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Abstract

The max-pooling operation is a common step in modern deep convolutional neural
networks (CNNs), which is often introduced to obtain translation-invariant represen-
tations and downsample the feature maps of convolutional layers. However, in doing
so, it loses the spatial information of the maximums. In this thesis, a novel feature
is extracted from the max-pooling operation in CNNs, called displacement features.
The displacement features record the location coordinates of the maximums in pooling
windows of the max-pooling operation, which represents the “inter-class” or “intra-
class” micro differences between different samples. Then, the class-wise trends and
behaviors of the displacement features are discovered and analyzed in different ways.
To verify the effectiveness of the displacement features, the displacement features
are applied on two classical tasks, text recognition and offline signature verification.
For text recognition tasks, the displacement features are extracted from the max-
pooling layer and combined with the features resulting from max-pooling to capture
the inter-class micro differences between the similar classes. The displacement fea-
tures compensate for spatial information lost in the traditional max-pooling operation
helps discriminate unnecessary absorptions from necessary absorptions. The extensive
experiments and discussions on three text datasets, MNIST, HASY, and Chars74K-
font datasets demonstrate that the proposed displacement features can improve the
performance of the CNN based architectures and tackle the issues with the micro
differences of max-pooling in the text recognition tasks. For offline signature verifica-
tion tasks, the displacement features of the maximums in the max-pooling operation
are extracted and fused with the pooling features to capture the intra-class micro
differences between the genuine signatures and skilled forgeries as a feature extrac-
tion procedure. The displacement features represent the crucial differences between
the genuine signatures and their corresponding skilled forgeries, which is useful for
verification systems. The extensive experimental results and analysis on GPDS-150,
GPDS-300, GPDS-1000, GPDS-2000, and GPDS-5000 datasets demonstrate that the
proposed method can discriminate the genuine signatures and their corresponding
skilled forgeries well and achieve state-of-the-art performance on these datasets.
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Convolutional Neural Networks (CNNs)

In recent years, Convolutional Neural Networks (CNNs) have had excellent perfor-

mance in the fields of image recognition and detection [2, 3, 4, 5, 6], natural lan-

guage processing [7, 8, 9, 10], document analysis and recognition [11, 12, 13, 14, 15].

Many popular CNN-based architectures have been proposed in recent years, such as

AlexNet [16], GoogleNet [17], Fast-RCNN [18], ResNet [19], and so on [20, 21, 22],

which demonstrates the effectiveness of CNNs for addressing different real-world prob-

lems.

Typically, a CNN is composed of several modules. In the first few stages, it

includes several convolutional layers, activation functions, and pooling layers. The

role of the convolutional layer is to detect local conjunctions of features from the

previous layer. After a convolutional layer, the features will pass through an activation

function to obtain the nonlinear representations. Then, the pooling layer is applied

to merge semantically similar features into one. After stacking several convolutional

layers, activation functions, and pooling layers, fully-connected layers are introduced

19
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5 1 10 4

3 6 7 3

2 3 4 7

8 5 2 9

6 10

8 9

Convolutional 

Feature

Pooling Feature

5 1

3 6

10 4

7 3

2 3

8 5

4 7

2 9

Pooling Maps

(Stride=2)

Figure 1-1: The procedure of doing a max-pooling operation on a convolutional fea-
ture. The pooling size is 2× 2 with stride 2. The red blocks represent the maximums
in pooling windows.

for different tasks.

1.1.2 The Roles of Max-pooling

The max-pooling operation in CNNs is a very essential module that combines the

maximal responses of the feature maps into a summarized joint distribution of the

features over some region of interest [23, 24]. The objective of max-pooling in CNNs

is to reduce the size of the parameter space by removing redundant information while

preserving the relevant responses from the convolutional feature maps. Fig. 1-1 shows

the procedure of doing a max-pooling operation.

The first role of the max-pooling operation is information gathering. After several

max-pooling layers, the size of the original images gradually reduces by preserving

the maximal responses. The maximums in pooling windows represent important

information that is kept by doing the max-pooling operation. In other words, the

max-pooling operation merges semantically similar features into one, which is similar

to dimensionality reduction.

The second role of the max-pooling operation is deformation compensation. The
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Why max pooling?

•Compressing information into a lower dimensional 
representation

•Compensating geometric deformations

5 6 1 10

3 1 7 3

2 8 4 9

4 5 2 4

6 10

8 9

6 1 10 5

1 7 3 2

8 4 9 3

5 2 4 0

Left

translation

Figure 1-2: An example that the max-pooling operation helps compress information
into a lower dimensional representation and absorb the left translation.

max-pooling operation helps CNNs be somewhat spatially invariant to the position

of features [25]. In other words, if the original images have geometric deformation-

s (such as translation or scaling), the features become insensitive to the geometric

deformations in the original image because of the max-pooling operation. Fig. 1-2

presents an example that the max-pooling operation helps compress information in-

to a lower-dimensional representation and absorb the left translation. In Fig. 1-2,

the “intra-class” micro differences are eliminated between two samples. Before the

max-pooling operation, the features are different because the strokes are in different

positions, which may cause misclassification problems. After the max-pooling opera-

tion, the left translation is absorbed by preserving the maximums in pooling windows.

1.1.3 The Negative Effects of Max-pooling

However, because of the deformation compensation ability of the max-pooling op-

eration, it also introduces several negative effects. The important micro differences

are eliminated by preserving only maximal responses. The traditional max-pooling

operation does not care about the importance of the difference. Therefore, the impor-
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6 10

8 9

6 1 2 3

1 4 10 5

1 1 4 9

2 8 2 4

3 2 1 2
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8 5 4 0

Class ‘0’ Class ‘6’

Figure 1-3: An example of the negative effect of the traditional max-pooling operation.
After using the max-pooling operation, the features of the samples ‘0’ and ‘6’ are the
same. Here, the pooling size is 2 × 2 with stride 2. The red blocks represent the
maximums of each pooling window.

tant “inter-class” micro differences are eliminated along with unnecessary “intra-class”

differences (i.e., deformations).

Fig. 1-3 shows that important inter-class micro differences are eliminated by the

max-pooling operation. After the max-pooling operation, the same pooled features of

samples ‘0’ and ‘6’ are obtained even the convolutional features are different. Then,

these two samples might be classified in the same class. In fact, the max-pooling

operation will absorb the important micro differences which often contribute to dis-

criminative features.

Fig. 1-4 shows other character pairs that have important inter-class micro differ-

ences on MNIST, Chars74K-font, and HASY datasets. We can see that these samples

are very similar except for some micro differences. After several downsampling op-

erations, these micro differences might be absorbed by the max-pooling operation.

Then, they might be classified in the same class. Therefore, sensing the risk of elimi-

nating important micro differences between the different classes from the max-pooling

operation is necessary for text recognition tasks.

The elimination of intra-class micro differences is more and more serious for i-
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Figure 1-4: The similar samples from different classes in MNIST, Chars74K-font, and
HASY datasets.

dentification tasks. Different from the recognition tasks, identification tasks need to

be careful of “very micro” differences. Most behaviors of the forged samples are very

similar to the genuine samples except for some micro differences. Therefore, discrimi-

nating theses micro differences between genuine samples and practiced forged samples

plays an important role in identification tasks.

In this sense, bio-metrics scenarios, such as signature verification, will suffer from

the unnecessary elimination of inter-individual (intra-class) differences. For example,

skilled forgeries in signature verification try to mimic the genuine signatures, and

therefore the intra-class differences are often tiny. Specifically, these intra-class micro

differences between the genuine signatures and skilled forgeries can be described as

small translations, transformations, or distortions of strokes, scaling in local regions

of signatures, and special writing habits of different signers which are very important

cues for signature verification tasks.

Fig. 1-5 shows examples of different micro differences that exist between genuine

signatures and skilled forgeries. The left sample in Fig. 1-5 shows a vertical translation

in the part of ‘F’ between the genuine signature and skilled forgery. The middle sample

shows a scaling problem in the part of ‘A’. The right sample shows a specific writing

habit of different signers. A tail has occurred at the bottom of ‘E’ in the skilled

forgery, but it does not occur in the genuine signature.

Although these micro differences are very general between genuine signatures and

their corresponding skilled forgeries in offline signature verification systems, they are
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Figure 1-5: Examples of some specific “micro differences” occurred between genuine
signatures and skilled forgeries. The red blocks represent the part with micro differ-
ences between genuine signatures and skilled forgeries.
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Figure 1-6: Examples of translation and scaling cases that are absorbed by the max-
pooling operation between the genuine signatures and their corresponding skilled
forgeries.
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unexpectedly absorbed by the traditional max-pooling operation. Fig. 1-6 shows

the translation and scaling cases that are absorbed by the traditional max-pooling

operation between the genuine signatures and their corresponding skilled forgeries.

This means that the traditional max-pooling operation degrades the performance

of the verification systems by the elimination of the micro differences between the

genuine signatures and their corresponding skilled forgeries.

1.1.4 Motivation

The motivation of this research is that how can we detect and penalize the cases

when the max-pooling operation is going to remove the important inter-class and

intra-class micro differences? In the traditional max-pooling operation, it wastes the

spatial information that may represent the crucial cues of these important inter-class

and intra-class micro differences. Due to the traditional max-pooling operation that

could compensate for geometric deformations by preserving the maximal response

in a pooling window, we want to keep this property and discriminate unnecessary

absorptions from necessary absorptions by watching the behaviors of the max-pooling

operation.

1.2 Thesis Objectives and Solutions

1.2.1 Avoiding the Negative Effects by Displacement Features

The key idea of avoiding the negative effects of the traditional max-pooling operation

is to know “how” the max value is selected in a pooling window of the max-pooling

operation. If we utilize the trends of the maximum selection for each class, we can

understand the intra-class differences. This means that by observing the maximum

selection, we can understand that the max-pooling operation is going to eliminate the

inter-class or intra-class micro differences.
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Figure 1-7: Extracting displacement features from a 2 × 2 pooling window.

To address this issue, memorizing the position of the maximum and utilizing it is

one solution. In the traditional max-pooling operation, this spatial information may

represent the inter-class or intra-class micro differences and the crucial cues that how

the micro differences are eliminated. We believe that this phenomenon is not random.

There must be inter-class or intra-class trends in this spatial information lost in the

traditional max-pooling operation.

Fig. 1-7 shows how to extract this spatial information (displacement features)

from the max-pooling operation. Here, the arrows with different colors represent the

displacements of the center of the pooling windows. In the first max-pooling layer

of a CNN, we first extract the maximums (pooling features) and their positions in

the pooling windows. In the next step, we transform the position information into

the displacement features which describe the distance and direction of the selected

maximal value from the center point in the pooling windows. Finally, We use a two-

dimensional vector to represent the displacement features in horizontal and vertical

directions.

Fig. 1-8 presents the pooling features and displacement features of samples from

the HASY dataset [1] based on a Hue-Saturation-Value (HSV) color model whose color

and intensity denote the direction and average length of the displacement features.
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Different from the pooling features, the displacement features reflect the information

from the spatial level. We can see that the displacement features reflect the class-

wise trends between the inter-class samples. For example, in the first filter, the

displacement features can capture the blue and green directions from the top of the

sample ‘∖pi (𝜋)’, but the red direction from the top of the sample ‘3’. In the second

filter, the displacement features can capture the red direction from the bottom of

the sample ‘∖triangleq (,)’, but the green direction from the bottom of the sample

‘3’. Theses examples give very clear class-wise trends captured by the displacement

features to discriminate against the inter-class samples.

1.2.2 Utilization of Displacement Features in Text Recogni-

tion Tasks

For the text recognition tasks, to address the problem that the traditional max-

pooling operation absorbs the inter-class micro differences between different samples,

we explore two approaches to combine the pooling features and the displacement

features. The idea is to compensate for the spatial information that is lost in the

traditional max-pooling operation by only preserving the maximums in pooling win-

dows.

In the first approach, we extract the displacement features from a pre-trained

CNN. Then, we put the displacement features into another CNN and combine them

with the pre-trained CNN in a fully connected layer. The purpose of this approach

is to add the advantages of the displacement features and keep the good properties

of the pooling features together.

