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Chapter 1

Introduction

The multiple zeta value is one of the most fascinating number in the literature of mathematics. It

is a real number associated to each index set k = (k1, . . . , kr) given by

ζ(k) = ζ(k1, k2, . . . , kr) =
∑

0<m1<m2<···<mr

1

m
k1
1 m

k2
2 · · ·m

kr
r

,

where all ki are integers greater than or equal to 1 and we assume kr ≥ 2 to make the series

converges. This is a generalization of the Riemann zeta value

ζ(k) =
∑
n≥1

1

nk
,

and Leonhard Euler was the first one to study the Riemann zeta values and the multiple zeta values

in the case r = 2. Among his many amazing discoveries the identity ζ(1, 2) = ζ(3) is basic and

generalized in surprisingly various ways. Later, Micheal Hoffman and Don Zagier independently

and almost simultaneously initiated the study of multiple zeta values for general “depth” r. In re-

cent years, multiple zeta values have been studied by many mathematicians of various backgrounds

and they have found many remarkable relations among multiple zeta values. These numbers have

applications in various context in number theory, geometry, arithmetic algebraic geometry, knot

theory, mathematical physics, etc.

In 1999, Tsuneo Arakawa and Masanobu Kaneko [2] introduced a new function

ξ(k1, . . . , kr; s) =
1

Γ(s)

ˆ ∞
0

ts−1

et − 1
Lik1,...,kr(1− e−t)dt

where r, k1, . . . , kr ∈ Z≥1, s ∈ C with Re(s) > 0, Lik1,...,kr(z) is the multiple polylogarithm (see

Definition 2.2 for the precise definition) as a generalization of the Riemann zeta function. Later

this function is named as Arakawa-Kaneko zeta function. Arakawa-Kaneko zeta function provides
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a connection between multiple zeta values and poly-Bernoulli numbers. Kaneko and Hirofumi

Tsumura (refer [12] and [11]) conducted a further study of the function ξ(k; s).

In this thesis, we study the level two generalization of Arakawa-Kaneko zeta function. Kaneko

and Tsumura (see [12, §5]) defined the level two analogue of ξ(k1, . . . , kr; s) as

ψ(k1, . . . , kr; s) =
1

Γ(s)

ˆ ∞
0

ts−1
A(k1, . . . , kr; tanh t/2)

sinh(t)
dt

for k1, . . . , kr ∈ Z≥1 and Re(s) > 0. The function A(k1, . . . , kr; z) is the level two analogue of

Lik1,...,kr(z) (see Definition 3.2). We provide several formulas analogue to those of Arakawa-Kaneko

zeta function. We study the level two generalization ([12, §5]) of the zeta function. Its normalized

version is defined as

T (k1, . . . , kr−1, s) = 2r
∑

0<m1<···<mr
mi≡i (mod 2)

1

m
k1
1 · · ·m

kr−1

r−1 m
s
r

.

The values T (k1, . . . , kr−1, kr), (kj ∈ Z≥1, kr ≥ 2 ) are called the multiple T-values. We obtain

several relations of ψ function and the multiple T-values.

Secondly, we introduce and study the level two analogue of poly-Bernoulli numbers which are

named as polycosecant numbers D(k)
n (Yoshitaka Sasaki 2012 [16]; Masanobu Kaneko-M.-Hirofumi

Tsumura 2019 [10]). For k ∈ Z, the polycosecant numbers D(k)
n are defined by

Ak(tanh t/2)

sinh t
=
∞∑
n=0

D(k)
n
tn

n!
,

where Ak(z) is the polylogarithm function of level two defined by

Ak(z) = 2
∞∑
n=0

z2n+1

(2n+ 1)k
(z ∈ C; |z|< 1).

We give several relations among polycosecant numbers such as explicit formulas, duality relation,

etc. Further, we define multi-indexed polycosecant numbers and generalize the formulas for poly-

cosecant numbers.

This thesis consists of four main chapters. In Chapter 2, we review poly-Bernoulli numbers and

Arakawa-Kaneko zeta functions. Mainly, we present the formulas that we want to generalize. In

Chapter 3, we introduce the polycosecant numbers. We present our main results, obtained for

the polycosecant numbers. We also give a congruence relation for finite T-values. In Chapter 4,

we obtain certain formulas for Arakawa-Kaneko zeta function of level two, corresponding to the

formulas of the original Arakawa-Kaneko zeta functions.
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In the separately submitted reference paper [15], we study Mordell-Tornheim zeta values defined

by

ζMT,r(k1, . . . , kr; kr+1) =
∑

m1,...,mr>0

1

m
k1
1 · · ·m

kr
r (m1 + · · ·+mr)

kr+1

for positive integers. Mordell-Tornheim zeta values are a special class of multiple zeta values and

can be written as a linear combination of multiple zeta values. In [15], we present weighted sum

formulas for double Mordell-Tornheim zeta values. Moreover, we present a sum formula for the

Mordell-Tornheim series of even arguments.



