurements of a dental impression with an approximate half-mouth opening. For this cast, Cheng et 

al. [11] provided a complete mathematical description of the geometric parameters along the axial 

direction in terms of cross-sectional shapes, areas, perimeters and hydraulic diameters. Furthermore, the 

flow pattern in the airway is also affected by laryngeal geometry associated with a pipe with sudden 

contraction. Thus, the laryngeal geometries were also extracted by CT or MRI [12].  

From viewpoint of the interaction between the human body (nasal cavity and oral cavity) and 

indoor environment, the streamline from the indoors to the nasal and oral cavities, namely, the flow 

profile in the openings of the nose and mouth, strongly affect the flow pattern in the airway. To account 

for this, Corley et al. [13,14] developed airway models attached to a cylinder that reproduced the space 

of the indoor environment. Tian et al. [14] also reproduced the external space in front of the human face. 

The geometry of the upper airway is diverse because of individual differences. Therefore, it is 

difficult to develop a numerical respiratory tract model that is average in terms of air permeability and 

contaminant deposition. We must accumulate studies on the respiratory tract using various airway 

models and report the properties of each model. 

 

4.1.2. Lower airway models (bronchial tree) 

The small bronchus flows are low-Reynolds-number flows, with values that are usually less 

than 1000 [16]. However, the existence of secondary currents due to vortices makes these flows quite 

complicated. These vortices are generated as an effect of the complex bronchial tube geometry. Some 

of the properties of the bronchial tube geometry are multiple bifurcations, asymmetry, and non-planarity. 

The complexity of the geometry of the bronchial tree is attributed to the bifurcations that produce 

multiple generations with asymmetric and non-planar branching. A bifurcation is defined as the location 

where two daughter tubes diverge from a parent tube. Typically, there are a total of 23 generations of 

airways in the human bronchopulmonary tree, which consists of 222 distinct tubes [17].  

In the early stages of development of the bronchial tube geometry, mathematical and 

theoretical models have been morphologically proposed based on the anatomical measurement of the 

bronchial tube. Weibel [18] first introduced a symmetric model of morphological descriptions of the 

human bronchial tubes. After that, Horsfield et al. [19,20] proposed a more realistic model that 

represents lung asymmetry from the measurement of the lung cast of a young male. Moreover, there 

have been various analytical and mathematical models proposed for defining bronchial tube geometry 
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[21–23]. Calay et al. [24] studied the flow patterns in a single first-generation bifurcation to the trachea 

and in a multiple-bifurcation model, with its three generations based on the anatomical data provided by 

Horsfield [20]. Lee and Lee [25] generated a three-dimensional network model with four generations, 

which conformed closely to the Weibel model [18], in order to study aerosol dispersion. 

On the other hand, realistic detailed lung airway models have recently been developed by using 

CT or MRI techniques [26–28]. Tawhai et al. [26,27] developed a three-dimensional tree growing 

algorithm specific to a given host geometry derived from MRI. Schmidt et al. [28] developed a 17-

generation anatomical model that was extracted from CT data. Gemci et al. [29] and Islam et al. [30,31] 

analyzed the flow pattern and aerosol deposition in the lungs using the 17-generation anatomical model 

[29]. 

 

4.1.3. Alveolar airway models 

The mechanisms of airflow and contaminant exposure in the alveolar (pulmonary) region are 

different from those of the upper airways in various aspects. The upper airways do not expand and 

contract in response to inhalation and exhalation, and hence are considered fixed geometry. On the other 

hand, the lower airway, especially the alveolar region, changes shape during respiration. Thus, the 

boundary condition of the alveolar region is treated as a moving wall in transient flow conditions. 

Furthermore, because of the continuous expansion and contraction of the alveolar airway, it is difficult 

to develop an accurate geometric model for the alveolar region using current technology such as CT and 

MRI. The size and air velocity in the alveolar region are considerably small compared to those of the 

upper airway. Hence, laminar flow is dominant in the flow field of the alveolar airway and the residence 

(exposure) time is greater than that in the upper airway.  

Various geometric models have been designed for alveolar studies. Kitaoka et al. [32] 

developed a four-dimensional alveolar model, corresponding to elastin fibers at alveolar mouths and 

junctions of alveolar septa to simulate alveolar deformation. Kumar et al. [33] considered honeycomb 

shapes for acinar geometries to investigate particle transport in the acinar region. Other studies also 

considered a polyhedral shape for alveoli models [34–36]. The other types of alveolar airway models 

were assumed as a cylinder surrounded by spherical caps [37–39]. 

In recent years, high-resolution micro-CT imaging (e.g., synchrotron-based imaging) of the 

acinar region has advanced considerably, and the number of airflow studies on the acinar region using 

imaging-based geometry has been increasing. Sera et al. [40,41] used an alveolar airway (acinar) model 

obtained from synchrotron micro-CT in a mouse and reported nanoparticle deposition in the alveolar 

region. Henry et al. [42] used image-based alveoli geometry obtained using synchrotron radiation-based 

X-ray tomographic microscopy and reported the 3D re-circulatory flow in the alveolar region. Sznitman 

et al. [43] also used synchrotron radiation-based X-ray tomographic microscopy images of the 

pulmonary acinus of a mouse to reconstruct 3D alveolar airspaces and conduct CFD simulations 
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mimicking rhythmic breathing motion. 

 

4.1.4. Animal surrogate models 

For deep understanding of heat and mass transfer and air-conditioning in the respiratory system 

of animals, development of drug delivery system (DDS), and reducing the sacrifice of laboratory animals, 

the numerical animal airway models need to be developed. Various types of numerical animal airway 

models have been developed based on the geometrical data extracted by CT or MRI for Rat [13,14,44-

46], dog [47-50], monkey [13,51], rabbit [52-55].  

 

4.1.5. Objectives 

In this study, we developed computer models of the upper respiratory airway of a rat, a dog, a 

monkey and two humans encompassing the nose/mouth to the pharynx/larynx. Here, these computer 

models are referred to as virtual airways. As a numerical simulation for predicting the airflow 

characteristics, CFD has been used to provide an understanding of the air flow patterns as well as heat 

transfer. A steady inhalation flow through the nose was assumed, using a low-Reynolds-number (Re) k-

ε model. In this study, five airflow conditions in each virtual airway model, i.e., the transitions from a 

laminar to a turbulent flow regime, were considered. Further, the convective heat transfer phenomena in 

the virtual airway models were analyzed by estimating the convective heat transfer coefficients (hc) and 

segment under various breathing airflow conditions. The respiratory hc is a phenomenological constant 

relating the heat flux to the temperature difference between the free airstream and airway walls. 

Considering the similarities between heat and mass transfer, hc is a good indicator of mass transfer from 

the mucosal tissue surface to the lumen or vice versa in the respiratory tract. The calculated hc values 

will contribute to the understanding of heat and mass transfer phenomenon in respiratory systems and 

to quantify the differences in heat and mass transfer efficiency between species. 

 

4.2 Materials and Methods 

4.2.1. Development of in silico animal airway models  

Rat: A geometrical respiratory data from the nose through to the larynx of a Sprague-Dawley 

rat (400 g weight) was extracted by a micro-CT scan at 140 μm resolution. The model included both left 

and right nasal cavities, and the nasopharyngeal duct. The computational model was meshed using 

ICEM-CFD (ANSYS Inc.) with unstructured tetrahedral elements. To provide accurate predictions in 

the boundary layer, prism layers were applied in the vicinity of wall surfaces into the viscous sublayer. 

To accurately reproduce the flow patterns at and around the nostril inlets, the external nares, facial 

features, and the surrounding environmental space near the face were included [56-60]. The number of 

independent mesh elements for this rat model was 5.34 million [61]. Details of the rat’s geometric 

information are given in Table 4.1 and Figure 4.1. 
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Table 4.1 Details of rat virtual airway 

Total inner surface area 3.62×10-6 [m2] 

Total length 55.10 [mm] 

Maximum height 18.30 [mm] 

Maximum width  16.00 [mm] 

Area of naris (right)/ Equivalent diameter 3.72×10-7 [m2]/ 6.89×10-4 [m] 

Area of naris (left)/ Equivalent diameter  3.08×10-7 [m2]/ 6.27×10-4 [m] 

Total meshes 5.34 million (unstructured) 

 

 

Figure 2.1 Computational geometry and mesh of the rat virtual airway 

 

Dog: A geometrical respiratory data from the nose through to the larynx of an 8-month-old 

male beagle (11 kg weight) was extracted by a CT scan. CT examinations were carried out using an 

eight-detector-row computed tomography system (ECLOS 8; Hitachi Medical Corporation). Scans were 

obtained with a collimation of 8 × 1.25 mm, a table pitch of 0.875, a tube voltage of 120 kV and a tube 

current of 350 mA [62]. The computational model of the dog was discretized and meshed using ICEM-

CFD (ANSYS Inc.) with unstructured tetrahedral elements. The number of independent mesh elements 

for this dog model was 6.49 million. Details of the dog’s geometric information are shown in Table 4.2 

and Figure 4.2.  
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Table 4.2 Details of dog virtual airway 

Total inner surface area 1.29×10-4 [m2] 

Total length 1.45×10-1 [m] 

Maximum height 7.16×10-2 [m] 

Maximum width  4.97×10-2 [m] 

Area of naris (right)/ Equivalent diameter 6.00×10-5 [m2]/ 8.74×10-3 [m] 

Area of naris (left)/ Equivalent diameter  5.28×10-5 [m2]/ 8.20×10-3 [m] 

Total meshes 6.49 million (unstructured) 

 

 

Figure 4.2 Computational geometry and mesh of the dog virtual airway 

 

Monkey: A geometrical respiratory data from the nose/mouth through to the larynx of a 6-

month-old male monkey (Macaca fascicularis) (1.2 kg weight) was extracted by a micro-CT (computer 

tomography) scan at 200 μm resolution. The computational model was discretized and meshed using 

ICEM-CFD (ANSYS Inc.) with unstructured tetrahedral elements. The number of independent mesh 

elements for this monkey model was 7.03 million. Details of the monkey’s geometry are given in Table 

4.3 and Figure 4.3. 
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Table 4.3 Details of monkey virtual airway 

Total inner surface area 2.81×10-5 [m2] 

Total length 1.05×10-1 [m] 

Maximum height 4.32×10-2 [m] 

Maximum width  2.8110-2 [m] 

Area of naris (right)/ Equivalent diameter 5.48×10-6 [m2]/ 2.64×10-3 [m] 

Area of naris (left)/ Equivalent diameter  5.46×10-6 [m2]/ 2.64×10-3 [m] 

Total meshes 7.03 million (unstructured) 

 

 

Figure 4.3 Computational geometry and mesh of the monkey virtual airway 

 

Human: Two human respiratory tract models (Model A and Model B) were created. Original 

geometrical respiratory tract data were obtained using a Toshiba 64 multi-detector row computed 

tomography (MDCT) scanner. The subjects were Asian and European male who were non-smoker and 

have a body mass index (BMI) of approximately 22. The CT scans produced 785 slices of the respiratory 

tract. The original set of CT images was converted into a file format compatible with Mimics® 

(Materialise NV). Generation of a surface model from the 2D contour data began with the translation of 

the segmented, modified, and smoothed contour points into a data series that was loaded into ICEM-
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CFD (ANSYS Inc.) and TGrid, which were used to modify the surface mesh and then create a volume 

mesh of the model, respectively. Surface geometries of the respiratory tracts were also exported in STL 

(stereo lithography) format. Table 4.4 shows the detailed geometric information for the two human upper 

airway models. Figure 4.4 shows views of the human airway models after going through this process. 

These respiratory tract models are composed of an upper airway, including the nasal and oral cavities, 

the pharynx, and the larynx [63,64].  

The present human airway model (Model A) has been validated with experimental data sets 

from laminar to turbulent flows [63,64]. In a previously reported study, a realistic replica model made 

from transparent acrylic material was created and a particle image velocimetry (PIV) technique was 

applied to measure flow patterns in the human upper airway model (Model A). In this PIV experiment, 

a three-dimensional respiratory tract model was created with a 3D printer by using identical geometry 

data of CFD model and flow patterns in respiratory tract were precisely measured as a function of flow 

rate (from 7.5L/min to 30L/min). Further, CFD simulations correspond with the experimental scenarios 

were also conducted with the four different turbulent flow models (two low Reynolds number type k-ε 

models (Abe-Kondoh-Nagano model and Launder-Sharma model), an RNG type k-ε model, and an SST 

k-ω model). Finally, CFD simulation results with the low-Reynolds-number k–ε model reasonably 

agreed with the results measured by PIV [63]. 

 

Table 4.4 Details of human virtual airways 

Total inner surface area 2.19×10-4 [m2] for Model A,  

2.14×10-4 [m2] for Model B 

Total length 2.39×10-1 [m] for Model A,  

1.95×10-1 [m2] for Model B 

Maximum height 1.46×10-1 [m] for Model A, 1.34×10-1 [m] for Model 

B 

Maximum width  6.21×10-2 [m] for Model A, 6.21×10-2 [m] for Model 

B 

Area of naris (right)/ Equivalent diameter 8.00×10-5 [m2]/1.00×10-2 [m] for Model A 

8.00×10-5 [m2]/1.00×10-2 [m] for Model B 

Area of naris (left)/ Equivalent diameter  8.00×10-5 [m2]/1.00×10-2 [m] for Model A 

8.00×10-5 [m2]/1.00×10-2 [m] for Model B 

Total meshes 7.25 million (unstructured) for Model A 

3.82 million (unstructured) for Model B 
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(1) Model A – Asian male 

 
 (2) Model B – European male 

Figure 4.4 Computational geometry and mesh of the human virtual airway 
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4.2.2. Airflow simulations 

The inner geometry of the animal and human upper airways were precisely reproduced by a 

CFD mesh. To resolve the flow profile in the viscous sub-layer of airways, a fine mesh (approximately 

0.1 mm or less for human models) was used as the first layer of mesh on the inner wall surface. The 

number of cells was set to approximately 4–7 million or more for each upper airway model. For all cases, 

the wall unit y+ was ≤1 in all areas, where 
1*y u y   ; y1 is the distance normal to the wall surface, ν 

is the kinematic viscosity, and * wu     is the friction velocity (ρ is the air density and τw is the wall 

shear stress). In the CFD simulation, a grid independence check was performed and a minimum mesh 

size in the vicinity of wall surface, skewness, and size ratio of adjoining meshes were created. 

The entire flow fields in the upper airways were analyzed using a low-Reynolds-number k–ε 

model (Abe–Kondoh–Nagano model) [65]. Generally, the low-Reynolds-number k–ε model was 

designed to account for damping and echo effects in the near-wall region. It is also applied to quasi-

laminarized flow fields existing within stable stratifications. The model implements damping and model 

functions, and performs low-Reynolds-number corrections for the production and dissipation terms of 

the eddy viscosity μt and ε equations. The model reproduces turbulence phenomena around walls that 

results from trying to solve adequately refined mesh partitions under no-slip conditions in the region 

around the wall. The model (Abe-Kondoh-Nagano model) has been adopted for the various types of 

flow field analysis (from laminar to turbulent) and has confirmed the good prediction accuracy for flow 

field analysis intended for enclosed spaces [66-69]. 

A steady and constant breathing airflow rate was used for the breathing condition as a function 

of metabolic rate and was set at the end of trachea outlet for each model. The turbulent kinetic energy at 

the inlet, i.e., at the nostril, was specified with a 10% turbulence intensity. The SIMPLE algorithm was 

used for the pressure-velocity coupling, and a second-order upwind difference scheme was used for the 

convection terms and a central difference scheme was used for the other terms. The simulation was 

conducted under isothermal and non-isothermal conditions. A summary of the numerical conditions are 

given in Table 4.5. 