The second approach is to transform the displacement features into cosine features

based on Principal Component Analysis (PCA). First, we extract the displacement

features from a pre-trained CNN. Then, for each independent class, we apply a PCA

model to the displacement features that from the samples in this specific class. Finally,

we combine the cosine features with the pooling features in the fully connected layers
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3

Figure 1-8: Visualization of the pooling features and displacement features on the
HASY dataset [1]. Here, the pooling size is 2× 2, the first row represents the original
image and corresponding pooling features, the second row represents the displacement
features, and each column represents one convolutional filter. The visualization of
displacement features is based on an HSV color model whose color and intensity
denote the direction and average length of displacement feature.
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for different text recognition tasks. The purpose of this approach is that we hope PCA

can catch only the trends of intra-class micro-differences captured by the displacement

features and reduce the redundancy of the displacement features.

Furthermore, to discover the class-wise trends of the displacement features, we

analyze the behaviors of the displacement features with different discussions. First,

we visualize the displacement features based on an HSV color model to observe the

inter-class and intra-class behaviors of the displacement features from the same and

different categories. Next, we summarize the displacement features on all feature maps

in each class and illustrate the cumulative histograms to understand the distribution

of the displacement features. Then, we introduce the same PCA models as before to

further analyze the properties of the displacement features and compare the similarity

of class-wise subspaces spanned by the first 𝑁 largest principal components between

different categories. Finally, we compare the confusion matrices that are obtained

by the recognition only using the pooling features, displacement features, and the

proposed method to observe which samples are improved or degraded by combining

the displacement features.

1.2.3 Utilization of Displacement Features in Offline Signature

Verification Tasks

For the offline signature verification tasks, to address the problem that the tradition-

al max-pooling operation absorbs the intra-class micro differences between different

samples, we propose a novel CNN-based architecture that applies the displacement

features to capture the micro differences between the genuine signatures and their

corresponding skilled forgeries [26, 27]. Here, we apply the same strategy to apply

the displacement features as the first approach in the text recognition tasks. We does

not apply the PCA-based cosine features because there are many users (classes) in

this task. We take the displacement features as the key features to represent the mi-

cro difference between the genuine signatures and their corresponding skilled forgeries
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and fuse it with the pooling features to combine the merits both in the displacement

features and pooling features as a feature extraction procedure.

We describe the proposed verification system in two phases. In the feature ex-

traction phase, we train a CNN between the genuine signatures and skilled forgeries

on a large scale dataset, named GPDS-10000 [28] to capture the general behaviors of

genuine signatures and skilled forgeries. Then, we extract the displacement features

from the first convolutional layer and fuse it with pooling features in another CNN

to capture the micro differences between the genuine signatures and skilled forgeries.

After the CNN training process, we take the trained CNN architecture as a feature ex-

tractor to obtain the discriminative features from original signature images. Then, we

apply linear Support Vector Machines (SVMs) and RBF kernel SVMs as the writer-

dependent classifiers for each user to build a complete signature verification system

and evaluate the learned features.

1.3 Novelty and Contributions

The novelty and contributions of this thesis are summarized as follows.

∙ The position coordinates (displacement features) of the maximums are extracted

and presented from pooling windows in the max-pooling operation and exploring

how to use the displacement features to capture the “inter-class” or “intra-class”

micro differences between different samples in the max-pooling operation with

a similar strategy.

∙ The class-wise trends of the max-pooling operation are mined by using displace-

ment features, which includes analysis of the visualizations and distribution of

the displacement features, and comparison of the similarity matrices and confu-

sion matrices on displacement features. Through the analysis, the displacement

features could capture some micro differences which are useful for some specific

tasks.
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∙ Exploring the methods of combining the pooling features and displacement

features for text recognition tasks. The proposed method achieves state-of-the-

art results on MNIST, HASY, and Chars74k-font datasets.

∙ Applying the proposed displacement features to capture micro differences be-

tween genuine signatures and their corresponding skilled forgeries for building

offline signature verification systems. The extensive experimental results and

analysis on GPDS-150, GPDS-300, GPDS-1000, GPDS-2000, and GPDS-5000

datasets demonstrate that the proposed method can achieve drastic improve-

ment in the offline signature verification task.

1.4 Thesis Structure

This thesis is organized as follows.

∙ Chapter 1: This chapter gives the general introduction of this thesis. At first,

It describes the background and the problems that are existed in the traditional

max-pooling operation. Then, it introduces the objectives, solutions, and two

real-world applications (text recognition and offline signature verification tasks)

that apply the proposed displacement features to capture the “inter-class” or

“intra-class” micro differences in different samples. Finally, it summarizes the

novelty and contribution of this thesis.

∙ Chapter 2: This chapter gives an overview of related work. First, it introduces

some pooling based methods in modern deep neural networks and discusses the

merits and drawbacks of different pooling methods. Then, it summarizes some

CNN and max-pooling based models in the field of text recognition and com-

pares them with the proposed method. Finally, it summarizes some handcrafted

feature extractors, deep learning-based feature extractors, and novel offline sig-

nature verification systems and discusses their advantages and disadvantages
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compared with the proposed verification system.

∙ Chapter 3: This chapter defines the proposed displacement features in de-

tail. First, it introduces how to extract the displacement features and pooling

features simultaneously from the max-pooling operation in a pre-trained CNN-

based architecture. Then, it introduces how to address the multiple maximal

values in a pooling window.

∙ Chapter 4: Since the inter-class micro differences are very common in text

recognition tasks, this chapter introduces how to apply the proposed displace-

ment features to capture the inter-class behaviors of the max-pooling operation

in text recognition tasks. First, it introduces how to combine the displacement

features and pooling features in a CNN-based architecture. Then, to further

improve the recognition performance, it presents how to transfer the displace-

ment features into consine features in PCA subspaces. Finally, it presents the

experiment results on MNIST, HASY, and Chars74k-font datasets and designs

a series of analysis to discover the class-wise trends of the displacement features.

∙ Chapter 5: Since the forged signatures are obtained by practiced imitators,

the differences between the genuine signatures and skilled forgeries are very

tiny. This chapter introduces a similar strategy with the text recognition tasks

to apply the displacement features to capture the micro differences (intra-class

behaviors) between the genuine signatures and their corresponding skilled forg-

eries for offline signature verification systems. First, it introduces how to train

a CNN between genuine signatures and skilled forgeries and extract the dis-

placement features from this trained CNN. Next, it presents how to train a

CNN-based feature extractor by using the displacement features. Then, it in-

troduces the procedure of training the writer-dependent classifiers for building

a complete verification system. Finally, it presents the verification results on

GPDS-150, GPDS-300, GPDS-1000, GPDS-2000 and GPDS-5000 datasets.
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∙ Chapter 6: This chapter summarizes the conclusion, followed by reflections

and future recommendations as well as concluding remarks of this thesis.
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Chapter 2

Related Work

CNN, as one of the most popular deep learning-based architectures, achieves great

success in text recognition [29, 30, 31, 32, 33] and offline signature verification [34, 35,

36, 37, 38] tasks. A pooling operation after a convolutional layer is very common to

build deep architectures. In recent years, many researchers focus on different pooling

operations to improve the performance of deep learning-based architectures [39, 40,

41]. The pooling operations can reduce the dimension of input features and absorb

some structural deformations from small shifts and distortions [24], which makes the

deep learning models more efficient.

2.1 Pooling Operations in Deep Learning Models

2.1.1 Improved Traditional Pooling Operations

To address some problems in conventional pooling operations, many researchers focus

on extending and improving the max-pooling or average pooling [42, 43, 44, 45, 46].

In [47], Zhai et al. proposed S3Pool that extends the standard max-pooling operation

by decomposing max-pooling into two steps: max-pooling with stride one and a non-

deterministic spatial downsampling step by randomly sampling rows and columns

from a convolutional feature map. They observed that this general stochasticity acts

35
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as a strong regularizer, and can also be seen as doing implicit data augmentation by

introducing distortions and deformations in the convolutional feature maps.

To handle the problems that the MP2-pooling (2 × 2 max-pooling operation) re-

duces the size of the hidden layers so quickly and the disjoint nature of the pooling

regions can limit generalization, Graham [42] proposed Fractional Max-Pooling (FM-

P) to reduce the spatial size of the image by a factor of 𝛼 with 1 < 𝛼 < 2. FMP

introduces a degree of randomness to the pooling process, which is very useful for

overcoming the overfitting in the traditional CNNs.

To regularize CNN-based architectures, Yu et al. [43] proposed mixed pooling that

was inspired by the random Dropout [48] and DropConnect [49] methods. Similarly,

Wei et al. [44] proposed an intermediate form between max and average pooling called

Polynomial pooling (P-pooling) to provide an optimally balanced and self-adjusted

pooling strategy for semantic segmentation. Although these researches improve the

traditional pooling operations for different tasks, the spatial information lost in the

max-pooling operation is not considered to capture the micro differences between

different samples.

2.1.2 Novel Pooling Operations

Considering the limitation of the traditional pooling methods, many novel pool-

ing operations or layers are proposed to address the problems of the traditional

pooling methods in some specific applications such as image detection and classi-

fication [50, 51, 52, 53, 54], handwriting and text recognition [55, 42, 56, 57, 58],

semantic segmentation [59, 60, 61, 44, 62], and other challenging computer vision

tasks [63, 64, 65, 66, 67]. In [50], He et al. introduced a Spatial Pyramid Pooling

(SPP) layer to remove the fixed-size constraint of the network, which is robust to

object deformation. In [52], Kobayashi proposed a novel trainable local pooling func-

tion guided by the global features beyond the local ones. The parameterized pooling

form is derived from a probabilistic perspective to flexibly represent various types of
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pooling and then the parameters are estimated by using statistics in the input feature

map.

More recently, Gao et al. proposed Local Importance-based Pooling (LIP) that

can automatically enhance discriminative features during the downsampling proce-

dure by learning adaptive importance weights based on inputs [53]. LIP addressed

the problem that the traditional downsample layers might prevent discriminative de-

tails from being well preserved, which is crucial for recognition and detection tasks.

Although these novel pooling methods enhance the performance of the CNN-based

architectures in different applications, to compensate for the spatial information lost

in the traditional pooling operations is not considered.

2.1.3 Spatial Information in Pooling Operations

A few studies also focus on the position information and especially the displacement

information in pooling operation [68, 69, 70, 71, 72]. Qian et al. proposed the Max-

Pooling Positions (MPPs) as an effective discriminative feature to predict category

labels for traffic sign recognition [68]. For example, in a 2 × 2 pooling window, they

defined a quaternary encoding, ‘1000, 0100, 0010, 0001’, where the ‘1’ represents the

position of the maximal value in pooling windows. Through experiments, they found

that MPPs demonstrate the ideal characteristics of small inter-class variance and

large intra-class variance.

To further explore the spatial information in the max-pooling operation, Zhao et

al. proposed a novel architecture, the Stacked What-Where Auto-Encoders (SWWAE)

which represents the position of maximum in a pooling window [69]. The position

information in this paper is similar to our work. However, it used this information

just for an “unpooling” operation, but our work combines the displacement features

with pooling features for address the problem that the micro differences are absorbed

by the max-pooling operation. In [70], Sun et al. weighted sum bilinear pooling

that considers the spatial location of the convolutional features. In this research,
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the authors applied the spatial location as the weight to multiply the original fea-

tures. Then, the average pooling operation is used to reduce redundancy. Compared

with our method, we combine the spatial location with the pooling features in one

framework, but this research separately obtained these two features.

By just preserving the maximum value of each window, the max-pooling operation

introduces problems, such as coordinate transform and structural deformation prob-

lems. To solve the coordinate transform problem, Liu et al. defined a new operation

in CNNs, called “CoordConv” [73], which allows convolutional filters to know where

they are by adding extra input channels that contain coordinates of the original da-

ta. The “CoordConv” operation can learn perfect translation invariance and varying

degrees of translation dependence at the same time. However, this work only adds

the “CoordConv” operation between the convolutional layer and max-pooling layer,

which does not change the max-pooling operation in deep insight.

