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A B S T R A C T

Purpose: The objective of this study is to determine the quality of chest X-ray images using a deep convolutional
neural network (DCNN) and a rule base without performing any visual assessment. A method is proposed for
determining the minimum diagnosable exposure index (EI) and the target exposure index (EIt).
Methods: The proposed method involves transfer learning to assess the lung fields, mediastinum, and spine using
GoogLeNet, which is a type of DCNN that has been trained using conventional images. Three detectors were
created, and the image quality of local regions was rated. Subsequently, the results were used to determine the
overall quality of chest X-ray images using a rule-based technique that was in turn based on expert assessment.
The minimum EI required for diagnosis was calculated based on the distribution of the EI values, which were
classified as either suitable or non-suitable and then used to ascertain the EIt.
Results: The accuracy rate using the DCNN and the rule base was 81%. The minimum EI required for diagnosis
was 230, and the EIt was 288.
Conclusion: The results indicated that the proposed method using the DCNN and the rule base could discriminate
different image qualities without any visual assessment; moreover, it could determine both the minimum EI
required for diagnosis and the EIt.

1. Introduction

Chest X-ray imaging costs less and exposes the patient to lower
radiation doses than computed tomography and allows an assessment
of a general view of the chest. For these reasons, it is the most fre-
quently used imaging modality and the main diagnostic method for
pulmonary diseases. However, although patients are exposed only to
relatively low radiation doses when a chest X-ray examination is per-
formed, the frequent use of the method can lead to large collective
doses [1]. Teeuwisse et al. reported that chest X-rays account for ap-
proximately one third of all diagnostic X-rays and that their estimated
contribution to a patient’s collective dose is approximately 18% [2].
Similar figures have been reported in other Western European countries
[3,4].

The optimum X-ray dose for ensuring the required image quality has
been extensively discussed in radiology. In particular, since the in-
troduction of computed radiography in 1983, detector-absorbed doses

have been increasing [5]. This has led to an increase in image noise
owing to insufficient exposure. Thus, to avoid a decrease in diagnostic
ability, radiological technologists tend to increase the detector dose to a
level that exceeds the required detector dose. This accounts for the
exposure creep that have been reported [6]. Nevertheless, unlike film
systems, computed radiography and flat-panel detector systems allow
image processing, and thus the optimum detector dose cannot be de-
termined from the intensity of the X-ray images.

To address these problems, the American Association of Physicists
in Medicine (AAPM) and the International Electrotechnical Commission
(IEC) have proposed the following indices: exposure index (EI), which is
the estimated absorption amount that reaches the detector, target ex-
posure index (EIt), which is the target EI value determined for each
imaging site, and deviation index (DI), which is ten times the value
derived by dividing EI by EIt [6,7]. The DI is used to determine whether
the facility uses the optimum detector dose to obtain X-ray images, and
detector dose management based on the DI has been proved effective
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[8]; in a previous study, we developed a software package that calcu-
lates the mAs values based on the DI of past images [9], and we de-
monstrated its effectiveness. However, as the DI depends on the EIt, the
detector dose and the required image quality must be considered when
the EIt is set. Peters et al. emphasized the necessity of establishing the
optimum exposure indices for clinicians rather than simply following
manufacturers' guidelines [10].

A large number of studies have verified the correlation between
dose and image quality [11,12]. In particular, the quality of an image is
determined by its physical characteristics and by visual assessment.
However, physical characteristics such as the detective quantum effi-
ciency [13,14] and image contrast [15,16] are still difficult to apply to
clinical images, as the anatomical background has not been considered
[1]. Moreover, analytical visual assessment methods, such as receiver
operating characteristic curve analysis and visual grading character-
istics analysis [17–24], are time-consuming and require advanced
medical knowledge. Accordingly, they cannot be applied to large
numbers of clinical images. Cohen et al reported that the mean value of
the EI obtained from images stored in a picture archiving and com-
munication system (PACS) was used to determine the EIt [25].