 

4.2.3. Heat transfer simulations 

A constant inlet air temperature of 293K (20°C) was used for the inhaled ambient air, and the 

inner walls, which are covered by a layer of mucus, were assumed a constant temperature; 311 K (38°C) 

for the rat, dog and monkey and 309.8 K (36.8°C) for the human model. The respiratory convective heat 

transfer coefficient (hc) relates the heat flux to the temperature difference between the free airstream and 

body surface or airway walls (in this research). The widely accepted expression for the hc is as follows: 

( )

c

c

w air

Q
h

T T




         (4-1) 

Here, the heat flux unit for Qc is W/m2, and Tw and Tair are the constant wall and inhaled air 



115 

 

temperatures in Kelvin. The Nusselt (Nu) number is a commonly used dimensionless parameter that is 

defined as the ratio of convection heat transfer to conduction heat transfer for a given reference length. 

The Nu number can be expressed as 

c Th D
Nu


          (4-2) 

where λ is the thermal conductivity of the air (W/m-K), and DT is the representative diameter (m); the 

diameters in the trachea were used to calculate the Nu number for upper airway model. The Nu number 

is often used to correlate experimental data with the convective heat transfer. 

Details of numerical and boundary conditions are summarized in Table 4.5.  

 

Table 4.5 Numerical and boundary conditions of CFD 

 Rat Dog Monkey Human A Human B 

Turbulence  
Model 

Low Reynolds Number Type k-ε model(Abe- Kondoh- Nagano Model, 3D Cal.) 

Mesh 
5.34M mesh  
(Unstructured, 
Tetra) 

6.49M mesh 
(Unstructured, 
Tetra) 

7.03M mesh 
(Unstructured, 
Tetra) 

7.25M mesh 
(Unstructured, 
Tetra) 

3.81M mesh 
(Unstructured, 
Tetra) 

Outflow 
boundary 
(Trachea 
opening) 

Case 1: 

Q= 0.11L/min 

Case 2: (basic 

case) 

Q= 0.275 L/min  

Case 3: 

Q= 0.55 L/min  

Case 4: 

Q= 1.1 L/min  

Case 1: 

Q= 1.75L/min 

Case 2: (basic 

case) 

Q= 3.5 L/min  

Case 3: 

Q= 7.0 L/min  

Case 4: 

Q= 10.5 L/min  

Case 1: 

Q= 1.0 L/min 

Case 2: (basic 

case) 

Q= 2.0 L/min 

Case 3: 

Q= 4.0 L/min  

Case 4: 

Q= 6.0 L/min  

Case 1: 

Q= 3.75 L/min  

Case 2: (basic 

case) 

Q= 7.5 L/min  

Case 3: 

Q= 15 L/min  

Case 4: 

Q= 30 L/min 

Case 1: 

Q= 3.75 

L/min  

Case 2: (basic 

case) 

Q= 7.5 L/min  

Case 3: 

Q= 15 L/min 

Case 4: 

Q= 30L/min  

TI=10 % 

kout=3/2 (Uin0.1)
2
 

εout=Cµ 

3/4
kout

3/2
lout 

Inflow 
boundary 

Nasal opening ; U
in
=Free slip, k

in
=Free slip, ε

in
=Free slip, Inflow temperature:293 K 

Wall 
treatment 

Temperature : 
311 K 
Velocity: no slip 

Temperature : 
311 K 
Velocity: no 
slip 

Temperature : 
310.8 K 
Velocity: no 
slip 

Temperature : 
309.8 K 
Velocity: no 
slip 

Temperature : 
309.8 K 
Velocity: no 
slip 

 

4.3 Results 

Results from our numerical simulations for different airway geometries and inspiratory flow 

rates are given below. Scalar velocity and temperature distributions at representative sections in the nasal 

cavity are shown in Figure 4.5. In these analyses, exhaust flow rates (from within the virtual airway) 

were set at the trachea outlet based on respiratory flow rate. Non-uniform and complicated air flow 

patterns in nasal cavities were confirmed in all virtual airway models. Scalar air velocities were 

normalized with representative air velocities at the outlet (at the trachea). Because of the asymmetries 

of left and right nasal cavities, different air flow rates and varying air velocity distributions were found 
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in both nasal chambers. Figure 4.5 also shows the temperature distribution in terms of non-dimensional 

temperature profiles, i.e.,    wall in wallT T T T T    . Non-uniform temperature distributions were also 

observed in the nasal cavities. The inhaled air temperature rapidly heated to approximately the tissue 

surface temperature within the distance up to Slice B. This was due to the turbulent mixing in the narrow 

cross-section.  

The local convective heat flux distributions for each virtual airway model are shown in Figures 

4.6, 4.7, 4.8, 4.9 and 4.10. Relatively high local convective heat flux was observed in the nostril area in 

all cases. These phenomena were caused by the large temperature difference between respiratory air 

(indoor air) and the surface tissue. The average convective heat transfer coefficient (hc) as a function of 

respiratory airflow rate (normalized by the flow rate velocity) are shown in Figure 4.11. With all 

analytical cases, a near linear relationship between airflow rate and hc was confirmed. The hc for the 

human model was estimated higher than those of the other animal models.  

The relationship between the Nusselt (Nu) number and the product of the Reynolds (Re) and 

Prandtl (Pr) numbers for the upper airway is depicted in Figure 4.12 where the Reynolds (Re) and 

Prandtl (Pr) numbers are defined as follows; 

Re TuD


           (4-3) 

Pr



            (4-4) 

Here, u is the representative axial velocity, ν is the kinetic molecular viscosity and α is the 

thermal diffusivity. Based on the CFD simulation results, the correlations between Nusselt (Nu) number 

and the product of the Reynolds (Re) and Prandtl (Pr) numbers are summarized in Table 4.6. The type 

of correlation function was selected according to previously reported studies [70-72]. The trivial 

discrepancy between human models (A and B) may be due to the differences of airway geometries and 

this will represent individual differences. The heat transfer efficiency (order of hc and correlation of Nu 

and RePr) in the upper airway of the dog seems to match those of the human models. On the other hand, 

the results for the rat and monkey showed clear differences compared with those of human models.  
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(1) Rat 

 

 (2) Dog 

 
(3) Monkey 
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 (4) Human-Model A, Asian Male 

 
(5) Human-Model B, European Male 

Figure 4.5 Scalar velocity (upper stand) and temperature distributions (lower stand) in nasal cavities for 

each virtual airway model (airflow rate in Case 2 conditions as basic metabilic rate) 

 

 

 
(1) Qin=0.275 L/min    (2) Qin=0.55 L/min    (3) Qin=1.1 L/min 

Figure 4.6 Convective heat transfer flux distributions on the upper airway surfaces of the rat virtual 

airway [W/m2] 
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(1) Qin=3.5 L/min    (2) Qin=7.0L/min    (3) Qin=10.5 L/min 

Figure 4.7. Convective heat transfer flux distributions on the upper airway surfaces of the dog virtual 

airway [W/m2] 

 

 

 

(1) Qin=2.0 L/min     (2) Qin=4.0 L/min     (3) Qin=6.0 L/min 

Figure 4.8. Convective heat transfer flux distributions on the upper airway surfaces of the monkey 

virtual airway [W/m2]  

 

 

(1) Qin=7.5 L/min     (2) Qin=15 L/min     (3) Qin=30 L/min 

Figure 4.9. Convective heat transfer flux distributions on the upper airway surfaces of the human (Model 

A) virtual airway [W/m2] 
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(1) Qin=7.5 L/min     (2) Qin=15 L/min     (3) Qin=30 L/min 

Figure 4.10. Convective heat transfer flux distributions on the upper airway surfaces of the human 

(Model B) virtual airway [W/m2] 

 

   

Figure 4.11. Convective heat transfer coefficients (hc) versus non-dimensional representative velocity 

in upper airway 
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Figure 4.12. Nu versus product of Re and Pr for upper airways 

 

Table 4.6 Correlation of Nu versus product of Re and Pr 

Target airway model Correlation function Range of Re 
Correlation 

coefficient 

Rat  
0.9973

0.0021 Re PrNu     75 Re 750    2 1r    

Dog  
0.9707

0.0069 Re PrNu    200 Re 1600   2 0.9997r   

Monkey  
0.9612

0.0039 Re PrNu    250 Re 2000   2 0.9999r   

Human model A  
0.9414

0.0075 Re PrNu    330 Re 2600   2 0.9999r   

Human model B  
0.9965

0.0107 Re PrNu    330 Re 2600   2 0.9994r   

 

4.4 Conclusions 

Three-dimensional computer models which describe the flow and heat transfer properties in 

upper airways have been developed and local convective heat flux distributions in upper airways and 

average convective heat transfer coefficients as functions of respiratory air flow rate have been discussed. 

Particular attention was paid to the influences of geometric variations in virtual airway models (i.e., rat, 

dog, monkey and two human models) upon the efficiency of the convective heat transfer. The effect of 

respiratory airflow rate on convective heat transfer inside airway models was investigated.  

The averaged convective heat transfer coefficient and the distributions of local convective heat 

transfer coefficient of virtual upper airway models will be crucial parameter for discussing the turbulent 

heat flux in respiratory tracts. Convective heat transfer coefficient will contribute to the understanding 

of turbulent flow characteristics in view point of heat transport between air and inner surface of 

respiratory tract. The basic mechanisms and mathematics of heat and mass transport are essentially the 
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same and the analogy between heat and mass transfer coefficient via Lewis number is generally 

recognized. This means that the detail discussion about convective heat transfer coefficients in airway 

models could be explicated the analyses for convective mass transfer coefficients and further the 

approximate discussion about the scalar flux, e.g. gas-phase contaminant on epithelium tissue surfaces.  

As already described before, the potential of in silico models to substitute for biological bodies 

for in vivo study/experimental studies, and tissue and cells for in vitro studies is increasing. Though 

animal and biological tests will always be needed in inhalation toxicology studies and the development 

of respiratory drug delivery systems, virtual airway models, i.e. in silico models, reproducing detailed 

geometries and physiologies of human and mammal surrogate animals, will be in great demand to 

substitute for using real animals.  

The present study identified fundamental qualities of convective heat transfer phenomena in 

airways for rats, dogs, monkeys, and humans and has enabled discussions about quantitative differences 

of heat and mass transfer efficiency between different animals/species. The computer simulation results 

outlined, and physical insight provided in this study can be applied to the discussions of factor of safety 

between animal testing, human response, and other inhalation toxicology problems.  

In order to estimate comprehensive risk of inhalation exposure in indoor environments, 

physiologically based pharmacokinetic (PBPK) models which harmonized CFD simulation in virtual 

airway models should be developed. For decades, pharmacokinetic models have been successfully 

applied to address issues of extrapolation between contaminants, dose, dose-rate/dose-response, or types 

of exposure to drugs or chemicals. The understanding of heat and mass transfer characteristics between 

air-phase of lumen and the surface of epithelium tissue will be the first step of the development of 

integrated numerical simulation scheme of CFD-Virtual airway models-PBPK model.  
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CHAPTER 5 

 

Chapter 5: Numerical risk assessment of inhalation and dermal exposure to E-cigarette 

 

5.1 Introduction 

Tobacco smoking is addictive and has potentially harmful effects on human health such as 

premature death and disability [1, 2]. The harmful effects are associated with the inhalation of more than 

60 hazardous chemical compounds, contained in mainstream and sidestream cigarette smoke [3-

6]. Recently, a complete smoke‐free law regulating indoor smoking has been adopted in 55 countries 

(20% global population coverage in 2016), to protect people from second‐hand tobacco smoke 

[7]. However, e‐cigarettes are at times perceived as a less harmful alternative to tobacco smoking. As 

such, the use of e‐cigarettes has been increasing worldwide [8]. Instead of burning tobacco leaves, e‐

cigarettes typically produce vapors by the evaporation of an e‐liquid, which mostly contains glycerol, 

propylene glycol, nicotine, and some flavorings. Although e‐cigarettes are usually considered safer due 

to the lack of a combustion process [9], this may be an illusion because recent studies have detected the 

presence of harmful chemical compounds such as formaldehyde, acetaldehyde, acrolein, benzene, and 

toluene in e‐cigarette vapors [10-15]. In terms of the health effects of e‐cigarettes, there have been 

reports on the immediate adverse physiological impacts on the respiratory tract after short‐term use of 

e‐cigarettes [16-21]. For example, Vardavas et al. [16] observed some pulmonary effects similar to those 

seen with tobacco smoking after 5 min of e-cigarette use. Flouris et al. [17] found that e-cigarettes caused 

smaller but significant changes in lung function compared to combusted tobacco, even though short-

term e-cigarette use produced a similar nicotinergic impact. 

In addition to potential adverse health effects of e-cigarette vapor from first-hand smoking, 

second-hand e-cigarette smoking caused by exhaled air from e-cigarette users have been recognized [22-

25]. Those exhaled vapors in indoor air are transported to the breathing zone and surrounding human 

body by airflow in the room mainly caused by air-conditioning and/or ventilation. The residents, as 

passive smokers, will be exposed to the harmful chemicals in exhaled vapors by respiration and dermal 

absorption. Hence, the ventilation system, location of e-cigarette users, and exhalation profile of e-

cigarette vapor strongly affect the residents’ health risk. Furthermore, dermal absorption of gas phase 

contaminants tends to be a somewhat overlooked exposure pathway. However, experimental data 

demonstrates that this pathway can make a significant contribution to the total intake of a gas phase 

contaminant [26-28]. In recent study, Bekö et al. [29, 30] indicated that nicotine related to a major 

environmental tobacco smoke can be dermally absorbed directly from indoor air at rates comparable to 

or higher than via inhalation. In addition to the exhalation of e-cigarette vapors from the respiratory tract 

to the indoor environment, adsorption and desorption phenomena of volatile organic compounds 
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(VOCs) caused from e-cigarette smoking might be important when estimating exact exposures in indoor 

environments. This has been termed ‘third-hand smoke’ [31]. 

To estimate and predict inhalation and dermal exposure risks in terms of first‐hand and second‐

hand e‐cigarette smoking, experimental studies (i.e., in vivo and in vitro studies), involving human 

volunteers and other surrogate animals, have been conducted. These experimental approaches are, 

however, limited by ethical issues and animal protection. From this perspective, a computer simulation 

model (i.e., in silico model) presents itself as an alternative and complementary approach that may 

strongly aid in understanding of the contaminant transport mechanisms in the respiratory system and the 

absorption of contaminants onto skin [32-34]. In the assessment of inhalation exposure risk, 

computational fluid dynamics (CFD) and physiologically based pharmacokinetic (PBPK) models have 

been applied to realistic respiratory tract models to predict inhalation dosimetry [35-45]. A majority of 

previous studies on the inhalation exposure to gas‐phase contaminants have used integrated simulation 

of a realistic airway model, and the PBPK model was focused only on an inhalation period under steady‐

state condition. As such, these studies could not quantify the amount of inhaled contaminants that are 

exhaled into indoor air spaces through transient and unsteady puffing conditions. 

To simulate non‐uniform airflow patterns and temperature distribution surrounding the human 

body and indoor environments, computational simulated persons (CSPs) coupled with CFD have been 

developed [46-51]. Gao and Niu [48] simulated the dispersion of exhaled contaminants as a result of 

sneezing in a room with displacement ventilation and evaluated the amount of exposed contaminant 

using two CSPs. However, without connecting the exposure analysis of a passive smoker as second‐

hand exposure, these previous studies could not reproduce realistic contaminant distributions in an 

indoor environment. Thus, these studies were unable to directly discuss the health risks to residents 

exposed to deteriorating indoor air quality (IAQ) from e‐cigarette usage. 