Chapter 2

Review of poly-Bernoulli numbers

and Arakawa-Kaneko zeta functions

In this chapter, we recall some basic facts on poly-Bernoulli numbers, Arakawa-Kaneko zeta func-

tions and multiple zeta values. Our main purpose is to generalize these theories to “level two”

analogue.

2.1 Poly-Bernoulli numbers

Poly-Bernoulli numbers (Kaneko 1997; Arakawa-Kaneko 1999) have two versions, namely B(k)
n and

C(k)
n , which were defined by Kaneko in [7] and in Arakawa-Kaneko [2] by using generating series.

Definition 2.1 (Poly-Bernoulli numbers). For any integer k ∈ Z, the sequences of rational numbers

{B(k)
n }n≥0 and {C(k)

n }n≥0 are defined by

Lik(1− e
−t)

1− e−t
=

∞∑
n=0

B(k)
n
tn

n!

and

Lik(1− e
−t)

et − 1
=
∞∑
n=0

C(k)
n
tn

n!
,

where Lik(z) is the poly-logarithm function (or rational function when k ≤ 0) defined by

Lik(z) =
∞∑
m=1

zm

mk
(|z|< 1).

4



5

Since Li1(z) = − log(1− z), the generating functions on the left-hand sides respectively become

tet

et − 1
and

t

et − 1

when k = 1, and hence B(1)
n and C(1)

n become the usual Bernoulli numbers with B
(1)
1 = 1

2 and

C
(1)
1 = −1

2 . When k ≥ 1, we can define B(k)
n and C(k)

n in the form of iterated integrals as

et.
1

et − 1

ˆ t

0

1

et − 1

ˆ t

0
· · · 1

et − 1

ˆ t

0︸ ︷︷ ︸
(k−1)−times

1

et − 1
dtdt · · · dt =

∞∑
n=0

B(k)
n
tn

n!

and
1

et − 1

ˆ t

0

1

et − 1

ˆ t

0
· · · 1

et − 1

ˆ t

0︸ ︷︷ ︸
(k−1)−times

1

et − 1
dtdt · · · dt =

∞∑
n=0

C(k)
n
tn

n!
.

We recall the definitions of Stirling numbers. Stirling numbers that we use in this chapter are

the second kind, but we also define Stirling numbers of the first kind, which will be needed later.

Let (x)n = x(x − 1) · · · (x − n + 1) and x(n) = x(x + 1) · · · (x + n − 1) which are known as falling

and rising factorial respectively. Then Stirling numbers of the first kind is defined by

x(n) =
n∑
k=0

[
n

k

]
xk

and Stirling numbers of the second kind is defined by

xn =
n∑
k=0

{
n

k

}
(x)k.

There are various properties of the poly-Bernoulli numbers. In ([7], Theorem 1 and 2) and ([9],

§2) we have the explicit formulas

B(k)
n = (−1)n

n∑
i=0

(−1)ii!

{
n

i

}
(i+ 1)k

, C(k)
n = (−1)n

n∑
i=0

(−1)ii!

{
n+ 1

i+ 1

}
(i+ 1)k

for k ∈ Z, n ∈ Z≥0 involving Stirling numbers of the second kind, and the dualities

B(−k)
n = B

(−n)
k , C(−k−1)

n = C
(−n−1)
k

for n, k ∈ Z≥0.

In [6], the multi-indexed version of poly-Bernoulli numbers is defined as follows.
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Definition 2.2 (Multi-poly-Bernoulli numbers). For k1, . . . , kr ∈ Z,

Lik1,...,kr(1− e−t)
1− e−t

=
∞∑
n=0

B(k1,...,kr)
n

tn

n!

and

Lik1,...,kr(1− e−t)
et − 1

=
∞∑
n=0

C(k1,...,kr)
n

tn

n!
,

where Lik1,...,kr(z) is the multiple polylogarithm function defined by

Lik1,...,kr(z) =

∞∑
0<m1<···<mr

zmr

m
k1
1 · · ·m

kr
r

(|z|< 1).