To overcome the limitation of modeling geometric transformations in CNNs, Dai

et al. proposed a new pooling operation, called “deformable RoI pooling” [74], which

adds an offset to each bin position in the regular bin partition of the previous RoI

pooling [18, 75]. Compared to the proposed method, it just converts a rectangu-

lar region input of arbitrary size into fixed-size features but does not combine this

information with the pooling features for classification tasks. The purpose of the pro-

posed method is to improve the max-pooling operation by combining the position, or

displacement information of the maximal value for recognition tasks.

Compared to the existing pooling operations, the proposed method in this thesis

considers spatial information lost in the traditional max-pooling operation. This spa-

tial information can capture micro differences between different samples. Although

this is the reverse of the ordinary usage of the max-pooling for absorbing the mi-

cro differences, it plays an important role in text recognition and offline signature

verification task.
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2.2 Literature Review for Text Recognition

Text recognition is an active research area that attempts to develop a computer

application with the ability to automatically read the text from images [76]. The text

recognition systems are very common in our daily life, such as financial purposes [77,

78, 79], transportation [80, 81, 82], healthcare [83, 84, 85], etc. Therefore, to build

a robust and safe text recognition systems is very important for specific real-world

applications [86, 87, 88].

2.2.1 CNN-based Models for Text Recognition

In the field of text recognition, compared to many traditional feature learning tech-

niques [89, 90, 91, 92, 93], CNN based models have shown a powerful performance in

different challenging tasks, such as handwriting recognition [94, 95, 96, 97, 98], scene

text recognition and detection [99, 100, 101, 102, 103], script recognition [104, 105,

106, 107, 108], etc. Generally, the CNN-based architectures are often applied to build

end-to-end recognition systems or feature extractors for extracting the discriminative

features in different applications.

In [29], Wu et al. applied CNN shape models to over-segmentation, geomet-

ric context modeling and character recognition. Then, they integrated this model

with Neural Network LMs (NNLMs) and obtained the state-of-the-art performance

on handwritten Chinese text recognition task. In [109], Liu et al. proposed a real-

time scene text recognition method, called “SqueezedText”, which combined a Binary

Convolutional Encoder-Decoder Neural network (B-CEDNet) and a Bidirectional Re-

current Neural Network (Bi-RNN). In [13], Wang et al. proposed a novel writer-aware

CNN based on parsimonious HMM (WCNN-PHMM) to address the large vocabulary

and the diversity of writing styles in offline Handwritten Chinese Text Recognition

(HCTR) tasks. This method is the first study of writer adaptation for offline HCTR.
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2.2.2 Pooling Operations in Text Recognition

Recently, Many pooling based architectures are proposed for different text recognition

tasks [110, 111, 95, 55, 112]. In [110], Gao et al. proposed a graph Pooling (gPool)

layer in Graph Convolutional Networks (GCN), which applies a trainable projection

vector to measure the importance of nodes in graphs. By selecting the most 𝑘 im-

portant nodes to form the new graph, gPool achieves the same objective as regular

max-pooling layers operation on images and texts. In [111], Zhang et al. proposed the

Deep Contextual Stroke Pooling (DCSP) for scene text recognition. The proposed

DCSP discovers the most prominent stroke information by using stroke detectors and

captures the spatial context of discriminative strokes by learning contextual factors.

In [95], Xiao et al. applied global pooling for building very compact online Hand-

written Chinese Character Recognition (HCCR) systems. In this research, They also

proposed DropWeight for pruning redundant connections in the CNN architecture to

improve the performance.

More recently, Kim et al. claimed that pooling operations lose information regard-

ing spatial relationships and are likely to misclassify objects based on their orientation

or proportion [113]. Then, They applied the capsule network for the text recognition

task. The motivation for this research is very similar to this thesis. But, we use

spatial information as the new features to compensate for the max-pooling operation,

which is the main difference between these two researches.

2.3 Literature Review for Offline Signature Verifica-

tion

In the field of offline signature verification, it aims to verify whether a signature image

is written by a genuine writer or a skilled forger [114, 115, 116]. Generally, signature

verification systems are divided into two categories: online and offline [117, 118,
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119, 120]. For online systems, the data is collected as a sequence which includes the

positions of the pen, pressure coordinate sequence, pen elevation coordinate sequence,

etc [121]. For offline systems, the data is collected from digital images. Since the

dynamic information is not available in offline signature verification systems, the task

becomes very challenging. In addition, the forgeries can be deliberately imitated by

practiced persons, which also increases the difficulty for the verification systems.

2.3.1 Handcrafted Features for Offline Signature Verification

Traditional offline signature verification systems often use different handcrafted fea-

tures to train the writer-dependent or writer-independent classifiers, such as geometri-

cal features [122], Local Binary Patterns (LBP) features [123], Scale Invariant Feature

Transform (SIFT) features [124], and Histogram of Oriented Gradients (HOG) fea-

tures [125], etc. There are many types of researches that focus on designing robust

features [126, 127, 128, 129, 130] to build signature verification systems.

In [128], Okawa proposed a feature extraction method based on a Fisher Vector

(FV) with fused “KAZE” features from both foreground and background signature

images. The “KAZE” features consider the structures between strokes and stroke

contour information more effectively. In [127], Zois et al. proposed the post-oriented

grid features which encode the geometric structure of the signatures by grid templates.

However, using the handcrafted features is hard to discriminate the genuine signatures

and the corresponding skilled forgeries and often need to set different parameters for

specific tasks, which is hard to apply to other verification systems and large scale

applications. To address this issue, designing an appropriate feature extractor to

automatically learn the discriminative information between the genuine signatures

and skilled forgeries is very important for offline signature verification systems.
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2.3.2 Deep Learning-based Features for Offline Signature Ver-

ification

In recent years, the deep learning-based models have widely applied to online and

offline signature verification systems [131, 132, 133, 134, 135], which demonstrates

the powerful performance of the deep learning-based architectures for extracting the

discriminative features for different signatures. In the field of offline signature verifi-

cation, some deep learning-based features are proposed to capture the behaviors of d-

ifferent signatures and build the complete verification systems [131, 136, 137, 138, 34].

Due to the limitation of the handcrafted features, many deep learning-based fea-

ture extractors are proposed in recent years [131, 136, 137, 132]. In [137], Zhang et

al. proposed an unsupervised feature for offline signature verification based on Deep

Convolutional Generative Adversarial Networks (DCGANs), which has a robust gen-

eralization ability compared to handcrafted features. In [131] and [136], Hafemann et

al. proposed a CNN based feature extraction approach, named “Signet” to obtain the

discriminative features not only between the genuine signatures and skilled forgeries

but also between the different users. However, the “Signet” cannot capture the micro

differences between the genuine signatures and corresponding skilled forgeries and

only trained on 531 different users cannot apply to large scale verification tasks.

2.3.3 Other Novel Offline Signature Verification Systems

In recent years, many novel offline signature verification systems are proposed, which

promotes the development in this field [139, 140, 141, 142, 143]. In [139], Hafemann

et al. characterized and evaluated adversarial examples for offline handwritten sig-

nature verification systems. This research based on two gradient-based attacks, the

Fast Gradient Method (FGM) and the Carlini & Wagner attack (C&W), and two

gradient-free attacks that can be used even if the features and/or classifiers are non-

differentiable. This work evaluated the robustness and investigated the impact of
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adversarial examples for genuine signatures. In [140], Gumusbas and Yildirim first

aim to evaluate Capsule Network and compare the results with the CNN-based equiv-

alent model under different input resolutions. They proved that the Capsule Network

is much better than CNN-based architectures to learn representations to differentiate

genuine signatures from skilled forgeries. Also, due to use the signatures with low

resolutions could speed up the verification systems than use the signatures with high

resolutions.

More recently, Hafemann proposed using meta-learning to solve the problems

that a forger practice imitating the genuine signatures, and often can create forgeries

visually close to the original signatures [141]. In particular, the meta-learner guides

the adaptation (learning) of a classifier for each user, which is a very efficient operation

that only requires genuine signatures. The meta-learning also learns what is common

for the classification across different signers. Compared to the previous methods,

the proposed method can train with a huge number of users to capture the micro

differences or distortions between the genuine signatures and skilled forgeries, which

is very useful for signature verification systems.
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Chapter 3

Mining the Displacements of

Max-pooling

In this chapter, we introduce how to extract the proposed displacement features from

the max-pooling operation in detail. First, we present how to extract the pooling

features and their corresponding position coordinates simultaneously from the max-

pooling operation in a pre-trained CNN. Then, we introduce the displacement features

based on the position information and how to transform the position information into

the displacement features. Finally, we present how to address the problem if there is

more than one maximal value in a pooling window.

3.1 Extracting Displacement Features from a Pool-

ing Layer

In traditional CNNs, the max-pooling operation only obtains the maximum value from

the pooling windows in the convolutional feature maps. Its result is a down-sampling

of the convolutional feature maps which retain the maximum response. However, in

this step, the max-pooling operation does not record where the maximal value is. In

this situation, the max-pooling operation may lose crucial spatial information from

45
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Figure 3-1: The position information in a 3 × 3 pooling window.

the original convolutional feature maps. In other words, we only know the specific

maximal features in the feature maps, but we do not know where they came from.

In order to address this problem, we extract the pooling features and their cor-

responding position coordinates simultaneously. For any element in the pooling fea-

tures, the corresponding position coordinate can be described as (𝑝𝑠, 𝑝𝑡) as shown in

Fig. 3-1,

𝑝𝑠 = argmax
𝑠

F𝑛×𝑛
(𝑠,𝑡) , (3.1)

𝑝𝑡 = argmax
𝑡

F𝑛×𝑛
(𝑠,𝑡) . (3.2)

Here, 𝑠 and 𝑡 are the horizontal and vertical coordinates, argmax
𝑠

F𝑛×𝑛
(𝑠,𝑡) and argmax

𝑡
F𝑛×𝑛

(𝑠,𝑡)

represent the horizontal and vertical coordinates of the maximal value in a 𝑛×𝑛 pool-

ing window F𝑛×𝑛, respectively. The size of the position coordinates are same as the

pooling features. If the pooling size is 𝑛× 𝑛, 𝑝𝑠 and 𝑝𝑡∈ {0, 1, · · · , 𝑛− 1}.

The position information only represents the location of the maximum in pooling

windows, it can not represent the displacements of maximum. To describe the dis-

placement behavior of maximum, based on the position information, we transform it

into the displacement features by the simple mathematical transformation. Since the

pooling size can be set to even and odd, we calculate the displacement features in

two different conditions.
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Figure 3-2: Extracting displacement features from a 3 × 3 pooling window.

3.1.1 The Case When 𝑛 Is Odd

Fig. 3-2 shows a case of extracting the displacement features and pooling features

when the size of the pooling window is odd. In the odd case, if the maximal value

in the central row or column, the displacement would be zero in the horizontal or

vertical directions. Except for this condition, all unites have displacements in both

horizontal and vertical directions. Then, we transform the position coordinate (𝑝𝑠, 𝑝𝑡)

into a displacement feature (𝑑𝑠, 𝑑𝑡),

𝑑𝑠 = 𝑝𝑡 −
𝑛− 1

2
, (3.3)

𝑑𝑡 = −𝑝𝑠 +
𝑛− 1

2
. (3.4)

Finally, we describe the displacement features in two matrices, D𝑠 and D𝑡 which

represent the displacements of the maximums in horizontal and vertical directions

respectively. As shown in Fig. 3-2, the size of D𝑠 or D𝑡 is as same as the pooling

features.
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3.1.2 The Case When 𝑛 Is Even

Fig. 1-7 shows a case of extracting the displacement features and pooling features

when the size of the pooling window is even. In this case, all units have displacements

in both horizontal and vertical directions. The displacement features (𝑑𝑠, 𝑑𝑡) can be

calculated as,

𝑑𝑠 =

⎧⎪⎨⎪⎩𝑝𝑡 − 𝑛
2
; 𝑝𝑡 <

𝑛
2

𝑝𝑡 + 1; 𝑝𝑡 ≥ 𝑛
2
,

(3.5)

𝑑𝑡 =

⎧⎪⎨⎪⎩−𝑝𝑠 + 𝑛
2
; 𝑝𝑠 <

𝑛
2

−𝑝𝑠 + 𝑛−2
2

; 𝑝𝑠 ≥ 𝑛
2
.

