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Abstract 

 

In seismic exploration, seismic source can be divided into two categories: active source 

and passive source. Active source refers to the artificial/man-made source. The examples of active 

source, that is related to seismic exploration, are dynamite, hammer, vibroseis, sparker and water 

gun. Passive source refers to the seismic source generated from natural phenomena. The examples 

of passive source related to seismic exploration are earthquake and ambient noise (e.g., wind and 

traffic noise). In general, the active source seismic exploration has higher spatial resolution image 

in comparison to passive source exploration. On the other hand, the active source exploration 

requires high cost, especially for long-term operation (i.e., time-lapse monitoring) with high 

temporal resolution. In this study, (1) the passive source was used for constructing real-time 

monitoring system with “high temporal resolution” and (2) the active source was used for 

constructing “high spatial resolution” profiles for hydrocarbon exploration. This dissertation 

contains four chapters, and the description for all chapters are shown below: 

In Chapter 1, research objectives, background, and motivation are described. In this study, 

the ambient noise data was used for passive source exploration and deeply-towed multi-channel 

seismic data was used for active source exploration. In this chapter, some previous studies related 

to the utilization of ambient noise and the exploration using deep-towed data are introduced.  

In Chapter 2, the ambient noise data was used for developing a spatio-temporal monitoring 

system in Japanese islands. This monitoring system with high temporal resolution is useful to 

continuously monitor crustal behavior. Since the monitoring results are associated with 
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earthquakes, magmatic activities, and several environmental effects (e.g. tides and rain 

precipitation), it can be utilized for disaster mitigation. Several sophisticated methods were used 

for processing of ambient noise data, such as seismic interferometry, stretching interpolation and 

temporal normalization. For estimating temporal velocity variation with high accuracy, the coda 

wave was used rather than direct wave. To improve the stability in real-time monitoring, Sliding 

Reference Method (SRM) was developed in this study. By using SRM, temporal velocity variation 

with high temporal resolution and stability can be obtained. There is also a module for removing 

the glitch/spike in temporal velocity variation automatically, based on Median Absolute Deviation 

(MAD) and median filter. Moreover, I described how to select an optimum parameter to achieve 

high temporal resolution result while keeping the stability. By using high parallel computation 

approach, this system can process huge data in short time. The temporal velocity variation derived 

from this continuous monitoring system is open through Kyushu University website. 

In Chapter 3, the deep-towed Autonomous Cable Seismic (ACS) data was processed for 

finding hydrocarbon (e.g., free gas, gas chimney and gas hydrate) on Joetsu Basin, Japan. In this 

ACS, high spatial resolution imaging can be achieved by generating high-frequency signal close 

to the seafloor. The common problem that occurred on deep-towed ACS acquisition is the unstable 

depth position of source-receiver. The unstable depth of source-receiver caused an inaccurate 

reflection signal on pre-stack data. Moreover, the source signature of ACS data has sidelobes 

signal. The existence of sidelobes will decrease the frequency content on pre-stack data. It is 

crucial to remove the effect on unstable depth of source-receiver and sidelobes to make the stack 

image of subsurface result more obvious. Therefore, I developed a method to correct the unstable 

source-receiver depth, and the reflection signal can be accurately recovered. In order to suppress 

the sidelobes, a filter was designed so that the source signature becomes more focused. The result 
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of data processing showed significant improvements of results (i.e., reflection profiles): the 

velocity semblance more focused and the frequency content became wider. In order to characterize 

the gas chimney, gas hydrate and free-gas, seismic attributes were calculated. From the seismic 

attributes, the hydrate area is shown as high reflection amplitude on the seafloor, and the gas area 

is shown by a low amplitude signal and frequency fluctuation. 

In Chapter 4, the result and key findings of this thesis are summarized, and future vision 

are described. The results derived from the proposed methods demonstrate that the ambient noise 

can be available for real-time (high temporal resolution) monitoring of velocity variation, and the 

deep-towed ACS data acquisition can be beneficial to construct high spatial resolution profile for 

exploring the hydrocarbon distribution. The interferometry and several other sophisticated 

computation technologies for ambient noise data have been used for developing an accurate, stable, 

and fast velocity monitoring system, hence this monitoring system has been currently operated for 

long term monitoring. In the future, not only the speed of computation performance will be faster, 

but also the number of observation locations that can record ambient noise will be larger using 

either conventional seismometer or fiber optic sensor. By applying this monitoring system for such 

huge data, monitoring of velocity variation on a larger scale (worldwide) and with more detailed 

spatial result can be achieved. Moreover, it can contribute for understanding the newest global 

earth phenomena and disaster mitigation. Applying the proposed data processing schemes for the 

deep-towed acquisition has given a promising result for high spatial resolution exploration. The 

deep-towed system is not only for exploring the hydrocarbon, but also for imaging other geological 

features, such as deep-sea ore deposits and slumping features. 
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Introduction 

 

 

1.1 Research objectives 

 

In this dissertation, the passive and active seismic source can be used for several 

applications such as: 

a) Building a spatio-temporal monitoring system using the passive source waveform, which is 

natural earth vibration or ambient noise. This study made a monitoring system that can estimate 

spatio-temporal velocity variation accurately, has high temporal resolution result, can process 

a huge data quickly, and has ability to remove the glitch on velocity estimation automatically.  

b)  Exploring the location of free-gas, gas chimney and gas hydrate on deep marine environment 

by processing the deep-towed Autonomous Cable Seismic (ACS) acquisition which used a 

high frequency acoustic source. 
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1.2 Research background and motivation 

 

Interferometry is a method that can be used to generate the virtual seismogram, which 

reproduce the wave propagation from one point observation to other point observation, by using 

cross-correlation (Wapenaar et al. 2010). The ambient noise is a kind of passive seismic source 

which obtained from natural earth vibration. By extracting the virtual seismogram form ambient 

noise data, the velocity variation on subsurface can be estimated by using stretching interpolation 

method (Liu et al. 2010; Nimiya et al. 2017; Ikeda and Tsuji 2018) or moving window cross 

spectrum (Liu et al. 2010; Clarke et al. 2011). Since the source cost is free, so it can be used for 

monitoring velocity variation with low cost budget in comparison to monitoring using active 

source (Lehujeur et al. 2015; Tsuji et al. 2016).  

The interferometry method can be used for several monitoring purposes such as: 

monitoring volcano (Duputel et al. 2009; Mordret et al. 2010; Nagaoka et al. 2010; Taira and 

Brenguier 2016), monitoring geothermal reservoir (Lehujeur et al. 2015; Taira et al. 2018), 

estimating the velocity changes due to strain accumulation process (Ikeda and Tsuji 2018), and 

monitoring oil reservoir due to production process (Behm 2017). However, monitoring spatio-

temporal velocity variation (for large region and long period) has not been well established due to 

unstable noise characteristic and scatters (Zhan et al. 2013). Indeed, Taira and Brenguier (2016) 

has made a small scale quasi-realtime monitoring system to monitor Lassen Volcanic Center in 

United States. 
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Figure 1.1 The location of NIED seismometers in Japanese islands. There are more than 750 

seismometers 

 

Japan has dense seismometer arrays that record the ambient noise continuously (Okada et 

al. 2004; Kaneda et al. 2015; Kawaguchi et al. 2015). This seismometer arrays are distributed along 

Hokkaido Island into Kyushu Island with the total station more than 750 (Figure 1.1) and under 

the management of National Research Institute for Earth Science and Disaster Resilience (NIED). 

By using this seismometer array and interferometry method, this study wants to develop a high-
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temporal monitoring system that can estimate the spatio-temporal velocity variation continuously. 

Furthermore, this study wants to make the monitoring system that can calculate velocity variation 

accurately, can process huge ambient noise data quickly, and obtain high temporal resolution. 

Hopefully this monitoring system can give contribution for disaster prevention. 

Deep towed survey is a data acquisition technique that designed for water environment 

such as: ocean, river, and lake. The deep-towed system can be used for doing active source 

acquisition such as: acoustic imaging survey (Asakawa et al. 2016, 2017, 2019), seismic reflection 

survey (Ross Chapman et al. 2002; Breitzke and Bialas 2003; Tokarev et al. 2008a; Leon et al. 

2009; Ker et al. 2010), and electric resistivity survey (Goto et al. 2008). Also, it can be used for 

doing passive source acquisition such as: gravity survey (Zumberge et al. 1997) and magnetic 

survey (Gee et al. 2001). The JGI, Inc/J-MARES has developed a high resolution deep-towed 

acquisition system, called as Autonomous Cable Seismic (ACS) (Asakawa et al. 2016, 2019). The 

ACS use high frequency acoustic source and 32 hydrophone receivers (Figure 1.2). This study 

used the ACS data that located in Joetsu Basin Japan (Figure 1.3). Several studies has reported 

about the existence of gas hydrate, gas chimney, and free gas in Joetsu Basin (Figure 1.3) 

(Matsumoto et al. 2009; Freire et al. 2011; JAMSTEC 2012a, b). 
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Figure 1.2 The schematic diagram of ACS developed by JGI Inc/J-MARES. The ACS has high frequency acoustic source and 32 receivers. 
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Figure 1.3 The base-map of ACS data obtained in Joetsu Basin, Japan. In the panel a), the red 

line is the location of ACS profile that used in this research, and the magenta points are the 

location of hydrate outcrops. The panel b) show the example of hydrate outcrops near the 

seafloor that reported by JAMSTEC. 
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The common issue when doing deep-towed acquisition is the difficulty to stabilize the 

depth position of sources and receivers (Tokarev et al. 2008a; Marsset et al. 2014). The unstable 

source and receiver may make an inaccurate reflection waveform. Further, it can cause the 

destructive on stack profile (Yilmaz 2001; Kluesner et al. 2019). Moreover, the existence of 

sidelobes on source signature can decrease the frequency content of ACS data (Nelson 1989). 

This study wants to eliminate the effect of unstable source-receivers on pre-stack ACS data 

and suppress the sidelobes hence the resulted stack section will give an appropriate image. The 

existence of gas chimney, gas hydrate and free-gas make a disruption on amplitude and 

frequency of reflection signal. These features can be emphasized by post-stack seismic 

attributes (Tsuji et al. 2012). The seismic attributes were used for characterizing those gases 

such as: chaos, root mean square (RMS) amplitude, instantaneous frequency, and absolute 

amplitude (Barnes 1992, 2016; Chopra and Marfurt 2007; Ojha and Sain 2009; Kumar et al. 

2019). 

 

1.3 Chapter Description  

 

In this dissertation there two mains topics for the utilization of active and passive such 

as: building a continuous spatio-temporal monitoring system in Japanese island using ambient 

noise data (Chapter 2); using Autonomous Cable Seismic data acquisition to characterize the 

hydrocarbon (gas) potential (Chapter 3).  

Chapter 2 describes about developing a system to continuously monitor the spatio-

temporal velocity variation in Japanese Island with high-temporal resolution. This system used 

the passive seismic source, which is natural earth vibration or ambient noise. There are four 

steps that need to be applied for processing the ambient noise data into spatio-temporal velocity 
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changes such as: preparing ambient-noise data; creating virtual seismograms between pairs of 

seismometer stations by applying seismic interferometry; estimating temporal velocity 

variations from virtual seismograms by stretching interpolation approach, and mapping spatio-

temporal velocity variations. In the part of estimating temporal velocity variation, this study 

proposes a method called as “Sliding Reference Method (SRM)”. The SRM can obtain velocity 

variation result with high temporal resolution and near to newest geologic condition. In 

addition to data processing, this study developed a module to remove the unstable velocity 

variation automatically by using Median Absolute Deviation (MAD) and median filter. 

Moreover, this system was prepared to process data with huge size quickly. Therefore, high 

performance parallel computation was applied in this monitoring system. (The contents on this 

chapter was published on Earth, Planets, and Space (Hutapea et al. 2020)) 

Chapter 3 describes about processing deep-marine data that used a high frequency 

active source. This data was obtained by using a deep-towed acquisition system named as 

Autonomous Cable Seismic (ACS) that developed by JGI, Inc/J-MARES. The common 

problem on deep-towed data acquisition is the difficulty to control the depth position of sources 

and receivers due to strong ocean current or rough seafloor topography. Because of the unstable 

depth-receiver, the reflected wave of lithology target was recorded inaccurately. This study 

proposed a data processing sequence that can minimize the effect of unstable source-receiver 

hence the shape of reflected wave can be improved. Furthermore, a filter for focusing the source 

signature of ACS was made. This filter was useful for boosting the frequency content of the 

ACS pre-stack data. In addition to that, the seismic attribute was carried out for identification 

the presence of free-gas, gas-hydrate, and gas chimney. (The materials on this chapter will 

submitted on Journal of Natural Gas Science and Engineering 2020 (under revision)).  

Chapter 4 summarizes the dissertation content. The passive source can be an option for 

building a system that can monitor the spatio-temporal velocity variation with long term 
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duration. The active source (especially high frequency source) can be used for doing high 

resolution crustal imaging on deep-marine environment.  
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Real-time crustal monitoring system of 

Japanese Islands based on spatio-

temporal seismic velocity variation 

 

 

 

Abstract 

 

To continuously monitor crustal behavior associated with earthquakes, magmatic 

activities and other environmental effects (e.g., tides and rain precipitation), this study has 

developed a continuous monitoring system of seismic velocity of the Japanese Islands. The 

system includes four main processing procedures to obtain spatio-temporal velocity changes: 

(1) preparing ambient-noise data; (2) creating virtual seismograms between pairs of 

seismometer stations by applying seismic interferometry; (3) estimating temporal velocity 

variations from virtual seismograms by stretching interpolation approach, and (4) mapping 
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spatio-temporal velocity variations. Moreover, this study has developed data-processing 

scheme to removes unstable stretching interpolation results by using the median absolute 

deviation technique and a median filter. To map velocity changes with high stability and high 

temporal resolution during long-term (i.e., longer-term monitoring), the “Sliding Reference 

Method” was proposed. This study also developed evaluation method to select the optimum 

parameters related to stability and temporal resolution. To reduce computation time for 

continuous monitoring, parallel computation methods were applied, such as shared memory 

and hybrid distributed memory parallelization. This efficient and stable monitoring system was 

succeeded to continuously monitor the spatio-temporal velocity variation of the whole Japanese 

Islands using ambient-noise data from 767 seismometers. Finally, a web application was 

developed to displays spatio-temporal velocity changes. In the monitoring results that has been 

opened through the website, the velocity variation (e.g., pore pressure variation) that could be 

related to earthquake, aftershock, magmatic activities and environmental effects can be 

identified in a stable manner.  