In this regard, Yuan et al. developed an image-based technique to
assess the subjective quality of chest X-ray images [26], and it was
demonstrated that physical qualities were correlated with expert as-
sessment [26,27]. However, this quality assessment requires a com-
prehensive approach that considers anatomical structures such as the
lung fields and the mediastinum, and the correlation between the re-
sults by the algorithm and the observed results may be quite compli-
cated [28].

Recently, a computer-assisted detection/diagnosis system using
deep convolutional neural networks (DCNNs) was developed for med-
ical applications. This system has exhibited remarkable performance in
natural image recognition [29–32]. Esses et al. reported that automatic
image quality assessment could be performed on T2-weighted MRI
images using a deep-learning architecture [33]. DCNNs are highly ef-
fective in analyzing classification problems using supervised images.
However, to our knowledge, no studies have applied DCNNs to assess
chest X-ray image quality or determine the EIt.

In the present study, we assessed the quality of chest X-ray images
using a DCNN and a rule-based technique. The lowest detector dose
required for diagnosis was defined as “minimum EI value”. We at-
tempted to determine the minimum EI value required for diagnosis and
the EIt using rating results.

2. Methods

2.1. Overview of the proposed method

Fig. 1 shows an overview of the proposed method. The structures
were manually segmented in the images. Using GoogLeNet, which was
trained on general images, we created three classifiers by performing
transfer learning of the lung fields, mediastinum, and spine. Subse-
quently, we rated the image quality in each region, and we used the
results to determine the overall quality of the chest X-rays by applying a
rule-based technique, in which the rules were based on expert assess-
ment of the final image. The EI value distributions of the chest X-ray
images were classified as either appropriate or inappropriate, and these
values were used to determine the minimum EI value necessary for
diagnosis and then the EIt.

2.2. Dataset

The present study was conducted after the approval of the
Institutional Review Board of the University of Occupational and
Environmental Health was granted. The study involved 2000 chest X-
ray images: 1174 from males and 826 from females (Table 1). All pa-
tients were imaged at the Hospital of the University of Occupational

and Environmental Health using the FPD System AeroDR1717HQ
(Konica Minolta Inc., Tokyo, Japan), and all images were processed
using the CS-7 diagnostic imaging workstation (Konica Minolta Inc.,
Tokyo, Japan). The imaging parameters were as follows: source–image
distance, 200 cm; 100 kV; and Cu, 0.1 mm. For all images, an automatic
exposure control was used. All X-ray images were of healthy patients
without pulmonary disease. Of the 2000 chest X-rays, 300 were used for
DCNN training, and 1700 were used to assess the proposed method for
determining the EIt. DCNN training was performed using trimmed
images in which region-of-interest (ROI) of 20 × 20 pixels were ran-
domly set at locations in the right lung fields, mediastinum, and spine.
There were 1500 ROI images of the lung field and mediastinum and
3000 ROI images of the spine. In particular, the discrimination results
for the spine largely depend on the location of the ROI and the body
thickness of the patient; thus, setting two ROI locations increased the
available training data and improved accuracy. DCNN learning requires
an excessively large number of training data. However, it is difficult to
collect sufficient data from medical images. In this study, to prevent
overlearning due to the lack of data numbers, we performed data
augmentation to increase the learning data [34]. The data augmenta-
tion used was image rotation using affine transformation. The rotation
angle θ was set to +2 degrees and −2 degrees upon confirming the
anatomical structure. We augmented the data thrice. In the final
training, there were 4500 ROI images of the lung field and mediastinum
and 9000 ROI images of the spine. The supervision levels of the ROI
images were rating-classified by experienced a chest radiologist with
14 years of experience using the European Guidelines on Quality Cri-
teria for Diagnostic Radiographic Images [35–37] (Table 2, Fig. 2).