To assess the human dermal exposure of gas phase contaminants, mathematical models are 

generally helpful and more cost-effective compared to experimental measurements. Weschler and 

Nazaroff [52, 53] developed a steady-state model of transdermal uptake of semi-volatile organic 

compounds (SVOCs), predicting that dermal uptake would be important for many indoor relevant 

SVOCs. Gong et al. [54] developed a transient model of transdermal uptake, accounting for transfer 

from air to skin and assuming Fickian diffusion through skin layers. Their model has been modified by 

various studies to improve prediction accuracy [55-57]. Most previous studies on dermal exposure using 

numerical simulation assumed homogeneous boundary conditions and could not reproduce 

heterogeneous distribution of contaminants absorption flux on skin surfaces. In particular, previous 

research has targeted relatively long-term dermal exposure. Very few studies have treated the unsteady 

prediction of absorption flux distributions onto skin surfaces as short-term dermal exposure. 

Based on the literature, this study focuses on a qualitative and quantitative assessment of 

inhalation dosimetry in a human respiratory tract by first-hand e-cigarette smoking. It also assesses the 
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impact of second-hand exposure including inhalation and dermal absorption by the passive smoker due 

to the diffusion and dispersion of exhaled contaminants in an indoor environment. We developed a 

comprehensive numerical model and CSP to investigate the potential effects of e-cigarette smoking on 

local tissue dosimetry and IAQ. We also undertook demonstrative numerical analyses for first-hand and 

second-hand e-cigarette smoking in an indoor environment. 

 

5.2 Methods 

This study is divided into two parts, namely, (a) inhalation exposure analysis of first-hand e-

cigarette smoke using a numerical respiratory tract model and (b) exhalation and passive smoking 

analysis of e-cigarette vapor released into indoor environments (second-hand e-cigarette smoke) by a 

quasi-coupling simulation method of CFD, CSPs and a numerical respiratory tract model. 

 

5.2.1 Inhalation exposure analysis 

5.2.1.1 Numerical respiratory tract models 

Human respiratory tract models for CFD analysis have been developed and improved [58, 59]. 

Firstly, two types of numerical respiratory tract models (Models A and B) had been developed by using 

CT data obtained from two healthy human males. The development procedure is same to what was 

mentioned in section 4.2.1. These models include the oral cavity, pharynx, larynx, trachea, and bronchial 

tubes reproduced around the fourth bifurcation, and have 38 outlet openings. The external geometries 

of the two types of numerical respiratory tract models are shown in Figure 5.1, and detailed geometrical 

information for the two respiratory tract models is summarized in Table 5.1. Secondly, focusing on 

Model A, the respiratory tract model reproduced the complicated three-dimensional geometry and the 

respiratory tissue (mucus, epithelium, and subepithelium) by generating prism layers from the 

respiratory surface in order to apply the PBPK model. The combined thickness of the mucus and 

epithelium layers is 65 μm and that of subepithelium is 15 μm. Finally, the numerical respiratory model 

was excluded the nasal cavity region to reduce computational cost. We had confirmed that flow patterns 

in the respiratory tract did not depend on the existence of the nasal cavity region prior to inhalation 

exposure analysis using the respiratory tract excluding nasal cavity region [60]. This model included 

approximately 2 × 106 polyhedral elements and very fine prism layers (<0.1 mm prism mesh), in the 

near‐wall region to satisfy y+ < 1 in all respiratory surfaces under peak air velocity. Instead of generating 

the prism layers for the respiratory tissues, a mathematical model to reproduce the diffusive transport 

into the respiratory tissue was developed (in section 5.2.1.4). To simulate the inhalation of the e‐cigarette 

vapor in the respiratory tract model, a circular inlet opening with a diameter of 8.0 mm was set to 

simulate a stream of vapor coming from the mouth directly into the pharynx region. An elliptical outflow 

opening with an area of 1.2 cm2 [61] was established to reproduce the shape of mouth opening during 

the exhalation period (Figure 5.1). 
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Table 5.1. Detailed geometrical information for the two respiratory tract models 

 Model A Model B 

Height (m) 0.34568 0.27381 

Surface area (m2) 0.057967 0.044637 

Volume (m3) 0.00017336 0.00012862 

Loading factor (m-1) 

(=Areas of respiratory surface per unit volume) 

334.37 347.05 

 

 

 
Figure 5.1 Numerical respiratory tract model for inhalation exposure analysis during e‐cigarette 

smoking 

 

5.2.1.2 Transient puffing profiles 

Vansickel et al. [62] carried out a detailed measurement of the puff profile during usage of a 

prototype e‐cigarette in exclusive cigarette smokers and e‐cigarette users. They reported that e‐cigarette 

users generally inhaled longer puffs with a longer flow rate relative to conventional cigarette smokers. 
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This difference in puffing behavior may have a potential impact on human health in terms of inhalation 

exposure. To investigate the effect of puffing behavior in terms of total respiratory uptake, two types of 

puffing profiles based on the measurements from Vansickel et al. [62] were prepared in this study. The 

exhalation duration for the two profiles was set as 1.8 s because no difference was observed in exhalation 

duration between traditional cigarette smokers and e‐cigarette users [63]. The exhalation profile was 

described using a sinusoidal profile based on exhalation duration and inhaled volume. A measured 

human post‐puff profile was also used [64]. In this study, three types of transient puffing profiles, shown 

in Figure 5.2, were set in the mouth opening (see Figure 5.1) as the inflow/outflow boundary condition. 
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Figure 5.2. Three types of transient puffing profiles. (a) short puff, (b) long puff and (c) post puff 

 

5.2.1.3 Establishing momentum, energy, and contaminant transport in the respiratory tract 

Flow patterns, temperature, and contaminant concentration distributions under e‐cigarette 

puffing conditions were calculated using CFD analysis. The low Reynolds (Re) number type k‐ε model 

(Abe‐Kondoh‐Nagano model) [65, 66] was selected to simulate flow patterns in the respiratory tract 

model because it provides an accurate and numerically efficient solution for transitional and turbulent 

flows. Specifically, reasonable prediction accuracy of low Re number type k‐ε model for airflow 

distribution analysis in the respiratory tract was validated using particle image velocimetry (PIV) [58]. 

A no‐slip boundary condition was applied for the mucus wall surfaces inside the airway model. A 

second‐order upwind scheme was used for the convection term, and a semi‐implicit method for pressure 

linked equations (SIMPLE) algorithm was used. 

Overall, the breathing simulation using the pressure boundary condition corresponding to the 

expansion and contraction of the lungs in the mouth opening and bronchial outlet openings was 

consistent with actual breathing. However, pressure boundary conditions are limited in terms of 

numerical stability and evaluation of total pressure loss in the respiratory tract after prescribing the 

pressure in the mouth opening and bronchial outlets. To address this, velocity profiles (see Figure 5.2) 

were directly set in the mouth opening as inflow and outflow boundary conditions. The turbulent kinetic 

energy at the circular inlet was prescribed by assuming 10% turbulence intensity. 

To establish the boundary conditions for energy transport in the respiratory tract, the inhaled 

e‐cigarette vapor temperature was assumed as 45°C based on previous experimental results [13, 15]. 

The respiratory surfaces, covered by a mucus layer, were assumed to be at a constant temperature of 

36.4°C. 

The contaminants transport equation for turbulent flow can be expressed in terms of 

contaminant concentration as: 
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where aC   is the ensemble mean contaminant concentration in a grid point, Da is the diffusion 

coefficient of contaminant in air, and νt is the turbulent viscosity. vectors Ui and xi are the fluid velocity 

and position, respectively and σ is the turbulent Schmidt number. 

The total contaminant generation rate from one puff of e-cigarette smoke was determined by 

various fundamental experimental studies [13, 14]. The average contaminant concentrations in the 

inhaled air during the inhalation period were set at 0.70 μg/ml, 0.22 μg/ml, 0.02 μg/ml, 1.6×10-6 μg/ml, 

3.1×10-6 μg/ml, 33.2 μg/ml, and 0.27 μg/ml for formaldehyde, acetaldehyde, acrolein, benzene, toluene, 

glycerol, and nicotine, respectively. Total inhaled dose of each contaminant depends on the puff volume 

of three different puffing profiles. During the exhalation period, the air that returned from the lungs to 

the bronchial tubes was hypothetically assumed to contain zero contaminant concentration. Numerical 

and boundary conditions for inhalation exposure analysis are summarized in Table 5.2. 

 

Table 5.2. Numerical and boundary condition for inhalation exposure analysis (inside numerical 

respiratory tract model) 

Turbulence Model Low Re number type k-ε model (Abe–Kondoh–Nagano Model, 3D Cal.) 

Mesh 2.0 million mesh (unstructured + prism) 

Algorithm SIMPLE (Unsteady) 

Scheme Convection Term: Second upwind scheme 

Inflow boundary 

Qin = transient cigarette smoking profiles (see Fig. 2) 

kin = 3/2 (Uin  0.1)2,  in = Cµ 
3/4kin

3/2lin 

Tin = 45 oC (=318 K) 

Outflow boundary Boundary type: Gradient zero condition 

Wall treatment 

Velocity: no slip 

Temperature; Twall surface = 36.4 oC (= 309.4 K) 

Contaminant: equilibrium concentration updated by transient PBPK 

analysis (partitioning coefficient concept) 

 

5.2.1.4 Modeling of contaminant adsorption onto the respiratory tissue surface 

To reproduce gas-phase contaminant absorption onto the respiratory surface, diffusive 

transport, metabolic clearance, and blood perfusion in respiratory tissues, we assumed the respiratory 

tissue was comprised of three pseudo-homogenous layers. These were the mucus, epithelium, and sub-

epithelium with a thickness of Hm = 15 μm, Ht = 50 μm, and Hb = 15 μm, respectively. This assumption 

was based on the PBPK model proposed by Tian and Longest [36-38]. The transport processes inside 

the tissues were assumed to be one-dimensional (1D). 

The following governing equations describe the transient contaminant diffusive transport 

through the respiratory tissue: 
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where Cm, Ct, and Cb are the contaminant concentrations in the mucus, epithelium and sub-epithelium 

(μg/m3), respectively, Dm, Dt, and Db are the diffusion coefficients in the mucus, epithelium and sub-

epithelium (m2/s), respectively, Qb is the blood flow rate in the sub-epithelium (ml/s), Vb is the volume 

of sub-epithelium (ml), and y is the distance in the respiratory tissue from the interface between air and 

mucus (m). The initial concentrations of the target contaminants in the respiratory tissues are assumed 

to be zero. In addition, local equilibrium is assumed at the air-mucus interface, the mucus-epithelium 

interface and the epithelium- sub-epithelium interface. Additionally, the partition coefficient (i.e. Henry 

constant of linear type adsorption isotherm) is applied and the flux is conserved at each interface. 

Mathematically, the initial and boundary conditions are expressed as follows: 
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where Pma, Ptm and Pbt are the mucus-air partition coefficient, the tissue-mucus partition coefficient and 

the blood-tissue partition coefficient, respectively.  

Regarding aldehydes, to reproduce the metabolic clearance of contaminants in the epithelium 

layer, the non-specific first-order metabolic clearance kf, Ct and the Michaelis-Menten equation 
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max ( )C t m tV C K C  are added as sink terms in the epithelium layer. Here, kf is the non-specific first-

order metabolism rate constant, VmaxC is a coefficient that represents saturable metabolism per unit 

volume of tissue, and Km is the Michaelis constant. 

 

5.2.1.5 Estimation of physical properties of target chemicals for inhalation exposure analysis 

For the inhalation exposure analysis of e-cigarette smoking, we selected formaldehyde, 

acetaldehyde, acrolein, benzene, toluene, glycerol and nicotine as representative contaminants of the e-

cigarette vapors. Relevant parameters need to be determined or estimated for the coupled PBPK-CFD 

inhalation exposure analysis. 

The physical properties of the mucus including the diffusivity and partition coefficient can be 

assumed equal to those found in water because mucus is ~95% water [67]. The diffusivities of target 

chemicals in water are determined based on multiple sources or estimated by the Stokes-Einstein 

equation: 

6 s

KT
D

r
 ,         (3-13) 

where K is the Boltzmann constant, T is the temperature, η is the viscosity of water and rs is the solute 

radius (Å). We hypothetically set the viscosity of water as 7.0×10-4 [Pa s] and approximate the solute 

radius by the empirical equation using molecular weight (MW) of chemicals [68]:  

34 3 0.2894sr MW ,        (3-14) 

The diffusivities in the sub-epithelial tissue layer (blood phase) are also calculated by the 

Stokes–Einstein equation, by assuming the viscosity of blood as 4.0×10-3 [Pa s]. The diffusivities in the 

epithelial tissue layer are empirically calculated as one-third the value of that of mucus [69]. 

With respect to the partition coefficient in each interface of the respiratory tissue layers, we 

have estimated the values based on various sources and assumptions. The mucus-air partition 

coefficients (Pma) are adjusted from the values of 25 ℃ to 36.4 ℃ using the temperature dependence 

equation described in some papers [70]. The tissue-mucus partition coefficient (Ptm) can be calculated 

by the following equation [71]. 

1 ba
tm

bt ma

P
P

P P
 ,          (3-15) 

where Pbt is the blood-tissue partition coefficient which is assumed to equal one [72], and Pba is the 

blood-air partition coefficient which is predicted by the following equation given by Pulltin et al. [73]. 

( 0.3 ) ( 0.7 )ba ow ma maP P P a b P c b    ,      (3-16) 

where a = 0.0033 is the fraction of neutral lipids in blood, b = 0.0024 is the fraction of phospholipids in 

blood, c = 0.82 is the fraction of water in blood, and Pow is the octanol-water partition coefficient. 

For the metabolic clearance rate and the first-order reaction rate of chemicals in the epithelial 

tissue layer, we set the values only for formaldehyde, acetaldehyde and acrolein from various sources. 
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For the other target chemicals, we neglect the metabolic clearance and first-order reaction because no 

information about these chemicals is available in the open literature. 

All physical properties of target chemicals for inhalation exposure analysis are summarized in 

Table 5.2. 

  



139 

 

Table 5.2. Physical properties of target chemicals for inhalation exposure analysis (parameters of PBPK 

model for respiratory tissue dosimetry) 

 

a GSI chemical database https://www.gsi-net.com/en/publications/gsi-chemical-database.html.  
b Feng et al. [42] 
c Hayduk and Laudie [74] 
d Eatough et al. [75] 
e Estimated using the Stokes-Einstein equation. 
f Calculated as one-third the value of mucus. 
g Sander [70] 
h Conolly et al. [76] 
i Teeguarden et al. [77] 
j Schroeter et al. [78] 
k Bogdanffy et al. [79] 

 Formaldehyde Acetaldehyde Acrolein 

Diffusivity [cm2/s]    

Air (Da)  0.18 a 0.124 a 0.105 a 

Mucus (Dm)  2.00×10-5 a 1.23×10-5 a 1.12×10-5 a 

Tissue (Dt)  6.67×10-6 f 4.10×10-6 f 3.73×10-6 f 

Blood (Db)  3.03×10-6 e 2.67×10-6 e 2.46×10-6 e 

Partition coefficient (P)     

Mucus: Air (Pma) 3.65×104 g 165 g 101 g 

Tissue: Mucus (Ptm) 0.831 0.824 0.826 

Blood: Tissue (Pbt) 1.0 1.0 1.0 

Octanol: Water (Pow) 2.24 0.457 0.977 

Blood: Air (Pba) 3.03×104 136 83.1 

Metabolism    

Km [μg/m3] 2.01×105 h 1.1×109 k 5.0×102 j 

Vmax [μg/m3/s] 1.96×107 h 3.93×107 1.12×105 j 

Kf [1/s] 1.8×10-2 h 3.573×10-2 i 2.0×10-2 j 

 Benzene Toluene Glycerol Nicotine 

Diffusivity [cm2/s]     

Air (Da)  0.088 a 0.087 a 0.0877 b 0.065 d 

Mucus (Dm)  9.8×10-6 a 8.6×10-6 a 9.3×10-6 c 9.38×10-6 e 

Tissue (Dt)  3.23×10-6 f 2.87×10-6 f 3.1×10-6 f 3.13×10-6 f 

Blood (Db)  2.20×10-6 e 2.08×10-6 e 2.08×10-6 e 1.73×10-6 e 

Partition coefficient (P)      

Mucus: Air (Pma) 2.65 g 2.31 g 3.25×109 g 8.18×106 g 

Tissue: Mucus (Ptm) 1.36 2.98 0.826 0.881 

Blood: Tissue (Pbt) 1 1 1 1 

Octanol: Water (Pow) 135 537 0.977 14.8 

Blood: Air (Pba) 3.61 6.88 2.68×109 7.21×106 

https://www.gsi-net.com/en/publications/gsi-chemical-database.html
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5.2.2 Dispersion of exhaled vapor and passive smoking analysis 

5.2.2.1 Computer simulated person and room model analysis 

We developed a CSP that reproduces the detailed geometry of the shape of a human body 

surface for CFD analysis [32, 43, 44, 80, 81]. Transient analysis for exhaled vapor dispersion and passive 

smoking of the resident were conducted using two types of CSPs and a displacement ventilated room 

model (27 m3) with a small supply inlet and exhaust outlet openings of 0.09 m2. One of the CSPs is the 

e-cigarette user (i.e., an active smoker), and the other is a resident (i.e., a passive smoker). They stand 

face to face maintaining a distance of 1 m. The fresh outdoor air was assumed to be entering from the 

front wall at the floor level with an inlet velocity of 0.05 m/s. The supply air temperature was 22 ℃ and 

the turbulent intensity I, was assumed at 10 %. The ventilation rate was 0.0045 m3/s, providing the 

ventilated room with a general air change rate of 0.6 h-1. The exhaust outlet opening was located at the 

ceiling level. 