When r = 1, the numbers B(k)
n and C(k)

n are the poly-Bernoulli numbers.

The following lemma is needed to prove many results, related to multiple poly-Bernoulli numbers

and Arakawa-Kaneko zeta functions.

Lemma 2.1. ([2]) (i) For r, k1, . . . , kr ∈ Z>0,

d

dz
Lik1,...,kr−1,kr

(z) =

{
1
zLik1,···,kr−1,kr−1(z) (kr ≥ 2),

1
1−zLik1,...,kr−1

(z) (kr = 1).

(ii) For r ∈ Z>0,

Li1,. . . ,1︸ ︷︷ ︸
r-times

(z) =
(−1)r

r!
logr(1− z).

The following formula gives a relation between B(k1,...,kr)
n and C(k1,...,kr)

n . The r = 1 case is given

in [2].

Proposition 2.2. (K. Imatomi, M. Kaneko and E. Takeda [6]) For any r ≥ 1, ki ∈ Z and n ≥ 1,

we have

B(k1,...,kr)
n = C(k1,...,kr)

n + C
(k1,...,kr−1,kr−1)
n−1 .

Imatomi, Kaneko and Takeda obtained the following recurrence relation for the multi-poly-

Bernoulli numbers. The r = 1 case is given in [2].
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Proposition 2.3. (K. Imatomi, M. Kaneko and E. Takeda [6]) For any r ≥ 1, ki ∈ Z and n ≥ 1,

we have

B(k1,...,kr)
n =

1

n+ 1

(
B

(k1,...,kr−1,kr−1)
n −

n−1∑
m=1

B(k1,...,kr)
n

)

and

C(k1,...,kr)
n =

(−1)n

n+ 1

(
n∑

m=0

(−1)m
(
n

m

)
B

(k1,...,kr−1,kr−1)
m −

n−1∑
m=1

(−1)m
(

n

m− 1

)
C(k1,...,kr)
n

)
,

where an empty sum is understood to be 0.

2.2 Multiple zeta values

In this section we mainly discuss algebric setup introduced by Hoffman. First, we define the

multiple zeta values.

Definition 2.3 (Multiple zeta values). For the positive integer set k = (k1, ..., kr) with kr ≥ 2 for

the convergence, the multiple zeta values (MZVs) are defined by

ζ(k1, . . . , kr) :=
∑

0<m1<···<mr

1

m
k1
1 · · ·m

kr
r

.

The quantities wt(k) := k1 + · · · + kr, dep(k) := r and ht(k) := #{i|ki ≥ 2, 1 ≤ i ≤ r} are called

the weight, depth and height of the index set k of the multiple zeta values ζ(k1, . . . , kr) respectively.

We say that the index k is admissible if kr ≥ 2.

Definition 2.4. Let

H := Q〈x, y〉

be the non-commutative polynomial ring in two indeterminates x and y. We refer to monomials

in x and y as words. For any word w, let l(w) be the number of y and |w| be the total number of

factors. We also define subrings,

H1 := Q + yH

and

H0 := Q + yHx

For any integer k > 0, put zk = yxk−1. Then the ring H1 is freely generated by zk (k ≥ 1). When

k ≥ 2, zk is contained in H0. But H0 is not freely generated by zk(k ≥ 1). Now let us define the
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evaluation map Z : H0 → R by

Z(zk1 · · · zkr) := ζ(k1, . . . , kr) (2.1)

Since zk1 · · · zkr ∈ H0, kr > 1, therefore, ζ(k1, . . . , kr) is finite.

Definition 2.5. We define the shuffle product � on H inductively by

1� w = w� 1 = w

u1w1 � u2w2 = u1(w1 � u2w2) + u2(u1w1 � w2)

for any words w,w1, w2 ∈ H and u1, u2 ∈ {x, y}, with Q-biliniarity.

The shuffle product is commutative and associative. We denote the commutative Q-algebra H

equipped with multiplication � by H
�

. Then we have that the subspaces H0 and H1 of H are

closed under � and become subalgebras of H
�

denoted by H0
�

and H1
�

.

The map ζ : H0 → R is a Q-algebra homomorphism on H0
�

, that is,

ζ(k� l) = ζ(k)ζ(l) (2.2)

for any admissible indices k and l. This is called the shuffle product of MZVs.