2.3. DCNN learning

We independently trained three DCNN architectures for classifying
the image quality of the lung, mediastinum, and spine on chest radio-
graphy. The image quality was classified into four classes (Table 2) by
each DCNN. DCNNs with a high generalization ability require large
training samples, which is difficult to collect from medical images, re-
sulting in degradation of the DCNN performance. Transfer learning is a
method of diverting the DCNN model of one task to another task [38].
Models with a high generalization ability can be obtained even with
small datasets by using transfer learning. As the network to be trans-
ferred, we used the Google Net [39] of the winning team in ILSVRC
2014, which had pre-learned using ImageNet [40]. The GoogLeNet
consists of a total of 22 layers that incorporate the 1 × 1 convolution,
global average pooling, and Inception module technologies in addition
to the convolution and pooling layers (Table 3). The last fully connected
layer was replaced with a fully connected layer consisting of four units
corresponding to the classes shown in Table 2. The output values of this
DCNN were the occurrence probabilities of the four classes, and the
maximum output value was used as the classification result. Three
DCNNs used in this study were pre-learned using 1.2 million common
images and then fine-tuned on the lung, mediastinal, and spinal images,
respectively. Fine-tuning of three DCNNs were performed using 4500,
4500, and 9000 ROI images of the lung, mediastinum, and spine on
chest radiography, respectively (Table 4). DCNN training was per-
formed in MATLAB R2018b (MathWorks Inc., Natick, Mass., USA) using
a stochastic gradient descent and the following parameters: training
rate, 0.0001; maximum number of epochs, 100; batch size, 32; mo-
mentum, 0.9; and dropout rate, 0.5.

2.4. Creation of the rule base

The overall quality of the images was determined using a rule-based
technique that employed the rating results obtained from the DCNN
created using chest X-ray images according to Method 2.3. Fig. 3 shows
an overview of the rule base, which was created by experienced a chest
radiologist with 15 years of experience using an image confirmation

T. Takaki, et al. Physica Medica 71 (2020) 108–114

109



procedure. The rules were created by considering the effects of various
elements such as patient body thickness. First, the expert determined
whether blood vessel shadows in the lung fields could be seen; then, a
final assessment of the image quality was provided based on the spine
and blood vessels in the mediastinum, considering elements such as
patient body thickness. The cutoff scores for the final appropriate
images were as follows: A score of at least 3 was assigned to the rating
results for the lung field rule base, a score of at least 2 was assigned to
the rating results for the mediastinum, and a score of at least 3 was
assigned to the rating results for the spine.

2.5. Discrimination capability of the proposed method

The discrimination capability of the proposed method was in-
vestigated using 459 chest X-ray images out of a total of 1700 that were
not used in DCNN learning, and by comparing the visual assessment
obtained by two experts (each of whom had at least 14 years of

experience) that were not involved in Method 2.2 with that obtained
through the proposed method. The visual assessments were conducted
in accordance with the European Guidelines on Quality Criteria for
Diagnostic Radiographic Images. We calculated the accuracy rate,
sensitivity, and specificity of the proposed method as follows:

=
+

+ + +
Accuracy TP TN

TP TN FP FN (1)

=
+

Sensitivity TP
TP FN (2)

=
+

Specificity TN
TN FP (3)

where the term “TP” is the number of true positives, the term “TN” is
the number of true negatives, the term “FP” is the number of false
positives, the term “FN” is the number of false negatives.

2.6. Method for determining EIt

Using the DCNN created from the 1700 chest X-ray images that were
not used in DCNN learning and the rule base, we differentiated between
appropriate and inappropriate images. Subsequently, using Eqs. (4) and
(5), we calculated the correlation between the EI value and the number
of normalized appropriate and inappropriate images obtained using
that value.

=
∑

∑
Ratio of appropriate images

appropriate images
Total numberEI

EIi

EI
i

i (4)

=
∑

∑
Ratio of inappropriate images

inappropriate images
Total numberEI

EIi

EI
i

i (5)

where the term “appropriate imagesEIi” is the number of appropriate
images obtained using an EI value of i that was divided by bin, the term
“inappropriate imagesEIi” is the number of inappropriate images ob-
tained using an EI value of i that was divided by bin, and the term
“Total numberEIi” is the total number of appropriate and inappropriate

Fig. 1. Overview of EIt calculation using the proposed method. Images were input into a DCNN created using lung fields, mediastinum, and spine images. Ratings
were then obtained and used to differentiate appropriate and inappropriate images using a rule-based method. The EI was extracted from the DICOM tags of the
images whose quality had been rated, and this was used to determine the minimum EI value required for diagnosis and then the EIt.