The e-cigarette user releases the e-cigarette vapor into the indoor environment via exhalation. 

The flow boundary condition of the mouth opening was quasi-coupled with time-dependent results 

(velocity, turbulence, temperature, and contaminant concentrations) of inhalation exposure analysis in 

the respiratory tract model. In this study, the post-puff condition focused on second-hand exposure 

analysis. This was because the exhaled contaminants in the post-puff can be easily transported to the 

passive smoker due to the higher flow rate compared with short and long-puff conditions. Therefore, the 

post-puff condition leads to a high exposure risk and the worst case scenario for the passive smoker.  

The passive smoker inhales the contaminants exhaled from the e-cigarette user via nasal breathing and 

also absorbs the contaminants through the dermal pathway. Fig. 5.3 illustrates the room model with a 

displacement ventilation system. 

Gupta et al. [61] proposed a nasal breathing cycle as a function of body height, body weight 

and body surface area. We applied the nasal breathing cycle model as the inflow boundary condition of 

the CSP for the passive smoker. The nasal breathing cycle model is shown in Fig. 5.4. In this study, the 

breathing cycle and transient inhaled/exhaled air-flow rate was determined based on the breathing model 

of standard adult males. 

To reproduce the thermo-physiological sensible heat generation from human bodies, a simple 

calculation routine for skin surface temperature was applied to a CSP and a coupled analysis of the skin 

surface temperature was enforced. The calculation procedure was expressed as a heat balance equation, 

Equation (5-17), in which the skin surface temperature was determined to be the convergence value for 

heat exchange between the indoor environment and the CSP. Equation (5-17) is the heat balance equation 

in thermal neutralization and Equation (5-18) was derived by transforming Equation (5-17). This method 

was equivalent to the control method used in the experimental thermal manikin for surface sensible heat 

generation [82, 83]: 

 309.4 0.054sk cl tT R Q           (5-17) 
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Here, Tsk is the skin surface temperature [K]; Qt is the amount of sensible heat flux from the 

skin surface [W/m2]; and Rcl is the thermal resistance of the clothes [(m2 K)/W] (reciprocal of the heat 

conductance value). To execute the benchmark test under simplified boundary conditions, the numerical 

analysis was carried out under nude conditions (Rcl = 0). 

To analyze the flow field in the boundary layer for this CFD simulation, the center of the 

computational cells closest to the wall surfaces (wall surfaces of the room model and skin surfaces of 

the CSP), should be a non-dimensional distance (wall unit) of y+<1, where 1* yuy  ; y1 is the distance 

normal to the wall surface, ν is the kinematic viscosity and w*u   is the friction velocity (ρ is the 

air density and τw is the wall shear stress). A grid independence check was executed carefully and 

elaborately and the minimum mesh size near the wall surface, skewness and size ratio of adjoining 

meshes were elaborately designed [84-88]. 

Numerical and boundary conditions for exhalation and passive smoking analysis are 

summarized in Table 5.3. 

 

 
Figure 5.3. Room model with displacement ventilation system 
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Table 5.3. Numerical and boundary conditions for exhalation and passive smoking analysis. 

Turbulence Model Low Re number type k-ε model (Abe–Kondoh–Nagano Model, 3D Cal.) 

Mesh 1.2 million mesh (unstructured + prism) 

Algorithm SIMPLE (Unsteady) 

Scheme Convection Term: Second upwind scheme 

Inflow boundary of the 

room model 

Uin = 0.05 m/s 

kin = 3/2 (Uin  0.1)2,  in = Cµ 
3/4kin

3/2lin 

Tin = 22 oC (=295 K) 

Cin = 0 

Outflow boundary of the 

room model 
Uout, kout,  out = Gradient zero 

Wall treatment of the 

room model 

Velocity: no slip  

Temperature; adiabatic 

Contaminant: gradient zero 

Inflow boundary of CSP 

Uin = Transient cigarette smoking profile in exhalation period (see Fig. 3.2) (for 

e-cigarette user) 

Uin = Transient inhalation/exhalation nasal breathing profile (see Fig. 3.4) (for 

passive smoker)  

Wall treatment of CSP 

Velocity: no slip  

Temperature: calculated by Fanger model (Tsk) 

Contaminant: dermal absorption model (see section 2.2.2) 

Others 

Radiation model: S2S model, ray tracing method 

Body height H = 1.736 [m], Body weight W = 65 [kg], Body surface area BSA 

= 1.745 [m2] 

 

 
Figure 5.4. Transient nasal breathing flow rate profile determined by the nasal breathing cycle model 

 

5.2.2.2 Dermal absorption model for short-term exposure 

To simulate short-term dermal exposure of gas-phase contaminants released from exhalation 





143 

 

by the e-cigarette user, a specific dermal absorption model based on the transdermal model described 

by Morrison et al.[55] was developed for our CSP. In this transdermal model, the skin consists of the 

three layers; skin surface lipid (SSL), stratum corneum (SC) and viable epidermis (VE). In terms of 

short-term exposure such as smoking, contaminant concentrations in the VE is negligible. Thus, only 

two layers, the SSL and SC layers, were reproduced in our dermal model. Although the SC is constructed 

of corneocyte and lipids which have different specific properties, we assumed the SC as a pseudo-

homogenous layer for simplicity. Based on these assumptions, the governing equations that describe 

transient mass diffusion through the skin are: 

2
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 for 0 SSLy H        (5-19) 
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SSL SSL SCH y H H       (5-20) 

where CSSL and CSC are the contaminant concentrations in the SSL and SC (μg/m3), respectively; DSSL 

and DSC are diffusion coefficients in the SSL and SC (m2/s), respectively; HSSL and HSC are the thickness 

of SSL and SC (m), respectively; and y is the distance in the respiratory tissue from the interface between 

air and SSL (m). The skin tissue initial concentrations were assumed as zero. The local equilibrium was 

assumed at the air-SSL and SSL-SC interfaces, using the partition coefficient. The flux was conserved 

at each interface. The initial and boundary conditions are expressed as follows: 

( ,0) ( ,0) 0SSL SCC y C y          (5-21) 
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 ,        (5-26) 

where PSSL:a and PSC:SSL are the lipid-air partition and SC-lipid partition coefficients, respectively.  

 

5.2.2.3 Estimation of physical properties of target chemicals for dermal exposure analysis 

To calculate dermal absorption of the gas-phase contaminants using the dermal absorption 

model, the relevant physical properties of target chemicals were determined. In this study, we estimated 

the diffusion coefficient in the SSL and SC (Dlipid, DSC) and the partition coefficient in air-SSL interface 

and SSL-SC interface (PSSL:a, PSC:SSL) based on several assumptions. 

In the SSL, the diffusion coefficient was related to the solute radius as described in the 
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literature [89, 90]: 
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      (5-27) 

The effective diffusion coefficient in the SC was determined assuming that the corneocytes 

were impermeable and using the theoretical equation described by Kushner et al.[91]: 

lipid
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          (5-28) 

where τflux and τvolume are tortuosity factors to account for parallel and branched transport or active in 

lipid region. τflux and τvolume were calculated from the geometric parameters of SC: 
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where N=12 is the number of corneocyte layers; h=0.88 (μm) is the thickness of the corneocyte; g=0.075 

(μm) is the width of the lipid channel; ω=8 is the offset ratio; and d=40 (μm) is corneocyte width. 

It is typically difficult to directly measure the PSSL:a, as such, the PSSL:a was obtained by 

multiplying the water-air partition coefficient (Pw:a) and the lipid-water partition coefficient (Plipid:w): 

: : :SSL a lipid w w aP P P          (5-31) 

The PSC:SSL was obtained by dividing the SC-water partition coefficient (PSC:w) in the Plipid:w: 

:
:

:
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SC SSL
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         (5-32) 

The coefficients Plipid:w and PSC:w, were estimated assuming that the SC was partially hydrated 

(0.43 g water/1 g dry SC). Using the empirically derived equation described by Nitsche et al.[92], we 

get: 

0.81
: 0.43lipid w owP P         (5-33) 

0.81 0.27
: 0.040 4.06 0.359SC w ow owP P P         (5-34) 

All physical properties of the target chemicals for dermal exposure analysis are summarized 

in Table 5.4. 
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Table 5.4. Physical properties of target chemicals for dermal exposure analysis. 

 

 

5.3 Results and discussion 

5.3.1 Primary inhalation exposure of e-cigarette users 

Fig. 5.5 shows a time series of velocity magnitude distributions in the respiratory tract under 

the short-puff condition. An instantaneous jet-stream was generated from the circular inlet opening to 

the respiratory airway and impacts onto the tongue region. A recirculating flow was formed near the 

upper palate because of the turbulent shear layer induced by the velocity difference inside and outside 

the jet-stream. The jet-stream and recirculating flow characteristics were similar to flow patterns 

reported by Feng and Kleinstreuer [93] within the upper airway of a human body. Accelerated flow was 

confirmed in the oropharyngeal and laryngeal regions because of the reduction in cross-sectional area. 

An accelerated flow from the oropharyngeal region toward the upper palate and elliptical mouth opening 

was formed during the exhalation periods. The flow patterns during these periods are clearly different 

from those during the inhalation period. The prediction quality of flow patterns was carefully controlled. 

For example, the grid independence check was carefully conducted and a significant number of elements 

were generated. For the CFD study, the time step required to analyze transient flow was also carefully 

determined to meet the Courant–Friedrichs–Lewy (CFL) condition [94]. The CFD result was found to 

be reasonably consistent with those previously reported and good agreement is observed [58]. 

 

 Formaldehyde Acetaldehyde Acrolein 

Diffusivity [cm2/s]    

Lipid (Dlipid)  4.02×10-6 2.52×10-6 1.75×10-6 

SC (DSC)  1.39×10-8 8.69×10-9 6.05×10-9 

Partition coefficient (P)     

SSL: Air (PSSL:a) 3.02×104 40.0 44.7 

SC:SSL (PSC:SSL) 6.64 16.1 10.5 

 Benzene Toluene Glycerol Nicotine 

Diffusivity [cm2/s]     

Lipid (Dlipid)  9.61×10-7 6.75×10-7  6.75×10-7  1.43×10-7 

SC (DSC)  3.32×10-9 2.33×10-9 2.33×10-9 4.93×10-10 

Partition coefficient (P)      

SSL: Air (PSSL:a) 68.2 233 1.53×109 1.15×107 

SC:SSL (PSC:SSL) 0.777 0.415 10.5 2.39 
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Figure 5.5. Time series of velocity magnitude distributions in the respiratory tract model under the short‐

puff profile 

 

Fig. 5.6 shows a time series of contaminant concentration distributions in the respiratory tract 

under the short-puff profile. Formaldehyde and benzene were selected as the high and low absorptive 

contaminants. Fig. 5.7 illustrates a time series of contaminant (formaldehyde and benzene) absorption 

flux distributions in the respiratory mucus layer under the short-puff profile. The mass rate of 

formaldehyde transported to the lungs and exhaled to the indoor environment is significantly low 

compared to other contaminants as most of the inhaled formaldehyde was absorbed onto the mucus 

surface of tongue region and upper palate.   
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Figure 5.6. Time series of contaminant concentration distributions in the respiratory tract model under 

the short‐puff profile: (a) formaldehyde and (b) benzene 

 

 

 
Figure 5.7. Time series of contaminants absorption flux distributions onto the respiratory surface under 

the short‐puff profile: (a) formaldehyde and (b) benzene 

 

Fig. 5.8 summarizes the contribution and distribution of contaminants generated from e-

cigarette smoking under three different puffing profiles separating into (a) absorption rate, (b) exhalation 

rate and (c) rate of the remaining respiratory tract or transport lungs. The higher absorption rate of 

formaldehyde (88~95 %), glycerol (76~90 %), and nicotine (70~86 %) may be attributed to their higher 

solubility in the mucus layer compared with acetaldehyde (32~81 %), acrolein (23~72 %), benzene 

(0.2~2.2 %), and toluene (0.3~3.1 %). These relationships significantly affect the exhalation rate and 

the rate of the remaining respiratory tract of transport lungs. The absorption rate of the long-puff leads 

to elevated contaminant uptakes compared to the short-puff. Therefore, if the total puff volume is almost 
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the same, the long-puff with a lower puff intensity induces higher total absorption than the short-puff 

with a higher puff intensity. The post-puff with a high flow rate leads to lower absorption rates with 

larger contaminant quantities transported to the lungs compared to the two other puffing profiles. This 

means that this puffing profile has the lowest exhalation rate of all contaminants among the three post-

puffing behaviors. 

Zhang et al. [39] conducted CFD simulations focusing on the deposition fraction of 

acetaldehyde and acrolein on the respiratory surface under three puffing profiles; (i) potential reduced 

exposure product (PREP) puff, (ii) conventional cigarette (CC) puff and (iii) post-puff. They used the 

quasi-steady mucus absorption boundary condition proposed by Keyhani et al. [35] to estimate the 

absorption flux on the respiratory surface. They focused only on the deposition fraction during the 

inhalation period. The deposition fraction was 83, 74 and 64 % for acetaldehyde, and 79, 68 and 53 % 

for acrolein under PREP puff, CC puff and post-puff, respectively. Their acetaldehyde and acrolein 

deposition fractions under PREP puff and post-puff were higher than the short and post-puffs in the 

present study, despite neglecting the exhalation period. Conversely, Tian and Longest [37] analyzed the 

deposition fraction of acetaldehyde and benzene under ordinary breathing (inhalation and exhalation) 

conditions, similar to the post-puff profile in the present study. They developed an air-mucus-tissue-

blood (AMTB) boundary condition to predict different absorption concentrations in each layer for 

realistic transient flux conditions. The deposition fraction was 21.49 % for acetaldehyde and 0.82 % for 

benzene. Our results were in good agreement with these results. 
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Figure 5.8. Distributions/contributions of contaminants generated from e‐cigarette smoking under three 

different puffing profiles: (a) absorption rate onto respiratory surface, (b) exhalation rate in indoor 

environment, and (c) rate of remaining respiratory tract or transport lungs 

 

Fig. 5.9 shows a time series of contaminant concentration distributions plotted against the 

penetration depth in the respiratory tissue. The concentrations of formaldehyde, benzene, and nicotine 

were depicted at the hotspot where high absorption flux was confirmed in the oral cavity. The 

concentration profiles in the respiratory tissues gradually changed due to diffusive transport and time-

dependent change of absorbed contaminants in the interface between the air-side and mucus. These 

profiles were strongly affected by the diffusion and partition coefficients along with the metabolic 

clearance rate of each chemical compound. Formaldehyde transported into the epithelium layer reacted 
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and decomposed due to metabolism. However, without considering the metabolic clearance of benzene 

and nicotine, these were not decomposed and transported into the sub-epithelium layer. This highlights 

that the metabolic clearance rate is an important factor for assessing chemical dosimetry. The 

concentration gap at the interface between the mucus and epithelial layers for benzene and nicotine were 

due to the effect of the mucus-epithelium partition coefficient. For example, formaldehyde is less soluble 

in tissue than in mucus at the mucus-tissue interface (Ptm = 0.831) whilst benzene is more soluble (Ptm 

= 1.36). As such, concentrations of formaldehyde are lower in the epithelium compared with the mucus, 

and those of benzene are higher. 
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Figure 5.9. Time series of contaminant concentration profiles inside the respiratory tissue at the hotspot 

in the oral cavity: (a) formaldehyde, (b) benzene, and (c) nicotine 
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5.3.2 Validation of inhalation exposure analysis 

Our simulations of inhalation exposure analyses are typical of in silico models which generally 

should be validated through comparisons with experimental results including in vivo and in vitro studies. 