 

Keywords: crustal monitoring, seismic velocity, parallel and high-performance 

computing, big data, seismic interferometry, ambient noise 
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2.1 Introduction 

 

Changes in the subsurface environment have been often monitored through repeated 

seismic surveys using active sources (Chadwick et al. 2010), but the high cost of active-source 

seismic surveys makes it problematic for continuously monitoring subsurface behavior. The 

use of a permanent seismic source system such as the accurately controlled routinely operated 

signal system (ACROSS) (Kumazawa and Takei 1994; Yamaoka et al. 2008) is an effective 

approach to enhance temporal resolution and source repeatability. In ACROSS, repeatable 

signals can be continuously generated by rotating eccentric mass. Previous ACROSS-based 

monitoring succeeded in identifying temporal changes in seismic velocity associated with 

earthquakes (Ikuta et al. 2002; Ikuta and Yamaoka 2004), volcanic activity (Maeda et al. 2015), 

ground freezing (Ikeda et al. 2017), and secular velocity change (Tsuji et al. 2018). However, 

the number of ACROSS units is currently limited, resulting in low spatial resolution in the 

monitoring. 

Seismic interferometry is an alternative method which can estimate variations in 

seismic velocity using ambient-noise data (e.g., Brenguier et al. 2008; Wegler et al. 2009). This 

method avoids the cost of active sources by relying on natural earth vibrations as the seismic 

source (e.g., Brenguier et al. 2008; Tsuji et al. 2016). Seismic interferometry can extract virtual 

seismograms, simulating the signal recorded at a station from a seismic event occurring at the 

location of another station, by computing the cross-correlation of ambient-noise data 

(Wapenaar et al. 2010). To estimate velocity changes, coda waves in the virtual seismograms 

are used rather than direct waves, because coda waves are more sensitive to velocity changes 

in geological materials (Meier et al. 2010) and are less affected by variations of noise sources 

(e.g., Chaves and Schwartz 2016). Several studies have successfully used this method to 
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estimate temporal seismic velocity variations (Brenguier et al. 2008, 2014; Ikeda and Tsuji 

2018; Meier et al. 2010; Obermann et al. 2013; Wegler et al. 2009). However, mapping of 

temporal velocity variation for longer-term (i.e., spatio-temporal monitoring; Wang et al. 2017) 

has not been well established, particularly when unstable velocity variations due to temporal 

variation of noise source characteristics (Zhan et al. 2013) and scatterers preclude us to map 

the monitoring results in a stable manner. Therefore, this study develops a method to obtain 

stable monitoring results from many seismometer pairs for long-term with high temporal 

resolution. Furthermore, this study implements a high-performance computation scheme to 

continuously calculate velocity variation from huge ambient-noise data. Note that Nagaoka et 

al. (2010) monitored temporal change in Mt. Asama, Japan using S-coda for multiple natural 

earthquakes based on seismic interferometry. Their approach has a potential to exclude the 

biases introduced by temporal variation of noise source characteristics, but the temporal 

resolution depends on the occurrence of natural earthquakes. Monitoring of seismic velocity 

variations has a wide range of applications. Velocity changes can indicate subsurface changes 

caused by natural activities such as earthquakes, volcanic eruptions, and seasonal cycles. 

Continuous monitoring may lead to the use of seismic velocity changes in forecasting volcanic 

eruptions or characterizing aftershock sequences (Brenguier et al. 2008; DeVries et al. 2018; 

Nimiya et al. 2017). Furthermore, monitoring velocities can be used to track sub-surface 

behaviors due to human activities such as CO2 geological storage, oil/gas production, and 

geothermal reservoir managements. If seismic velocities can be used to monitor pore pressure 

variations in resource reservoirs due to fluid injection or extraction, the information derived 

from monitoring could help avoid induced earthquakes. Indeed, Taira et al. (2018) estimated 

the reservoir response due to fluid extraction at the Salton Sea geothermal field. Permanent 

seismic networks now provide continuous seismic data in the United States, Japan and 

elsewhere (Kaneda et al. 2015; Kawaguchi et al. 2015; Okada et al. 2004). Ambient-noise data 
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(i.e., big data) derived from such networks can be used to conduct real-time monitoring of 

seismic velocity. For example, Taira and Brenguier (2016) constructed a quasi-real-time 

monitoring system at the Lassen volcanic center in California using ambient-noise data.  

Recently, seismic velocity variation beneath the seafloor due to strain accumulation 

process has been monitored by ocean bottom seismometers (Ikeda and Tsuji 2018). In ambient-

noise seismic monitoring, velocity variations were calculated between two seismic traces 

acquired at different times. One trace, called the current trace, is defined by stacking cross-

correlations over a short period (e.g., 10 days), and the other is a reference trace, typically 

obtained by stacking cross-correlation over a longer period (e.g., 1 year) (Nimiya et al. 2017). 

Because the velocity change is estimated with respect to the reference trace, the definition of 

the reference trace is crucial. In previous studies (e.g., Hobiger et al. 2016; Ikeda and Tsuji 

2018; Meier et al. 2010; Nimiya et al. 2017; Obermann et al. 2013), reference traces were 

defined by stacking all the cross-correlations for the respective study periods. However, when 

compiling monitoring results for longer terms, it is problematic to use such a fixed reference 

trace. Because the characteristics of cross-correlations vary with time due to earthquakes and 

magmatic activities, the quality of a reference trace may decrease even when the number of 

stacking was increased. The results derived from ambient-noise monitoring are influenced by 

temporal variation of scatters and noise sources (Nimiya et al. 2017). Furthermore, there is a 

trade-off with current traces in that longer periods of data yield more stable results, but shorter 

periods offer better temporal resolution. This study built a system for continuous velocity 

monitoring with high temporal resolution using ambient noise and applied the system to the 

seismometers distributed on the whole Japanese Islands. To evaluate processing parameters in 

details, seismometers in Kyushu Island were used. In this area, velocity changes associated 

with the 2016 Kuma-moto earthquake (Mw 7.0) and eruption of Aso volcano could be 

identified (Nimiya et al. 2017). Two different methods were considered for calculating 
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reference traces: (1) the Absolute Reference Method (ARM) and (2) the Sliding Reference 

Method (SRM) that is a new approach for defining reference and current traces. To select an 

optimum time window of current traces for these two methods, a stability evaluation was 

performed. Furthermore, this study developed an outlier removal method based on Median 

Absolute Deviation (MAD) (Leys et al. 2013) and a median filter to remove unstable results of 

temporal velocity changes. Because the continuous monitoring system requires fast 

computation with proper memory management, this system was designed by using shared 

memory parallelization and hybrid distributed memory parallelization (cluster parallelization). 

This system was constructed with Python 3.6.4 (Python Software Foundation 2017) from the 

Anaconda Distribution to support any Linux distribution. The parallel computation design used 

seven server nodes to achieve greater than six fold increases in computation speed. To display 

the monitoring results, a web application was installed on a virtual private server to give free 

access to the updated 1 year monitoring results. 

 

2.2 Methods 

 

The monitoring system retrieved velocity information from ambient-noise data in four 

processing steps (Figure 2.1) described in this section. 
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2.2.1 Preparing data 

 

This study obtained ambient-noise data recorded by the Hi-net seismic network from 

the National Research Institute for Earth Science and Disaster Prevention (NIED) server (NIED 

2019). In the monitoring of whole Japanese Islands, the ambient-noise data of 767 Hi-net 

stations were used. The vertical component of ambient-noise data was selected, then applied 

de-meaning, de-trending, and instrument correction (adjusting the recorded signal that has 

frequency below the instrument natural frequency) for the data from each station. A band-pass 

filter was applied with the frequency range of 0.1–0.9 Hertz (Hz) because this frequency range 

has been proven to estimate velocity changes using Hi-net stations (Minato et al. 2012; Nimiya 

et al. 2017). Furthermore, this study divided daily data into 30-min-long segments with 50% 

overlap. To reduce the data volume, the output from this process was saved in the frequency 

domain. Data segments with 1 s or more of missing waveforms were rejected. Because 

earthquakes degrade the quality of ambient noise, one-bit normalization was applied to increase 

the ambient-noise signal and reduce other noise such as: earthquake, instrument instability, 

non-stationary source signal close to station (e.g., Bensen et al. 2007; Hobiger et al. 2016; 

Meier et al. 2010; Minato et al. 2012). One-bit normalization has been shown to enhance the 

stability of monitoring results for the receiver and noise characteristics. The previous study 

(Hutapea et al. 2019) demonstrated that one-bit normalization allows us to obtain stable 

velocity variations in Hi-net ambient-noise monitoring with similar processing parameters. 
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Figure 2.1 Schematic diagram of data processing workflow for estimating spatio-temporal 

velocity variations 

 

2.2.2 Creating virtual seismograms 

 

By computing daily cross-correlations between the sites of two seismometers, virtual 

seismograms (i.e., Green’s functions) between the two seismometers can be retrieved 

(Wapenaar et al. 2010). The power-normalized cross-correlations (cross-coherence) was 

computed in the frequency domain (e.g., Nakata et al. 2011) from  
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𝐶𝐶AB(𝑓)  =  
𝐹A(𝑓) 𝐹B

∗(𝑓)

|𝐹A(𝑓)||𝐹B(𝑓)|
 , (2.1) 

where CCAB is the power-normalized cross-correlation at frequency f between 

seismometers A and B, FA and FB are the Fourier transforms of the seismograms at each 

seismometer, and 𝐹B
∗ is the complex conjugate version of 𝐹B. The resulting cross-correlation 

consists of the positive time (causal) and negative time (anticausal) parts, corresponding to the 

wave propagation from seismometer B to A and from seismometer A to B, respectively. This 

study use the trace side that the waveform propagates to Mount Aso (positive time) in order to 

reduce strong time-variant tremor noise from Mount Aso (Kawakatsu et al. 2000; Nimiya et al. 

2017; Hendriyana and Tsuji 2019) (Figure 2.2). Cross-correlations were calculated for station 

pairs whose distance apart, as computed by using the Haversine equation (Van Brummelen et 

al. 2012), was less than 40 km. Whereas, several seismometer pairs were added whose distance 

is > 40 km where the station pair is sparse. In total, there are 7235 pairs of seismic stations that 

distributed on the Japanese Islands. 

 

2.2.3 Estimating temporal velocity variation 

 

To obtain temporal velocity variations from cross-correlations between two 

seismometers, this study can use either the stretching interpolation method (e.g., Meier et al. 

2010; Minato et al. 2012; Nimiya et al. 2017; Yukutake et al. 2016) or the moving-window 

cross-spectral (MWCS) analysis (e.g., Ratdomopurbo and Poupinet 1995; Clarke et al. 2011) 

to estimate the velocity changes between a current trace and a reference trace (Figure 2.2). 

Nimiya et al. (2017) compared velocity changes estimated by the stretching method and the 

MWCS for Hi-net data in Kyushu Island, and demonstrated that when using a single side of 
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cross-correlation to reduce the influence of noise from Mount Aso, the stretching method 

produced more reliable results. 

 

Figure 2.2 Example of the current trace (blue) and the reference trace (red). The rectangles 

represent the time windows of the coda part of the seismograms, used to estimate seismic 

velocity changes by the stretching interpolation method. In order to reduce strong noise from 

Mt Aso, the trace side that the waveform propagates to Mt. Aso (positive time) was used. 

 

Furthermore, the MWCS method underestimates large changes in seismic velocity due 

to period skipping in the coda of the cross-correlation (Olivier et al. 2017). Therefore, to obtain 

reliable velocity variation including large velocity changes, the stretching interpolation 
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technique was used. The current trace 𝑓𝑐𝑢𝑟 was stretched (shrink and expand) and compute the 

similarity between the stretched current trace 𝑓𝐸
𝑐𝑢𝑟 and the reference trace 𝑓𝑟𝑒𝑓 as follows: 

𝐶(E) =
∫ f

E
cur(t)f

ref(t)dt 

( ∫ (f
E
cur

(t))
2
dt ∫ (f

ref(t))
2
dt)

1 2⁄   (2.2) 

𝑓𝐸
𝑐𝑢𝑟(𝑡)  = 𝑓𝑐𝑢𝑟(𝑡(1 + 𝐸))  (2.3) 

where E (= −𝑑𝑉 𝑉⁄ ) is the relative velocity change with respect to the reference trace 

and C(E) is the cross-correlation coefficient between the reference trace and the stretched 

version of the current trace. The relative velocity change E that maximizes C(E) was estimated 

by applying a grid search algorithm that searched E in the range –0.025 < E < 0.025 with a step 

size of 0.0005. After the grid search result was obtained, then ternary search algorithm was 

applied to increase the resolution of E values and to search maximum local around obtained 

C(E). The ternary search was applied 10 times with the new step size is half of the previous 

iteration step size.  This study used 100 s of coda waves to obtain velocity changes using 

stretching interpolation. The starting time of coda waves was defined as tcoda = d/vmin, where d 

is the distance between a station pair and vmin is the minimum apparent velocity between the 

stations. As vmin, this study used a relatively slow velocity of 1 km/s to select coda parts. 

 

2.2.3.1 Define current and reference traces 

 

The choice of periods of current and reference traces is important to obtain stable 

velocity changes with high temporal resolution. To estimate daily velocity changes, the time 

window (stacking period) for the current trace is fixed (N days) and the window is slid forward 

each day (Figure 2.3 and 2.4). The latest day of the time window was used for the current trace 
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as the date of the monitoring result. To define the reference traces, two methods were evaluated 

such as: the Absolute Reference Method (ARM) and the Sliding Reference Method (SRM).  

In the ARM, the reference trace is defined by stacking M days of data fixed at a 

particular time period (Figure 2.3). Furthermore, it slides the current trace, with its shorter time 

window (N days), and estimate the velocity change between reference and current traces by 

stretching interpolation. This approach (ARM) was often used in previous studies (e.g., Meier 

et al. 2010; Nimiya et al. 2017). On the other hand, SRM is a new approach that this study 

proposed. In the SRM, the reference trace is also defined by stacking M days of data, but it 

slides each day (Figure 2.4). The current trace (N days) slides within the period of the reference 

trace (M days), and the latest days of both traces are always the same. 