Example 2.1. Let us find the shuffle product of the indices (1, 1) and (2). Then we can write

y2 � yx = (y2 � y)x+ (y� yx)y

= (3y3)x+ (2y2x+ yxy)y

= 3y3x+ 2y2xy + yxy2.

Then, we have

(1, 1)� (2) = 3(1, 1, 2) + 2(1, 2, 1) + (2, 1, 1).

2.3 Arakawa-Kaneko zeta function

In this section, mainly, we discuss some formulas of Arakawa-Kaneko zeta function that we want

to generalize as the level two analogue.

In their research, Arakawa and Kaneko [2] studied the single variable function

ζ(k1, . . . , kr−1; s) =
∑

0<m1<···<mr−1<mr

1

m
k1
1 · · ·m

kr−1

r−1 m
s
r
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for the purpose of establishing the connection between multiple zeta values and poly-Bernoulli

numbers. This is absolutely convergent for Re(s) > 1. They have shown that the poly-Bernoulli

numbers can be expressed as special values at negative arguments of certain combinations of these

functions. Corresponding to these functions, Arakawa and Kaneko [2] defined the following zeta

function which is known as Arakawa-Kaneko zeta function as follows.

Definition 2.6 (Arakawa-Kaneko zeta function). For r, k1, . . . , kr ∈ Z≥1, s ∈ C with Re(s) > 0,

we write

ξ(k1, . . . , kr; s) =
1

Γ(s)

ˆ ∞
0

ts−1

et − 1
Lik1,...,kr(1− e−t)dt.

This function can be analytically continued to an entire function of the complex variable s ∈ C for

k1, . . . , kr ∈ Z≥1 ([2], §3 and §4). For r = 1 we denote ξ(k; s) by ξk(s). Note that ξ1(s) = sζ(s+ 1).

Poly-Bernoulli numbers appear as special values of Arakawa-Kaneko zeta function at negative

agreements. The following theorem illustrates these facts on Arakawa-Kaneko zeta function.

Theorem 2.4. [2] The function ξ(k1, . . . , kr; s) is continued analytically to C as an entire function

and satisfies

ξ(k1, . . . , kr;−m) = (−1)mC(k1,...,kr)
m (m ∈ Z≥0)

for (k1, . . . , kr) ∈ Zr≥1.

Now, we define the dual index.

Definition 2.7. Let k = (k1, . . . , kr) be an admissible index of weight k. We write

k = (1, . . . , 1︸ ︷︷ ︸
a1−1

, b1 + 1, . . . , 1, . . . , 1︸ ︷︷ ︸
ah−1

, bh + 1),

with (uniquely determined) integers h ≥ 1, ai, bi ≥ 1 (1 ≤ i ≤ h). Then the dual index of k is

given by

k∗ = (1, . . . , 1︸ ︷︷ ︸
bh−1

, ah + 1, . . . , 1, . . . , 1︸ ︷︷ ︸
b1−1

, a1 + 1).

In [11], Kaneko and Tsumura obtained an explicit expression for ξ(k;m) in terms of multiple zeta

values. We introduce the following notations which will be needed in stating the following theorem

and for the later results. For j = (j1, . . . , jr) ∈ Zr≥0, we set |j|= j1 + · · ·+ jr and d(j) = r and call

them the weight and the depth of j respectively. For two such indices k and j of the same depth, we

denote by k + j the index obtained by the component-wise addition, k + j = (k1 + j1, . . . , kr + jr),

and by b(k; j) the quantity given by

b(k; j) :=

r∏
i=1

(
ki + ji − 1

ji

)
.
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For any index set k = (k1, . . . , kr) ∈ Zr≥1, let

k+ = (k1, . . . , kr−1, kr + 1).

Theorem 2.5. ([11], Theorem 2.5) For any index set k = (k1, . . . , kr) ∈ Zr≥1 and any m ∈ Z≥1,

we have

ξ(k;m) =
∑

|j|=m−1, d(j)=n

b
(
(k+)∗; j

)
ζ
(
(k+)∗ + j

)
,

where the sum is over all j ∈ Zr≥0 of weight m− 1 and depth n := d(k∗+) = |k|+1− d(k).

In particular, we have

ξ(k; 1) = ζ(k+).

Kaneko and Tsumura proved an Euler-type connection formula for the multiple polylogarithm.