However, for in silico models targeting human health, experiments using human subjects are limited 

because of ethical considerations. This means the prediction accuracy of our simulations in terms of 

contaminant concentration distribution and absorption flux distribution cannot be directly validated. 

Instead, prediction accuracy was validated via respiratory retention by comparison with other 

experimental research. A respiratory retention rate (%) was calculated for each contaminant using 

Equation (34): 

the amount of exhaled comtaminant
Retention (%) 1 100

the amount of inhaled contaminant

 
   
 

    (5-34) 

St. Helen et al. [95] performed subjective tests by recruiting 13 healthy adult e-cigarette users 

to measure the respiratory retention of nicotine, propylene glycol (PG) and vegetable glycerin (VG) in 

e-cigarette users. Their research results indicated that 93.8, 84.4, 91.7 % of inhaled nicotine, PG and 

VG, respectively, was systemically retained. Sleiman et al. [96] reported on the respiratory retention of 

nine inhaled chemicals (formaldehyde, acetaldehyde, acrolein, diacetyl, acetol, glycidol, nicotine, 

nicotyrine, and benzene) in four volunteer e-cigarette users. The average respiratory retention of 

formaldehyde, acetaldehyde, acrolein, nicotine, and benzene was 94, 70, 93, 99, and 57 %, respectively. 

Samburova et al. [97] estimated the respiratory retention of formaldehyde and acetaldehyde by 

measuring concentrations in e-cigarette vapors produced directly by using e-cigarettes and in the exhaled 

breath of 12 volunteers. Their results showed that the mean retention of formaldehyde was 99.6 ± 0.9 % 

for all subjects while that of acetaldehyde was 91.6 ± 9.9 %. Moldoveanu and St. Charles [98] 

investigated the respiratory retention of 160 chemical compounds in the smoke of traditional cigarettes 

using eight subjects. Their results showed that the average retention rate was 77.2 % for benzene, 52.2 % 

for glycerol and 85.1 % for nicotine. A comparison of respiratory retention between our simulation and 

these experimental results are summarized in Fig. 5.10. The experimental results of this study show 

large variability in respiratory retention due to individual differences attributed to puffing behaviors, 

geometrical differences in the respiratory tract and the variety of cigarettes. However, the trends of 

respiratory retention for each contaminant in our simulations agree well with that in the literature. 
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Figure 5.10. Comparison of respiratory retention between the present simulation results and published 

experimental results 

 

5.3.3 Inhalation and dermal exposure of the passive smoker 

Fig. 5.11 presents the velocity magnitude and temperature distributions in the periphery of the 

e-cigarette user and passive smoker under steady-state conditions (with metabolic heat generation and 

without respiration). A clear thermal plume and thermal stratification caused by heat generation from 

the bodies was confirmed. These flow patterns and temperature distributions were used to setup the 

initial conditions needed for the analysis of contaminant distributions exhaled from e-cigarette users and 

contaminant exposure to the passive smoker. 

 

(a)  (b)  

Figure 5.11. The velocity magnitude and temperature distributions in the periphery of the e-cigarette 

user and passive smoker under steady-state conditions 
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Fig. 5.12 illustrates a time series of formaldehyde distribution exhaled from the e-cigarette 

user under a post-puff profile and exposure to the passive smoker. Fig. 5.13 shows a time series of 

dermal absorption flux distribution of the passive smoker. This transient simulation was initialized using 

the steady-state analysis results in Fig. 5.11, as the initial conditions.  

The contaminants that remained in the respiratory tract of the e-cigarette user were exhaled 

indoors and transported to the front of the passive smoker’s face in approximately 2.0 s. The high flow 

rate of the post-puff profile led to a long transport distance via exhalation. In this ventilation and room 

volume conditions, we can assume the exhaled contaminants to be similar to pulse generation 

phenomenon when compared to a nominal time scale. As such, the exhaled contaminant concentrations 

were diluted instantaneously in the indoor environment. This dilution meant that the contaminant 

concentrations in the inhalation area of the passive smoker were approximately 10 % that of the initial 

exhaled contaminant concentrations. The dermal absorption was concentrated on the surface of the face 

of the passive smoker because contaminants were transported straight to the front of the face. The dermal 

absorption flux reduced as contaminant concentration diluted with time. 

 

 
Figure 5.12. Distributions of formaldehyde exhaled from the e‐cigarette user under a post‐puff profile 

and exposure to the passive smoker 

 

 
Figure 5.13. Time series of dermal absorption flux distribution of formaldehyde onto face surface of 

passive smoker 
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Fig. 5.14 presents a time series of inhaled and dermal absorbed formaldehyde mass flow rate. 

The passive smoker was exposed to contaminants released indoors by exhalation from the e-cigarette 

user. These contaminants were inhaled by the passive smoker via transient nasal breathing. The total 

inhaled mass of contaminants was dependent on the nasal breathing cycle, the start time of 

inhalation/exhalation of the e-cigarette user and passive smoker and the ventilation system and 

ventilation rate. We estimated that approximately 5.7 % of the formaldehyde exhaled by the e-cigarette 

user was inhaled by the passive smoker in three inhalations. On the other hand, 6.4 % of exhaled 

formaldehyde was taken up by the passive smoker via dermal uptake. The exposure rates of the other 

contaminants are summarized in Fig. 5.15. The inhalation uptake of each contaminant had low 

dependence on the chemical species and was approximately 6 % of the exhaled contaminant from the 

e-cigarette user. This inhalation uptake means the absorption of the contaminant to the body is via nasal 

breathing. Instead of applying the PBPK model to the inhalation exposure of the passive smoker, we 

assumed that the whole contaminant inhaled by nasal breathing was absorbed into the respiratory tract 

and the exhaled contaminant concentration of the passive smoker was zero. This may somewhat reflect 

reality because the geometry of the nasal cavity is narrow and complicated and absorption during nasal 

breathing was much higher than oral breathing. This means this case may be representative of the worst-

case scenario. However, the contribution of the dermal uptake is strongly dependent on the chemical 

compound in question. Approximately 0.4 % of the formaldehyde inhaled by the e-cigarette user was 

retained by the passive smoker through inhalation exposure (first-hand exposure). Weschler and 

Nazaroff [53] estimated that formaldehyde dermal uptake was small compared to inhalation. In contrast, 

our simulation results showed that formaldehyde dermal uptake was higher than inhalation because we 

used a high SSL-air partition coefficient of formaldehyde (PSSL:a=3.02×104), compared to Weschler and 

Nazaroff [53] (PSC:a<100). 
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Figure 5.14. Time series of mass flow rate of inhaled formaldehyde and dermal absorption of 

formaldehyde for the passive smoker 

 
Figure 5.15. Impact of a single puff from an e‐cigarette smoker on the exposure rate of passive smoking 

 

5.4 Limitations of this study 

There have been reports of inhalation exposure/toxicology analysis of inhaled gas-phase 

contaminants using integrated simulations of a realistic numerical airway model and the PBPK model. 

The prediction accuracies and consistencies of these studies with in vivo and in vitro results were 

discussed in Section 5.3.2. CFD analyses for airflow and contaminant concentration distributions in 

indoor environments have also been conducted in recent decades. Benchmark test results confirming the 

prediction accuracy of indoor CFD analyses have been adopted for validation and verification. In this 

study, we proposed an integrated and consecutive numerical analysis to investigate inhalation and 

dermal exposure of first-hand and second-hand smoking from indoor e-cigarette usage. The proposed 

method was verified theoretically or experimentally through individual elements of numerical 

models/analyses. However, discussion on the overall prediction accuracy is difficult and this may be an 

issue in the future.  

In this study, we focused on gas-phase chemical compounds as contaminants generated by e-

cigarette smoking and disregarded aerosols. Although temperature conditions were carefully considered, 

water vapor concentration was not considered in this analysis. The effects of gas-phase chemicals on 

inhalation exposure risk when coexisting with aerosol particles were not been fully elucidated and 

further research to investigate this may be required.  

Fig. 5.10 demonstrates that the agreement of respiratory retention between experimental and 

simulated results is reasonable for each chemical compound. However, there are limitations with the 

accuracy of estimated parameters. Although the physical properties of the mucus including the 
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diffusivity and partition coefficient was assumed to be equal to that of water, the properties of mucus 

are not always the equivalent of to those of water. In particular, the mucus-air partition coefficient (Pma) 

may be relatively high compared to the water-air partition coefficient (Pwa) [99]. Moreover, the diffusion 

coefficient in mucus may be less than that for water [100]. As such, absorption onto the mucus layer 

may be an under or overestimate. Uncertainty in the accuracy of the PBPK model is a major limitation 

of this study.  

Whilst the exposure rate of the passive smoker was made explicit in this study, this rate is 

strongly dependent on the boundary conditions; in particular, the location of the e-cigarette user relative 

to the passive smoker. As such, the current simulation adopts a worst case scenario which demonstrates 

the deterioration of IAQ by e-cigarette smoking and determines the second-hand exposure. In terms of 

dermal exposure, we focused on short term exposure to e-cigarette smoke. In contrast, all experimental 

studies on dermal exposure have focused on the long term exposure, indicating that it was difficult to 

directly validate our simulations of dermal exposure by comparing them with those in previous 

experimental studies. 

 

5.5 Conclusions 

The exhaled air of an e-cigarette user may be a new source of contaminant emissions in an 

indoor environment exposing non-smokers via the respiratory and dermal pathways. The various gas-

phase volatile and semi-volatile organic compounds from e-cigarette devices are first transported to the 

human respiratory system as mainstream smoke. To quantify the deterioration of IAQ due to e-cigarette 

smoking, it is essential to establish an accurate numerical prediction that can concurrently reproduce a 

series of transient puffing profiles, that is, the inhalation and exhalation processes in the respiratory tract 

within an indoor environment.  

In this study, we developed comprehensive numerical analyses using CSPs with respiratory 

tract and indoor CFD techniques to investigate the contribution ratio of exposures to emitted chemical 

compounds from e-cigarette smoking for smokers and non-smokers. The numerical analyses were 

undertaken using a simple room model occupied by two residents; a smoker and non-smoker. The results 

showed that the amount of chemical compounds absorbed in the respiratory tract and the concentration 

of chemical compounds contained in the exhaled air are strongly dependent on the type of chemical. 

The retention rate of inhaled chemical compounds in the respiratory tract agreed well with previous 

experimental results. Our results also confirmed that chemicals exhaled into the indoor environment by 

the e-cigarette user become emerging indoor air pollutants and are taken up by the non-smoker through 

inhalation and dermal exposure by way of advection and diffusion that occur indoors. Formaldehyde 

taken up by the non-smoker through inhalation and dermal exposure under a worst case scenario was 

estimated to be 5.7 and 6.4 %, respectively. 
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CHAPTER 6 

 

Chapter 6: Experimental investigation of effect of environmental factors on CO2 emission from 

humans and physiological response 

 

6.1 Introduction 

Indoor carbon dioxide (CO2) concentration is used as a surrogate of indoor air quality (IAQ) 

and thus as an indicator of ventilation efficiency in buildings. In the absence of any other indicators of 

IAQ, numerous studies have correlated measured CO2 levels in buildings with occupant complaints, 

subjective ratings, health, performance of office work, learning and absence rates [1,2]. Measured 

concentrations of CO2 have also been used to estimate the outdoor air supply rates in buildings and the 

estimated ventilation rate often correlated with the outcomes mentioned above [3]. To estimate outdoor 

air supply rates the CO2 emission rate from building occupants is normally assumed to take the values 

listed by standards and handbooks [4] for different activity (metabolic) levels. It is further assumed that 

no other factors have a significant impact on the occupant emission rates of CO2. 

Recently, Tsushima et al. [5] studied how human bioeffluents influence perceived levels of 

IAQ. They determined the impact of bioeffluents emitted through skin (dermally), exhaled (during 

respiration) and by the whole-body i.e. both dermally emitted and exhaled. Subjects assessed the quality 

of air extracted from chambers where other subjects sat and performed light office work at two 

temperatures, 23°C and 28°C; these subjects wore similar clothing at both temperatures. The subjects 

who assessed the air quality did not know the source of the odour but rated it higher when the 

temperature in the upstream chamber was higher after controlling for an effect of temperature on 

perception by providing clean air at the same temperature for sensory comparison [6]. The authors 

suggested that the higher odour intensity could be caused by an increased rate of emission of bioeffluents 

at increased temperature. They concluded that when experiencing thermal discomfort due to warmth 

people emit more bioeffluents, including CO2, even though their activity level remains the same. 

However, activity was not measured by Tsushima et al. and they did not observe any changes in CO2 

level in the chamber. It would be logical to assume that activity level would be consciously or 

unconsciously reduced to avoid thermal discomfort, and that this would reduce the emission rate of CO2, 

but the opposite was found. Another possible explanation was that heat was removed mainly by an 

increase in sweat rate and not by an increase in respiration but it requires further explanation. If occupant 

emission rates of bioeffluents and CO2 increase at temperatures that cause thermal discomfort, the 

ventilation rates prescribed by ventilation standards should be adjusted accordingly, but they are not 

except in the Australian standard which recommends higher ventilation rates when the air temperature 

is 27°C and above, presumably to deal with an increased level of bioeffluents [7].To this end another 
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important question is whether remaining thermally neutral at elevated temperatures by e.g. adjusting 

clothing or increasing the air velocity will have no effect on CO2 emission rate i.e. whether other 

physiological processes are activated at elevated temperatures that would result in energy use and thus 

increase on CO2 emission rates. Further studies are needed to determine whether this is true. 

In a reanalysis of the results of studies examining the effects of air quality on the performance 

of office work, Bako-Biro et al. [8] showed that occupant CO2 emission rates were affected by air quality. 

They showed that it was significantly reduced, by about 13%, when the percentage dissatisfied with the 

air quality increased from 8% to 40%. It was suggested by the authors that a change in breathing pattern 

(shallow breathing) or a reduction in workrate in polluted air may have given rise to the observed result, 

they had no measures of either of these factors and cited Danuser [9] on breathing patterns. This author 

had reviewed several studies and showed that changes in breathing patterns (tidal volume) can be 

induced by exposure to chemicals at environmentally relevant levels. One finding was that these changes 

can be elicited even in anosmic people, i.e. in those who are deprived of any olfactory sense. Changes 

in breathing patterns in response to chemicals present in the inhaled air were also observed in mouse 

bioassay reported by Larsen et al. [10]. 