Table 1
Patients informations.

Range Mean Standard deviation

Age 21–92 67.7 13.6
Height (cm) 131–196 159.8 9.4
Weight (kg) 24.9–125.4 56.2 12.1
Exposure Index 99–872 229.7 51.5

Table 2
Rating classifications.

Appearance of target structure Rating score (Grade)

Indiscernible 1
Unclear 2
Clear 3
Sufficiently appropriate 4
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images obtained using an EI value if i that was divided by bin.
In the IEC62494-1 report [7], the International Electrotechnical

Commission indicated that EI includes an error of under 20%. There-
fore, we calculated EIt using the equation given below.

= ×EIt Point1
0.8 is (6)

where the Pointis is the intersection of the ratio of the appropriate and
inappropriate images.

3. Results

3.1. Ability of the proposed method to distinguish appropriate images

The proposed method had an accuracy rate of 81% (370/459), a
sensitivity of 75%, and a specificity of 98% (Table 5).

3.2. Setting the EIt

Table 6 shows both the EI values and the number of images de-
termined to be appropriate or inappropriate using the DCNN and the
created rule base.

Fig. 4 shows the correlation between the EI value and the number of
appropriate and inappropriate images normalized for each value. The
ratio of the appropriate and inappropriate images intersected at an EI
value of 230, and the calculated EIt was 288.

4. Discussion

In the present study, we proposed a method for discriminating ap-
propriate images using a DCNN and rule base. The proposed method
had an accuracy of 81%. In particular, the results indicated that the rule
base used in this study had high accuracy in reproducing expert as-
sessments of the image quality. In a previous study that made automatic
image assessments using deep learning architecture, Esses et al. re-
ported a concordance of approximately 76% between the expert and the
algorithm, indicating that the technique was useful [33]. The proposed
method had an accuracy rate comparable with that reported by Esses
et al. Although the accuracy of the DCNN and the rule base should be
further improved, both had a high degree of specificity and were well
able to discriminate inappropriate images. Thus, we consider the pro-
posed method highly effective, as it allows the assessment of several
thousands of images. This has been impractical with experts. In the
future, learning that uses a wide variety of images as well as automation
of the fields to be discriminated may allow real-time image quality
assessment after imaging is completed. The proposed method might be
used for quality assurance (QA) purposes, such as inter-vendor com-
parisons and collaborative multi-country efforts [41]. In order to use
the proposed method for QA purposes, it is necessary to teach DCNN
using a large number of images obtained from multiple vendors as the

Fig. 2. Sample images of all rating grades Shown from the top are the rating results for the lung field, mediastinum, and spine. The image size is 20 × 20 pixels. As
the number of rating results increases, the method can more clearly differentiate target structures.

Table 3
Details of the model.

Layer Patch size Stride Depth Output size

Convolution 7 × 7 2 1 112 × 112 × 64
Max pool 3 × 3 2 0 56 × 56 × 64
Convolution 3 × 3 1 2 56 × 56 × 192
Max pool 3 × 3 2 0 28 × 28 × 192
Inception(3a) 2 28 × 28 × 256
Inception(3b) 2 28 × 28 × 480
Max pool 3 × 3 2 0 14 × 14 × 480
Inception(4a) 2 14 × 14 × 512
Inception(4b) 2 14 × 14 × 512
Inception(4c) 2 14 × 14 × 512
Inception(4d) 2 14 × 14 × 528
Inception(4e) 2 14 × 14 × 832
Max pool 3 × 3 2 0 7 × 7 × 832
Inception(5a) 2 7 × 7 × 832
Inception(5b) 2 7 × 7 × 1024
Avg pool 7 × 7 1 0 1 × 1 × 1024
Dropout 0 1 × 1 × 1024
Linear 1 1 × 1 × 1000
Softmax 0 1 × 1 × 4

Table 4
Training image dataset.