Theorem 2.6. (Kaneko and Tsumura [11]) Let k be any index set. Then we have

Lik(1− z) =
∑

k
′
,j≥0

Ck(k′; j)Li1, . . . , 1︸ ︷︷ ︸
j−times

(1− z)Lik′(z),

where the sum on the right runs over indices k′ and integers j ≥ 0 that satisfy |k′|+j ≤ |k|, and

Ck(k′; j) is a Q−linear combination of MZVs of weight |k| − |k′| − j. For the empty index ∅, we

understand Li∅ = 1 and |∅|= 0 and the constant 1 is interpreted as a multiple zeta value of weight

0.

With this formula Kaneko and Tsumura established the following formula.

Theorem 2.7. (Kaneko and Tsumura [11]) Let k be any index set. The function ξ(k; s) can be

written in terms of multiple zeta functions as

ξ(k; s) =
∑

k
′
,j≥0

Ck(k′; j)

(
s+ j − 1

j

)
ζ(k′; s+ j),

where the sum on the right runs over indices k′ and integers j ≥ 0 that satisfy |k′|+j ≤ |k|, and

Ck(k′; j) is a Q−linear combination of MZVs of weight |k| − |k′| − j. When the index k′ is ∅, we

set ζ(∅; s+ j) = ζ(s+ j).



Chapter 3

Polycosecant numbers

In this chapter, we present our main results on polycosecant numbers. Each section consists of

newly obtained results such as duality, recurrence formulas, explicit formulas, etc.

In our research, we study the level two analogue of poly-Bernoulli numbers, which we also call

the polycosecant numbers (Kaneko-M.-Tsumura 2020 [10]) D(k)
n .

Definition 3.1 (Polycosecant numbers). For k ∈ Z, the polycosecant numbers D(k)
n are defined by

Ak(tanh t/2)

sinh t
=
∞∑
n=0

D(k)
n
tn

n!
,

where Ak(z) is the polylogarithm function of level two defined by

Ak(z) = 2

∞∑
n=0

z2n+1

(2n+ 1)k
(z ∈ C; |z|< 1).

In particular, for k = 1, we have A1(z) = 2 tanh−1(z). In this case, D(1)
n becomes the ordinary

cosecant number Dn defined by

t

sinh t
=

∞∑
n=0

Dn
tn

n!
.

Note that D
(k)
2n+1 = 0 for any k and n ≥ 0. In [16, Definition 5], Y. Sasaki introduced a slightly

different case of a generalization of the poly-Bernoulli numbers.

3.1 The duality relation

We present a duality relation for polycosecant numbers (see [10, Theorem 3.1]). Two types of

proofs are given in [10]. Here, we present the proof by using a generating function.

11
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Theorem 3.1. (Kaneko-M.-Tsumura [10]) For n, k ∈ Z≥0, we have

D
(−2k−1)
2n = D

(−2n−1)
2k .

Proof. To prove the theorem, we define the generating function of D
(−2k−1)
2n by

F (x, y) :=
∞∑
n=0

∞∑
k=0

D
(−2k−1)
2n

x2n

(2n)!

y2k

(2k)!
, (3.1)

and show F (x, y) is symmetric in x and y (i.e. F (x, y) = F (y, x)). This is ensured by the following

closed formula for F (x, y). �

Proposition 3.2. (Kaneko-M.-Tsumura [10]) Let

G(x, y) =
ex+y

(1 + ex + ey − ex+y)2
.

Then one finds

F (x, y) = G(x, y) +G(x,−y) +G(−x, y) +G(−x,−y).

Proof. We first compute the generating function of all D(−k)
n ,

f(x, y) =
∞∑
n=0

∞∑
k=0

D(−k)
n

xn

n!

yk

k!
. (3.2)

We claim that the formula

f(x, y) =
ex(ey − 1)

1 + ex + ey − ex+y
+

e−x(ey − 1)

1 + e−x + ey − e−x+y
(3.3)

holds. To prove this, we first observe that, by definition,

f(x, y) =

∞∑
k=0

A−k(tanh(x/2))

sinhx

yk

k!

=
2

sinhx

∞∑
k=0

∞∑
n=0

(2n+ 1)k(tanh(x/2))2n+1 y
k

k!
.

Noting that

2
∞∑
n=0

(2n+ 1)kt2n+1 = 2

(
t
d

dt

)k t

1− t2
=

(
t
d

dt

)k ( 1

1− t
− 1

1 + t

)
, (3.4)

and by the standard formula (cf., e.g., [1, Proposition 2.6 (4)])

(
t
d

dt

)k
=

k∑
m=1

{
k

m

}
tm
(
d

dt

)m
,
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we find that the right-hand side of (3.4) becomes

k∑
m=1

{
k

m

}
tm
(
d

dt

)m( 1

1− t
− 1

1 + t

)
=

k∑
m=1

{
k

m

}
m!