Recently, Zhang et al. [11] studied the physiological responses of subjects exposed for 255 

minutes to an elevated concentration of CO2 with or without other bioeffluents. They observed that when 

CO2 concentration increased from 500 ppm to 3,000 ppm (either by dosing CO2 from a cylinder, i.e. 

keeping levels of other bioeffluents unchanged and varying the level of CO2, or by reducing ventilation 

rate so as to increase the levels of metabolically generated CO2 and other bioeffluents), the end-tidal 

CO2 concentration (ETCO2) increased. ETCO2 is the concentration of CO2 in exhaled air at the end of 

an exhalation and reflects the blood gas concentration of CO2 in the alveoli of the lungs. This suggests 

that the exposures they studied could influence gas exchange in the lungs, as postulated by Bako-Biro 

et al. [8] and Danuser [9]. During gas exchange, CO2 that has been metabolically generated in cells 

enters the bloodstream and is transported through the venous blood into the lungs where it diffuses into 

the air in the alveoli of the lungs due to the CO2 concentration difference between the blood and the air 

in the alveoli. It is then released into the extracorporeal environment by exhalation [12]. When the 

inhaled CO2 concentration is elevated above normal ambient levels (currently >400 ppm), the CO2 

concentration in the alveoli is also higher and the transportation of CO2 from the blood to the air in the 

alveoli may be decreased. This would cause the CO2 concentration in blood to be elevated, and acute 

health symptoms could then occur. Consequently, these processes can affect the occupant emission rate 

of CO2 and cause health problems [13]. The effect observed by Zhang et al. [11] was postulated to be 

caused by a reduced minute ventilation, although this was not measured. The authors measured heart 

rate and observed that it was lower at the higher CO2 concentration. As the heart rate and minute 

ventilation are strongly correlated [14] they inferred that this was what had increased ETCO2. Changes 

in respiration rate and tidal volume could have affected ETCO2 but the former did not change and the 
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latter was not measured. The studies mentioned above suggest that increased air pollution caused by 

increasing the levels of CO2, bioeffluents or other pollutants to the levels that are typically observed 

indoors may reduce the rate of elimination of CO2 from the lungs. If so, it may be expected that it will 

also affect the CO2 produced and exhaled by humans.  

The present study was consequently undertaken to examine the effects on occupant emission 

of CO2 of an increased background CO2 concentration level with and without other bioeffluents, and of 

elevated temperature causing thermal discomfort. An additional aim was to develop physiological 

explanations for these effects should CO2 emission rates prove to be affected.  

 

6.2 Fundamental knowledge of CO2 and ventilation 

6.2.1 Estimation of ventilation rates 

Methods using CO2 as a tracer gas are based on a fully mixed mass balance model: 

( )
( ) ( ) ( )in

out in

dC t
V QC t QC t G t

dt
   ,      

 (6-1) 

where V is space volume (m3), Cin(t) is indoor CO2 concentration at time t (ppm), Q is volumetric airflow 

rate into (and out of) the space (m3/h), Cout(t) is supply outdoor CO2 concentration at time t (ppm), G(t) 

is CO2 generation rate in the space at time t (mL/h).  

Assuming Q, Cout(t) and G(t) are constant, Eq. (6-1) can be solved as follows: 
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where Cin(0) is indoor CO2 concentration at time 0, and Q/V means space air change rate (h-1). 

When CO2 generation rate G is zero, Eq. (6-2) can be expressed as: 
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   .       (6-3) 

If CO2 generation rate is constant for a sufficient time, the last term on the right side of Eq. (6-

2) converges to zero, and the CO2 concentration at steady-state Cin(∞) can be expressed as: 

( )in out

G
C C

Q
   .        (6-4) 

After a space becomes occupied by CO2, the indoor CO2 concentration begins to build up. This 

building up of CO2 level continues until a steady-state is reached. The raising concentration in a well-

mixed space can be expressed as eq. (6-2). The space air change rate can be solved using eqs. (6-2) and 

(6-3): 
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        (6-5) 

The above equation requires knowledge of the steady state concentration Cin(∞), which can be 
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either observed by following the build-up as long as to reaching the equilibrium, or by solving the 

equilibrium level form the buildup curve [15]: 

2

( )
2

b a c
in

b a c

C C C
C

C C C


 

 
        (6-6) 

where Ca, Cb and Cc are concentrations (ppm) at equally spaced times a, b and c during the build-up 

(i.e., for which it holds that a < b < c and b – a = c – b). 

 

6.2.2 Estimation of CO2 emission rate 

Human CO2 emission rate is a function of metabolic rate, which in turn is a function of physical 

activity level and body size [16]. The empirical equation for metabolic rate was derived from indirect 

calorimetry [17]: 

2 2O CO(3.941 1.11 ) 1.44EE V V   ,       (6-7) 

where EE is Energy expenditure (kcal/day), VO2 is oxygen consumption rate (mL/min), and VCO2 is 

carbon dioxide production rate (mL/min). 

When VCO2 is known, the Weir equation can be used to calculate VO2, assuming the respiratory 

quotient (RQ), which is the ratio between VCO2 and VO2. Thus, the EE can be calculated without the VO2 

value. Converting EE (kcal/day) to metabolic rate M (W/m2) using body surface area Ad, the empirical 

equation of metabolic rate was expressed as [18]: 

2O0.35(0.23 0.77)
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 ,       (6-8) 

The CO2 emission rate VCO2 is the product of the O2 consumption and RQ. Therefore, the 

equation to estimate CO2 emission rate is: 

2CO
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.       (6-9) 

Typical metabolic rate M for various activities given by the ASHRAE Handbooks are listed in 

the Table 6.1 [19]. 

 

Table 6.1. Values of physical activity levels (M) from the ASHRAE Handbooks [19] 

Activity M (W/m2) Met* 

Sleeping 40 0.69 

Reclining 45 0.77 

Seated, quiet 60 1.03 

Standing, relaxed 70 1.20 

Walking about 100 1.72 

Lifting/ packing 120 2.06 

*Calculated as 1 Met = 58.2 W/m2 
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Coley and Beisteiner [20] used empirical equations of carbon dioxide production rate derived 

by Ruch & Patton [21], which were adjusted for sex and age to predict the ventilation rate of classrooms. 

The empirical equations are expressed as: 

Male teacher:  
2COV k ,       (6-10) 

Female teacher: 
2

0.9COV k ,       (6-11) 
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and VCO2 is carbon dioxide generation rate (L/h), a is age of student, M is metabolic rate (W/m2) of the 

standard adult, Ad is body surface area (m2), Tin is indoor air temperature (℃). 

On the other estimation, Persily and de Jonge [22] introduce the following equation to estimate 

the human CO2 emission rate, G (L/s): 

0.000569G RQ BMR M           (6-16) 

where BMR is basal metabolic rate (MJ/day) that is energy requirement for the diary life (maintenance 

of body temperature, brain function, and cardiac and respiratory function) and depend of age and mass 

of the person [23] (see Table 6.2), and M is metabolic rate (met), that depends of physical activity [24] 

(Table 6.3). 

This equation is derived based on that 1 kcal (0.0042 MJ) of energy expenditure is equal to 

0.206 L of oxygen consumption [25]. 

 

Table 6.2. Schofield BMR values. (m is body mass in units of kg) 

Age (yr) 

BMR: MJ/day 

Males Females 

<3 0.249 0.127m  0.244 0.130m  

3 to 10 0.095 2.110m  0.085 2.033m  

10 to 18 0.074 2.754m  0.056 2.898m  

18 to 30 0.063 2.896m  0.062 2.036m  

30 to 60 0.048m + 3.653 0.048 3.653m  

>= 60 0.049 2.459m  0.038 2.755m  
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Table 6.3. Values of physical activity levels (M) from compendium 

Activity M (met) Range 

Calisthenics—light effort 2.8  

Calisthenics—moderate effort 3.8  

Calisthenics—vigorous effort 8.0  

Child care  2.0 to 3.0 

Cleaning, sweeping—moderate effort 3.8  

Custodial work—light 2.3  

Dancing—aerobic, general 7.3  

Dancing—general 7.8  

Health club exercise classes—general 5.0  

Kitchen activity—moderate effort 3.3  

Lying or sitting quietly  1.0 to 1.3 

Sitting reading, writing, typing 1.3  

Sitting at sporting event as spectator 1.5  

Sitting tasks, light effort (e.g, office work) 1.5  

Sitting quietly in religious service 1.3  

Sleeping 0.95  

Standing quietly 1.3  

Standing tasks, light effort (e.g, store clerk, filing) 3.0  

Walking, less than 2 mph, level surface, very slow 2.0  

Walking, 2.8 mph to 3.2 mph, level surface, moderate pace 3.5  

 

Furthermore, our country, Japan has two standards for CO2 emission rate: JIS A14061974 [26], 

SHASE-S102 [27]. As shown in Table 6.4 and 6.5, these CO2 emission rate in the standards are described 

simply and not considered body height and weight. Against these backgrounds, Tajima et al. [28] 

measured CO2 emission rate, O2 consumption rate, and metabolic rate by using Douglas bag method 

with approximately total 70 voluntary Japanese subjects under different activity conditions. Moreover, 

they developed a prediction equation for human CO2 production rate by regression analysis of obtained 

data. The prediction equation of CO2 production rate 
2COV  (L/h) was expressed as: 

2CO 0.1589(94.4 83.9 21.0 149.7)d gV A Met C    ,     (6-17) 

where Ad is the body surface area for Japanese adult (m2) and is expressed as: 

0.425 0.7250.229dA W H ,        (6-18) 

Met is an occupants’ activity level normalized by the metabolic rate of relax seated MS (W): 

S

M
Met

M
 ,         (6-19) 

Cg is the coefficient of gender (0: female, 1: male). 
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Table 6.4. CO2 emission rate according to JIS A1406 [26] (adult male) 

Work load Metabolic rate CO2 emission rate (L/h) 

RMR Met 

Resting 0.0 1.00 11.0 

Sedentary work 0.0 ~ 1.0 1.00 ~ 1.83 12.9 ~ 23.0 

Slow walk 1.0 ~ 2.0 1.83 ~ 2.66 23.0 ~ 33.0 

Light work 2.0 ~ 4.0 2.66 ~ 4.32 33.0 ~ 53.8 

Moderate work 4.0 ~ 7.0 4.32 ~ 6.81 53.8 ~ 84.0 

Hard work 7.0 ~ 6.81 84.0 ~  

*Female and child CO2 emission rate is 90% and 50% of male CO2 emission rate, respectively 

 

Table 6.5. CO2 emission rate according to SHASE-S 102-2011 [27] (adult male) 

Work load Metabolic rate CO2 emission rate (L/h) 

RMR Met 

Resting 0 1.0 13.2 

Very light work 0～1 1.00 ~ 1.83 13.2 ~ 24.2 

Light work 1～2 1.83 ~ 2.66 24.2 ~ 35.2 

Moderate work 2～4 2.66 ~ 4.32 35.2 ~ 57.2 

Hard work 4～7 4.32 ~ 6.81 57.2 ~ 90.2 

*Female and child CO2 emission rate is 90% and 50% of male CO2 emission rate, respectively 

 

6.3 Methods 

6.3.1 Experimental facilities 

The experiments were carried out in a small climate chamber whose volume was 1.7 m3 (1.4 

× 0.75 × 1.62 m) (Fig. 6.1). The experimental chamber was placed in a large thermal climatic chamber 

designed for studying thermal comfort [29,30]. The small chamber frames were made of wooden beams, 

and the walls were made of plastic foil. The small chamber was ventilated with outdoor air supplied to 

a ceiling plenum. The air entered the chamber uniformly through a perforated panel that formed the 

ceiling of the chamber, establishing a laminar downward piston flow from the whole ceiling. Due to the 

large size of the air supply area (1.4 m × 0.75 m) the velocity of the supplied air was very low (<< 0.2 

m/s). The air was exhausted through an opening located 10 cm above the floor. An exhaust duct 

connected to an exhaust fan was used to exhaust the air from the chamber. The flow rate established by 

the exhaust fan was the same as the flow rate established by the supply fan. The rate of outdoor air 

supplied to and exhausted from the chamber was measured by an orifice equipped with an electronic 

manometer. The supply air was conditioned to the required temperature. Inside the small chamber, small 
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desktop fans ensured good mixing of the air. 

 

 

Figure 6.1. Schematic of the climate chamber and experimental setup. 

 

6.3.2  Volunteers 

Six male volunteers were recruited: four Asians and two Europeans. Their demographic data 

are shown in Table 6.6. The body surface area (BSA) was estimated using the empirical equation derived 

by DuBois [31]. 

 

Table 6.6. Demographic data of participants 

Volunteer Origin Age (yr) Height (m) Weight (kg) BSA* (m2) BMI** 

(kg/m2) 

1 Asian 26 1.67 61 1.68 21.9 

2 Asian 25 1.66 56 1.61 20.3 

3 Asian 35 1.77 59 1.73 18.8 

4 Asian 23 1.75 68 1.82 22.2 

5 European 56 1.87 94 2.19 26.9 

6 European 30 1.78 78 1.95 24.6 

*BSA = body surface area (m2) 

**BMI = body mass index (kg/m2) 

 

6.3.3 Experimental conditions 

Five exposure conditions were established in the small chamber (Table 6.7). Each volunteer 

was exposed individually to each condition in random order for 2.5 hours. In one condition, termed 

M800, the ventilation rate to the small chamber was set so that the concentration of metabolically 

generated CO2 was 800 ppm. In two other conditions, termed respectively MP1400 and MP3000, the 
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ventilation rate was maintained as at M800 and pure CO2 was supplied to the chamber from a cylinder 

to maintain CO2 concentrations of 1400 ppm and 3000 ppm, respectively; the concentration of other 

bioeffluents emitted by the subject did not change at these conditions so it was the same as in M800. In 

a further condition, termed M1400, the ventilation rate was reduced so that the metabolically generated 

CO2 increased to 1400 ppm and in this condition the concetration of other bioeffluents also increased. 

This condition was established at both 23°C and 28°C and the latter was termed M1400W. In all other 

conditions the temperature was 23°C (see Table 6.7). 

Conditions MP1400, MP3000, M1400, and M800 examined the effect of background CO2 on 

the rate of CO2 emitted by volunteers; they examined the impact of elevated pure CO2 with other 

bioeffluent concentrations unchanged or elevated CO2 with elevated levels of other bioeffluents. 

Conditions M1400 and M1400W examined the impact of elevated temperature causing thermal 

discomfort on the rate at which CO2 was emitted by the subjects. In all conditions subjects wore similar 

clothing with thermal insulation estimated to be 1.0 clo. Figure 6.2 shows the five conditions whose 

effects were compared. 

 

 
Figure 6.2. The five exposure conditions 
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Table 6.7. Planned conditions for different exposures 

Condition 

Outdoor air 

supply rate to 

the chamber 

(m3/h) 

Air change 

rate (h-1) 

Pure CO2 

dosed from 

cylinders 

(l/min) 

CO2 level in 

the chamber 

(outdoor level 

at 400 ppm) 

Temperature in the 

chamber (°C) 

M800 47.5 27.9 - 800 23 

M1400 19 11.1 - 1400 23 

M1400W 19 11.1 - 1400 28 

MP1400 47.5 27.9 0.475 1400 23 

MP3000 47.5 27.9 1.74 3000 23 

 

6.3.4 Measurements 

During each experiment, CO2, temperature, and relative humidity (RH) were measured in the 

small chamber. CO2 was measured with an INNOVA 1302 monitor, with an accuracy of ± 2%, and by a 

Vaisala sensor connected to a Hobo logger, which registered temperature and relative humidity (RH) in 

the chamber with an accuracy of ±0.21°C for temperature and ±5% for RH. All the instruments had been 

calibrated. The exposures were performed in the morning, from 9:00 to 12:00, or in the afternoon, from 

13:00 to 16:00. 

The physiological responses that were measured included heart rate, End-Tidal partial CO2 

(ETCO2), respiration rate, skin temperature at the temple, blood oxygen saturation (SpO2), and heart 

rate variability (HRV). Heart rate was measured continuously with a Suunto smart belt (model: 

SS020566000) worn by the subjects. Skin temperature was measured continuously using iButtonsTM. 