(3.6)

Then, we also describe the displacement features in two matrices, D𝑠 and D𝑡. By

using the proposed method, we can preserve the spatial information and the maximal

response from a pooling window simultaneously. The advantage of this operation is

that the pooling features absorb the geometric deformations and keep the most major

features of the original convolutional features, and the displacement features keep the

spatial information and capture the micro differences between different samples.

3.2 Multiple Maximal Values Condition

The previous section only discusses a single maximum in a pooling window. Howev-

er, for some examples of extracting D𝑠 and D𝑡 from the displacement information,

pooling windows may contain several maximums. Fig. 3-3 presents some cases with

this problem. For an extreme example, if a pooling window contains a single back-

ground, all the units in the pooling window are the same. If we apply the traditional

max-pooling operation, only the first unit would be recorded. In this situation, the

displacement should not occur because of a single value background.

To solve this problem, we first extract all the displacement features of the maxi-

mums in one pooling window. Then, we calculate the mean value of the displacement
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Figure 3-3: Different cases of multiple maximum. (a) the displacement features are (-
1,1),(0,1),(1,1), so the mean displacement feature is (0,1). (b) Displacement features:
(-1,1),(-1,0),(-1,-1). Mean displacement feature: (-1,0). (c) Displacement features:
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2
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3
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features as the final displacement features. The results would be displacement features

with possibly non-integer values.

3.3 Summary

In this chapter, we introduce the proposed displacement features in detail. The dis-

placement features are defined on the position coordinates of maximums in pooling

windows, which could compensate for the spatial information lost in the traditional

max-pooling operation of CNNs. To extract the displacement features, we first ex-

tract the maximum and its position in a pooling window at the same time. Then,

we transform this position information into the displacement features to record the

direction information of the maximum. To address the multiple maximal values in

a pooling window, we calculate the mean value of the displacement features as the

final displacement features. The next chapters will introduce how to apply the dis-

placement features for some specific tasks to capture the micro differences between

different samples.
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Chapter 4

Experiment on Text Recognition

In this chapter, the displacement features are applied to capture the inter-class be-

haviors of the max-pooling operation in the text recognition tasks. As we discussed

before, the inter-class micro differences are absorbed by the traditional max-pooling

operation, which is very common in the text recognition tasks. However, the inter-

class micro differences are very important and should not be ignored. The displace-

ment features will capture them and thus we need to utilize them. The experiments

designed in this chapter are to prove that the CNN-based architectures could capture

these inter-class micro differences by the proposed displacement features.

To evaluate the effectiveness of the proposed displacement features, we design a

series of experiments on several text recognition datasets. To utilize the displacement

features, we introduce two different architectures to combine the displacement features

with the pooling features to improve the performance of CNNs for the text recognition

task. The first architecture fuses the two features in a multi-modal CNN by having

a second set of convolutional layers and combining them in the fully connected layer.

The second architecture transforms the displacement features into the new cosine

features based on PCA and combines the new cosine features with the pooling features

in a similar way as the first architecture. Then, we use the MNIST dataset 1 for text

1http://yann.lecun.com/exdb/mnist/
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recognition and to discover the class-wise trends of the displacement features. Finally,

we propose several frameworks that use the displacement features for text recognition

on HASY 2 and Chars74K-font datasets 3.

4.1 Using the Displacement Features for Text Recog-

nition

In this section, we introduce how to combine the displacement features with the pool-

ing features to capture the inter-class micro differences between different samples and

improve the performance of CNNs for the text recognition task. The first architecture

fuses the two features in a multi-modal CNN by having a second set of convolutional

layers and combining them in the fully connected layer as shown in Fig. 4-1. The

second architecture transforms the displacement features into the new cosine features

based on PCA and combines the new cosine features with the pooling features in a

similar way with the first architecture as shown in Fig. 4-2.

4.1.1 Combining the Displacement Features with Pooling Fea-

tures Based on CNNs

Since the size of the displacement features is the same as the pooling features from the

same convolutional layers, we can use a CNN with similar hyper-parameters as the

original CNN to process the pooling features and displacement features simultaneous-

ly. To combine the displacement features in a CNN-based framework, we first use a

standard CNN on one batch of training samples. Then, we extract the displacement

features from the first convolutional layer. The next step is to use another same CNN

without the first convolutional and pooling layers on the displacement features. The

2http://zenodo.org/record/259444#.XB8r6PZuJPY
3http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/
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Figure 4-1: The architecture of the proposed method that combining the displacement
features and pooling features in a CNN-based architecture. Here, D𝑠 and D𝑡 represent
the horizontal and vertical directions of the displacement features.

final step is to fuse the pooling features and the new displacement features in a fully

connected layer.

The structure of the network is illustrated in Fig. 4-1. This architecture contains

two convolutional and pooling layers, three fully connected layers, and the final layer

uses the softmax for classification. Here, we extract the displacement features from

the first CNN (pre-trained). Then, we train the whole networks together and update

the weights of whole architectures.

4.1.2 Extracting the Cosine Features Based on the Displace-

ment Features and Principal Component Analysis (P-

CA)

To further explore more information on the displacement features, we propose a new

feature based on PCA. The goal of PCA is to build the low-dimensional representation

that describes high-dimensional data with as much of the variance in the data as
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possible. Due to the high dimensionality of the displacement features, PCA can

reduce some redundancy and preserve the primary information of the displacement

features. Besides, employing PCA can catch only the trends of the intra-class micro-

differences captured by the displacement features, which is similar to have a penalty

for the pooling features.

In order to apply PCA to the displacement features, we design the architecture as

in Fig. 4-2. For the all training data, we first obtain their corresponding displacement

features and divide them into 𝐶 groups where 𝐶 is the number of classes. For each

group, we use a PCA model to get the cosine features, or,

cos 𝜃 =
d ·

∑︀𝑘
𝑖=1 𝜆𝑖𝜈𝑖

|d||
∑︀𝑘

𝑖=1 𝜆𝑖|
, (4.1)

where d is the vector that concatenates the displacement features both in horizontal

(D𝑠) and vertical (D𝑡) directions, 𝜆𝑖 is the 𝑖-th eigenvalue of 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑖, . . . , 𝜆𝑘),

𝑘 is the number of largest eigenvalues that we want to use in PCA, and 𝜈𝑖 is the 𝑖-th
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Figure 4-3: The Samples from MNIST dataset.

eigenvector corresponding to 𝜆𝑖. If a displacement feature space is similar to the PCA

space, then the value of cos 𝜃 will close to 1. For a test sample, if the label is the

same as one sample in training data, it should have a very similar cos 𝜃. Combining

(concatenating) the cosine features with pooling features in a fully connected layer is

similar to have a penalty for the pooling features.

4.2 Classification on MNIST Dataset

To evaluate the proposed displacement features and cosine features, we design a

series of experiments on the MNIST dataset. MNIST is an isolated handwritten digit

dataset that has a training set of 60,000 samples (55,000 samples for training and

5,000 samples for validation), and a test set of 10,000 samples with a size of 28 × 28

pixels. Fig. 4-3 shows some samples from the MNIST dataset.

In the first architecture, we used different pooling sizes from 2 × 2 to 6 × 6 to

evaluate the performance of the displacement features. For example, if the pooling

size is 2 × 2, the corresponding displacement features belong to [−1, 1]. We used

cross entropy as the loss function, and minimize it by Adam [144] with a 1 × 10−4

learning rate, the batch size, and the number of iterations are set to 50 and 20,000,

respectively.

The second architecture is based on the first model. We computed the cosine fea-

tures from the displacement features to further penalize the pooling features. We just

used 10% of eigenvalues to build the cosine features. This is because only the largest
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eigenvalues retain the crucial information of the original data, and other information

is redundancy or noise in most cases. Then, we combined the cosine features with

the pooling features in the fully connected layer.

The experimental results are shown in Table 4.1. From Table 4.1, we can see that

with the size of the pooling windows increasing, the performance of the displacement

features increases too. It is easy to understand because the larger pooling windows

will provide more displacement information for the learning procedure. Using only

the displacement features for classification can also obtain high accuracy. In addi-

tion, combining the displacement features from the first convolutional layer with the

pooling features improves the classification accuracies for all pooling sizes. However,

combining the displacement features from the second layer with the pooling features

does not improve the accuracy. The reason for this could be that the displacement

features from the second layer have already lost the spatial information of the first

layer. We also find that only combining the cosine features from the second layer

with the pooling features can not get better results by combining the cosine features

from the first layer. Furthermore, combining the displacement features from the first

layer with the pooling features always improves the performance, especially when the

pooling size is 3 × 3.

Fig. 4-4 presents some improved samples (misclassifications by the only pooling

features trial but correct classifications by the pooling+cosine features trial) and

degraded samples (correct classifications by the pooling features trial but misclassifi-

cations by the pooling+cosine features trial). There are many ‘9’s that are improved

by the cosine features. These ‘9’s are recognized as ‘4’s or ‘7’s by the pooling features

alone. It is easy to understand that ‘9’, ‘7’, and ‘4’ have similar local features and

traditional CNNs might downsample those features with max-pooling so much that

the discriminating information is lost. Therefore, introducing the cosine features acts

as a penalty for the final decision and introduces the position information of the local

features. However, introducing the cosine features also brings the problem that the
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Table 4.1: Classification accuracy on the MNIST dataset. Here, ‘Pool’ represents the
pooling features, ‘D𝑠1 ’ and ‘D𝑡1 ’ represent the displacement features in the horizontal
and vertical directions from the first layer. ‘D1’ and ‘D2’ represent the displacement
features from the first and second layers. ‘Cos1’ and ‘Cos2’ represent the cosine
features from the first and second layers.

Pooling
Window 2× 2 3× 3 4× 4 5× 5 6× 6

Pool 0.9932 0.9928 0.9929 0.9912 0.9911
D𝑠1 0.9785 0.9843 0.9821 0.9895 0.9872
D𝑡1 0.9804 0.9835 0.9818 0.9889 0.9896
D𝑠2 0.9758 0.9768 0.9813 0.9823 0.9822
D𝑡2 0.9725 0.9753 0.9802 0.9811 0.9815
Pool + D1 0.9932 0.9940 0.9934 0.9923 0.9920
Pool + D2 0.9922 0.9920 0.9920 0.9902 0.9911
Pool + Cos1 0.9940 0.9943 0.9934 0.9930 0.9928
Pool + Cos2 0.9928 0.9930 0.9929 0.9908 0.9911
Pool + Cos1 + Cos2 0.9940 0.9938 0.9932 0.9930 0.9925

26
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Figure 4-4: Example of improved and degraded samples by using the pooling+cosine
features with 3× 3 pooling size. Here, ‘T’ represents the true class and ‘F’ represents
the false class by prediction.
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Figure 4-5: Confusion matrices by using the ‘D𝑠’ and ‘D𝑡’ features (Displacement
features in horizontal and vertical directions).

network will more sensitive to the local features.

The confusion matrices are shown in Fig. 4-5 and Fig. 4-6. We can see that

only using the displacement features for classification also can obtain relatively high

accuracies. In classes ‘2’ and ‘9’, the vertical displacement features are better than

the pooling features for classification. Besides, combining the displacement features

with the pooling features improved the recognition accuracies on classes ‘3’, ‘4’, ‘5’,

‘7’, ‘8’, and ‘9’, and just degraded a little on classes ‘2’, and ‘6’. For the class ‘9’,

the proposed method is improved a lot when some test samples are misclassified to

classes ‘4’, ‘5’, and ‘7’.

4.3 Discovering Class-wise Trends of the Displace-

ment Features

In this section, we discovered the class-wise trends of the displacement features in

different ways. First, we visualized the displacement features based on an HSV color

model to observe the behaviors of the displacement features from the same and differ-

ent categories. Next, we summarized the displacement features on all feature maps in
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Figure 4-6: Confusion matrices by only using the pooling features and combining the
displacement features with the pooling features.

each class and illustrate the cumulative histograms to understand the distribution of

the displacement features. Finally, we introduced PCA to further analyze the prop-

erties of the displacement features and compare the similarity of class-wise subspaces

spanned by the first 𝑁 largest principal components between different categories.