(
tm

(1− t)m+1 −
(−t)m

(1 + t)m+1

)
.

Therefore, by setting t = tanh(x/2) and noting t/(1 − t) = (ex − 1)/2, −t/(1 + t) = (e−x − 1)/2,

(sinhx)(1− t) = e−x(ex − 1), (sinhx)(1 + t) = ex − 1, we obtain

f(x, y) =
1

sinhx

∞∑
k=0

k∑
m=1

{
k

m

}
m!

(
tm

(1− t)m+1 −
(−t)m

(1 + t)m+1

)
yk

k!

=

∞∑
k=0

k∑
m=1

{
k

m

}
m!

(
ex

ex − 1

(
ex − 1

2

)m
− 1

ex − 1

(
e−x − 1

2

)m)
yk

k!

=
∞∑
m=1

(ey − 1)m
(

ex

ex − 1

(
ex − 1

2

)m
− 1

ex − 1

(
e−x − 1

2

)m)

=
ex

ex − 1
· (ey − 1)(ex − 1)

2− (ey − 1)(ex − 1)
− 1

ex − 1
· (ey − 1)(e−x − 1)

2− (ey − 1)(e−x − 1)

=
ex(ey − 1)

1 + ex + ey − ex+y
+

e−x(ey − 1)

1 + e−x + ey − e−x+y
.

This proves the identity (3.3). From (3.3) we see that f(x, y) is even in x, and so we have

f(x, y)− f(x,−y)

2
=

∞∑
n=0

∞∑
k=0

D
(−2k−1)
2n

x2n

(2n)!

y2k+1

(2k + 1)!
.

Our generating function F (x, y) is the derivative of this relation with respect to y, and Proposi-

tion 3.2 follows from a straightforward calculation. And by the symmetry of F (x, y) in x and y,

Theorem 3.1 is proved. �

Remark 3.1.1. Hiroyuki Ochiai suggested a simpler method of proving the duality relation by

considering the exponential generating function

H(x, y) :=

∞∑
n=0

∞∑
k=0

D
(−2k−1)
2n

x2n+1

(2n+ 1)!

y2k+1

(2k + 1)!
.

This method also leads to obtain a similar formula for C(k)
n .

3.2 Recurrence and explicit formulas for polycosecant numbers

In this section, we obtain recurrence and two explicit formulas for polycosecant numbers. The

following proposition gives a recurrence formula for D(k)
n which can be derived in two ways by



14

using the definition and the iterated integral expression of the generating function. Here we only

consider the proof by definition.

Note that since A0(tanh(t/2)) = sinh(t), D
(0)
0 = 1 and D(0)

n = 0 for all n ≥ 1.

Proposition 3.3. (Kaneko-M.-Tsumura [10]) For any integers k and n ≥ 0,

D(k−1)
n =

bn
2
c∑

m=0

(
n+ 1

2m+ 1

)
D

(k)
n−2m.

Proof. By the definition of polycosecant numbers we have that,

Ak(tanh(t/2)) = sinh t

∞∑
n=0

D(k)
n
tn

n!
.

Differentiate with respect to t,

Ak−1(tanh t/2)

sinh t
= cosh t

∞∑
n=0

D(k)
n
tn

n!
+ sinh t

∞∑
n=1

D(k)
n

tn−1

(n− 1)!
.

By using the definitions we can write the above equation as,

∞∑
n=0

D(k−1)
n

tn

n!
=
∞∑
m=0

t2m

(2m)!

∞∑
n=0

D(k)
n
tn

n!
+
∞∑
m=0

t2m+1

(2m+ 1)!

∞∑
n=1

D(k)
n

tn−1

(n− 1)!

=

∞∑
m=0

∞∑
n=2m

D
(k)
n−2m

tn

(2m)! (n− 2m)!

+
∞∑
m=0

∞∑
n=2m

D
(k)
n−2m

tn

(2m+ 1)! (n− 2m− 1)!
; (n = n+ 2m)

=

∞∑
n=0

bn
2
c∑

m=0

(
n

2m

)
D

(k)
n−2m

tn

n!
+

∞∑
n=0

bn
2
c∑

m=0

(
n

2m+ 1

)
D

(k)
n−2m

tn

n!
.