ETCO2, SpO2, and respiration rate were measured simultaneously using a Lifesense Monitor by MedAir 

AB. The measurable range of ETCO2 was 0–9.9 kPa, and the accuracy was ±0.2 kPa+6% of the reading, 

according to the manufacturer's specifications. The measurable range of SPO2 was 0%–100%, and the 

accuracy was ±2%. The instrument estimated respiration rate and ETCO2 by continuously monitoring 

the concentration of CO2 in air sampled at the nostril of each subject, i.e. the concentration in the air that 

was inhaled and exhaled. HRV was measured by attaching an infra-red sensor to the subject’s finger to 

monitor changes in peripheral blood circulation (CorSense® Heart Rate Variability Monitor). The time-

domain measure of HRV was determined by the percentage of inter-beat intervals differing by more than 

50 ms (pNN50). The value of pNN50 reflects the parasympathetic modulation of the heart and can be 

affected by stress [32]; the lower the PNN50 value, the higher the stress level. pNN50 denotes the 

percentage difference between adjacent normal and R-wave peak intervals (RR intervals) greater than 

50 ms and is an indicator of heart rate variability.  

Measurements of CO2 concentration in the supply and exhaust air were used to estimate the 

rate of CO2 emission from the subject.  
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For conditions where CO2 was not added to the chamber from a gas cylinder (i.e., M800, 

M1400, and M1400W), the mean CO2 concentration and the emission rate was estimated after the CO2 

level reached steady state using the following equation: 

 in outG Q C C  ,         (6-20) 

where Cin is the indoor CO2 concentration at steady state (ppm), Q is volumetric airflow rate (m3/h), Cout 

is the outdoor CO2 concentration (ppm), and G is the CO2 emission rate (mL/h). The air change rate was 

28 h-1 so steady state concentration was obtained in less than 15 minutes. 

For MP1400 and MP3000, when CO2 was added to the chamber from a gas cylinder, the 

following equation was used: 

 pure met pureG Q C C  ,        (6-21) 

where Cpure+met is the CO2 concentration comprising the pure CO2 delivered from the cylinder and the 

metabolically generated CO2 that was emitted by the subject, Cpure is the CO2 concentration contributed 

only by pure CO2, which was measured from the indoor CO2 level that was reached within a few minutes 

after the subject had left the chamber. 

Measurements of CO2 were also used to estimate the air change rate in the chamber. For this 

purpose, the decay of CO2 concentration was measured after the subject had left the chamber. The 

estimated air change rates from decay were compared with the rates measured using an orifice and an 

electronic manometer. 

 

6.3.5 Statistical Analysis 

Analysis of variance (ANOVA) was used to evaluate the effects of background CO2 

concentration and temperature on the parameters measured. The statistical analysis was performed with 

Microsoft Office Excel software (2016 version) with Visual Basic for Application code that was 

developed for the purpose. The significance level was set to P = 0.05.  

 

6.4 Results 

All measured physical parameters (temperature, and CO2 concentration), and physiological 

parameters (skin temperature at the temple, ETCO2, heart rate, HRV, and SpO2) are listed in the 

supplementary material. CO2 concentrations and temperatures in the chamber for each experimental 

condition were maintained as close to the intended level as possible.  

Figure 6.3 shows an example of the time series of CO2 concentration in the climate chamber 

for six volunteers under the M1400 condition. During this condition, the CO2 concentration in the 

chamber reached steady state at approximately 10 min from the start of the experiment, i.e. from the 

moment each subject entered the chamber. Each experiment started immediately after the subject entered 

the chamber. Figure 3 shows differences in the steady-state CO2 concentration levels due to individual 
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differences in the CO2 emission rate. To determine the individual CO2 emission rate, the steady-state 

CO2 concentration was calculated as the time-averaged value for 60 min (t = 90–150 min from the test 

start). After 150 min, the subject left the chamber, and air change per hour (ACH) was then calculated 

from the CO2 concentration decay curve. 

 

 
Figure 6.3. An example of the evolution of CO2 concentration in the chamber at condition M1400 

 

Figure 6.4 shows the estimated CO2 emission rates in each experimental condition. Compared 

with the M800 condition, which can be considered as a baseline, CO2 emission rates at higher 

background CO2 concentrations decreased slightly but significantly. Significant differences (P<0.05) in 

CO2 emission rate between M800 and M1400, and between M800 and MP3000 were observed. The 

difference between M800 and MP1400 approached significance (P=0.068). When room temperature 

was increased from 23°C to 28°C, the CO2 emission rate increased significantly (P<0.05).  

 

Figure 6.4. Calculated CO2 emission rates under different experimental conditions. 
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Figure 6.5 shows the mean ETCO2 under each experimental condition. The ETCO2 increased 

as the CO2 concentration in the chamber increased, indicating that raised blood gas levels were the 

reason for the reduced emission rate. The differences were significant between M1400 and MP1400 and 

between M1400 and MP3000 (P<0.05). The difference between M800 and MP3000 approached 

significance (P=0.054). There was no significant difference in ETCO2 between M1400 and M1400W, 

i.e. there was no effect of air temperature on ETCO2.  Also, there were no differences when CO2 levels 

was increased by restricting ventilation (M800 vs M1400) i.e. when the level of bioeffluents increased 

in the chamber; only by increasing CO2 level artificially by dosing it from the cylinder increased ETCO2. 

 

 
Figure 6.5. ETCO2 under different experimental conditions 

 

Figure 6.6 shows the results for heart rate under each experimental condition. Significant 

differences (P<0.05) were seen between M800 and M1400W and between M1400W and MP1400, 

indicating an effect of temperature (as would be expected) and of other bioeffluents, but no effect of 

pure CO2 on HR.  
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Figure 6.6. Heart rate under experimental conditions 

 

Figure 6.7 shows the respiration rate under each experimental condition. Respiration rate did 

not differ significantly between the conditions.  

 

 
Figure 6.7. Respiration rate under different experimental conditions 

 

Figure 6.8 shows no difference between conditions in terms of HRV (Heart Rate Variability). 

The pNN50 value in the M1400W condition was low, as would be expected if thermal discomfort had 

given rise to some stress, but was not significantly different from other experimental conditions. 
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Figure 6.8. Heart rate variability (pNN50) under different experimental conditions 

 

Figure 6.9 shows skin temperature measured at the temple under each experimental condition. 

Temple temperature increased with elevated room temperature, as would be expected: in M1400W it 

was significantly higher than in any of the other conditions (P<0.05), but there were no other significant 

differences. 

 

 
Figure 6.9. Skin temperature at the temple under different experimental conditions 

 

6.5 Discussions 

The present study indicates that the emission rate of CO2 by occupants is affected not only by 

their activity but also by such environmental factors as temperature and airborne pollution, specifically 

the concentration of CO2 and other bioeffluents. They cause physiological reactions that either reduce 
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or increase the elimination of CO2 by respiration. Increased temperature causing discomfort and thermal 

discomfort will increase the emission rate while increased CO2 will reduce it. Since only six subjects 

participated in the present work, the magnitude of these changes in CO2 emission rate cannot be 

determined with any certainty, but it must be emphasized that despite the considerable variations 

between subjects (see supplementary material) these effects reached statistical significance at P<0.05 or 

approached this level of formal significance very closely (P <0.06), so they should be considered non-

random. Similar studies with larger groups are required to determine and generalize the size of the 

observed effects so as to be able to draw conclusions regarding the implications of the present findings 

for determination of ventilation rate based on CO2 concentration and control of ventilation using CO2 as 

an input variable in practice. It might still be the case that changes due to activity, age, food intake etc., 

which are all likely to affect the generation rate of CO2 are more meaningful that changes in production 

rate due to background CO2 and temperature. And these additional studies need to determine whether 

this is the case or not.  

Increased temperature increased the emission rate of CO2. At the same time, heart rate 

increased (Fig. 6) suggesting increased metabolic activity. The metabolic rate at these two temperatures 

was calculated using conventional assumptions (supplementary material) and it was found that 

metabolic rate at 28°C was 92 W/m2 (1.57 met) and at 23°C it was 66 W/m2 (1.13 met). Raised air 

temperature therefore increased the metabolic rate by as much as increasing activity from light sedentary 

to moderate work. The present results are therefore in accordance with the study by Luo et al. [33], 

which showed that when building occupants feel either warm or cool, these sensations affect their 

metabolism and increase CO2 emissions compared with what is observed at thermal neutrality. In the 

present work, skin temperature at the temple (Fig. 6.9) provides evidence that subjects felt warm. 

Furthermore, HRV was lowest at M1400W (Fig. 6.8), and although this was not a significant effect it is 

consistent with higher stress as a result of increased temperature.  

Current ventilation standards do not prescribe higher ventilation rates at higher temperatures 

except in the Australian standard in which ventilation rates must be increased at temperatures higher 

than 27°C [7]. If thermal neutrality is achieved at elevated temperatures, there is no need to increase 

ventilation rate because the emission rate of CO2 would not change. This must be determined 

experimentally. However, at temperatures higher than 26°C-27oC it may be difficult to maintain thermal 

neutrality. This would initiate physiological activity to reduce the impact of increased temperature. 

According to the Adaptive Thermal Comfort model, thermal comfort can be achieved by psychological 

and behavioural adaptation even at higher temperatures. The latter involve reducing clothing insulation 

and activity and additional cooling, e.g. by increasing the air movement. Reducing activity will reduce 

metabolic rate and the production rate of CO2 but it will also influence work output [34]. The impact of 

psychological adaptation should be studied in future experiments, so that the implications for ventilation 

rates based on CO2 can be determined.  
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If the occupant rates of emission of CO2 are lower when pollution is higher, then the control 

of ventilation using CO2 may be affected. In other words, the simple linear relationship between the 

level of CO2 and level of other pollutants may not be preserved and ventilation rates may have to be 

increased to adjust for reduced CO2 emission as pollution increases. Increased retention of CO2 may 

also have implications for the estimation of actual outdoor air supply rates from observed CO2 levels. 

In many research studies in the field, it is impossible to measure ventilation rates. They are consequently 

estimated based on the measured CO2 concentration, assuming that CO2 emission rate will not change. 

However, the present results suggest that this assumption may not be valid and that ventilation rates may 

therefore be estimated erroneously, especially when the CO2 levels measured are high. The present 

results suggest that at high CO2 levels (or when air pollution is high as CO2 is a marker of such an 

instance) ventilation rates may in fact be lower than these that are estimated by assuming that CO2 

emission rates from humans is unchanged.  

As described in the introduction section, a reduced CO2 emission rate may be caused by 

reduced elimination of CO2 from the blood by respiration, as indicated by the present ETCO2 results, 

and the resulting increased acidosis as stipulated by Bako-Biro et al. [8] and Wargocki and Wyon [35] 

would explain the headache and difficulty in thinking clearly that have been reported when the outdoor 

air supply rate is reduced. The retained CO2 would eventually be eliminated through the kidneys or 

stored in bone marrow but in the short term it would be a plausible mechanism for the observed negative 

effects of raised CO2 on mental performance [11]. ETCO2 increased in the present study with increased 

CO2 but there were no effects on respiration rate (Figs. 6.5 and 6.7); that respiration did not change is 

also indicated by the absence of any effects on HRV (pNN50), as heart rate variability is closely related 

to respiration rate [14]. ETCO2 was not changed at elevated temperature, despite the expectation that 

increased metabolic rate (indicated by raised HR) must have increased the rate at which of CO2 was 

generated in the body, indicating increased elimination of CO2. As heart rate increased and respiration 

rate did not, the increased elimination of CO2 seems likely to have occurred because of a higher minute 

volume or tidal volume, i.e. deeper breathing. We did not perform other measurements such as 

Respiratory Inductive Plethysmography to further characterize breathing, so this should be a priority in 

future studies. 

When the CO2 concentration was 1400 ppm, ETCO2 was significantly higher when the CO2 

concentration was increased by dosing CO2 from a cylinder (MP1400) than it was when the air supply 

was reduced to allow the concentration of metabolically generated CO2 to increase (M1400) (Fig. 6.5). 

This suggests that the presence of other bioeffluents could have counteracting somewhat the 

physiological response to pure CO2 and this possibility should be examined in future experiments. If 

this is the case, it would explain why experiments showing that mental performance is reduced when 

CO2 levels are increased by adding pure CO2 summarized by Fisk et al. [36] could potentially 

overestimate the effects that occur when the outdoor air supply rate is reduced to achieve the same CO2 
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concentrations. 

Heart Rate Variability (HRV) as indicated by pNN50 did not change when CO2 was increased. 

This is in accordance with the study reported by Cao et al. [37] who showed that elevated CO2 in a 

cockpit simulation did not affect the stress level of pilots taking the test. But this result differs slightly 

from the study reported by Zhang et al. [11] whose results suggest increased stress by increased level of 

alpha-amylase at higher CO2 concentration. In addition, ETCO2 increased when the CO2 emission rate 

was reduced but this had no significant effects on respiration rate, heart rate or heart rate variability 

(Figure 6.10). 

 

 

Figure 6.10. Relationship between ETCO2 and CO2 emission rate 

 

The measured CO2 emission rate for each subject under the reference exposure condition 

(M800) was compared with the CO2 emission rate estimated by the empirical equations recommended 

in the ASHRAE Handbook [19] and by Persily and de Jonge [22] (see section 6.2.2). We assumed 

metabolic rate of 60 to 70 W/m2 and 1.3 to 1.5 met associated with light work when seated, and a 

respiratory quotient of 0.83 for estimating the CO2 generation rate. Figure 6.11 shows the comparison 

of CO2 emission rate with estimated value from empirical equations and the other researches. The CO2 

emission rate predicted in this way was slightly higher than the CO2 emission rate measured in the 

present study. Instead of the empirical equation proposed by ASHRAE Handbook, the empirical 
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equation proposed by Persily and Jonge may predict the CO2 emission rate more accurately because the 

equation takes into account the age of the subject. It can be concluded that current method proposed in 

the standard may overestimate the emission rate of CO2 and this needs to be verified in the future studies. 

Actually another experiment of Qi et al. [38], Fan et al. [39], Zhai et al. [40] seem to support this 

observation. 

 

 
Figure 6.11. Comparison of CO2 emission rate with estimated value from empirical equations and the 

other researches. 

 

Although only six subjects participated, systematic and significant differences were found. The 

results will have to be validated with larger groups and the changes compared directly with changes in 

CO2 emission rates caused by changes in activity level. Subjects were blind to exposure conditions 

except for the raised temperature condition in which they could perceive that the temperature was higher. 

The subjects were exposed for only 2,5 hours to each condition. It is not known whether the observed 

changes would be maintained or would become even larger if exposures were longer. This should also 

be investigated in future experiments. The emission rates of CO2 were quite low, suggesting low activity 

levels. 

 

6.6 Conclusions 

The experiments reported here investigated the effect of raised temperature and background 

CO2 on the rate at which CO2 is emitted by occupants. Increasing the temperature from 23 °C to 28 °C 
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significantly increased the measured CO2 emission rate. Increasing the background CO2 concentration 

from 800 ppm to 1400 ppm and 3000 ppm significantly reduced the CO2 emission rate. Measured 

ETCO2 increased, indicating increased acidosis (an increase in the blood gas concentration of CO2) but 

no changes in respiration rate were found. Stress as indicated by heart rate variability did not change at 

higher background CO2 or at raised temperature although skin temperature at the temple increased at 

28°C. Although only 6 subjects participated, these effects were statistically significant. 

 

References 

1. Wargocki P, Wyon DP, Baik YK, Clausen G, Fanger PO. 1999. Perceived air quality, sick building 

syndrome (SBS) symptoms and productivity in an office with two different pollution loads. Indoor 

air, 9(3), 165-179. 