Because of the velocity variations estimated from different reference traces are difficult 

to compare in SRM, this study calculated temporal velocity changes within the fixed reference 

period each day. To do this, this study applied stretching interpolation M−(N+1) times for each 

station pair, using the fixed reference trace and sliding the current trace. Therefore, SRM needs 

a longer computation time than ARM. Furthermore, this study subtracted the average value of 

E for the first 30 days of the monitoring period (E0) from the estimated value of E as follows: 

𝐸′ = 𝐸 − 𝐸0, 
(2.4) 

where E′ is the relative velocity changes with respect to E0. In the monitoring system, 

the estimated relative velocity change dV/V′ = –E′ was used in both the ARM and SRM. 
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Figure 2.3 Schematic representation of estimating temporal velocity variation by  ARM. N and M are the stacking periods, in days, for 

the current and reference trace, respectively. data period for the new current trace is moved by 1 day while the data period of the 

reference trace is fixed, then stretching interpolation is applied. No overlapping between current and reference trace. 
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Figure 2.4  Schematic representation of estimating temporal velocity variation by SRM. N and M are the stacking periods, in days, for 

the current and reference trace, respectively. Data periods for the reference and current traces are both moved by 1 day, then stretching 

interpolation is applied for the entire length of the reference trace. The current trace data always overlap with the reference trace 
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2.2.3.2 Detect and remove outliers  

 

When the value of C(E) is low, the corresponding temporal velocity change is usually 

unstable. To remove these outliers, all temporal velocity changes that have C(E) below a threshold 

value were marked. This study used 0.5 as the threshold because a cross-correlation coefficient 

smaller than 0.5 indicates a weak relationship between two variables, in this case the reference and 

current traces (Asuero et al. 2006; Mukaka 2012). This study also marked velocity changes if there 

were multiple peaks in C(E). The outliers were removed using MAD algorithm and a median filter. 

The range of acceptable data was defined in the following equations: 

𝑀𝐴𝐷 =  𝑀𝑒𝑑𝑖𝑎𝑛 𝑖(| 𝑠𝑖 − 𝑀𝑒𝑑𝑖𝑎𝑛𝑗(𝑠𝑗)|),  (2.5) 

𝑀𝑒𝑑𝑖𝑎𝑛𝑗(𝑠𝑗)  − 𝑇𝐶 ∗ 𝑀𝐴𝐷 <  𝑠𝑖 < 𝑀𝑒𝑑𝑖𝑎𝑛𝑗(𝑠𝑗) + 𝑇𝐶 ∗ 𝑀𝐴𝐷, (2.6) 

where si is the i-th velocity change in the time series of velocity changes at a station pair, 

and TC is the tolerance coefficient for MAD. After several trial an error, this study decided to use 

TC = 3. Velocity changes that were outside the MAD range were removed. Furthermore, a median 

filter was applied with a time window of 3 days. The procedure is diagrammed in Figure 2.5.  

In the monitoring results derived from SRM (Figure 2.6), stable spatio-temporal velocity 

variations of the whole Japanese Islands can be observed, and identify velocity variations due to 

the earthquake, volcanic eruptions and weathering (and tiding), as discussed later. The next section 

describes how to optimized parameters to define high-temporal resolution (i.e., how many days of 

data to create current traces). 
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Figure 2.5 Flow chart for detection and removal of unstable temporal velocity variations (outliers). 

Input data consist of the stretching coefficient C(E) and the temporal velocity changes E for each 

pair of stations. Given the threshold of C(E) and the tolerance coefficient TC of MAD, this step 

can estimate the range of acceptable velocity variations by using Eqs. 2.5 and 2.6. If C(E) is 

outside that range, the velocity change is rejected. The final step is applying a median filter to 

obtain stable E values. 
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Figure 2.6 Spatio-temporal variation of seismic velocity of whole Japanese Islands. This velocity 

variation was derived by applying SRM to ambient-noise data recorded by 767 Hi-net stations 

(blue symbols). Each panel shows the latest date within the window of current trace: a) 2 February 

2016, b) 26 April 2016, c) 2 August 2016, and d) 27 November 2016. Warm colors indicate regions 

where seismic velocity was decreased. The Kumamoto earthquakes (Mw. 7) occurred on 16 April, 

and the Mt Aso eruptions occurred on 7 and 8 October 
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2.3 Optimum parameters for Absolute Reference Method and Sliding 

Reference Method 

 

There is a trade-off between stability and temporal resolution, depending on how many 

days of data are stacked for current traces and how reference traces are defined (i.e., ARM or 

SRM). To find optimum parameters for defining current traces, the stability of the stretching 

interpolation result was assessed by evaluating different time windows of current traces for ARM 

and SRM. C(E) for the estimated velocity change (Eq. 2.2) is commonly used for this stability 

evaluation (e.g., Budi-Santoso and Lesage 2016; Yukutake et al. 2016). The stability was evaluated 

according to the number of data points for which the correlation coefficients for the estimated 

velocity changes exceeded the threshold value (0.5 in this study). The input data for this evaluation 

consisted of the velocity variations before outlier removal. For the stability evaluation, this study 

used ambient-noise data (vertical component) recorded by Hi-net stations (~100 stations) in 

Kyushu from 2015 to 2016, a period including the 2016 Kumamoto earthquake, and tested 

different stacking periods to create the current trace. The results (Figure 2.7) showed that as 

expected, increasing the time window yielded more stable monitoring results for the ARM and 

SRM.  

In the SRM, the incremental improvement from each added day was less than 5% when 

the current trace was stacked more than 11 days of data, therefore this study chose 11 days of 

stacking as the best compromise between stability and temporal resolution. Likewise, this study 

could choose 17 days of data to make the current trace for the ARM. The chosen time window 

depends on several parameters, such as the window size for reference traces (here 1 year), 
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seismometer density and station interval, ambient-noise characteristics, lithology, and the 

frequency range for analysis. Therefore, the stability evaluation (Figure 2.7) should be done for 

any application of the monitoring method. The result found that the seismic velocities clearly 

decreased (due to pore pressure changes and formation damage) around the hypocenter of the 2016 

Kumamoto earthquake (Mw7) and Mt Aso eruption after the earthquake by using both the ARM 

(Figure 2.8a–e) and the SRM (Figure 2.8f–j). This study assumed that surface waves dominated 

the coda wave and that the surface-wave velocity was close to the S-wave velocity. 

 

Figure 2.7 The result of stability evaluation for the ARM and SRM in Kyushu. The study period 

includes the 2016 Kumamoto earthquake. The time windows chosen to define the current trace are 

17 and 11 days for the ARM and SRM, respectively 

 

Because the frequency range was analyzed from 0.1 to 0.9 Hz hence the results were 

sensitive to S-wave velocity variations shallower than ~10 km depth (Nimiya et al. 2017). A 
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different choice of frequency range should reveal velocity variations for a different depth range. 

The characteristics of velocity variations differed in the results of the ARM and SRM (Figure 2.8). 

Thus, C(E) derived by both methods were mapped to evaluate the stability of the monitoring results 

(Figure 2.9). In the results using the ARM, C(E) suddenly decreased at the time of the earthquake, 

particularly around the hypocenter and Aso volcano (Figure 2.9a, b).  

 

Figure 2.8 Spatio-temporal velocity maps determined by using a) to e) the ARM and f) to j) the 

SRM. The ARM and SRM have different temporal resolutions because the current trace was made 

with stacking periods of 17 and 11 days, respectively. Both methods identified spatio-temporal 

velocity changes caused by the Kumamoto earthquake. But the velocity changes derived from both 

methods are largely different 
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Figure 2.9 Stretching coefficient C(E) maps determined by using a) to e) the ARM and f) to j) the 

SRM. The SRM results show higher C(E) values than the ARM results because in the SRM the 

current trace always overlaps the reference trace. Panels d) and e) show that C(E) decreased 

because the current trace has continued to separate in time from the fixed reference trace and also 

is affected by multiple eruptions, such that the velocity variation could become unstable. The ARM 

appears to be useful to detect changes in the scatter wave, whereas the SRM determines velocity 

variations with high stability and high temporal resolution 

 

This indicates that the characteristics of the coda wave changed after the earthquake, 

probably the effect of a change in scattering due to the earthquake (Obermann et al. 2013) and 

change in ambient-noise characteristics. The C(E) value for the ARM significantly decreased in 

October 2016 (Figure 2.9e), which could be related to multiple eruptions occurred at Aso volcano 

from mid-September 2016 to mid-November 2016. On the other hand, in the SRM results, C(E) 

remained high even after the earthquake and eruption (Figure 2.9f–j) because the sliding reference 

period included time after their occurrence. These results indicate that the velocity variations 
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derived from the ARM are less accurate when the current trace is affected by dynamic events 

(volcanic activity and a change in scattering) and when the current trace date is too far separated 

from the reference trace. The advantage of the SRM is that the reference trace always reflects 

geological conditions at times close to the current trace, and this method can detect velocity 

variations with greater stability (Figure 2.9) and higher temporal resolution (Figure 2.7). The 

weakness of the SRM is the limited period of velocity variation results (no more than M - (N+ 1) 

days; 1 year in present case) due to its intensive computation. Given these considerations, this 

study decided to use the SRM for monitoring daily velocity variations, using an 11-day window 

for the current trace and a 365-day window for the reference trace (Figure 2.6). 

In order to analyze the error using the SRM, temporal velocity variations were calculated 

by using shorter time window for coda waves (50 s) and shifting the starting time of the window 

every 10 s interval (Meier et al. 2010; Nimiya et al. 2017). Using those velocity changes, the 

standard deviation was estimated for each station pair. Then, the error for each station was 

estimated using the standard deviations between all pairs that included a station within a distance 

of 40 km as follows: 

𝜎 = √
1

𝑁

∑ 𝑛𝑖𝑖=1 𝜎𝑖
2

∑ 𝑛𝑖𝑖=1
, 

(2.7) 

where 𝜎𝑖 and 𝑛𝑖 are the standard deviation and the number of measurements (maximum is 

6) for the 𝑖th station pair, respectively, and 𝑁  is the number of station pairs. When only one 

measurement data is accepted for a station pair after detection and removal of outlier data, the pair 

do not include in the error evaluation (Eq. (2.7)) because the standard deviation cannot define. In 

the error map using the conventional approach (without detection and removal of outlier data) 

(Figure 2.10 a-e), large values of errors were locally observed (~0.2 %), which are comparable to 
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velocity variation due to the earthquake. On the other hand, by considering outlier data using MAD 

and a median filter, the results did not observe such larger values of errors and most of the errors 

are smaller than 0.02 % (Figure 2.10 f-j), indicating high stability of the monitoring results. 

 

Figure 2.10 Error maps determined by using the SRM. a) to e) Without MAD and a median filter 

and f–j with MAD and a median filter. Note that color scales for panels a) to e) and f) to j) are 

different. By considering outlier data using the approach, the errors of velocity variations can be 

significantly suppressed 

 

2.4 Developing an automated monitoring system  

 

To realize daily monitoring using SRM, an effective system needs to be considered duo to 

the intensive computation. The continuous monitoring system was described in terms of its three 
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main tasks: downloading ambient-noise data from the NIED server, processing the ambient-noise 

data to estimate spatio-temporal velocity variations, and displaying the results in a web application 

on a virtual private server (Figure 2.11). The governing equations for the processing steps are 

presented in section 2. This system used CentOS 6.10-x64 and Red Hat 6.4-x64 as the main 

operating system platform to build and test the system performance. Python 3.6.4 from the 

Anaconda Distribution was used to ensure that this monitoring system works on various Linux 

platforms. NumPy library (Van der Walt et al. 2011) was used as the input-output data format for 

processing the ambient-noise data. The python codes for building this monitoring system is 

described on the Appendix section. 

 

2.4.1 Update spatio-temporal velocity variation  

 

To update spatio-temporal velocity changes automatically, the previous day of ambient-

noise data (in win32 format) was downloaded from the NIED server every midnight. Before 

starting the processing step, this system checked whether the number of downloaded files is 

complete or not. The analysis of the ambient-noise data then begins (Figure 2.1 and 2.11). After 

obtaining both temporal and spatio-temporal velocity variations, the results are transformed into a 

tabular data format by NumPy. A map of velocity variations is compiled by linearly interpolating 

the spatio-temporal velocity variations at each station and then converting the results into a grid 

data format by using Netcdf4 (Unidata 2015). These files are used as input data to make objects 

for the web application. The web application is updated by a subroutine that checks the 
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modification time of the input files and restarts the application whenever the input files are updated. 

A crontab module in the Linux operating system automatically starts all of these processes daily. 

 

Figure 2.11 Schematic diagram of the ambient-noise monitoring system. The system comprises 

three operations: downloading ambient-noise data, processing the data, and displaying the spatio-

temporal velocity variations on a website. A crontab module starts the update cycle every day at 

midnight. Presently the monitoring results has been updated every week on the website 
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2.4.2 Parallel computation design 

 

The parallel computation architecture was adopted using a shared memory model and 

hybrid distributed memory (or cluster) model (Barney 2018). The shared memory model used 

multi-core central processing unit (CPU) computation inside a single node of workstations, and 

the hybrid distributed memory model used multi-core CPU and several nodes of workstations 

connected through a network. Python’s Multiprocessing module (Python Software Foundation 

2017) was used to handle the shared memory model and the combination of Multiprocessing and 

MPI4PY (Dalcin et al. 2011) modules to handle the hybrid distributed memory model. The 

ambient-noise processing system consisted of parent, child, and storage nodes. The storage for the 

parent and child nodes was connected to the storage node through the network file system. During 

computation in the hybrid distributed memory model, only the child node (rank ≠ 0) ran the 

computation job and the input–output data were in the storage node. In terms of Flynn’s taxonomy 

(Flynn 1972), the monitoring system can be categorized as single instruction stream, multiple data 

streams (SIMD) because ambient-noise data can be processed independently by every seismometer 

station or every station pair. Although this system could use both the shared memory and hybrid 

distributed memory models in all processing steps in Figure 2.1, this system did not use the latter 

in mapping velocity changes because this processing step is faster than the others. During the 

computation process, the volume of data loaded caused computation crashes when it exceeded the 

available RAM. To prevent this problem, there is a subroutine to divide the input data into portions 

smaller than 70% of the free RAM before starting the computation 
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To benchmark the computation performance, this system used a cluster system with eight 

server nodes (one parent and seven child nodes) and estimated the velocity variation using the 

SRM. this study recorded the total processing time for a system that used hybrid distributed 

memory parallelization (cluster parallelization) for preparing data, creating virtual seismograms, 

and estimating temporal velocity variations. The computation process ran only on the child nodes. 