By equating the coefficients of t
n

n! we can get the desired result. �

When k > 0, we may want to write this as

(n+ 1)D(k)
n = D(k−1)

n −
bn
2
c∑

m=1

(
n+ 1

2m+ 1

)
D

(k)
n−2m (n > 0).

Note that D
(k)
0 = 1 for all k ∈ Z.

In the following theorem we obtain two explicit formulas for D(k)
n . The first formula involves

Bernoulli numbers and Stirling numbers. The second formula involves Stirling numbers of the

second kind.
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Theorem 3.4. (Kaneko-M.-Tsumura [10]) For any k ∈ Z and n ≥ 0, we have

1.

D(k)
n = 4

bn
2
c∑

m=0

1

(2m+ 1)k+1

2m+1∑
p=1

n∑
q=0

(−1)n(2p+q+1 − 1)

(
n

q

){
n− q
2m

}[
2m+ 1

p

]
Bp+q+1

p+ q + 1

and

2.

D(k)
n =

bn
2
c∑

m=0

1

(2m+ 1)k+1

n+1∑
p=2m+1

(−1)p+1p!

2p−1

(
p− 1

2m

){
n+ 1

p

}
.

To prove the first formula of Theorem 3.4, we prepare the following lemma.

Lemma 3.5. For n ≥ 1 we have,

xn
(
d

dx

)n
=

n∑
m=1

(−1)n−m
[
n

m

](
x
d

dx

)m
.

Proof. We can prove this by induction on n. For n = 1 both sides equal to x d
dx .

Suppose the formula is true for n. Then,

xn+1

(
d

dx

)n+1

= xn+1

(
d

dx

)(
d

dx

)n
= xn+1 d

dx

[
n∑

m=1

(−1)n−m

xn

[
n

m

](
x
d

dx

)m]

=
n∑

m=1

(−1)n−m
[
n

m

][
−n
(
x
d

dx

)m
+

(
x
d

dx

)m+1
]

=

n+1∑
m=1

(−1)n−m+1

(
n

[
n

m

]
+

[
n

m− 1

])(
x
d

dx

)m

=
n+1∑
m=1

(−1)n−m+1

[
n+ 1

m

](
x
d

dx

)m
.

Here we have used

[
n

0

]
= 0 (n 6= 0) and

[
n

n+ 1

]
= 0. This shows the formula is true for n+ 1.

Therefore the formula holds. �

Now we give the proof for the first formula of Theorem 3.4.
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Proof of Theorem 3.4-(1). We write

∞∑
n=0

D(k)
n
tn

n!
=

Ak(tanh(t/2))

sinh t

= 2

∞∑
m=0

(tanh(t/2))2m+1

(2m+ 1)k
1

sinh t

= 4
∞∑
m=0

1

(2m+ 1)k
et(et − 1)2m

(et + 1)2m+2 . (3.5)

Since

1

(x+ 1)n+1 =
(−1)n

n!

(
d

dx

)n 1

x+ 1
, (3.6)

we see by setting x = et and using Lemma 3.5 that

ent

(et + 1)n+1 =
1

n!

n∑
p=1

(−1)p
[
n

p

](
d

dt

)p 1

et + 1
. (3.7)

Hence we consider Bn = C(1)
n (n ≥ 0) defined by

t

et − 1
=
∞∑
q=0

Bq
tq

q!
.

Since

1

et + 1
=

1

et − 1
− 2

e2t − 1
,

we have

1

et + 1
=
∞∑
q=0

(1− 2q)Bq
tq−1

q!
.

By taking the p-th derivative of both sides, we get(
d

dt

)p( 1

et + 1

)
=

∞∑
q=p+1

(1− 2q)
Bq
q

tq−p−1

(q − p− 1)!
=

∞∑
q=0

(1− 2p+q+1)
Bp+q+1

p+ q + 1

tq

q!

and we substitute this in (3.7) to obtain

ent

(et + 1)n+1 =
1

n!

n∑
p=1

(−1)p
[
n

p

] ∞∑
q=0

(1− 2p+q+1)
Bp+q+1

p+ q + 1

tq

q!
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1

n!

∞∑
q=0

n∑
p=1

(−1)p
[
n

p

]
(1− 2p+q+1)

Bp+q+1

p+ q + 1

tq

q!
.

From this, we have

et

(et + 1)2m+2 =
e−(2m+1)t

(e−t + 1)2m+2

=
1

(2m+ 1)!

∞∑
q=0

2m+1∑
p=1

(−1)p+q
[

2m+ 1

p

]
(1− 2p+q+1)

Bp+q+1

p+ q + 1

tq

q!
.