4.3.1 Visualization of the Displacement Features

To observe the behaviors and analyze the class-wise trends of the displacement fea-

tures, we visualized them based on an HSV color model whose color and intensity

denote the direction and average value of displacement feature. The visualization

results are shown in Fig. 4-7 and Fig. 4-8. We can see that each corresponding dis-

placement feature records the direction information that describes the displacement

of the maximums. The displacement features in the inter-class samples have large

dissimilarities. In addition, we can see that the intra-class samples often have similar

behaviors. For instance, in the first filter of all class ‘3’ samples, the top left corners

are in blue, the top right corners are in green and the bottom right corners are in red.

The reason that only using the displacement features can also obtain high accuracies

for classification tasks is due to the large differences in the class-wise behaviors.
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1

Figure 4-7: Visualization of the displacement features on the different samples that
are in the different classes on MNIST dataset. Here, the pooling size is 3 × 3. Each
column represents one convolutional filter.
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4

Figure 4-8: Visualization of the displacement features on the different samples that
are in the same class on MNIST dataset. Here, the pooling size is 3×3. Each column
represents one convolutional filter.

4.3.2 The Distribution of the Displacement Features

To further observe the behaviors of the displacement features on inter-class samples,

we illustrated the cumulative histograms of the displacement features, which accounts

for the coordinate points of the displacement features of different samples on all

feature maps. Here, the pooling size of the first pooling layer is 3 × 3 and 5 × 5 with

stride 2.

The distribution of the displacement features in the first pooling layer is shown in

Fig. 4-9 and Fig. 4-10. In Fig. 4-10, due to the pooling size being 3× 3, the displace-

ment features D𝑠 and D𝑡 belong to [−1, 1]. We can see that the intra-class samples

have similar distributions and inter-class samples have very different distributions.

For the class ‘1’, there is a relatively horizontal line in the distribution for the two

samples. They are very similar because the displacement information is rare in the

vertical direction (the shape of class ‘1’ goes from top to bottom). For the class ‘2’,

the distribution is more scattered than the classes ‘1’, and ‘3’. For the class ‘3’, there

are more points around (0,0) than classes ‘1’, and ‘2’ and the distribution is more
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7

Figure 4-9: The distribution of displacement features from class ‘1’, ‘2’, and ‘3’ (each
row represents 2 different samples in the same class). Here, the pooling size is 3×3, the
color histograms represent the number of the displacement features on corresponding
coordinate points.



4.3. DISCOVERING CLASS-WISE TRENDS OF DISP. FEAT. 63

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

Class:0

100

101

102

103

104

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

Class:0

100

101

102

103

104

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

Class:1

100

101

102

103

104

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

Class:1

100

101

102

103

104

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

Class:2

100

101

102

103

104

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

Class:2

100

101

102

103

104

Figure 4-10: The distribution of displacement features from class ‘0’, ‘1’, and ‘2’
(each row represents each class). Here, the pooling size is 5× 5, the color histograms
represent the number of the displacement features on corresponding coordinate points.
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Figure 4-11: Visualization of the displacement features in horizontal direction (D𝑠)
by t-SNE.

Figure 4-12: Visualization of the displacement features in vertical direction (D𝑡) by
t-SNE.
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compact. In addition, most values in all of the samples are (0,0) because the most

features in original images are background.

In Fig. 4-10, due to the pooling size being 5× 5, the displacement features belong

to [−2, 2]. We can see that the intra-class samples have similar distributions. For the

class ‘0’, there are some values around the central point (0,0) and their quantities are

about 100. For the class ‘1’, there is a relatively horizontal line on all samples. It is

very similar to class ‘1’ because the displacement information is rare in the vertical

direction. For the class ‘2’, the distribution is more scattered than the classes ‘0’ and

‘1’. In addition, most values in all samples are(0,0), that is because the most features

in original images are backgrounds.

In Figs. 4-11 and 4-12, we also visualized the displacement features of the test

dataset on 2D space by t-SNE [145]. We can see that there is a very clear class-wise

trend of the displacement features. The distance between the intra-class samples is

smaller than the inter-class samples. In Fig. 4-11, the classes ‘1’, ‘4’, ‘5’, and ‘9’ have

more clusters than other classes. But, this phenomenon does not appear in Fig. 4-12.

Therefore, it may mean that the vertical displacement features are better than the

horizontal displacement features for classification tasks.

4.3.3 Class-wise Similarity of the Displacement Features in

the PCA Subspaces

We also measured the displacement features in PCA subspaces to compare the simi-

larities between different categories for observing the class-wise trends of the displace-

ment features. First, we adopted ten different PCA models on the samples, one for

each class. Then, we preserved 10% of eigenvalues for each PCA model to build up

the PCA subspaces. Based on these subspaces, we calculated the class-wise similar-

ity matrix for each feature map. Then, the similarity can be defined by using the
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Figure 4-13: Similarity matrix on the first and second filters in PCA subspaces.

canonical angles,

cos 𝛿𝑖 = sup
𝛼𝑖 ⊥ 𝛼𝑗 ,𝛽𝑖 ⊥ 𝛽𝑗

1 ≤ 𝑖, 𝑗 ≤ 𝑝

𝛼𝑇
𝑖 𝛽𝑖

‖𝛼𝑖‖‖𝛽𝑖‖
. (4.2)

Here, 𝛼 ∈ P,𝛽 ∈ Q, P and Q are two PCA subspaces, P,Q ∈ R𝑛, dim P = 𝑝 ≤

dim Q = 𝑞. Then the similarity can be defined as,

𝑆 =
1

𝑝

𝑝∑︁
𝑖=1

cos2 𝛿𝑖. (4.3)

If two PCA subspaces completely coincide with each other, all canonical angles will be

0, and 𝑆 equals to 1. The similarity gets smaller as the two spaces separate. Finally,

the similarity is zero when the two subspaces are orthogonal to each other [146].

The similarity matrix in PCA subspaces is shown in Fig. 4-13. We can see that

the similarities in different classes are relatively small, which means that the displace-

ment features are discriminative in different classes. In addition, the similarities of

classes ‘4’, and ‘9’, ‘7’, and ‘9’ are larger than others. It means that it is easier to

misclassify classes ‘4’, ‘7’, and ‘9’. Our classification results also showed it. However,

the similarities are all far away from 1, which means that the displacement features

are also discriminative for recognition tasks.



4.4. CLASSIFICATION ON HASY DATASET 67

九州大学UIプロジェクト Kyudai Taro,2007

Kyushu University UI project  Kyudai Taro,2007 15

Figure 4-14: The Samples from HASY dataset.

4.4 Classification on HASY Dataset

The HASY dataset is a dataset of handwritten mathematical symbols. It contains

168,233 instances of 369 classes with size 32×32. Fig. 4-14 shows some samples from

the HASY dataset. We can see that the HASY is a more challenging dataset than

the MNIST dataset because the number of classes in the HASY dataset is larger than

MNIST dataset [1].

Furthermore, there are many classes that are very similar in the HASY dataset,

such as, \xi (𝜉) and \zeta (𝜁) whose shapes are similar when writing them, \varphi (𝜙)

and \phi (𝜑) who have the different glyphs can correspond to the same semantic

entity, \sum (
∑︀

) and \Sigma (Σ) who have the same glyph but different semantics

and hence they are different symbols. It means that the inter-class micro differences

are easily eliminated in this dataset by using the traditional max-pooling operation.

We deployed our experiments on 10 pre-defined folds for 10-fold cross-validation.

In the experiment, we used the PCA-based cosine features that are transformed from

the displacement features on 3-layer (CNN-3) and 4-layer (CNN-4) CNNs and the

CNN-4a architecture [1]. We also compared the proposed method with Random For-

est [147, 148], MLP [149, 148], and LDA [150, 148]. For all CNN based architectures,

Adam optimizer are used for training procedure. The hyper-parameters are the same

as in [1]. The descriptions of the compared models are listed as follows.

∙ Random Forest [147, 1]: Random forests use a large number of decision trees

in an ensemble classifier.
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Table 4.2: Classification results on HASY Dataset.

Models Accuracy
Random Forest [147, 1] 0.624

MLP [149, 1] 0.622
LDA [150, 1] 0.468
CNN-3 [1] 0.784
CNN-4 [1] 0.805
CNN-4a [1] 0.810

CNN-3+ours 0.788±0.005
CNN-4+ours 0.814±0.008
CNN-4a+ours 0.823±0.002

∙ MLP [149, 1]: The multilayer perceptron (MLP) is a fully-connected feed for-

ward neural network.

∙ LDA [150, 1]: Linear Discriminant Analysis (LDA) is a classifier with a linear

decision boundary, generated by fitting class conditional densities to the data

and using Bayes rule.

∙ CNN-3 [1]: CNN-3 is a 3-layer CNN model, which contains a convolutional

layer with 32 filters of 3× 3 kernel size is followed by a 2× 2 max-pooling layer

with stride 2. The next layer is another convolutional layer with 64 filters of

3×3 kernel size followed by a 2×2 max-pooling layer with stride 2. The output

layer is a fully connected softmax layer with 369 nodes.

∙ CNN-4 [1]: CNN-4 is a 4-layer CNN model. Like the CNN-3, it adds another

convolutional layer with 128 filters followed by a 2× 2 max-pooling layer before

the softmax layer.

∙ CNN-4a [1]: CNN-4a is also similar with CNN-3. The convolutional layer is

same as the 3-layer CNN. Then it contains a fully connected layer with 1024

nodes and tanh activation function, a dropout layer with probability 0.5 and a

softmax layer.
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Figure 4-15: Visualization of the displacement features on the different samples that
are in the different classes on HASY dataset. Here, the pooling size is 3 × 3. Each
column represents one convolutional filter. The ground-truths from top to bottom are
‘$", ‘{’, ‘7’, ‘∖Delta (∆)’, ‘∖delta (𝛿)’, ‘∖diomond (◇)’, ‘J’, ‘p’, ‘∖sigma (𝜎)’, ‘∖sim (∼)’.

Table 4.2 shows the 10-fold cross-validation results for three architectures. We

conducted the t-test with confidence value 0.05 on the results. From Table 4.2, we can

see that the proposed method (combining the cosine features with pooling features)

improves the performance of all CNN based architectures and performs significantly

better than other methods. The CNN-4 and CNN-4a models with our method obtain

the best results.

Fig. 4-15 shows the visualization of the displacement features on different inter-

class samples on the HASY dataset. We can see that the different filters can capture
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Figure 4-16: Visualization of the displacement features on the different samples that
are in the same classes on HASY dataset. Here, the pooling size is 3 × 3. Each
column represents one convolutional filter. The ground-truths from top to bottom
are ‘7’, ‘∖delta (𝛿)’, ‘J’, ‘p’, ‘∖sigma (𝜎)’, ‘∖sim (∼)’.
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blue red

blue red

Figure 4-17: One improved sample by using our proposed method. The left is a test
sample that is improved by our method, the upper right is a sample whose label is
same as the misclassified label, the lower right is another sample whose label is same
as test sample.

the different local features in an image, which is shown in the pooling features. For

example, the second filter may focus on the vertical direction in the images. The

third filter may focus on the 45∘ of direction. The finally two filters may focus on the

information from the background. The behaviors of the displacement features from

different classes are also very different. For example, in the first filter, the top part

in class ‘7’ is green from the left to right. However, the top parts in other classes are

hugely different from class ‘7’. In the third filter, the bottom part in class ‘∖Delta (∆)’

is green. However, the bottom part in class ‘∖sigma (𝜎)’ is red. It means that the

displacement features can also capture the different behaviors between the inter-class

samples.

Fig. 4-16 shows the visualization of the displacement features on the different

intra-class samples on the HASY dataset. We can see that the displacement features

present similar behaviors in the same class. For example, in the first filter, the top

part in class ‘J’ is in green and blue directions. In the second filter, the top part

in class ‘J’ is in green and purple, and red directions. In addition, we can see that
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the displacement features can also capture some micro differences from some samples

that are “strange” compared with other samples. For example, a horizontal stroke

exists in some samples in class ‘7’. In the final two filters, the displacement features

may capture the red and green directions from the left part, and the purple and blue

directions from the right part. However, in the polling features, these micro behaviors

may be absorbed by using the traditional max-pooling operations.