In theory, this system would yield a sevenfold increase in processing speed, but because the 

hardware specification of every node was not uniform (the CPU clocks and memory sizes were 

not uniform), the level of performance could not be attained. Table 1 lists the computation 

performance for different numbers of child nodes. Using all seven child nodes led to the fastest 

computation time (33.3 minutes), whereas using the fastest single child node (with dual Intel Xeon 

E5-2680 CPUs and 96 GB RAM) required 202.4 minutes. The use of parallel computation thus 

sped up processing by 6.09 times and consumed almost 87% of the cluster nodes resource.  

Table 2.1 Parallel computation performance by using hybrid-distribution memory model (cluster) 

parallelization. 

Number of Child Node Computation Time (s) Speed-up 

1 12143.92 1.00 

2 6217.99 1.95 

3 4296.75 2.83 

4 3296.37 3.68 

5 2781.27 4.37 

6 2316.71 5.24 

7 1995.14 6.09 
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Although the monitoring scheme using the SRM is computationally expensive, the high 

efficiency of the designed system enables us to update monitoring results daily with different 

processing parameters (e.g., different stacking windows). The monitoring system has flexibility in 

computation environments; thus, this system could be used in cloud computing.  

 

2.4.3 Display results on website 

 

To make daily monitoring results available to the public, a web application was developed 

by using Holoviews, Geoviews, Panes (Stevens et al. 2015), and Bokeh (Bokeh Development 

Team 2018). For the data structure, Pandas was used to manage the tabular data (McKinney 2010) 

and X-array (Hoyer and Hamman 2017) to manage the grid data file. The application produces 

three main products: a map of the spatio-temporal velocity variations derived from the SRM 

(Figure 2.12a), the temporal velocity variations for all station pairs (Figure 2.12b), and a graph of 

spatio-temporal velocity variations for each station (Figure 2.12c). Some interaction tools were 

included such as zoom, hover tools, pan, and selecting box (Figure 2.12). The newest update for 

spatio-temporal velocity variation for Kyushu area is shown on http://geo.mine.kyushu-

u.ac.jp/tsuji/monitoring.html. There is a room for continued improvement in the design and content 

of the website.  

 

http://geo.mine.kyushu-u.ac.jp/tsuji/monitoring.html
http://geo.mine.kyushu-u.ac.jp/tsuji/monitoring.html
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Figure 2.12 Template of the web application. a) Spatio-temporal velocity changes in Kyushu; b) 

temporal velocity variations for all station pairs; c) Spatio-temporal velocity variations for 

individual stations, and d attributes of the data used to calculate velocity variations. This template 

of web application design is not fixed, because there is a room to update the design in the future 

in order to improve the feature and performance 
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2.5 Discussion 

 

This study developed a continuous spatio-temporal S-wave velocity monitoring system, 

based on cross-correlation of ambient-noise data from seismic stations, and performance during 

2015 and 2016 was reported, a time period that included the Kumamoto earthquake (Mw 7.0) and 

eruption of Aso volcano (Figure. 2.6 and 2.8). Because the S-wave velocity reflects the shear 

modulus of the geological formation, the velocity decrease that detected near the earthquake 

hypocenter and Aso volcano could have been caused by formation damage, increased pore 

pressure, or pressurized volcanic fluids (Nimiya et al. 2017). In areas far from the hypocenter, 

velocity variations could be caused by pore pressure changes due to earthquake vibrations. 

Increased pore pressure could reduce effective stress as well as the friction on the seismogenic 

fault (Tsuji et al. 2014), thus the velocity variation could be related to the aftershock sequence. 

Moreover, before volcanic eruptions, increased pore pressure associated with the intrusion of 

magma (e.g., Budi-Santoso and Lesage 2016; Obermann et al. 2013) could decrease seismic 

velocity. Indeed, a decrease in velocity was detected before the Aso eruption and a velocity 

increase after the eruption, consistent with these pore pressure changes (Figure. 2.6 and 2.8).In 

addition, the monitoring result (Figure 2.6) contains signals of other processes that may affect 

earthquake generation. Using ambient-noise monitoring, the result can identify the velocity 

variation due to rain precipitation and snowfall (Wang et al. 2017), because the overburden or 

diffusion change the pressure conditions of the crust. The tides and snowfall are known to trigger 

small earthquakes (e.g., Heki 2003; Ide et al. 2016) through their effect on pressure and stress 
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conditions around seismogenic faults. In Kyushu Island, the influence of snowing can be neglected 

due to little snow-fall. However, this result also identified the velocity variation caused by rain 

precipitation and ocean tiding (Wang et al. 2017; Figure 2.6). Since our monitoring is related to S-

wave, the maximum depth of monitoring result can be approximated. In S-wave analysis, there is 

a rule of thumb that said the length of receiver pair at least equal to the maximum desired 

wavelength, which corresponds to more than three times of the desired investigation depth (Foti 

et al., 2018).  In this monitoring result, the pair distance is less than 40 km, so the depth monitoring 

result is less than ~13 km. Moreover, the depth of velocity changes can be estimated by using the 

frequency-dependent depth sensitivity of S-wave  (Mainsant et al., 2012; Rivet et al., 2011). Our 

results using the frequency range of 0.1 to 0.9 Hz were sensitive to S-wave velocity variations 

from the surface to a depth of ~10 km (Nimiya et al., 2017). Therefore, the monitoring system can 

detect dynamic crustal behaviors associated with earthquake triggering processes on a daily basis 

that may inform disaster warnings and related applications. 

 

2.6 Summary 

 

The research summary of crustal real-time monitoring with high temporal resolution based 

on spatio-temporal monitoring system are described bellows: 

1. The high temporal continuous monitoring system of the whole Japanese Islands was 

developed. Geodetical approaches such as Global Navigation Satellite System (GNSS) or 

Interferometric Synthetic Aperture Radar (InSAR) are typical to identify dynamic crustal 

behavior, but the monitoring system uses the wave propagating within the crust. 
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2.  The developed monitoring system includes a module to automatically remove unstable 

velocity results by using the Median Absolute Deviation algorithm and a median filter. 

3.  This study compared the Absolute Reference Method and Sliding Reference Method for 

treatment of reference and current traces for stretching interpolation. Because the Sliding 

Reference Method generated a reference trace that reflects geological conditions close to 

the current trace, the Sliding Reference Method produced results with greater stability and 

higher temporal resolution due to high C(E) result.  

4. To find optimum high temporal resolution parameters for defining current traces, the 

stability of the stretching interpolation results was assessed by trying different time 

windows for current traces. On the basis of cross-correlation coefficient C(E), this study 

found that an 11-day stacking window offered the best compromise between stability and 

temporal resolution in the Sliding Reference Method. 

5. The system used parallel computation on seven server nodes to calculate spatio-temporal 

velocity variations, achieving a greater than six-fold gain in computation speed. Therefore, 

this system can be used to continuously monitor seismic velocity using ambient-noise data. 

6. A web application was developed to enable public access to spatio-temporal velocity 

variations detected by the monitoring network. The monitoring results can be seen from 

the following site; http://geo.mine.kyushu-u.ac.jp/tsuji/monitoring.html. 

  

http://geo.mine.kyushu-u.ac.jp/tsuji/monitoring.html
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Data processing and interpretation 

schemes for deeply-towed Autonomous 

Cable Seismic (ACS) for gas and hydrate 

exploration 

 

Abstract 

 

The deep-towed Autonomous Cable Seismic (ACS) system is a high-resolution acoustic 

survey system designed for use in deep-water environments. This system uses a high-frequency 

acoustic source and a multichannel receiver cable. A common problem in the analysis of deep-

towed ACS data is the unstable positioning of the source and receivers due to ocean currents and 

seafloor bathymetry. Since high-frequency data acquisition with unstable source–receiver 

positions can cause destructive interference on final stack profile, correction of the unstable 
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source-receiver is a crucial issue. This study proposed a method to solve the unstable source–

receiver position problem and thus to construct an accurate final stack profile. This study used 

deep-towed ACS data acquired in the Joetsu Basin in Niigata, Japan, where hydrocarbon features 

in the form of gas chimneys, gas hydrate, and free gas have been observed. Because sidelobes in 

the ACS source signature defocus the source wavelet and decrease the bandwidth frequency 

content, this study designed a filter to focus the source signature. Our approach considerably 

improved the quality of the final stacked profile. Even though depth information was not available 

for all receivers, the velocity semblance was well focused. Furthermore, focusing the source 

wavelet considerably increased the bandwidth frequency of the pre-stack data. Seismic attribute 

analysis was applied to the final stacked profile to identify the distributions of free gas and hydrate. 

The seismic attribute analysis of the ACS data demonstrated that free gas accumulations are 

characterized by low reflection amplitude and an unstable frequency component, and that hydrate 

close to the seafloor can be identified by its high reflection amplitude. 

 

Keywords: deep-towed acoustic survey, seismic attribute, seismic data processing, source–

receiver depth correction, gas and hydrate exploration 
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3.1 Introduction 

 

High-frequency acoustic survey in marine area is used to obtain high-resolution image of 

shallow structures. The high-resolution shallow profiles can be used in several applications, such 

as evaluation of geohazard potential (Marsset et al. 2010; Riboulot et al. 2013), exploration for 

natural gas (Ross Chapman et al. 2002; Wood et al. 2008; Riboulot et al. 2013; Marsset et al. 2014, 

2018), characterizing marine volcanic/hydrothermal systems (Bischoff et al. 2017; Angkasa et al. 

2017), and finding deep-sea ore deposits (Romagnoli et al. 2018; Sacchi et al. 2019). A high-

frequency source signal is more strongly attenuated (Sato et al., 2012) than those of conventional 

marine seismic acquisition systems that use air-gun arrays (i.e., low-frequency source). Deep-

towed acoustic survey is a new data acquisition system that have been considered for deep-sea 

environments to reduce attenuation of the high-frequency source signal by locating both source 

and receivers close to the seafloor or targeted reflector. Recently, several examples of deep-towed 

acoustic survey systems have been developed such as the Deep Towed Acoustic Geophysical 

System (DTAGS) (Wood et al. 2008), Pasisar (Savoye et al. 1995) and SYstème SIsmique Fond 

(SYSIF) (Marsset et al. 2010, 2014, 2018). In Japan, a deep-towed acoustic survey system named 

the Autonomous Cable Seismic (ACS) system has been developed by the Research and 

Development Partnership for Next Generation Technology of Marine Resources Survey under 

JGI/J-MARES (Asakawa et al. 2017). The ACS system not only uses a high-frequency source, but 

also uses a multichannel hydrophone receiver cable (Figure 3.1a); hence, conventional seismic 

reflection processing methods can be applied. In this study, the ACS data acquired in the Joetsu 

Basin in Niigata, Japan, where a high potential of gas hydrate has been recognized (Joshima et al. 

2009; Freire et al. 2011; JAMSTEC 2012a, b; Hachikubo et al. 2015; Yoneda et al. 2019). Based 
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on a Japanese government report (Ministriy Economic Trade and Industry (METI) 2016), there 

are numerous gas chimneys in the Sea of Japan that are associated with accumulations of gas 

hydrates and free gas. As future energy demand increases, these gases could be considered as 

alternative energy sources. Moreover, gas hydrate deposits have the potential to contribute to 

global climate change. Therefore, high-resolution geophysical exploration is important for 

identifying the locations of gas chimneys, free gas, and gas hydrates.  

The main objective of multichannel seismic reflection data processing is to obtain a zero-

offset seismic stack section where the receiver and source points coincide (Yilmaz, 2001). This 

study wants to achieve the same goal for processing the deep-towed ACS data. However, because 

of strong ocean currents and rough seafloor topography during data acquisition, it was difficult to 

control the positions of the source and receivers. High-frequency ACS data require more accurate 

source–receiver positioning than low-frequency conventional seismic data. Despite instability of 

the depths of source and receivers, the method used for measurement of their positions was 

basically valid, so the instability of their depths could be counteracted during data processing. 

Furthermore, unstable depth is an important issue (Ross Chapman et al. 2002; Tokarev et al. 2008b; 

Marsset et al. 2014) because it may distort the hyperbolic curve of the reflection signal in pre-stack 

data. Distortion of the hyperbolic curve causes defocusing of velocity semblance during the 

velocity analysis process and producing ambiguous stack section. In seismic data processing, the 

static correction method is commonly applied to adjust the error from the hyperbolic curve 

associated with irregular locations of the sources and receivers. Unfortunately, the static correction 

method is not sufficient to resolve problem of the distorted hyperbolic curve in ACS data because 

an accurate static correction result needs precise depth information for the source and each receiver. 

In addition to correction of the geometrical error, the source signature of the ACS system contains 
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strong sidelobes (ripples) due to autocorrelation noise during the process of source signature 

extraction. It is crucial to reduce the sidelobes as much as possible because they can decrease the 

bandwidth frequency of pre-stack data. 

In this study, ACS data was processed using a method to adjust unstable receiver depths in 

pre-stack data. Through this approach, and the hyperbolic curve can be adjusted, and it can 

minimize the scattering of the obtained velocity semblance. The unstable source effect from post-

the stack data was attempted to remove. In addition to the geometrical correction scheme, the 

sidelobes was suppressed, thus widening the frequency content of the ACS data. This study applied 

seismic attribute analysis to the final stack section to characterize free gas, gas chimneys, and gas 

hydrates and identify their locations.  
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Figure 3.1. Basemap of ACS operation in the Joetsu Basin, Japan. (a) Schematic diagram of an 

ACS in operation (Asakawa, 2017). (b) Regional location map (inset) and bathymetric map 

showing the location of the ACS profile of this study (red line). The magenta points are the 

locations of hydrate outcrops. (c) Photographs of hydrates on the seafloor (JAMSTEC, 2012a, 

2012b). 
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3.2 Geologic Setting and Data 

 

In our study area, the process of basin creation began ~25 m.y. ago during rifting of the 

Eurasian continent’s eastern margin. During the mid-Pliocene, the extensional tectonic regime in 

this region changed to a compressional regime (Tamaki 1985). The compressional forces not only 

created geological structures for hydrocarbon traps, but also a hydrocarbon source area (Okui et 

al. 2008). The Joetsu Basin is southwest of Sado Island at the eastern margin of the Sea of Japan 

(Figure 3.1b). The basin began to form during the Miocene (Okui et al. 2008; Freire et al. 2011). 