Rating 1 Rating 2 Rating 3 Rating 4

Lung fields 199 1467 1889 945
Mediastinum 485 948 1688 1379
Spine 1831 3283 2399 1487
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training data.
The ultimate objective of the present study was to use the DCNN and

the rule base to determine the EIt and minimum EI values required for
diagnosis. In setting the appropriate EIt value, we recommend using
images whose quality has been confirmed through visual assessment,
which is therefore a necessity. Seeram reported a method to establish
the optimum EIt value through the test and reference doses (different
levels of exposure settings) evaluated on an anthropomorphic phantom
[42]. However, phantoms cannot be used to assess different human
body types and normal structures [43]. Accordingly, results obtained
using phantom images may not be directly applicable to clinical images.
The EIt can also be determined using clinical images, but clinical da-
tabases contain a complicated array of data involving both standard
and non-standard body types. Therefore, to ensure accurate results, a
large number of images is required. However, it is impractical to assess
several thousands of clinical images visually, and therefore numerous
facilities still prefer to use images in PACS for calculating the EIt rather
than perform visual assessments. In the present study, a radiologist
conducted visual assessment of images with an EI value of approxi-
mately 240, which was the mean EI of the 1700 images. They com-
mented that this was not appropriate for use as a target value. Indeed,
when the EIt is determined without assessment of the image quality, the
result includes the EI values of inappropriate images. Thus, an in-
appropriate value may be set.

This process could be standardized using image quality results ob-
tained from the dose irradiated into the detector. However, digital
imaging systems cannot determine whether this dose is appropriate
based on image density. For this reason, in the present study, we cal-
culated the minimum EI value required for a diagnosis based on the
DCNN and the rule base at the point of intersection (cutoff value) be-
tween the appropriate and inappropriate images. We then set the EIt
with a 20% margin. When the radiologist conducted the visual assess-
ments, the EI value that allowed diagnosis was set to at least 270 for
both the lung fields and the mediastinum. Although images with an EI
value of 250 were still usable for lung field diagnosis, there were more
images in which mediastinum diagnosis was impossible. Accordingly,
the proposed method may provide an alternative to the visual assess-
ment performed by a radiologist. In particular, as several thousands of
images can be analyzed using the DCNN and rule base, accuracy may be
ensured, even in institutions with complicated databases. Therefore, the
proposed method can be used to determine the EIt from clinical images,
thus overcoming the difficulty of using phantoms. However, the radi-
ologist should define the final EIt with reference to the EIt calculated by
DCNN, even if the proposed method could evaluate the image quality
for several thousands of images without visual assessment.

In the present study, we set the EIt to an EI value with an upper
region margin of 20%. Further studies should be conducted on other
methods. For example, 1SD and 2SD can be used as the optimal detector
dose range. It is conceivable that high accuracy can be achieved using
small numbers of images if the EIt is determined from a database that
contains only standard body types. Accuracy should be improved
through learning that uses both a wide variety of image data and DCNN
architectures with even higher discrimination ability.

5. Conclusion

In the present study, the discrimination results obtained using the
proposed method based on a DCNN and a rule base exhibited good
concordance with human perception; moreover, this method can ex-
tract the appropriate images without visual assessment. The findings
indicate that the method can discriminate between appropriate and
inappropriate PACS images—which was previously impractical—and
determine both the minimum EI required for diagnosis and the EIt.

Fig. 3. Rule base used to determine the rating results. The rule base was created
that would reproduce the image confirmation procedure used by the expert.
The mediastinum rule base considers the effect of patient body thickness.

Table 5
Concordance between expert and proposed method in chest X-ray images.

Proposed method

Appropriate image Inappropriate image Total

Expert Appropriate images 255 87 342
Inappropriate images 2 115 117
Total 257 202

Table 6
Number of images determined to be appropriate or inappropriate and their EI
values.

Number of
images

Exposure Index

Range Mean Standard
deviation

Appropriate images 868 147–872 259 54
Inappropriate images 832 121–514 223 46
Total images 1700 121–872 242 53
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