2. Sundell J, Levin H, Nazaroff WW, Cain WS, Fisk WJ, Grimsrud DT, Gyntelberg F, Li Y, Persily 

AK, Pickering AC, Samet JM, Spengler JD, Taylar ST, Weschler CJ. 2011. Ventilation rates and 

health: multidisciplinary review of the scientific literature. Indoor air, 21(3), 191-204. 

3. Wargocki P, Wyon DP. 2013. Providing better thermal and air quality conditions in school 

classrooms would be cost-effective. Building and Environment, 59, 581-589. 

4. Persily A. 2015. Challenges in developing ventilation and indoor air quality standards: The story 

of ASHRAE Standard 62. Building and Environment, 91, 61-69. 

5. Tsushima S, Wargocki P, Tanabe S. 2018. Sensory evaluation and chemical analysis of exhaled 

and dermally emitted bioeffluents. Indoor air, 28(1), 146-163. 

6. Fang L, Clausen G, Fanger PO. 1998. Impact of temperature and humidity on the perception of 

indoor air quality. Indoor air, 8(2), 80-90. 

7. Australia, Green Building Council. Green Star-Design & As Built. 2014. 

8. Bakó‐Biró Z, Wargocki P, Weschler CJ, Fanger PO. 2005. Poor indoor air quality slows down 

metabolic rate of office workers. In Proceedings of Indoor Air 2005, Beijing, Vol. I (1):76 –80. 

9. Danuser B. 2001. Candidate physiological measures of annoyance from airborne chemicals. 

Chemical senses, 26(3), 333-337. 

10. Larsen ST, Nielsen GD. 2000. Effects of methacrolein on the respiratory tract in mice. Toxicology 

letters, 114(1-3), 197-202. 

11. Zhang X, Wargocki P, Lian Z. 2017. Physiological responses during exposure to carbon dioxide 

and bioeffluents at levels typically occurring indoors. Indoor Air, 27(1), 65-77. 

12. Lifson N, Gordon GB, Visscher MB, Nier AO. 1949. The fate of utilized molecular oxygen and the 

source of the oxygen of respiratory carbon dioxide, studied with the aid of heavy oxygen. J Biol 

Chem, 180(2), 803-11. 

13. Guais A, Brand G, Jacquot L, Karrer M, Dukan S, Grévillot G, ... Schwartz L. 2011. Toxicity of 

carbon dioxide: a review. Chemical research in toxicology, 24(12), 2061-2070. 



185 

 

14. Vai F, Bonnet JL, Ritter PH, Pioger G. 1988. Relationship between heart rate and minute ventilation, 

tidal volume and respiratory rate during brief and low level exercise. Pacing and Clinical 

Electrophysiology, 11(11), 1860-1865. 

15. Hänninen O. 2013. Novel second-degree solution to single zone mass-balance equation improves 

the use of build-up data in estimating ventilation rates in classrooms. Journal of Chemical Health 

& Safety, 20(2), 14-19. 

16. Persily AK. 1997. Evaluating building IAQ and ventilation with indoor carbon dioxide (No. CONF-

970668-). American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 

Atlanta, GA (United States). 

17. Weir JDV. 1949. New methods for calculating metabolic rate with special reference to protein 

metabolism. The Journal of physiology, 109(1-2), 1-9. 

18. Nishi Y. 1981. Measurement of thermal balance of man. In Studies in environmental science (Vol. 

10, pp. 29-39). Elsevier. 

19. ASHRAE. 2013. ASHRAE Handbook – Fundamentals, Atlanta, GA, American Society of Heating, 

Refrigerating and Air-Conditioning Engineers. 

20. Coley DA, Beisteiner A. 2002. Carbon dioxide levels and ventilation rates in schools. International 

journal of ventilation, 1(1), 45-52. 

21. Ruch TC, Patton HD. 1965. Physiology and biophysics. W.B. Saunders, Philadelphia. 

22. Persily A, de Jonge L. 2017. Carbon dioxide generation rates for building occupants. Indoor air, 

27(5), 868-879. 

23. Schofield WN. 1985. Predicting basal metabolic rate, new standards and review of previous work. 

Human nutrition. Clinical nutrition, 39, 5-41. 

24. Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett Jr. DR, Tudor-Locke C, ... & Leon 

AS. 2011 Compendium of Physical Activities: a second update of codes and MET values. Medicine 

& science in sports & exercise. 2011; 43: 1575-1581. 

25. Lusk G. 1924. Analysis of the oxidation of mixtures of carbohydrate and fat: a correction. J. Biol. 

Chem, 59, 41-42. 

26. JIS. 2010. JIS A 14061974 Method for Measuring Amount of Room Ventilation (Carbon Dioxide 

Method), Japanese Industrial Standards Committee 

27. SHASE. 2011. SHASE-S102-2011 Ventilation Requirements for Acceptable Indoor Air Quality. 

The Society of Heating, Air-Conditioning and Sanitary Engineers of Japan. 

28. Tajima M, Inoue T, Ohnishi Y. 2014. Derivation of equation for personal carbon dioxide in exhaled 

breath intended to estimation of building ventilation. In Proceedings of the 35th AIVC Conference 

‘Ventilation and Airtightness in Transforming the Building Stock to High Performance (pp. 24-25). 



186 

 

29. Kjerulf-Jensen P, Fanger PO, Nishi Y, Gagge AP. A new type test chamber in Copenhagen and 

New Haven for common investigation of man’s thermal comfort and physiological reactions, 

ASHRAE Journal, January, 1975, pp. 65–68. 

30. Toftum J, Langkilde G, Fanger PO. 2004. New indoor environment chambers and field experiment 

offices for research on human comfort, health and productivity at moderate energy expenditure. 

Energy and Buildings, 36(9), 899-903. 

31. DuBois DF. A formula to estimate the approximate surface area if height and body mass be known. 

Arch Intern Med, 17, 863-871, 1916. 

32. Stein PK, Kleiger RE. 1999. Insights from the study of heart rate variability. Annual review of 

medicine, 50, 249. 

33. Luo M, Zhou X, Zhu Y, Sundell J. 2016. Revisiting an overlooked parameter in thermal comfort 

studies, the metabolic rate. Energy and Buildings, 118, 152-159. 

34. Lan L, Wargocki P, Wyon DP, Lian Z. 2011. Effects of thermal discomfort in an office on perceived 

air quality, SBS symptoms, physiological responses, and human performance. Indoor air, 21(5), 

376-390. 

35. Wargocki P, Wyon DP. 2017. Ten questions concerning thermal and indoor air quality effects on 

the performance of office work and schoolwork. Building and Environment, 112, 359-366. 

36. Fisk W, Wargocki P, Zhang X. 2019. Do Indoor CO 2 Levels Directly Affect Perceived Air Quality, 

Health, or Work Performance?. ASHRAE Journal, 61(9). 

37. Cao X, MacNaughton P, Cadet LR, Cedeno-Laurent JG, Flanigan S, Vallarino J, ... & Allen JG. 

2019. Heart rate variability and performance of commercial airline pilots during flight simulations. 

International journal of environmental research and public health, 16(2), 237. 

38. Qi, M. W., Li, X. F., Weschler, L. B., & Sundell, J. CO 2 generation rate in Chinese people. Indoor 

Air, 24(6), 559-566, 2014. 

39. Fan G, Xie J, Liu J. 2016. Human CO2 generation rate calculation based on field measurement of 

CO2 concentration in a naturally ventilated room. Proceedings of Indoor Air, 2016, 223. 

40. Zhai Y, Li M, Gao S, Yang L, Zhang H, Arens E, Gao Y. 2018. Indirect calorimetry on the 

metabolic rate of sitting, standing and walking office activities. Building and Environment, 145, 

77-84. 

  



187 

 

CHAPTER 7 

 

Chapter 7: Summary and Future works 

 

7.1 Summary 

The life of modern people, who spend most of their lives indoors and have connections to 

various communities, poses health risks on various scales. In order to assess the health risks, it is 

essential to predict the risks in social scale and indoor scale separately. In Chapter 2 and 3, focusing on 

epidemic spread of infectious diseases on the social scale, we developed a deterministic mathematical 

epidemic model to replace the stochastic multi agent simulation and examined the effect of vaccination 

behavior on epidemic dynamics. In Chapter 4 and 5, focusing on exposure phenomenon on the indoor 

scale, we developed of numerical human body model for indoor environment analysis which enables 

risk assessment of inhalation and dermal exposure. Although Chapter 6 also focused on health risk on 

the indoor scale, we investigated the effects of indoor environmental factors on the CO2 emission and 

physiological responses by using experimental approach. 

 

In Chapter 2, we proposed three theoretical frameworks of the vaccination game that considers 

imperfect vaccination and intermediate protective measures corresponding to (i) an infinite and well-

mixed population using mean field approximation, (ii) Complex networks using mean field 

approximation with different degree distributions (Poisson’s degree distribution and power law 

distribution), and (iii) regular random graph using pair approximation. For expressing the stochastic 

effect of imperfect vaccination and intermediate protective measure on epidemic dynamics, we 

developed two scenarios: effectiveness model and efficiency model. The exact mathematical formulas 

for both dynamic processes, namely, epidemic spreading and strategy updating, are explicitly discussed. 

When solving the ODEs for three epidemic models, the critical vaccination coverage and the final 

fractions for each individual were derived. We validated our frameworks by comparing its predictions 

with simulation results. As long as the same coefficient values, namely effectiveness and efficiency, are 

assumed, an intermediate protective measure is marginally inferior to an imperfect vaccination 

In Chapter 3, to examine the optimal vaccination-subsidizing policies for combating seasonal 

epidemics, we used a comprehensive ‘vaccination game’ with intertwined decision-making dynamics 

and epidemic dynamics described in Chapter 2. In this study, we considered four subsidy variants; three 

free-ticket subsidies targeting different individuals (voluntary vaccinators, non-vaccinators, or both) and 

a discount subsidy aimed exclusively at voluntary vaccinators to partly offset their vaccination cost. We 

implemented these games as multi-agent simulations (MAS)and a mean-field approximation. The MAS 

approach allowed us to investigate how the underlying topologies of the social network affect the 
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performance of subsidized vaccination. The mean-field approach helped us to independently confirm 

some of the key the results obtained using the MAS approach, and to better understand the effects of an 

imperfect vaccine. We evaluated the performance of different subsidies by tracking three quantities: 

vaccination coverage, the final epidemic size, and the total social payoff. The total social payoff in 

particular was an aggregate measure taking into account the vaccination cost, the cost of an epidemic, 

and the tax burden to subsidize vaccination. 

In Chapter 4, we developed three-dimensional computer models based on CT data, which 

describe the flow and heat transfer properties in upper airways as a first step of inhalation exposure 

analysis. Through the analysis of flow patterns and temperature, the local convective heat flux 

distributions in upper airways and the average convective heat transfer coefficients as functions of 

respiratory air flow rate were discussed. In addition, the influences of geometric variations in numerical 

airway models (i.e., rat, dog, monkey and two human models) on the efficiency of the convective heat 

transfer were discussed. Moreover, the effect of respiratory airflow rate on convective heat transfer 

inside airway models was investigated. 

In Chapter 5, we developed a comprehensive numerical analysis using CSP with respiratory 

tract and indoor CFD technique to explore the contribution ratio of first- and secondhand exposure of 

smokers and nonsmokers to the chemicals emitted from e-cigarettes. The numerical analyses were 

performed using a simple room model occupied by two occupants: smoker and non-smoker. As a result, 

the amount of chemical compounds absorbed into the respiratory tract and the concentration of chemical 

compounds contained in exhaled air strongly depend on the type of chemical compounds. The 

respiratory retention of chemicals in the respiratory tract was in good agreement with previous 

experimental results. Our results also confirmed that chemicals exhaled by e-cigarette users into the 

indoor environment become new indoor air pollutants that are exposed to nonsmokers by inhalation and 

dermal exposure due to advection and diffusion in indoor environment. Formaldehyde ingested by 

nonsmokers via inhalation and dermal exposure in the worst-case scenario was estimated at 5.7% and 

6.4%, respectively. 

In Chapter 6, to investigate the effect of raised temperature and background CO2 on the CO2 

emission rate from occupants, we conducted the subjective experiments using a small chamber. 

Increasing the temperature from 23 °C to 28 °C significantly increased the measured CO2 emission rate. 

Increasing the background CO2 concentration from 800 ppm to 1400 ppm and 3000 ppm significantly 

reduced the CO2 emission rate. Measured ETCO2 increased, indicating increased acidosis (an increase 

in the blood gas concentration of CO2) but no changes in respiration rate were found. Stress as indicated 

by heart rate variability did not change at higher background CO2 or at raised temperature although skin 

temperature at the temple increased at 28°C. Although only 6 subjects participated, these effects were 

statistically significant. 
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7.2 Planed future works 

7.2.1 Research related to epidemic dynamics on complex networks (Chapter 2 and 3) 

To develop a mathematical epidemic model as an alternative to MAS, we have selected the 

epidemic models corresponding to the simplest infinite and well-mixed population, as well as the 

representative complex networks such as BA scale free network, ER random network, and random 

regular graph. However, they are not enough to be alternative to MAS. As future works, there are the 

adaptation of theoretical epidemic model to lattice networks with stronger locality and temporal 

networks which captures changes in network topologies due to movement of people in the real world. 

 

7.2.2 Research related to inhalation and dermal exposure to e-cigarette (Chapter 5) 

Recently, it has become popular in the US to use a solution containing a cannabis component 

in electronic cigarettes, and it has become a social problem that people suffer from health damage. 

Against this background, it is a future work to understand the exposure risk of cannabis components due 

to the use of electronic cigarettes. Furthermore, since our numerical analysis model solves by coupling 

the gas phase region with the concentration distribution in the airway tissue and skin tissue, it takes 

much time to stabilize the numerical analysis. Therefore, it is an urgent work to speed up the analysis 

without lowering the prediction accuracy of the analysis. 

 

7.2.3 Research related to CO2 emission and physiological responses to indoor environment 

(Chapter 6) 

In Chapter 6, we recruited six subject to conduct the experiment for CO2 emission rate. 

However, the number of volunteers were not enough to develop the empirical equation for CO2 emission 

rate with consideration of internal and external factors. Thus, we must have additional experiments. To 

examine the influence of internal factors such as race, age, and gender, we will recruit a sufficient 

number of subjects so that the experimental results can be analyzed at multiple levels. Furthermore, to 

investigate the influence of external factors such as indoor temperature and humidity, CO2 concentration, 

and clothing, subjective experiments are conducted in the climate chamber under different indoor 

environmental conditions. Specifically, to study the temperature effect, the indoor temperature is set in 

three conditions: the thermally neutral condition (23℃), low temperature condition (18℃), and high 

temperature condition (28℃). Moreover, to study the effect of indoor CO2 concentration, the ventilation 

rate is controlled so that the CO2 concentration is about 800, 1400, and 3000 ppm. By measuring the 

CO2 concentration under the above different environmental conditions, we will develop the empirical 

equation for the CO2 emission rate with consideration of the internal and external factors. Furthermore, 

we will investigate the effect on other physiological responses to the environmental factors. 

For calculation of CO2 emission rate by monitoring CO2 concentration in the climate chamber, 

the room is assumed a completely mixed field. Although the mixing fan is installed so that the air is 
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sufficiently agitated in many studies, it is difficult to form a complete mixing field without any 

distribution. Therefore, there is a difference between the CO2 emission rate calculated from the CO2 

concentration observed indoors and the CO2 actually emitted from the nose or mouth. To evaluate this 

difference accurately, it is necessary to predict the non-uniform concentration distribution formed 

around the human body, especially in the respiratory region. Therefore, based on the numerical human 

model which has been developed in Chapter 3, we will develop a model that reproduces the subject 

experiment by precisely integrating the O2-CO2 gas exchange model using CFD technique. The 

developed model is verified by comparison with the results of subjective experiment, and the indoor 

volume average concentration and the concentration in the respiration region which cannot be observed 

in the subjective experiment are clarified. 