From the mid-Miocene to the early Pliocene, the sedimentation rate in the Joetsu Basin increased, 

producing formations later discovered to be reservoirs for hydrocarbons, such as the Teradomari 

and Shiiya (5.5–3.5 Ma) formations (Okui et al. 2008; Freire et al. 2011). Hydrocarbons in the 

Joetsu Basin are known to exist as free gas and gas hydrates (Aoyama and Matsumoto 2009; Hiruta 

et al. 2009; Saeki et al. 2009; Freire et al. 2011; Yoneda et al. 2019; Santos et al. 2020).  

J-MARES acquired high-resolution acoustic data using a deep-towed ACS acoustic survey 

system in the Joetsu Basin, where gas hydrates have been identified (Figure 3.1). This acquisition 

used a streamer cable that has 32 hydrophones at 5 m intervals. The nearest and farthest offsets 

were 35 and 190 m, respectively. The sampling rate and record length were 0.1 and 1600 ms, 

respectively. The source of the ACS data was a iXBlue Echos 1500 sub-bottom profiler with signal 

frequency ranging from 700 to 2250 Hz (Asakawa et al. 2017). During data acquisition, the 

positions of the source and receivers varied between 614 and 720 m below sea level. The vessel 

speed was ~3 knots and the shot intervals were from 2 to 5 m. Details of the acquisition parameters 

are presented in Table 3.1. 
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Table 3.1 ACS acquisition parameters for the Joetsu Basin survey  

 

Figure 3.2. Workflow used for processing ACS data in this study. (a) Data processing flow. (b) 

Seismic attribute processing flow. 
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3.3 Method  

This section describes each step of the data processing (Figure 3.2). 

 

3.3.1 Preprocessing 

 

The two-way travel time (TWT) for the seafloor reflection signals in our ACS pre-stack 

data were seen after 300 ms. To focus on the signal between 300 and 700 ms (our range of interest 

signal; red box in Figure 3.3), all signals before 300 ms were muted (green box in Figure 3.3) and 

after 700 ms (blue box in Figure 3.3). Because the depths of the source and receivers did not remain 

constant during data acquisition (Figure 3.4), a delay-recording time correction, static correction, 

and datum shift were needed in the pre-processing step. These steps are known to repair the 

distorted hyperbolic curve due to the unstable source–receiver geometry (Yilmaz 2001). The 

source and receiver depth information were used as input for static corrections. Because the 

shallowest receiver depth was 614 m (Figure 3.4), and to prevent a huge increase in the size of the 

pre-stack dataset (due to trace shifting during static corrections), a floating datum of 600 m was 

used. After the static corrections, this preprocessing applied true amplitude recovery (TAR) to 

compensate for signal amplitude loss due to wave front propagation and inelastic attenuation 

(Gadallah and Fisher 2005). TAR process used the time raised power correction method with a 

power correction constant of 2 (Gavotti and Lawton 2013). 
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Figure 3.3 Examples of shot gathers from the ACS data. The red box indicates the reflection signals 

from the target lithology, the green box depicts the noise muted during processing, and the blue 

box depicts the multiple seismic reflections from the seafloor and sea surface. This study use signal 

on the red box. 

 

 

Figure 3.4 Depths of the source and receivers along our ACS profile. The unstable depths distorted 

the hyperbolic curve of reflection signal. 
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3.3.2 Adjusting for unstable receiver depths  

 

In high-frequency data processing, inaccurate static corrections may lead to destructive 

interference during the stacking process (Gutowski et al. 2002; Kluesner et al. 2019) due to 

distortion of the hyperbolic curve of the reflection signal (Figure 3.5). Inaccurate static corrections 

caused by inaccurate information about the depths of the source and receivers. During the deep-

towed ACS survey, it was difficult to measure the depth accurately for every receiver and source 

at each shot point because of the effect of strong ocean currents, rough seafloor topography, and 

the short recording time. Therefore, this study developed a method to adjust the receiver position 

for a better hyperbolic curve based on the Normal Move Out (NMO) equation (Yilmaz 2001), 

which this method used to adjust receiver positions in the common depth-point (CDP) gather: 

𝑇(𝑖)
2 =  𝑇0

2 +  
𝑥(𝑖)

2

𝑣2
 

(3.1) 

𝑑𝑡(𝑖) =  𝑇(𝑖) − 𝑇𝑜𝑏𝑠(𝑖) (3.2) 

where i is the trace sequence number, 𝑥𝑖 is the distance between the source and receiver 

(offset) for trace i, 𝑣 is the velocity above the reflector (the speed of sound in seawater; v = 1474 

m/s), 𝑇(𝑖) is the estimated reflection signal travel time for trace i, 𝑇0 is the zero offset travel time, 

𝑇𝑜𝑏𝑠(𝑖) is the picked seafloor travel time for trace i, and 𝑑𝑡(𝑖) is the time correction for trace i. 

Because this study did not have zero offset data (𝑇0), so the near offset (first channel) travel time 
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was used as 𝑇0 data, hence the 𝑥𝑖 on near offset was effectively 0 m for this process. The process 

to repair the hyperbolic curve follows these steps: 

• Picking the seafloor reflector for each ACS receiver trace, and identifying its travel time as 

𝑇𝑜𝑏𝑠 

• Sorting the ACS traces into the CDP domain 

• Calculating the travel time 𝑇(𝑖) for every receiver using equation (3.1) 

• Calculating the time difference 𝑑𝑡𝑥 for every receiver using equation (3.2) 

• Shifting the trace data for every receiver by 𝑑𝑡𝑥  

 

Figure 3.5 Schematic diagram illustrating the adjustment for unstable receiver depths. (a) Source–

receiver relationships for a CDP gather with unstable depths of the source and receivers (left 

panel), distorting the seismic reflection signal (red dashed line in right panel). (b) After applying 

inaccurate static corrections based on inaccurate receiver depths, the curve of the CDP gather is 

still distorted (green dashed line). The correct hyperbolic shape of the reflection signal (purple 

line) was obtained by using equations (1) and (2). 
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3.3.3 Surface Consistent Amplitude 

 

In seismic data acquisition, spikes or unstable amplitudes in the obtained data can be caused 

by inconsistency of the energy source, the response and condition of receivers, and the distance 

between the source and receiver. To reduce the influence of these factors on the acquired data, this 

study applied the Surface Consistent Amplitude (SCA) method (Levin 1989; Van Vossen et al. 

2006), which estimates a scaling factor for every trace by using the gain factor in each domain 

such as: the common shot, common channel, common offset, and CDP. Then, each sample trace 

is multiplied by the following scaling factor: 

𝑆(𝑖) =
1

(𝐺𝑠ℎ𝑜𝑡(𝑖) + 𝐺𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟(𝑖) + 𝐺𝑜𝑓𝑓𝑠𝑒𝑡(𝑖) + 𝐺𝑐𝑑𝑝(𝑖))
 

(3.3) 

𝐺𝑥(𝑖)  =  
𝑅𝑀𝑆𝑥(𝑖)

1
𝑁

∑ 𝑅𝑀𝑆𝑥(𝑛)
𝑁
𝑛=1

 
(3.4) 

where 𝑆(𝑖)  is the scaling factor for SCA at sequence i, 𝐺𝑠ℎ𝑜𝑡  is the gain factor for the 

common shot domain, 𝐺𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 is the gain factor for the common receiver domain, 𝐺𝑜𝑓𝑓𝑠𝑒𝑡 is the 

gain factor for the common offset domain, 𝐺𝑐𝑑𝑝 is the gain factor for the CDP domain, x is the 

type of data domain (i.e., shot, receiver, offset, and CDP), 𝐺𝑥(𝑖) is the gain factor for the specific 

domain x (i.e., 𝐺𝑠ℎ𝑜𝑡, 𝐺𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 ,  𝐺𝑜𝑓𝑓𝑠𝑒𝑡, 𝐺𝑐𝑑𝑝) at sequence i, RMSx(i) is the root mean square of 

sequence i for domain x, and N is the total sequence of the specific domain. 
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3.3.4  Focusing the Source Signature  

 

The source signature of the ACS wavelet was obtained by autocorrelation of the chirp 

signal. There are some ripples in the signals around the center of the wavelet (Figure 3.6); these 

are known as sidelobes (Koefoed 1981; Huang et al. 2007; Karsli and Dondurur 2013). Sidelobes 

are considered to be noise in the correlation process (Nelson 1989). Significant sidelobes in the 

ACS source wavelet were generated by the narrow bandwidth of the chirp signal (i.e., 700 - 2250 

Hz). It is essential to minimize the sidelobes in the source wavelet because they can decrease 

frequency bandwidth and cause destructive interference in the stacking process (Huang et al. 2007; 

Karsli and Dondurur 2013). To minimize the effect of sidelobes, this study designed a filter using 

a Hanning window (Horita and Kanasewich 1983) to make the source wavelet more focused and 

then applied the filter to the pre-stack data. 

 

3.3.5 Velocity Analysis  

 

Velocity analysis is the process for determining the seismic velocity functions (Yilmaz 

2001). The 1st velocity analysis was estimated every 50 CDP intervals to assess whether the pre-

processing had created appropriate hyperbolic reflection signals and clear velocity semblance. 

After making adjustments for unstable receivers, performing SCA, and focusing the source 

signature, the 2nd velocity analysis were estimated every 25 CDP intervals to obtain a high-

resolution velocity model for accurate NMO correction of CDP gathers. 
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3.3.6 Trim Static and Stacking 

 

Normal moveout correction (NMO) is a stretching of the time axis to make all seismic 

gather become zero-offset data. Imperfect NMO correction can cause slight tilting of the reflection 

signal in CDP gathers, especially for the longer offset traces. The difference between the slightly 

tilted signal and the flat signal after NMO correction is called the Residual Move Out (RMO). The 

trim static correction method (Gutowski et al. 2002) was used to remove the RMO from the pre-

stack data and then stacked the corrected data. 

 

3.3.7 Final Datum Correction and Smoothing 

 

For the final datum correction, mean sea level (MSL) was used as our reference level. MSL 

can be a global datum for estimating the height of the reflection signal. This process did not directly 

shift the signal from the floating datum to the MSL datum because the result after trim static and 

stacking (section 3.6, Figure 3.2) had not considered the unstable source depth. First, because the 

coordinates of the source and CDP were different, the depth of the source close to each CDP was 

estimated by linear interpolation. Then, the trace was shifted from the floating datum (600 m in 

this case) to the estimated source depth. For the final datum correction, the trace was shifted from 

the estimated source depth to the MSL datum. The equation used to estimate the time correction 

of final datum process is as follows: 
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𝑡𝑓𝑖𝑛𝑎𝑙(𝑝) = 𝑡𝑓𝑙𝑜𝑎𝑡(𝑝) +
2𝑑(𝑝)

𝑣
 

(3.5) 

where p is the CDP number sequence, d is the interpolated depth of the source near to point 

p , v is the sea-water velocity (1474 m/s), 𝑡𝑓𝑙𝑜𝑎𝑡  is the time for shifting the floating datum to 

estimated source depth in point-p, and 𝑡𝑓𝑖𝑛𝑎𝑙 is the correction time to do final datum correction. 

 

3.4 Results 

 

During ACS data acquisition, if the receiver streamer was tilted down (toward the seafloor) 

(Figure 3.7a), then the recorded travel time of the seafloor reflection was shorter (left panel of 

Figure 3.7b). Conversely, if the receiver streamer was tilted up (away from the seafloor) (Figure 

3.7a), then the recorded travel time of the seafloor reflection was longer (right panel of Figure 

3.7b). The greatest effect of tilting was for the receiver with the farthest offset. The maximum 

absolute receiver correction time of ~10 ms (Figure 3.7c) indicates that the far-offset receiver had 

been shifted by up to ± 7.5 m or the receiver streamer was tilted by up to 4.7° relative to the near-

offset receiver. 
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Figure 3.6 Results of focusing the source signature. (a) Original source wavelet (left panel) and 

frequency spectrum (right panel). (b) Source wavelet (left panel) and frequency spectrum (right 

panel) after focusing the source signature. The source wavelet in (b) is better focused, the sidelobes 

have been minimized, and the frequency spectrum is wider. 
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Figure 3.7 Results of adjusting for unstable receiver depths. (a) Schematic illustration of tilted receivers. (b) The blue and red lines are 

seafloor reflectors in the CDP domain before and after adjustment, respectively. (c) Time corrections required to adjust for unstable 

depths for all receivers.  
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The results of focusing the source signature are shown in Figure 3.6b. The sidelobe signals 

of the source wavelet were notably reduced (left panels in Figure 3.6b). Furthermore, the quality 

of the source spectrum was improved by as much as 25 dB, especially in the frequency ranges 

700–1200 Hz and 1700–2200 Hz (right panel in Figure 3.6). Since the designed filter that used in 

the focusing step demonstrated good performance, this filter also applied to the pre-stack ACS 

data. 