Fig. 4-17 shows an example that is improved by the proposed method. The ground-

truth label of this example is \zeta (𝜁). If we only use the pooling features for

classification, it would be classified to \xi (𝜉) (in the upper right of the figure). The

reason is that the pooling features of the \xi (𝜉) and \xi (𝜉) is very similar. For

our proposed displacement features, there is clear discrimination between these two

samples if they are from different classes. For example, the top of the image is in

the blue and red directions in two \zeta (𝜁) samples, and the left edge is in the

blue direction. These good characteristics help for improving the performance of the

max-pooling operation.

4.5 Classification on Chars74k-font Dataset

The Chars74K dataset is composed of several sub-datasets. We used the sub-dataset

which includes characters from computer fonts with different variations (combinations

of italic, bold, and normal). We referred to this sub-dataset as Chars74K-font and it

contains 62,992 samples of 62 classes with the size 128 × 128.

Fig. 4-18 shows some samples from Chars74k-font datasets. It includes 62 cat-

egories from the numbers ‘0’ to ‘9’, capital letters ‘A’ to ‘Z’, and lowercase letters

‘a’ to ‘z’ which are synthesized by different computer fonts. Some categories such as

number ‘0’ and letter ‘O’ are very similar except for several micro differences. After

the max-pooling operation, these inter-class micro differences might be eliminated.

Therefore, the Chars74K-font dataset is also a more challenging dataset than the
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Figure 4-18: The Samples from Chars74k-font dataset.

MNIST dataset.

In the experiment, we also used the PCA-based cosine features that are trans-

formed from the displacement features on there architectures, Lenet [151], Lenet-

5 [151], and SPnet [152]. For SPnet, we used Adam optimizer with a 1 × 10−5 learn-

ing rate, the batch size and iterations are set to 64 and 200,000, respectively. For

our experiments, we used 55% (34,658) samples for training, 20% (12,586) samples

for validation and 25% (15,748) samples for test procedure. The original images are

resized to 28× 28 for Lenet, 32× 32 for Lenet-5, 60× 60 for SPnet. The experiments

are repeated 10 times and the results are shown in Table 4.3. We also compared

the proposed method with many state-of-the-art methods in our experiments. The

methods are listed as follows.

∙ Global DCT [148]: This method uses Discrete Cosine Transform (DCT) to

extract the features from character after normalization for scale and translation.

Then nearest neighbor classifier is used for recognition task.

∙ ART [148]: This method uses Angular Radial Transform (ART) descriptor

to obtain the feature vectors. Then, it uses a nearest neighbor classifier for

classification.

∙ Shape Context [91, 153]: This method uses Sobel edge detector to extract

the features. Then, it uses a nearest neighbor classifier.

∙ SIFT [154, 153]: This method used Harris Hessian-Laplace detector to extract

the Scale Invariant Feature Transform (SIFT). Then it uses the nearest neighbor
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classifier for classification.

∙ Block DCT [148]: This method is based on Global DCT. It performs 8 × 8

block-based DCT and retains 15% coefficients for every block.

∙ Neumann et.al [155]: This method uses directional feature vectors for train-

ing multi-class support vector machines (SVMs) classifier with Radial Basis

Function (RBF) kernel.

∙ Geometric Blur [156, 153]: This method is similar to Shape Context method.

The region around an interest point is blurred according to the distance from

this point. Then, it uses a nearest neighbor classifier.

∙ I2CDML [157]: This method rotated the original images through a range of

angles to form the 3-mode tensor. Then, it uses a rank-1 Tucker decomposition

to get holistic feature descriptor for the character image and applied the image-

to-class distance metric learning for classification.

∙ Lenet [151]: Lenet contains 2 convolutional layers, 2 pooling layers and 3 fully

connected layers.

∙ Lenet-5 [151]: Lenet-5 contains 3 convolutional layers, 2 pooling layers and 3

fully connected layers.

∙ SPnet [152]: SPnet contains 3 convolutional layers, 3 pooling layers and 3 fully

connected layers.

We conducted the t-test with confidence value 0.05 on the results in Table 4.3.

We can see that the proposed methods (combining the cosine features with pooling

features) are significantly better and obtain state-of-the-art results compared with

other methods. Using our method improves the performance of Lenet, Lenet-5, and

SPnet (CNN based models). It means that the proposed method is robust for different

CNN architectures.
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Figure 4-19: Visualization of the displacement features on the different samples that
are in the different classes on Chars74K-font dataset. Here, the pooling size is 3 × 3.
Each column represents one convolutional filter. The ground-truths from top to
bottom are ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’.
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Figure 4-20: Visualization of the displacement features on the different samples that
are in the same classes on Chars74K-font dataset. Here, the pooling size is 3×3. Each
column represents one convolutional filter. The ground-truths from top to bottom
are ‘A’, ‘B’, ‘C’, ‘D’, ‘E’.
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Table 4.3: Classification results on Chars74K-font dataset.

Method Accuracy
Global DCT [148] 0.6630

ART [148] 0.4920
Shape Context [91, 153] 0.6483

SIFT [154, 153] 0.4694
Block DCT [148] 0.6640

Neumann et.al [155] 0.7160
Geometric Blur [156, 153] 0.6971

I2CDML [157] 0.7300
Lenet [151] 0.8839

Lenet-5 [151] 0.8553
SPnet [152] 0.9056
Lenet+ours 0.8896±0.002

Lenet-5+ours 0.8593±0.004
SPnet+ours 0.9145±0.005

Fig. 4-19 shows the visualization of the displacement features on the different inter-

class samples on the Chars74K-font dataset. We can obtain a similar conclusion as

before. The pooling features capture the local information in each filter in an image.

For example, the first filter extracts more features from the top part in different

samples than other parts. The third and fourth filters extract information from the

left and right boundaries of the characters. The final filter extracts the horizontal

information in characters.

For the displacement features, the difference from different samples is relative-

ly huge. For example, in the first filter, the displacement features capture the red

direction in class ‘A’, but the purple direction in class ‘C’. In the final filter, the dis-

placement features capture the green direction in class ‘A’, but the yellow direction

in class ‘H’. We note that, in the final filter, the pooling features are very similar be-

tween the classes ‘A’ and ‘H’, but the displacement features are relatively different in

many parts. It means that the displacement features can help the traditional pooling

features to discriminate the different samples by capturing these micro differences.
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Fig. 4-20 shows the visualization of the displacement features on the different

intra-class samples on the Chars74K-font dataset. We can see that the displacement

features present similar behaviors in the same class and different behaviors from the

different classes. For example, In the first filter, the displacement features can capture

the red direction in the middle stroke of class ‘A’ and the green direction in the top

stroke of class ‘E’. In the final filter, the displacement features can capture the dark

blue direction in the left stroke of class ‘B’ and the purple direction in the left bottom

corner of class ‘C’. The displacement features capture similar behaviors in the same

class, which is very useful for recognition tasks.

4.6 Summary

In this chapter, we present the experiment results and analysis of the text recognition

tasks. First, we show the classification results on the MNIST dataset and discover

the class-wise trends of the displacement features in different ways. Then, we present

the classification result on HASY and Chars74K-font datasets. After analysis and

discussion, we can see that the proposed method can capture some inter-class mi-

cro differences from the max-pooling operation in CNN based architectures. The

displacement features may present different micro differences between similar class-

es. We prove that combining the displacement features with the traditional pooling

features could capture the inter-class micro differences and improve the CNN based

architectures for some specific text recognition tasks. The pooling features can be

described as the main differences between different samples, and the displacement

features present the micro differences between the inter-class samples.



Chapter 5

Experiment on Offline Signature

Verification

In this chapter, we introduce how to apply the displacement features for offline sig-

nature verification tasks. Since the forged signatures are obtained by practiced im-

itators, the differences between the genuine signatures and skilled forgeries are very

tiny. Therefore, capturing these “intra-class” micro differences is crucial for verifica-

tion systems. To address this issue, the displacement features are extracted from a

pre-trained CNN to represent the micro differences between the genuine signatures

and their corresponding skilled forgeries.

In order to build the complete verification system, first, we train a CNN between

the genuine signatures and skilled forgeries on a large scale dataset. Next, we extract

the displacement features from the first convolutional feature maps and fuse the dis-

placement features with pooling features to capture the micro differences between the

genuine signatures and their corresponding skilled forgeries for the feature extraction

procedure. Here, the PCA-based cosine features are not applied in this task because

the number of users (categories) is huge and the users in test set are not include in

train set.

Since this research is mainly to learn the discriminative features between the

79
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genuine signatures and skilled forgeries, we could apply writer-dependent or writer-

independent classifiers to build a complete verification system. Normally, the SVMs

can be used as the writer-dependent classifiers in verification systems. Therefore, we

train the SVMs as the writer-dependent classifiers for each user to build a complete

verification system. Finally, we present the experiment results and discussions on

GPDS-150, GPDS-300, GPDS-1000, GPDS-2000, and GPDS-5000 datasets which

are the subsets of GPDS-10000 dataset 1.

5.1 Capturing Micro Differences by Displacement Fea-

tures for Offline Signature Verification

In this section, we introduce the proposed method to fuse the displacement features

and pooling features as final discriminative features to capture the micro differences

between the genuine signatures and their corresponding skilled forgeries for offline

signature verification systems. First, we introduce a normal CNN-based architecture

trained between the genuine signatures and skilled forgeries. This architecture just

divides all the signatures into two classes, genuine and forged signatures. Then, based

on the pre-trained CNN, we introduce how to extract the displacement features and

fuse it with the pooling features in a combined architecture to further capture the

micro differences between the genuine signatures and skilled forgeries. Finally, we

introduce how to train the SVMs as the writer-dependent classifiers based on the

fused features to build the complete verification system.

1http://www.gpds.ulpgc.es/
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5.1.1 Training a CNN Between the Genuine Signatures and

Skilled Forgeries

To distinguish genuine signatures from skilled forgeries in the feature extraction phase,

we design a CNN-based architecture with 3 convolutional and pooling layers, 2 fully-

connected layers, and a softmax layer. In the convolutional layers, the convolutional

kernel size is 3 × 3 with stride 1, and the number of the filters is 32, 64, and 128,

respectively. The pooling size is 2×2 with stride 2. In the fully-connected layers, the

first fully-connected layer has 2048 hidden nodes and reduces to 1024 in the second

fully-connected layer. Rectified Linear Unit (ReLU) is used as the activation function

for the network. The final softmax layer contains 2 nodes, which is designed to judge

whether the input is a genuine signature or skilled forgery. The cross-entropy is used

as the loss function to train the network.

5.1.2 Extracting and Fusing the Displacement Features with

Pooling Features

To further capture the micro differences between the genuine signatures and skilled

forgeries, we extract the displacement features [26, 27] from the first pooling layer in

previous pre-trained CNN and fuse it with the pooling features. Fig. 5-1 shows the

procedure of the feature extraction. Here, the pooling size is 2 × 2 with stride 2, the

value of the displacement features both in horizontal and vertical directions belongs to

[−1, 1]. The pooling features represent the general information of the signatures from

different channels. The displacement features describe the location information of

maximums in the max-pooling operation, which might capture some micro differences

of forgery signatures when some skilled writers imitated the genuine signatures. The

architecture that we used for fusing the pooling features and displacement features

is shown in Fig. 5-2, which is the same with the architectures in text recognition

tasks. We can see that the architecture for processing the displacement features is
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Figure 5-1: Extracting the pooling features and the displacement features simultane-
ously. Here, the pooling size is 2×2 with stride 2. The displacement features capture
micro differences within the pooling window. The displacement vector (-1,1) means
that the vertical displacement from the center to the maximum value is -1 and the
horizontal displacement is 1.
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Figure 5-2: The procedure of feature extraction and verification.

the same as the pre-trained CNN without the first convolutional and pooling layers.