After pre-processing, the quality of the reflection signals was poor, as shown by the 

unfocused velocity semblances in the first run of velocity analysis (left panels in Figures 3.8a, 3.8c, 

3.8e). These semblances were unfocused because the conventional static correction and delay-

recording time correction were not sufficiently effective in correcting the distortion of the recorded 

reflection signal because of unstable streamer position. However, after application of the 

adjustments for unstable receivers, SCA, and focusing the source signature, the quality of the 

reflection signal markedly improved. The improvements are demonstrated by the better focused 

velocity semblances produced by the second run of velocity analysis (left panels in Figures 3.8b, 

3.8d, 3.8f). Moreover, by applying the filter that designed for focusing the source signature to the 

pre-stack ACS data, the average frequency spectrum in the CDP domain became wider. In 

particular, the average spectrum of ACS data in the frequency ranges of 700–1000 Hz and 1700–

2200 Hz increased by as much as 20 dB (right panels in Figures 3.8b, 3.8d, 3.8f) in comparison to 

the frequencies after pre-processing (right panels in Figures 3.8a, 3.8c, 3.8e). These improvements 

at low and high frequencies in the pre-stack data are essential for achieving high resolution in the 

stack section (Yilmaz 2001; Karsli and Dondurur 2013).
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Figure 3.8 Examples of velocity analyses (left panels) and averaged frequency spectra (right panels) for CDP gathers (center panels) 

from three positions along the profile. (a), (c), and (e) re-stack data after pre-processing steps. (b), (e), and (f) Pre-stack data after 

adjustment for unstable receiver depths, SCA, and focusing of source signature. 
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Source depth (Figure 3.9a) has a strong influence on both the near-offset gather (Figure 

3.9b) and the stack section (Figure 3.9c). The stack section (Figure 3.9c) shows significant 

improvements of signal-to-noise ratio at almost all CDP locations in comparison to the near 

channel gather (Figure 3.9b). After final datum correction and smoothing, the effect of source 

undulation was removed, and the final stacked profile was obtained (Figure 3.9d). The final stack 

section shows several shallow faults in Northern and Southern side with high spatial resolution 

(thickness less than 100 m) (Figure 10). It is hard for conventional seismic reflection to obtain this 

high resolution geological structure because subsurface with 100 m thickness is shown by single 

reflector signal (low spatial resolution). In order to identify hydrocarbon features (i.e., gas hydrates, 

free gas, and gas chimneys), this study calculated several seismic attributes from the final stacked 

data (Figures 11 and 12). Chimneys have vertical geometries that disrupt the seismic response of 

the sedimentary sequence and are often associated with low-amplitude blanking (Nourollah et al. 

2010; Singh et al. 2016; Nourollah and Urosevic 2019). These features can be emphasized by post-

stack seismic attributes (Tsuji et al. 2012). 
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Figure 3.9 (a) Depths of the source near each CDP along the profile. (b) Near-offset gather 

(seismic trace from 1st channel only) after pre-processing. (c) Stack section after adjustment for 

unstable receiver depths, SCA, and focusing of source signature) without final datum correction. 

(d) Final stack section after final datum correction. The seafloor reflections in (b) and (c) show 

correlations with the depth profile in (a).  
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Figure 3.10 Final stack section shows several shallow faults with high spatial resolution. 

Thickness of geological structures are less than 100 m. Top panels are the examples of faults in 

shallow depth, and bottom panel is final stack section.  
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3.5 Interpretation 

Gas chimneys have features that are related to fluids or gases such as pockmarks, mud 

volcanoes, and carbonate formations (Heggland 1998; Nourollah et al. 2010; Kioka et al. 2019). 

Methane hydrate is commonly formed at the low-temperature and high-pressure conditions of 

deep-sea environments (Kvenvolden and McMenamin, 1980; Pandey et al., 2019; Sain and Gupta, 

2012; Sloan, 2003), and its presence can be identified by Bottom Simulating Reflectors (BSR) on 

reflection seismic profiles (Ross Chapman et al. 2002; Ojha and Sain 2009; Sain and Gupta 2012; 

Eng and Tsuji 2019; Ye et al. 2019). To identify hydrocarbon gas and hydrates from the ACS 

derived profile, seismic attributes were used, including absolute amplitude, Root Mean Square 

(RMS) amplitude, chaos attribute, and instantaneous frequency (Chopra and Marfurt, 2007; Ismail 

et al., 2019; Kim et al., 2015; Kumar et al., 2019; Nourollah et al., 2010; Singh et al., 2016; Thakur 

and Rajput, 2011; Tsuji et al., 2005). 

Tracking gas chimneys is useful for understanding the migration pathways of hydrocarbons 

from source rock to reservoir (Saeki et al. 2009; Freire et al. 2011; Eng and Tsuji 2019; Kret et al. 

2020). The presence of gas chimneys causes amplitude blanking in stack section. The chaos 

attribute and reflection amplitude attributes (e.g., RMS amplitude) can be used to identify 

amplitude blanking (Figure 3.11; Nourollah et al., 2010; Nourollah and Urosevic, 2019; Singh et 

al., 2016). These attributes identified four dominant gas chimneys in our stack profile and showed 

them to be under localized anticline structures. Indeed, the hydrate deposits near the seafloor 

observed by JAMSTEC (Figures 1c, 1d) are within a similar ridge structure. The upward migration 

of methane could be important to make high concentration of hydrate deposits in the shallow 

subsurface, including the seafloor (Kvenvolden and McMenamin 1980; Judd and Hovland 2007; 
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Kret et al. 2020). In addition, many minor discontinuities were observed, such as small chimneys 

(area that has seismic blanking) and faults (discontinuity layer).  

 

 

Figure 3.11 Identification of gas chimneys from seismic attribute analysis of the ACS final stack 

section. (a) Chaos attribute section. (b) RMS amplitude section. (c) Final stack section depicts gas 

migration paths.  



 

83 

 

 

Gas hydrate close to the seafloor generates amplitude variations in the seafloor reflector 

because the acoustic impedance of gas hydrate is different from that of water-saturated marine 

sediment (right panel in Figures 3.12 and 3.13). A localized area of strong amplitude was observed 

on the seafloor, suggesting the presence of concentrated hydrate. Because the high-amplitude area 

of the seafloor reflector lies above minor faults (e.g., right panel in Figure 3.12a), upward migration 

of fluid through the minor faults might be important for deposition of hydrate close to the seafloor. 

This attribute could be useful to identify the localized hydrate close to the seafloor. 

Mixing of gas hydrate with free gas causes frequency fluctuations and amplitude blanking 

below the seafloor (left panels in Figure 3.12; Figure 3.13; Kim et al., 2015; Lee et al., 2017; Ojha 

and Sain, 2009; Sain and Gupta, 2012). Furthermore, the presence of gas hydrate and free gas 

together appears to have caused frequency fluctuation at the same location where amplitude 

variations are visible(middle panels in Figure 3.12; Ojha and Sain, 2009). From these observations, 

the accumulation of gas hydrate and free gas is seen to be between CDPs 221 and 331 (Figure 

3.12a). Interestingly, a localized hydrate accumulation appears to be not only at the top of the 

anticline structure (Figures 3.12b, 3.13a), but also on its flank (Figures 3.12a, 3.13b).  
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Figure 3.12 Potential areas for gas and hydrate accumulations in our ACS final stack section. (a) and (b) Gas potentials areas at 

locations 1 and 2 in Figure 3.11c, respectively. The left panels are the stack section, the center panels are instantaneous frequency, and 

the right panels are absolute amplitude. Red arrows indicate the localized hydrate close to the seafloor. 
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Figure 3.13 Potential areas for gas and hydrate accumulations in our ACS final stack section. (a) and (b) Gas potentials areas at 

locations 3 and 4 in Figure 3.10c, respectively. The left panels are the stack section, the center panels are instantaneous frequency, and 

the right panels are absolute amplitude. Red arrows indicate the localized hydrate close to the seafloor. 
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3.6 Conclusions 

 

The unstable depths of sources and receivers is a common problem that occurs in deep-

towed acoustic surveys. In terms of data processing, the conventional static correction method is 

insufficient to correct the timing error of the reflection signal due to the unstable depths of source 

and receivers. Our pre-stack data processing scheme provides a solution for this problem for deep-

towed acoustic survey data. Even if complete receiver depth information is not available for all 

receivers, our processing scheme can recover the reflection signal if offset information is available, 

and it notably improves the focusing of velocity semblances. In addition, our data processing 

scheme increases effective frequency bandwidth as a result of improvement in the focusing of the 

source signature. 

In our seismic attribute analysis, chaos and RMS amplitude attributes were used to 

successfully identify four gas chimneys as pathways for upward migration of gas. Furthermore, 

this study used absolute amplitude and instantaneous frequency attributes to identify localized 

hydrate accumulations close to the seafloor. 
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Conclusions 

 

 

4.1 Conclusions 

 

The combination of several advanced data processing methods and computation 

technology have given significant results on the utilization of passive and active source in 

geophysical research. The ambient noise is best compatible for monitoring velocity variation for 

long term duration with high temporal resolution. The proposed data processing schemes on deep-

towed data are suitable for obtaining high spatial resolution shallow subsurface structure. The key 

findings on dissertation below are summarized below: 

Chapter 2 provides a comprehensive monitoring system that can monitor the spatio-

temporal velocity changes in the Japanese Islands. This monitoring system is like geodetic 

monitoring which can be beneficial for monitoring crustal behavior. The proposed method, named 
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as “Sliding Reference Method”, is suitable for monitoring the temporal velocity variation with 

high stability, high temporal resolution, and close to the newest geological condition in comparison 

with the “Absolute Reference Method” (conventional). Moreover, the proposed method was given 

higher C(E) compare to conventional method. The high performance computation implemented in 

this monitoring system, has given breakthrough for making fast computation results, so this 

monitoring system can continuously monitor velocity variation for long periods. There is no 

hardware limitation in this system, hence it can be implemented for monitoring velocity variations 

in other areas. Moreover, this system has been designed so the computation speed can be easily to 

improve by adding the computation resource. In the future, the area that can record the ambient 

noise data, through the seismometers or the fiber optic sensors, may be broaden with denser 

sampling points. Therefore, a global scale monitoring system (worldwide scale) can be developed 

by using the monitoring system that was described previously. As the result, the worldwide 

geological crustal phenomena can be further observed with detailed resolution in future.  

Chapter 3 shows that the integration of the proposed data processing scheme and seismic 

attribute on deep-towed acquisition data has given a significant result for imaging shallow 

subsurface in high spatial resolution. The common problem related with the unstable source-

receiver depth of deep-towed acquisition has been counteracted during data processing. 

Minimizing the sidelobes on source signature also become an important factor for increasing the 

frequency content of pre-stack data. For gas exploration, the seismic attribute succeeded in 

identifying the presence of gas chimney, gas hydrate, and free-gas near the seafloor. Many 

locations have enormous potential for containing large amount of gas hydrate. Moreover, the 

energy demand will increase in the future, hence gas hydrate can be an important asset to fulfill 

this high energy demand. The deep-towed acquisition can be used for exploring the gas hydrate on 
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other location areas. These processing schemes on deep-towed acquisition data are not only useful 

for hydrocarbon exploration, but are also useful for another cases, such as: shallow submarine geo-

hazard potential, exploring the volcano system, finding seafloor massive sulfides deposit, etc. The 

high spatial resolution subsurface image is important for understanding the geological subsurface 

in more detail, hence the deep-towed acquisition can be another geophysical solution for achieving 

that purpose.   
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Appendix 

 

This appendix contents the python script for building the ambient noise monitoring system 

(my research focus and originality). In this script several processing steps have been developed, 

such as: stretching interpolation, ternary search, creating reference and current trace by using ARM 

or SRM, and removing outlier velocity changes. Several parameters should be defined such as: 

“root_out_folder; root_data_folder, cross_corr_folder_name; output_starttime; output_endtime; 

ref_stack_starttime, ref_window_size,cur_window_size, stack_method, stack_folder_name, 

full_stack_window_output, plot, e, e_delta, parallel, wave_duration, stretching_folder_name, 

data_cc_merge, log_folder, mad_tolerance, mad_thresh_cc,mad_filename, median_filter_enable,    

E0_correction, output_folder. 

 
##################################### 
#                                   # 
# 04_estimating_temporal_velocity.py# 
#                                   # 
##################################### 
import sys, os, shutil, glob, time, multiprocessing 
from scipy.signal import argrelextrema, medfilt 
import numpy as np 
 
def calc_correction_E0(data_in, num_day=30): 
    ''' E_corr = E - E0''' 
    names = [] 
    for descr in data_in.dtype.descr: 
        if len(descr) == 2: 
            names.append(descr[0]) 
    dates = np.unique(data_in["starttime"]) 
    min_date = np.min(dates) 
    max_date = min_date + np.timedelta64(num_day, 'D') 
    idx = (data_in["starttime"] >= min_date) & (data_in["starttime"] <= max_date)  
    ### Make Data E0 correction (mean of num_day) ### 
    data_E0 = data_in[idx] 
    df_E0 = pd.DataFrame({name : data_E0[name] for name in names}) 
    df_E0_mean = df_E0.groupby(["station", "pair_name"]).mean(). reset_index() 
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    data_E0_mean = df_E0_mean.to_records(index=False) 
    data_E_corr = [] 
    print("#### Process: optimize_velocity_v1 (correction_with_e0) \n#### Status: Start\n\n") 
    for data in data_in: 
        pair_name = data["pair_name"] 
        station = data["station"] 
        idx = (data_E0_mean["station"] == station) & (data_E0_mean["pair_name"] == pair_name)  
        buff = data["e_max"] 
        if np.sum(idx) > 0: 
            try: 
                data["e_max"] = data["e_max"] - data_E0_mean["e_max"][idx] 
            except: 
                print("ERROR") 
            data_E_corr.append(data)  
#         print(buff-data["e_max"]) 
    print("#### Process: optimize_velocity_v1 (correction_with_e0) \n#### Status: Finish \n\n")  
    result = np.concatenate([data_E_corr]) 
    return(result) 
 
def calc_median_filter(data_in): 
    data = np.copy(data_in) 
    kernel_size = 3 
    half_kernel_size = int(kernel_size / 2) 
    e_max_pad = np.pad(data["e_max"], (half_kernel_size, half_kernel_size), 'edge') 
    cc_max_pad = np.pad(data["cc_max"], (half_kernel_size, half_kernel_size), 'edge') 
    for start, emax in enumerate(data["e_max"]):  
        end = start + kernel_size 
        buff_e_max = e_max_pad[start:end] 
        buff_cc_max = cc_max_pad[start:end] 
        if np.isnan(emax) == False: 
            e_max_med = np.nanmedian(buff_e_max)  
            data["e_max"][start] = e_max_med 
            try: 
                data["cc_max"][start] = np.max(buff_cc_max[buff_e_max == e_max_med]) 
            except: 
                pass 
        e_max_pad = np.pad(data["e_max"], (half_kernel_size, half_kernel_size), 'edge') 
        cc_max_pad = np.pad(data["cc_max"], (half_kernel_size, half_kernel_size), 'edge') 
    return(data) 
 
 
def calc_mad(data_in, thresh_cc = "None", mad_tolerance = "None", nan_outlier=1, concatenate_output = 1, l
og_folder=None, median_filter=1): #"Make remove outlier, if not pass MAD then 1" 
    ''' 
    Input : merge of all data channel (np.ndarray)  
    ''' 
    if type(data_in) == list: 
        buff = [] 
        for bf in data_in: 
            if type(bf) == np.ndarray: 
                buff.append(bf) 
        if len(buff) != 0: 
            data = np.concatenate(buff) 
    elif type(data_in) == np.ndarray: 
        data = data_in     
    data = stretching_interp_fluctuation_rate(data)     
    print("#### Process: optimize_velocity_v1(calc_mad) \nStatus: Start!") 
    if (thresh_cc == "None"): thresh_cc = 0.5 
    if (mad_tolerance == "None"): mad_tolerance = 3 
    stations = np.unique(data["station"]) 
    new_dtype = data.dtype.descr + [("fr_mad", "f")] 
    names = list(data.dtype.names) 
    result = [] 
    for stn in stations: 
        slice_stn = data[data["station"]==stn] 
        pairs = np.unique(slice_stn["pair_name"]) 
        for pair in pairs: 
            count = 0 
            slice_pair = slice_stn[slice_stn["pair_name"]==pair] 
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            buff = np.ones_like(slice_pair, dtype=new_dtype)              
            buff[names] = slice_pair[names] 
            if "cc_max" not in buff.dtype.names: 
                new_dtype = buff.dtype.descr + [("cc_max", "f")] 
                buff = np.ones_like(buff, dtype=new_dtype) 
                buff[names] = slice_pair[names] 
                buff["cc_max"] = np.max(buff["CC"], axis=1) 
            #### Find low CC #### 
            cc_low = np.where(buff["cc_max"] < thresh_cc)[0] 
            #### Find CC has min max local ### 
            for i, CC in enumerate(buff["CC"]): 
                maxInd = argrelextrema(CC, np.greater)[0] 
                if(len(maxInd) > 1): 
#                 if(len(maxInd) > 1) and np.max(CC) < 0.7: 
                    cc_low = np.append(cc_low, i) 
            ### remove duplicated 
            cc_low = np.unique(cc_low) 
            #### CALC MAD FOR E_MAX ##### 
            print(stn, pair) 
            arr = slice_pair["e_max"]          
            med = np.nanmedian(slice_pair["e_max"]) 
            mad = np.nanmedian(np.abs(arr - med)) 
            thresh_min = med - mad_tolerance * mad 
            thresh_max = med + mad_tolerance * mad 
            idx = (buff["e_max"] > thresh_min) & (buff["e_max"] < thresh_max) 
            for id in cc_low: 
                if ((buff["e_max"][id] > thresh_min) & (buff["e_max"][id] < thresh_max)) == False: 
                    print("#### Process: optimize_velocity_v1(calc_mad) \nStatus: MAD Applied! \n{} {} {}\
n".format(buff["e_max"][id], thresh_min, thresh_max)) 
                    if (nan_outlier == 1):              
                        buff["e_max"][id] = np.nan 
                    else: 
                        buff["e_max"][id] = 0 
                    count +=1 
            ### Apply Median Filter ### 
            if median_filter != 0: 
                print("#### Process: optimize_velocity_v1(calc_median_filter) \n#### Status: Median Filter
 START!! \n{}\n".format([stn, pair[:6]])) 
                buff = calc_median_filter(buff) 
                print("#### Process: optimize_velocity_v1(calc_median_filter) \n#### Status: Median Filter
 FINISH!!\n{}\n".format([stn, pair[:6]])) 
            print(stn, pair, np.sum(idx), len(cc_low)) 
            ### remove if %count  
            if (count / len(buff["e_max"])) < 0.15: 
                result.append(buff) 
    if(concatenate_output == 1): result = np.concatenate(result) 
    print("#### Process: optimize_velocity_v1(calc_mad) \n#### Status: FINISH!\n\n") 
    if (type(log_folder) != type(None)): 
        if not os.path.isdir(log_folder): os.makedirs(log_folder, exist_ok=True) 
        log_file = os.path.join(log_folder, "mad.log") 
        f = open(log_file, "w") 
        f.write("Removed = {}".format(count)) 
        f.close() 
    return(result) 
 
def optimize_velocity(data_in, mad_tolerance=3, thresh_cc= 0.5, median_filter=1, E0_correction=1,  
                      output_folder=None, filename="all_mad.npy"):     
    script_name = os.path.basename(__file__) 
    mad_folder_path = output_folder 
    ###calculate mad and median filter 
    data = calc_mad(data_in=data_in, mad_tolerance=mad_tolerance, thresh_cc= thresh_cc, median_filter=medi
an_filter) 
    ###correction with E0 
    if E0_correction != 0: 
        data = calc_correction_E0(data_in=data) 
    if mad_folder_path != None: 
        mad_file_path = os.path.join(mad_folder_path, filename) 
        if os.path.isdir(mad_folder_path):  
            shutil.rmtree(mad_folder_path) 
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        os.makedirs(mad_folder_path, exist_ok=True) 
        np.save(mad_file_path, data)    
        print("#### Process: {} (optimize_velocity)\n#### Status: FINISH! Optimize Velocity Process!!\n {}
\n".format(script_name, mad_file_path)) 
    else: 
        return(data) 
 
 
def strecthing_interpolation_function(cur_files, ref_files, e, e_delta, plot, wave_duration,  tt = 0, coda
_side = "positive"):     
    if wave_duration == None: 
    checkpar_name = list(('sampling_rate', 'npts', 'station', 'longitude', 'latitude', 'fmin', 'fmax', 'pa
ir_name', 'starttime'))     
    vel  = 1  
    e_start = -1 *e 
    e_end = e 
    stn = np.unique(cur_files['station']) 
    date = np.unique(cur_files["starttime"]) 
    result_files = [] 
    print("#### Process: stretching_interpolation_v9 \nStatus: Start Stretching Interpolation! \n{} {}\n".
format(stn, date)) 
    for cur, ref in zip(cur_files, ref_files):      
        if (cur[checkpar_name] == ref[checkpar_name]) & (type(cur) == type(ref)): 
            M = int(cur['npts']/2) 
            sampling_rate = cur['sampling_rate'] 
            f_cur_ = np.fft.irfft(cur['freq'], cur['npts']) ## Return to time domain 
            buff1 = np.copy(f_cur_) ###Flip The Array IFFT 
            f_cur_[:M] = buff1[M:] 
            f_cur_[M:] = buff1[:M] 
            f_ref_= np.fft.irfft(ref['freq'], ref['npts'])             
            buff1 = np.copy(f_ref_) ###Flip The Array IFFT 
            f_ref_[:M] = buff1[M:] 
            f_ref_[M:] = buff1[:M] 
            t_all = np.linspace(-M/sampling_rate, M/sampling_rate, num=cur['npts']) ### create  time array 
            t1 = cur["pair_distance"] / vel 
            window = wave_duration 
            t_start = t1 + tt 
            t_end = t_start + window 
            if(coda_side == "negative"): 
                t_start = -1 * t_start 
                t_end = -1 * t_end 
            E = np.arange(e_start, e_end, e_delta) 
            CC = np.zeros_like(E) 
            idx = (t_all >= t_start) & (t_all <= t_end) 
            t = t_all[(t_all >= t_start) & (t_all <= t_end)] 
            f_cur = f_cur_[(t_all >= t_start) & (t_all <= t_end)] 
            f_ref = f_ref_[(t_all >= t_start) & (t_all <= t_end)] 
            ## Apply Stretching Interpolation ##  
            for i, e in enumerate(E): 
                te_cur = np.multiply(1+e, t) 
                fe_cur = np.interp(t, te_cur, f_cur)     
                num = np.sum(np.multiply(fe_cur, f_ref)) 
                pow1 = np.power(fe_cur,2) 
                pow2 = np.power(f_ref,2) 
                denom = np.power(np.multiply(np.sum(pow1), np.sum(pow2) ), 0.5) 
                CC[i] = np.divide(num, denom, out=np.zeros_like(num), where=denom!=0) 
            cc_max = np.nanmax(CC) 
            e_max = np.nanmax(E[CC == cc_max]) 
            ## Apply Tenery Search ##  
            N_tenery = 10  
            e_max_tenery = e_max 
            cc_max_tenery = cc_max 
            e_delta_tenery = e_delta/2 
            for i in range (N_tenery): 
                E_tenery = np.array([e_max_tenery, e_max_tenery - e_delta_tenery, e_max_tenery + e_delta_t
enery]) 
                CC_tenery = np.zeros_like(E_tenery) 
                CC_tenery = cc_max_tenery 
                for e in (E_tenery[1:]): 
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                    te_cur = np.multiply(1+e, t) 
                    fe_cur = np.interp(t, te_cur, f_cur)     
                    num = np.sum(np.multiply(fe_cur, f_ref)) 
                    pow1 = np.power(fe_cur, 2) 
                    pow2 = np.power(f_ref, 2) 
                    denom = np.power(np.multiply(np.sum(pow1), np.sum(pow2) ), 0.5) 
                    cc = np.divide(num, denom, out=np.zeros_like(num), where=denom!=0) 
                    CC_tenery = np.append(CC_tenery, cc) 
                e_delta_tenery = e_delta_tenery / 2 
                cc_max_tenery = np.nanmax(CC_tenery) 
                e_max_tenery = np.nanmax(E_tenery[CC_tenery == cc_max_tenery]) 
            if (cc_max_tenery > cc_max) :  
                print("#### Process: stretching_interpolation_v9 \nStatus: CC-
Coef Increase !!! After tenery search \n cc_max {}\n e_max {}\n\n".format([cc_max, cc_max_tenery], [e_max,
 e_max_tenery]))  
            elif (cc_max_tenery < cc_max) : 
                print("#### Process: stretching_interpolation_v9 \nStatus: CC-
Coef Decrease !!! After tenery search \n cc_max {}\n e_max {}\n\n".format([cc_max, cc_max_tenery], [e_max,
 e_max_tenery]))  
            id_emax=np.argwhere(E < e_max_tenery) 
            if len(id_emax) > 0: 
                id_emax = id_emax[-1].item() + 1 
            elif len(id_emax) == 0: 
                id_emax = 0 
            CC = np.insert(CC, id_emax , cc_max_tenery) 
            E = np.insert(E, id_emax, e_max_tenery) 
            ## Make Result ##  
            cc_max = np.nanmax(CC) 
            e_max = np.nanmax(E[CC == cc_max]) 
            if cc_max == 0: e_max = 0 
        else: 
            print("#### Process: stretching_interpolation_v9 \nStatus: Header not same! {} {} {}\n".format
(cur['station'], cur['pair_name'], cur['starttime']))               
        result_dtype = [('sampling_rate', '<i4'), ('npts', '<i4'), ('starttime', '<M8[ms]'), ('station', '
<U10'), ('motion', '<U10'),  
                        ('longitude', '<f4'), ('latitude', '<f4'), ('fmin', '<f8'), ('fmax', '<f8'), ('pai
r_name', '<U20'), ('pair_distance', '<f4'), 
                        ('pair_lon', '<f4'), ('pair_lat', '<f4'), ('stack_count', '<i4'), ("coda_side", "U
20"), ('wave_duration','<f4'), ('t_start','<f4'), 
                        ('t_end','<f4'), ("E", 'f', len(CC)), ("CC", 'f', len(CC)), ('e_delta', "<f4"), ('
cc_max','<f4'), ('e_max','<f4'), ('e_rms','<f4'), 
                        ("cur_window_size", 'i'), ("ref_window_size", 'i'), ("cur_window_type", 'U20'), ("
ref_window_type", 'U20'), ('pair_code', '<U20'), 
                        ('stack_method', '<U20'), ("cur_starttime", '<M8[D]'), ("ref_starttime", '<M8[D]')
, ("cur_endtime", '<M8[D]'), ("ref_endtime", '<M8[D]')] 
        copycur_name = ['sampling_rate', 'npts', 'station', 'starttime', 'motion', 'longitude', 'latitude'
, 'fmin', 'fmax', 'pair_name',   
                             'pair_distance', 'pair_lon', 'pair_lat'] 
        names = ["coda_side", 'wave_duration', 't_start', 't_end', "E", "CC", 'e_delta', 'cc_max', 'e_max'
,  "cur_window_size", "ref_window_size",  
                "cur_window_type", "ref_window_type", "e_rms", "pair_code", "cur_starttime", "ref_starttim
e", "cur_endtime", "ref_endtime"] 
        cur_window_size = cur["window_size"] 
        ref_window_size = ref["window_size"] 
        cur_window_type = cur["window_type"] 
        ref_window_type = ref["window_type"]         
        cur_starttime = cur["stack_starttime"] 
        ref_starttime = ref["stack_starttime"] 
        cur_endtime = cur["stack_endtime"] 
        ref_endtime = ref["stack_endtime"] 
        pair_code = "{}--{}".format(cur['station'], cur['pair_name'][:6])         
        e_rms = calc_stretching_rms_error(data=f_ref, cc_max=cc_max, t_start=t_start, t_end=t_end, fmin=re
f["fmin"], fmax=ref["fmax"], sps = ref["sampling_rate"]) 
        result = np.zeros(1, dtype=result_dtype) 
        result[copycur_name] = cur[copycur_name] 
        try: 
            for name in names : result[name] = eval(name) 
        except: 
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            errorfile = os.path.join(os.getcwd() + "stretching.{}.error".format(MPI.COMM_WORLD.Get_size())
) 
            f = open(errorfile, "w") 
            f.write("{} {} {}".format(stn, date, pair_name)) 
        result_files.append(result) 
#     output = np.concatenate(result_files) 
    print("#### Process: stretching_interpolation_v9 \nStatus: *** Finish Stretching Interpolation! *** \n
{} {}\n\n".format(cur['station'], cur['starttime'])) 
    if(len(result_files) != 0): 
        return(np.concatenate(result_files)) 
 