Here, we divide the displacement into the horizontal and vertical directions and apply

the same architecture. We then fuse the pooling features and displacement features

in the last fully-connected layer to retrain the networks. Finally, we take this trained

architecture as a feature extractor for all signatures. The next step is training the

writer-dependent classifiers to build a complete verification system.
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5.2 Training the Writer-dependent Classifiers

After the CNN training procedure, we extract the fused features of each user from

the CNN-based feature extractor and train the SVM as the writer-dependent clas-

sifiers for building the complete verification systems. It should be noted that this

research is mainly to focus on the feature extraction procedure and capturing the

micro differences between the genuine signatures and corresponding skilled forgeries.

Training the SVM as the writer-dependent classifiers is just one kind of choice in this

procedure. We follow the settings proposed in [133] as a baseline to compare with

other state-of-the-art systems.

For each user (not included in CNN training procedure), we use the genuine signa-

tures as the positive samples and genuine signatures from other users as the negative

samples to build the training set. Then, we choose the linear SVM as the writer-

dependent classifier for each user to build the verification system. This procedure is

shown in Fig. 5-2.

To overcome the imbalanced problem that the negative samples (genuine sig-

natures from the target user) are much more than the positive samples (genuine

signatures form other users), we use different weights for the positive and negative

classes [131]. Then, the SVM objective function becomes,

min
1

2
w𝑇w + 𝐶𝑝𝑜𝑠

𝑀∑︁
𝑖=1

𝑦𝑖=+1

𝜉𝑖 + 𝐶𝑛𝑒𝑔

𝑁∑︁
𝑖=1

𝑦𝑖=−1

𝜉𝑖

𝑠.𝑡. 𝑦𝑖(w
𝑇x𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 and 𝜉𝑖 ≥ 0,

(5.1)

where x𝑖 is a training sample with target value 𝑦𝑖, 𝜉𝑖 is a slack variable, 𝑀 and 𝑁 are

the numbers of the positive and negative samples, 𝐶𝑝𝑜𝑠 and 𝐶𝑛𝑒𝑔 are the weights for

the positive and negative classes,

𝐶𝑝𝑜𝑠 =
𝑁

𝑀
𝐶𝑛𝑒𝑔 (5.2)
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For the testing procedure, we use the remaining genuine signatures of the target user

and the skilled forgeries to build the test set and evaluate the performance of the

complete verification system.

5.3 Experimental Protocol

We conducted the experiments on the GPDS-10000 dataset to evaluate the proposed

method. The GPDS-10000 is a large scale dataset that contains 24 genuine signatures

and 30 skilled forgeries for each user. The number of users is 10,000, so the GPDS-

10000 dataset contains 240,000 genuine signatures and 300,000 skilled forgeries and it

is very suitable for deep learning-based methods. In our experiment, we divided the

GPDS-10000 dataset into two parts, the first 5,000 users, and the final 5,000 users.

For the procedure of training CNN, we used the signatures from the final 5,000

users. To normalize the input images, we first resized all images to 128 × 128. Then,

we use 90% data for training and 10% data for validation to train the network. We

used Adam as an optimizer to minimize the loss function with mini-batch size 32. The

model is trained with 40 epochs. The initial learning rate is set to 1e-4 and reduced

by a factor of 0.95 after each epoch. After the CNN training process, we took the

trained model as a feature extractor to extract the fused features.

To build the signature verification systems, we trained the linear SVMs as the

writer-dependent classifiers for each user. Compared to other state-of-the-art meth-

ods, we used 5 sub-datasets, GPDS-150, GPDS-300, GPDS-1000, GPDS-2000, GPDS-

5000 (the first 100, 150, 1,000, 2,000, 5,000 users of GPDS-10000 dataset) for final

evaluation. For a specific user, we randomly selected 5 genuine signatures as the posi-

tive samples and 5 genuine signatures from each of the final 5,000 users as the negative

samples as the training set. For the training process, the weights 𝐶𝑛𝑒𝑔 are found by

grid search with 5-fold cross-validation, and the 𝐶𝑝𝑜𝑠 is calculated by Equation 5.2.

For the evaluation of the test set, the remaining genuine signatures from the target
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user are used for calculating the False Rejection Rate (FRR). The False Acceptance

Rate for the skilled forgeries (FAR𝑠𝑘𝑖𝑙𝑙𝑒𝑑) experiment has been obtained with forgery

samples of the target user. The False Acceptance Rate for the random impostor

(FAR𝑟𝑎𝑛𝑑𝑜𝑚) experiment has been obtained with the genuine signatures from all the

remaining users. The Equal Error Rate for skilled forgeries experiment (EER𝑠𝑘𝑖𝑙𝑙𝑒𝑑) is

calculated by FAR𝑠𝑘𝑖𝑙𝑙𝑒𝑑 = FRR, and the EER for the random impostor experiment

(EER𝑟𝑎𝑛𝑑𝑜𝑚) is calculated by FAR𝑟𝑎𝑛𝑑𝑜𝑚 = FRR.

5.4 Experimental Results and Discussion

To evaluate the performance of the proposed method, we tested the proposed method

on GPDS-150, GPDS-300, GPDS-1000, GPDS-2000, and GPDS-5000 datasets and

compared it with two baseline models [122, 123] and the traditional CNN based

features with SVMs. In [122], the authors applied a Hidden Markov Model (HMM) on

the geometrical features (GF) for verification systems. In [123], the authors extracted

the LBP features to train the SVMs as the writer-dependent classifiers. For the

traditional CNN model, it just extracts the features from the last fully-connected

layer. Then, using the linear SVMs for each user to build the verification system.

The experimental results are the averages of all users with 10 trials.

Table 5.1 shows the results in skilled forgeries experiment. This experiment is

to verify whether the query samples are genuine signatures or skilled forgeries. We

can see that only using the SVMs with features extracted from a traditional CNN

can achieve the desired results. The proposed method obtains better results than

the other two baseline models on all datasets. When the number of the randomly

selected samples increased to 10, the EERs are smaller than before, which means

that using more samples to train the SVMs can improve the performance of the

verification systems. In addition, as the datasets become larger (the number of users

is increasing), the EER becomes higher when using the traditional models. It means
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Table 5.1: The skilled forgeries experiment (EER𝑠𝑘𝑖𝑙𝑙𝑒𝑑 in %). The 5 samples and 10
samples represent the randomly selecting 5 or 10 samples of each user for training the
SVMs.

Dataset HMM+GF [122]
(5 samples)

SVM+LBP [123]
(5 samples)

Traditional CNN
(5 samples)

Proposed
(5 samples)

Proposed
(10 samples)

GPDS-150 11.48 16.45 8.34±0.52 7.45±0.41 6.32±0.35
GPDS-300 12.11 16.50 8.41±0.61 7.48±0.52 6.25±0.41
GPDS-1000 11.07 17.01 8.31±0.47 7.12±0.45 6.43±0.38
GPDS-2000 11.34 16.63 8.20±0.42 7.23±0.53 5.92±0.41
GPDS-5000 11.10 16.93 8.08±0.53 7.15±0.48 6.11±0.47

Table 5.2: The random impostor experiment (EER𝑟𝑎𝑛𝑑𝑜𝑚 in %), where micro differ-
ences are not important.

Dataset HMM+GF [122]
(5 samples)

SVM+LBP [123]
(5 samples)

Traditional CNN
(5 samples)

Proposed
(5 samples)

Proposed
(10 samples)

GPDS-150 4.17 1.31 4.89±0.48 4.64±0.38 3.08±0.33
GPDS-300 4.32 1.45 4.77±0.52 4.72±0.54 3.23±0.42
GPDS-1000 4.37 1.63 4.82±0.58 4.91±0.43 3.17±0.35
GPDS-2000 4.44 1.73 4.94±0.42 4.95±0.55 3.22±0.41
GPDS-5000 4.53 1.63 4.56±0.43 4.58±0.41 2.84±0.43

that the traditional models are not general for all the users. The proposed method is

more stable than the traditional models when the dataset size becomes huger.

Table 5.2 shows the results in random impostors experiment. This experiment is

mainly to discriminate different users. Since the purpose of the feature extractor is

to capture different behaviors between the genuine signatures and skilled forgeries,

the proposed method does not obtain the best results on this experiment. However,

we achieve a competitive performance compared to the baseline models. Even if

the model in [123] can classify the different users well, the ability to distinguish the

genuine signatures and skilled forgeries of this model is far worse than the proposed

method.

Then, to further improve the performance of the verification system, we applied

the SVMs with Radial Basis Function (RBF kernel) as the writer-dependent classifiers

to build the verification system. The RBF kernel can achieve nonlinear maps that

change each linearly inseparable problem into a separable one. The parameter, weight

𝐶𝑛𝑒𝑔 is found by grid search on the validation set, and the 𝐶𝑝𝑜𝑠 is calculated by
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Table 5.3: The skilled forgeries experiment (EER𝑠𝑘𝑖𝑙𝑙𝑒𝑑 in %). The 5 samples and 10
samples represent the randomly selecting 5 or 10 samples of each user for training the
RBF kernel SVMs.

Dataset Traditional CNN
(5 samples)

Traditional CNN
(10 samples)

Proposed
(5 samples)

Proposed
(10 samples)

GPDS-150 8.24±0.48 7.48±0.35 7.31±0.35 6.24±0.42
GPDS-300 8.28±0.42 7.35±0.26 7.21±0.52 6.11±0.33
GPDS-1000 8.19±0.38 7.07±0.41 6.95±0.31 6.08±0.29
GPDS-2000 8.17±0.35 7.22±0.48 7.11±0.24 5.84±0.33
GPDS-5000 7.98±0.42 7.08±0.39 7.18±0.35 6.05±0.28

Table 5.4: The random impostor experiment (EER𝑟𝑎𝑛𝑑𝑜𝑚 in %). Here, RBF kernel
SVMs are used as the writer-dependent classifiers.

Dataset Traditional CNN
(5 samples)

Traditional CNN
(10 samples)

Proposed
(5 samples)

Proposed
(10 samples)

GPDS-150 4.58±0.39 2.99±0.31 4.59±0.41 2.95±0.42
GPDS-300 4.56±0.43 3.11±0.38 4.60±0.38 3.18±0.37
GPDS-1000 4.64±0.51 3.17±0.39 4.68±0.45 3.11±0.36
GPDS-2000 4.68±0.35 3.08±0.42 4.78±0.47 3.17±0.48
GPDS-5000 4.51±0.38 2.79±0.41 4.49±0.42 2.74±0.46

Eq. (5.2). The parameter, 𝛾 is set to default. Table 5.3 and Table 5.4 show the

results on skilled forgeries and random impostors respectively. We can see that, if we

use the SVMs with RBF kernel function, the results are a little better than SVMs

with a linear kernel. We can also obtain the same conclusion as before, the proposed

method is stable when the dataset size becomes larger.

In addition, we also compare our proposed system with many state-of-the-art

verification systems. The description of the compared systems are listed as follow.

∙ [158]: This system applies a convolutional Siamese neural network for of-

fline signature verification task [159]. It proposes a hybrid similarity layer that

combines the property of Euclidean and Cosine distances. Unlike the other

methods which consider feature extraction and metric learning as two indepen-

dent stages, this system adopts a deep leaning-based framework which combines
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the two stages together and can be trained end-to-end.

∙ [160]: This system consists of two steps: feature extraction and verification.

In the first step of the feature extraction phase, a Residua CNN [19] is trained

on a source task in the handwriting domain. Next, by using a transfer learning

approach, the model will be transferred into the signature domain. Finally,

for the verification phase, SVMs are trained as writer-dependent classifiers for

building a complete verification system.

∙ [161]: This system uses a novel writer-dependent Recurrent Binary Pattern

(RBP) network [162], and a novel signer identification CNN building verifica-

tion system. For the feature extraction phase, signature representations that

are extracted by CNN. Then, the RBP network learns the sequential relation

between binary pattern histograms over image windows, and a novel histogram

selection method is introduced to remove the stop-word codes.

∙ [163]: This system proposes the Multi-Loss Snapshot Ensemble (MLSE) of

CNNs for the feature extraction phase. In this phase, cross entropy, Cauchy-

Schwarz divergence [164], and hinge loss [165] are combined into a dynamic

multi-loss function to train the CNNs. Then, an ensemble of SVMs is trained on

these features, and their decisions are finally combined according to the selection

of most generalizable SVM for each user to build the verification system.