def strecthing_interpolation(data_in, plot=0, e=0.025, e_delta = 0.0005, parallel=0, wave_duration=None, t
t=0 , output_starttime = None, output_endtime=None):        
    ''' 
    Input  =  array of full path of filename (str) each channel 
    Output = array of numpy struct array 
    ''' 
    print("##### Process: stretching_interpolation_v9 (stretching_interpolation) \nStatus: Starting \nTota
l input: {}".format(len(data_in)))     
    ### Stretching Interpolation ### 
    result = []     
    if (len(data_in) != 0): 
        for file in data_in: 
            if (len(file) > 0 and file != [] and type(file) != type(None)):  
                #### check data input 
                if (type(file) == str) or (type(file) == np.str_): stacks_file = np.load(file)    
                elif(type(file) == np.ndarray): stacks_file = file 
                else: sys.exit("#### Process: stretching_interpolation_v9 (stretching_interpolation)\nStat
us: Not support Data Input Type {}\n".format(type(file))) 
                cur_files = stacks_file[stacks_file['trace_type'] == 'current'] ### select all current fil
e 
                ref_files = stacks_file[stacks_file['trace_type'] == 'reference'] ### select all reference
 file  
                if type(output_starttime) != type(None) and type(output_endtime) != type(None): 
                    dates = np.arange(np.datetime64(output_starttime, 'D'), np.datetime64(output_endtime, 
'D') + np.timedelta64(1,"D"), dtype="datetime64[D]") 
                else: 
                    dates = np.unique(cur_files["starttime"]) 
                params = [] 
                for date in dates: 
                    one_day_cur_files = cur_files[cur_files["starttime"] == date] 
                    one_day_ref_files = ref_files[ref_files["starttime"] == date] 
                    one_day_cur_files = np.sort(one_day_cur_files, order=["station", "pair_name"]) 
                    one_day_ref_files = np.sort(one_day_ref_files, order=["station", "pair_name"]) 
                    if len(one_day_ref_files) != 0 and len(one_day_cur_files) != 0:   
                        params.append([one_day_cur_files, one_day_ref_files, e, e_delta, plot, wave_durati
on, tt])        
                if len(params) == 0: 
                    sys.exit("##### Process: stretching_interpolation_v9 (stretching_interpolation)\nStatu
s: No params input") 
                if(parallel== 0): n_worker = 1     
                else: n_worker = multiprocessing.cpu_count() 
                pool = multiprocessing.Pool(processes = n_worker) 
                buff = list(pool.starmap(strecthing_interpolation_function, params)) 
                pool.close() 
                pool.join() 
                result.append(np.concatenate(buff)) 
    if (len(result) != 0): 
        print("##### Process: stretching_interpolation_v9 (stretching_interpolation)\nStatus: Finish!! Tot
al output = {}".format(len(result))) 
        print(type(result)) 
        return(result) 
    else: 
        print("##### Process: stretching_interpolation_v9 (stretching_interpolation)\nStatus: Finish!! No 
output = {}".format(len(result))) 
 
def run_velocity_estimation_mpi(root_out_folder, root_data_folder, cross_corr_folder_name, 
        log_folder, data_cc_merge, output_starttime, output_endtime, ref_stack_starttime, 
        ref_window_size, cur_window_size, stack_method, stack_folder_name, full_stack_window_output, 
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        cur_window_type, ref_window_type, plot, e, e_delta, parallel, wave_duration, stretching_folder_nam
e, 
        mad_tolerance, mad_thresh_cc, mad_filename, median_filter_enable, E0_correction, output_folder): 
    script_name = os.path.basename(__file__) 
    comm = MPI.COMM_WORLD 
    rank = comm.Get_rank() 
    size = comm.Get_size() 
    name = platform.node()  
    #### setup log ###     
    if rank > 0: 
        log_filename  = open("/tmp/running.log",'w') 
        sys.stdout =  log_filename      
        sys.stderr =  log_filename  
    if size == 0: 
        sys.exit("#### Process: {} (run_velocity_estimation_mpi)\n#### Status: STOP ({})!!! \n Number of p
rocess != 1 \n\n".format(script_name, name)) 
    #Setup log folder 
    if log_folder == None: 
       log_folder = os.path.join(root_data_folder, "log") 
    if os.path.isdir(log_folder) == False: 
        os.makedirs(log_folder)     
    time_folder = log_folder 
    date = output_endtime 
    process_check = os.path.join(log_folder, "{}.03.success".format(date)) 
    ######################## Check None Parameters ############################# 
    if data_cc_merge == None: 
        sys.exit("#### Process: {} (run_velocity_estimation_mpi)\n#### Status: STOP ({})!!! \nPlease give 
data_cc_merge full path \n\n".format(script_name, name)) 
    if stack_folder_name == None: 
        sys.exit("#### Process: {} (run_velocity_estimation_mpi)\n#### Status: STOP ({})!!! \nPlease give 
stack_folder_name \n\n".format(script_name, name))   
    if stretching_folder_name == None: 
        sys.exit("#### Process: {} (run_velocity_estimation_mpi)\n#### Status: STOP ({})!!! \nPlease give 
stretching_folder_name \n\n".format(script_name, name))   
    if output_folder == None: 
        sys.exit("#### Process: {} (run_velocity_estimation_mpi)\n#### Status: STOP ({})!!! \nPlease give 
output_folder \n\n".format(script_name, name))   
    ###### Setup folder ###### 
    stack_folder_path = os.path.join(root_out_folder, stack_folder_name) 
    stretching_folder_path = os.path.join(root_out_folder, stretching_folder_name) 
    ############ Load Daily Cross-correlation Data and Merge Into File Before Stacking ########## 
    timing = [time.time()] 
    proc_start = time.time()    
    print("\n#### Process: {} (run_velocity_estimation_mpi) \n#### Status: Start!! Merge Cross-
correlation Data {}\n\n".format(script_name, name)) 
    dates = np.array([output_starttime, output_endtime, ref_stack_starttime], dtype="datetime64[D]") 
    dates = np.arange(np.min(dates), np.max(dates)+np.timedelta64(1, 'D'), dtype='datetime64[D]') 
    if rank == 1 or size == 1:     
        if os.path.isfile(data_cc_merge): 
            old_data_cc_merge = np.load(data_cc_merge) 
            old_dates = np.sort(np.unique(old_data_cc_merge["starttime"])) 
        else: 
            old_dates = [] 
            old_data_cc_merge = None 
        new_data_cc_merge = [] 
        for d in dates: 
            if (d not in old_dates): 
                dd = d.astype(np.str).replace("-", "") 
                cc_folder_path = os.path.join(root_data_folder, dd, cross_corr_folder_name) 
                if os.path.isdir(cc_folder_path): 
                    print("#### Process: {} (run_velocity_estimation_mpi)\n#### Status: Loading Daily Cros
s-correlation Data! {}\n\n".format(script_name, d)) 
                    buff = ddi(folderIn = cc_folder_path, file_pattern = "*cc.npy",  method="single-
folder", out_type="array-list", parallel = parallel) 
                    new_data_cc_merge.append(np.concatenate(buff)) 
            else: 
                print("#### Process: {} (run_velocity_estimation_mpi)\n#### Status: ({}) Data exist {}\n\n
".format(script_name, name, d)) 
        if new_data_cc_merge != []: 
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            new_data_cc_merge = np.concatenate(new_data_cc_merge) 
        if type(old_data_cc_merge) == np.ndarray: 
            if type(new_data_cc_merge) == np.ndarray: 
                new_data_cc_merge = np.concatenate([old_data_cc_merge, new_data_cc_merge]) 
                np.save(data_cc_merge, new_data_cc_merge)  
            elif new_data_cc_merge == []: 
                new_data_cc_merge = old_data_cc_merge 
        elif type(data_cc_merge) == str: 
            print("#### Process: {} (run_velocity_estimation_mpi)\n#### Status: ({}) Saving The Merged CC 
Data!! \n{}\n\n".format(script_name, name, data_cc_merge)) 
            np.save(data_cc_merge, new_data_cc_merge) 
        if type(new_data_cc_merge) == np.ndarray: 
            data_cc_merge = new_data_cc_merge              
    ################################ Stacking Data ############################# 
        print("#### Process: {} (run_velocity_estimation_mpi)\n#### Status: {} Start Stacking Data! \n\n".
format(script_name, name))  
        if stack_method == "ARM": 
            stack_cur_ref_arm(data_in=data_cc_merge, out_dir=stack_folder_path,npy_list=0, 
                                output_starttime = output_starttime, output_endtime = output_endtime, 
                                ref_window_size = ref_window_size, ref_stack_starttime = ref_stack_startti
me, ref_window_type=ref_window_type, 
                                cur_window_size = cur_window_size, full_stack_window_output=full_stack_win
dow_output, cur_window_type=cur_window_type) 
        elif stack_method == "SRM": 
            stack_cur_ref_srm(data_in=data_cc_merge, out_dir=stack_folder_path, npy_list=0, 
                                output_starttime = output_starttime, output_endtime = output_endtime, 
                                ref_window_size = ref_window_size, ref_stack_starttime = ref_stack_startti
me, ref_window_type=ref_window_type, 
                                cur_window_size = cur_window_size, full_stack_window_output = full_stack_w
indow_output,  cur_window_type=cur_window_type) 
        else: 
            sys.exit("#### Process: {} (run_velocity_estimation_mpi)\n#### Status: Please define stack met
hod ('ARM' or 'SRM' \n".format(script_name)) 
    else: 
        print("#### Process: {} (run_velocity_estimation_mpi)\n#### Status: Start Stacking Data!! \nWaitin
g to finish\n\n".format(script_name)) 
    comm.barrier() 
    timing.append(time.time()) 
 
 
    ########################### Stretching interpolation ####################### 
    print("#### Process: {} (run_velocity_estimation_mpi)\n#### Status: Start Velocity Estimation! ({})\n\
n".format(script_name, name))       
#         print("\n\n#### Process: {} (run_velocity_estimation_mpi)\n#### Status: Finish Velocity Estimati
on! ({})\n\n".format(script_name, name)) 
    if rank != 0:                  
        data_in = ddi(folderIn = stack_folder_path, file_pattern = "*stack*", method="single-
folder", out_type="string-list", parallel = 1) 
        buff = sorted(data_in)         
        buff = np.array_split(buff, size-1)       
        data_in = sorted(buff[rank-1]) 
        data_stretching = strecthing_interpolation(data_in=data_in, plot=plot, e=e, e_delta = e_delta, par
allel=1, wave_duration=wave_duration, 
                                                   output_starttime = output_starttime, output_endtime = o
utput_endtime) 
        ddo(data_in = data_stretching, proc_name="stretching", out_dir = stretching_folder_path, method="s
plit") 
        print("\n\n#### Process: {} (run_velocity_estimation_mpi)\n#### Status: Finish Velocity Estimation
! ({})\n\n".format(script_name, name)) 
    elif rank == 0:  
        print("#### Process: {} (run_velocity_estimation_mpi)\n#### Status: Start Velocity Estimation! ({}
)\n\n".format(script_name, name))    
    comm.barrier() 
    timing.append(time.time()) 
    ########################### Optimize Velocity (Removing Outlier Anomaly, E0 Correction) ##############
######### 
    output_file_path = os.path.join(output_folder, mad_filename) 
    if rank == 0: 
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        print("#### Process: {} (run_velocity_estimation_mpi)\n#### Status: START! Optimize Velocity! \n {
}\n".format(script_name, output_file_path)) 
        data = ddi(folderIn = stretching_folder_path, file_pattern = "*stretching.npy", method="single-
folder", out_type="array-list", parallel = 0) 
        data = np.concatenate(data)         
        data = optimize_velocity(data_in = data, mad_tolerance=mad_tolerance, thresh_cc = mad_thresh_cc,  
                                 median_filter=median_filter_enable,  E0_correction=E0_correction) 
        if os.path.isdir(output_folder):  
            shutil.rmtree(output_folder) 
        os.makedirs(output_folder, exist_ok=True) 
        np.save(output_file_path, data)    
        print("#### Process: {} (run_velocity_estimation_mpi)\n#### Status: FINISH! Optimize Velocity Proc
ess!!\n {}\n".format(script_name, output_file_path)) 
        timing.append(time.time()) 
    proc_time = proc_start - time.time() 
    ###Save log file status 
    if rank == 0: 
        print(process_check) 
        process_check_file = open(process_check, "w").write("{} {} {} {}\n".format(date, timing, proc_time
, size)) 
    print("\n\n#### Process: {} (run_velocity_estimation_mpi)\n#### Status: Finish ALL Process! ({})\nFold
er : {}\n".format(script_name, name, output_file_path)) 
     
if __name__ == "__main__": 
    today_date = sys.argv[1]  
    ######################## Input Paramameters #########################  
    # Folder Configuration 
    root_out_folder = "/home/fernando/hinet/data/kyushu" 
    root_data_folder = "/home/fernando/hinet/data/kyushu" 
    log_folder = "/home/fernando/hinet/log" 
    time_folder  = log_folder 
    cross_corr_folder_name = "cross_corr" 
    # Stack Parameters 
    output_starttime = None 
    output_endtime = today_date     
    ref_stack_starttime = None 
    ref_window_size = 365 
    cur_window_size = 11 
    stack_method = "SRM" 
    full_stack_window_output = 1 
    stack_folder_name = "SRM_{}_stack_{}".format(cur_window_size, today_date)         
    data_cc_merge = "/home/fernando/hinet/data/kyushu/merge_data_cc.npy" 
    # Velocity Estimation Parameters 
    plot = 0  
    e = 0.025 
    e_delta = 0.0005 
    parallel=1 
    wave_duration=100 
    stretching_folder_name  = "SRM_{}_stretch_{}".format(cur_window_size, today_date)         
    #Velocity Optimize Parameters 
    mad_tolerance = 3 
    mad_thresh_cc = 0.5 
    mad_filename = "all_mad.npy" 
    median_filter_enable = 1 
    E0_correction=1 
    optimize_vel_folder = "/home/fernando/hinet/data/kyushu/temporal_vel/{}".format(today_date) 
    ######################## Stacking, And velocity estimation ######################### _ 
    run_velocity_estimation_mpi(root_out_folder = root_out_folder, root_data_folder = root_data_folder, 
            cross_corr_folder_name = cross_corr_folder_name, 
            output_starttime = output_starttime, output_endtime = output_endtime,     
            ref_stack_starttime = ref_stack_starttime, ref_window_size = ref_window_size, 
            cur_window_size = cur_window_size, stack_method = stack_method, 
            stack_folder_name = stack_folder_name, full_stack_window_output = full_stack_window_output, 
            plot = plot, e = e, e_delta =e_delta, parallel=parallel, wave_duration=wave_duration, 
            stretching_folder_name = stretching_folder_name, data_cc_merge = data_cc_merge, 
            log_folder =log_folder, mad_tolerance = mad_tolerance, mad_thresh_cc = mad_thresh_cc, 
            mad_filename = mad_filename, median_filter_enable = median_filter_enable, 
            E0_correction = E0_correction, output_folder = optimize_vel_folder) 