∙ [133]: This system applies AlexNet [166] and VGG [16] For feature extraction

step. In this step, it trains the AlexNet and VGG between different users.

Then, it trains SVMs as writer-dependent classifiers for building a complete

verification system. it also investigates the impact of the depth (number of

layers) of the CNNs, and the size of the embedding layer on learning good

representations for signatures.

∙ [167]: This system proposes a combined system that integrates keypoint graphs
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and inkball models as two complementary handwriting models. First, it calcu-

lates the distance and dissimilarity by using keypoint graphs [168] and inkball

models [169]. Then, it proposes a Multiple Classifier System (MCS) using a lin-

ear combination of the two dissimilarity measures as the combined dissimilarity

score for building the verification system.

∙ [170]: This system proposes an offline signature verification system by using

a deep residual neural network and graph edit distance. First, it calculates

the distance by using metric learning on a deep CNN [19] with the triplet loss

function [171] and keypoint graphs models [172, 168]. Then it uses MCS as

a linear combination of the graph-based dissimilarity and the neural network-

based dissimilarity for building the verification system.

∙ [132]: This system uses Deep Multitask Metric Learning (DMML) [173] to

train a distance metric for each class together with other classes simultaneously.

For feature learning step, pairs of the signatures are fed in two networks for

training. Then, the distance between the two representations is calculated for

building the verification system.

∙ [174]: This system proposes a new descriptor founded on a quad-tree structure

of the Histogram Of Templates (HOT) [175] for the feature extraction step. For

verification step, it proposes a robust implementation of the Artificial Immune

Recognition System (AIRS) [176] which develops new memory cells that are

subsequently used to recognize data through a k Nearest Neighbor (kNN) clas-

sification. Then, the kNN classification is substituted by a Support Vector (SV)

decision, yielding the AIRSV classifier.

∙ [137]: This system uses Deep Convolutional Generative Adversarial Networks

(DCGANs) [177] to learn features From different signatures. After the fea-

ture extraction step, a hybrid writer-independent and writer-dependent clas-

sifier [178] is used, which is an approach compromise two different kinds of
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Table 5.5: Comparison with state-of-the-art systems on the GPDS-10000 dataset
(EER𝑠𝑘𝑖𝑙𝑙𝑒𝑑 in %). ‘#Refs’ represents the number of samples for each user to train
the writer-dependent classifiers.

Systems #Refs Number of user
75 150 300 1000 2000 4000 5000

[158] pairs - - - - 10.37 - -
[160] 5 - - - - - 7.99 -
[160] 7 - - - - - 7.34 -
[160] 10 - - - - - 6.81 -
[161] 5 - - 22.13(0.42) - - - -
[161] 12 - - 14.93(0.18) - - - -
[163] 10 - - - - - 6.13(0.29) -
[133] 10 - - - - - 8.70(0.35) -
[167] 10 6.84 - - - - - -
[170] 10 7.24 - - - - - -
[132] 10 12.83 12.67 - 12.43 12.80 13.3 -
[174] 10 - - - - - 18.32 -
[137] 14 - - - - - 14.79 -
[179] 10 6.62 - - - - - -
[122] 5 - 11.48 12.11 11.07 11.34 - 11.10
[123] 5 - 16.45 16.50 17.01 16.63 - 16.93

Ours 5 - 7.31(0.35) 7.21(0.52) 6.95(0.31) 7.11(0.24) 7.22(0.41) 7.18(0.35)
Ours 10 - 6.24(0.42) 6.11(0.33) 6.08(0.29) 5.84(0.33) 5.92(0.38) 6.05(0.28)

classifiers for building verification systems.

∙ [179]: This system uses two recent graph-based approaches to offline signature

verification: keypoint graphs with approximated graph edit distance [180] and

inkball models [181]. Then, it calculates the dissimilarities between the signa-

ture pairs of these two models. Finally, it uses a MCS to combine these two

dissimilarities as the final score for building verification system.

∙ [122]: This systems proposes new geometrical features which can be extracted

from inside a personal device such as a smart card. For verification system, the

Hidden Markov Models (HMMs) are trained as writer-dependent classifiers for

each user to build the complete verification system.

∙ [123]: This systems uses the Local Binary Patterns (LBP) as the feature

extractor. Then, it trains SVMs as writer-dependent classifiers for each user to

build the verification systems.

Table 5.5 shows the results of comparison with state-of-the-art systems on the

GPDS-10000 dataset. Here, we randomly select 5 and 10 genuine signatures for each
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user to train the RBF kernel SVMs as the writer-dependent classifiers. We can see

that the proposed method obtains the best performance (the lowest EER) on all

subset of the GPDS-10000 dataset. We note that only using 5 genuine signatures for

each user already achieved good results compared with other state-of-the-art systems.

When the number of users is 4,000, the EERs in [160] and [163] are 6.81% and

6.13% which are lower than the 7.22% in our proposed method. However, they use

10 genuine signatures for each user for reference, our method only uses 5 genuine

signatures for reference. When we use 10 genuine signatures for each user, the best

EER is obtained than other systems. This experiment also demonstrates the proposed

method is robust and competitive compared with other state-of-the-art systems.

Fig. 5-3 shows the visualization of the pooling features and displacement features

of some samples on the GPDS-10000 dataset. Here, the left part is the samples

of genuine signatures and the right part is the samples of skilled forgeries. In the

same channel, the pooling features between the genuine signatures and corresponding

skilled forgeries are very similar. But, the displacement features describe the location

information of maximums in the max-pooling operation, which might capture some

micro differences of forgery signatures when some skilled writers imitated the genuine

signatures.

Fig. 5-4 presents two improved examples by using the proposed method. We

visualize the displacement features to observe the micro differences between the gen-

uine signatures and skilled forgeries. If we use traditional CNN based features, they

are classified to the same class (positive class). But using the fused features by the

proposed method, they can be classified correctly.

From Fig. 5-4, we can see that the genuine signatures have similar behaviors on the

displacement features and the skilled forgeries are different from the genuine samples

in some places. For the first example, in the bottom left corner of the first filter, the

genuine samples have some features in yellow and purple directions, but it is rare in

the skilled forgery samples. And in the second filter, the displacement features can
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4

Figure 5-3: Visualization of the pooling features and the displacement features of
some samples on GPDS-10000 dataset. The samples on the left are genuine samples
and the samples on the right are skilled forgeries. For each sub-figure, the upper left
image is the original signature, the first row shows the corresponding pooling features,
and the second row shows the displacement features. Each column represents one
convolutional filter.
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Figure 5-4: Examples improvement of the displacement features by capturing the
micro differences between the genuine signatures and skilled forgeries. Here, all sig-
natures are from the same user. The first column is the original signature images,
the second and the third columns are the displacement features extracted from two
filters.



94 CHAPTER 5. EXPERIMENT ON OFFLINE SIGNATURE VERIFICATION

capture some blue and purple directions in the genuine signatures, but in the skilled

forgeries, the corresponding position is green and red. For the second example, in the

first filter, under the part of ‘A’, the displacement features can capture some blue,

green, and purple directions in the genuine signatures, but in the skilled forgeries, the

corresponding position is purple and red. In the second filter, at the bottom part,

the displacement features can capture some blue and green directions in the genuine

signatures, but in the skilled forgeries, the corresponding position is purple, green,

and red. It means that the proposed method can capture the micro differences or

distortions between the genuine signatures and their corresponding skilled forgeries

from different convolutional filters.

5.5 Summary

In this chapter, we present how to apply the proposed displacement features for offline

signature verification task. First, we train a CNN between the genuine signatures and

skilled forgeries. Then, based on the trained CNN, we extract the displacement fea-

tures from the first convolutional layer. The displacement features capture the intra-

class micro differences between genuine signatures and their corresponding skilled

forgeries. We prove that combining the displacement features with the traditional

pooling features could dramatically improve the CNN based architectures for offline

signature verification tasks, especially in discriminating the genuine signatures and

their corresponding skilled forgeries. We achieve state-of-the-art results on GPDS-

1000 datasets and demonstrate the excellent performance of the proposed verification

system by applying the displacement features for the feature extraction procedure.
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Conclusion and Future Work

6.1 Conclusion

In this thesis, we introduce the negative affects of the traditional max-pooling op-

eration that absorbs the inter-class or intra-class micro differences between different

samples. The elimination of inter-class or intra-class micro differences are very com-

mon for recognition and identification tasks respectively. The motivation of this thesis

is to detect and penalize the cases when the max-pooling operation is going to remove

the important inter-class or inter-individual micro differences.

To address this issue, a new feature named a displacement feature is extracted

from the max-pooling operation. The displacement features record the location infor-

mation of the maximum values in pooling windows. The displacement features could

discriminate unnecessary absorptions from necessary absorptions in max-pooling op-

eration and capture inter-class or intra-class micro differences between different sam-

ples. To improve the performance of the traditional CNN based architectures, we

fused the displacement features with the pooling features for text recognition and

offline signature verification tasks.

For the text recognition tasks, the proposed displacement features aim to capture

inter-class micro differences between similar classes. First, the displacement features

95
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and pooling features are extracted from the first convolutional layer in a pre-trained

CNN. Then, we combined the displacement features with pooling features for training

another CNN. Next, cosine features based on the displacement features are proposed

to further improve the performance for different text recognition tasks.

We designed a series of experiments on three text recognition tasks, MNIST,

HASY, and Chars74K-font datasets, and compared the proposed method with tradi-

tional CNN based models and state-of-the-art models. Extensive experimental results

demonstrate that the displacement features can improve the CNN based architectures

and achieve state-of-the-art results. In addition, we also conducted many meaningful

analyses on the MNIST dataset. It included the visualization and distribution of the

displacement features and the class-wise similarity of the displacement features in the

PCA subspaces. We found that the displacement features can find some unneces-

sary absorptions in max-pooling operation, which is very useful for some specific text

recognition tasks.

For the offline signature verification tasks, the proposed displacement features aim

to capture intra-class micro differences between the genuine signatures and their cor-

responding skilled forgeries. First, a CNN is trained between the genuine signatures

and skilled forgeries from a large scale dataset to capture the general behaviors of

all signatures. Then, based on this pre-trained CNN, we extracted the displacement

features from the first convolutional layer and fused the displacement features with

pooling features to capture the micro differences between the genuine signatures and

their corresponding skilled forgeries. Next, we took this procedure as a feature ex-

traction procedure and extracted the features from the fully connected layers. To

build the complete verification system, we fed the extracted features to SVMs as the

writer-dependent classifiers for each user.

The extensive experiments and analyses are conducted on GPDS-150, GPDS-300,

GPDS-1000, GPDS-2000, and GPDS-5000 datasets. The results showed that the

proposed method can outperform the baseline and state-of-the-art offline signature
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verification systems. We also proved that the CNNs have the potential to capture the

micro differences in max-pooling layers.

6.2 Future Work

For future work, it is expected that the displacement features can greatly improve

the performance of different architectures and applications. We list several potential

research directions to further explore the displacement features as follows.

∙ Attention models can be designed by using the displacement features to control

the convolutional features automatically. In recent research, attention models

are applied to different architectures to learn “where” and “what” is important in

feature maps for the target tasks. Our goal is to fuse the convolutional features

and displacement features by designing novel attention models and increase

representation power by using an attention mechanism.

∙ The displacement features extracted from deeper max-pooling layers should be

considered in future. It is well known that the features from deep convolutional

layers are more abstract than previous layers. It is better to study the behaviors

of displacement features in deeper layers and compare the displacement features

from different layers.

∙ The negative effects of the displacement features should be considered and eval-

uated in future. In this thesis, it was proved that the displacement features can

capture the inter-class or intra-class micro differences between different samples.

However, if the original samples undergo random or some adversarial noises, the

displacement features should change drastically because they are sensitive to the

change of the input values. Designing a novel approach to address this problem

is also interesting and promising.

∙ For the offline signature verification tasks, the convolutional features can be
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applied to capture the main differences between different users, and the dis-

placement features can be applied to capture the micro differences between the

genuine signatures and skilled forgeries respectively. Then, combining the two

architectures as the feature extraction procedure for verification systems. Be-

sides, the number of users for training the feature extractor can be evaluated in

future.
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