Together with the well-known generating series ([1, Proposition 2.6 (7)], note that

{
s

2m

}
= 0 if

s < 2m)

(et − 1)2m = (2m)!
∞∑
s=0

{
s

2m

}
ts

s!
,

we obtain

et(et − 1)2m

(et + 1)2m+2

=
1

2m+ 1

∞∑
q=0

∞∑
s=0

2m+1∑
p=1

(−1)p+q(1− 2p+q+1)

[
2m+ 1

p

]{
s

2m

}
Bp+q+1

p+ q + 1

tq+s

q! s!

=
1

2m+ 1

∞∑
n=0

n∑
q=0

2m+1∑
p=1

(−1)p+q(1− 2p+q+1)

(
n

q

)[
2m+ 1

p

]{
n− q
2m

}
Bp+q+1

p+ q + 1

tn

n!
.

Substituting this into (3.5), we have

∞∑
n=0

D(k)
n
tn

n!

= 4

∞∑
m=0

1

(2m+ 1)k+1

∞∑
n=0

n∑
q=0

2m+1∑
p=1

(−1)p+q(1− 2p+q+1)

(
n

q

)[
2m+ 1

p

]{
n− q
2m

}
Bp+q+1

p+ q + 1

tn

n!

= 4

∞∑
n=0

bn
2
c∑

m=0

1

(2m+ 1)k+1

2m+1∑
p=1

n−2m∑
q=0

(2p+q+1 − 1)

(
n

q

)[
2m+ 1

p

]{
n− q
2m

}
Bp+q+1

p+ q + 1

tn

n!
.

(We have used the facts that Bp+q+1 = 0 if p+ q ≥ 1 is even and

{
n− q
2m

}
= 0 if n− q < 2m.) By

equating the coefficients of tn/n! on both sides, we obtain the desired result. �

We can easily prove the second formula of Theorem 3.4 by using the definition of the n-th tangent
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numbers of order k, Tn,k, for non negative integers n and k, by the generating relation (see [3, P.

259]).

tank t

k!
=
∞∑
n=k

Tn,k
tn

n!
, (3.8)

and the formula in [4, Proposition 9]

Tn,k = (−1)
n−k
2 (−1)n

n∑
m=k

(−1)m2n−m
{
n

m

}(
m− 1

k − 1

)
m!

k!
(3.9)

for n ≥ 1 and k ≥ 0.

Note that both Tn,k and the sum on the right side of (3.9) are zero if n 6≡ k(2).

Proof of Theorem 3.4-(2). From the definition we have

∞∑
n=0

D(k)
n
tn

n!
=

Ak(tanh(t/2))

sinh t
=

d

dt
Ak+1(tanh(t/2))

= 2
d

dt

∞∑
m=0

(tanh(t/2))2m+1

(2m+ 1)k+1
. (3.10)

By using tanh t = −i tan(it) and equations (3.8) and (3.9), we can write

(tanh(t/2))m = (−i)mm!
∞∑
n=m

Tn,m
in

2n
tn

n!

= (−i)m
∞∑
n=m

(−1)
n−m

2

n∑
p=m

(−2)n−pp!

(
p− 1

m− 1

){
n

p

}
in

2n
tn

n!

= (−1)m
∞∑
n=m

n∑
p=m

(−1)p
p!

2p

(
p− 1

m− 1

){
n

p

}
tn

n!
.

We therefore have

∞∑
n=0

D(k)
n
tn

n!
=
∞∑
m=0

1

(2m+ 1)k+1

∞∑
n=2m

n∑
p=2m

(−1)p
(p+ 1)!

2p

(
p

2m

){
n+ 1

p+ 1

}
tn

n!

=
∞∑
n=0

bn
2
c∑

m=0

1

(2m+ 1)k+1

n∑
p=2m

(−1)p(p+ 1)!

2p

(
p

2m

){
n+ 1

p+ 1

}
tn

n!
.

By equating the coefficients of tn/n!, we complete the proof of the theorem. �
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3.3 Multi-indexed analogue

In this section, we obtain formulas for the multi-indexed version of the polycosecant numbers. We

define the multi-indexed version as follows.

Definition 3.2 (Multi-polycosecant numbers). For k1, . . . , kr ∈ Z, we define

A(k1, . . . , kr; tanh(t/2))

sinh t
=

∞∑
n=0

D(k1,...,kr)
n

tn

n!
,

where the function

A(k1, . . . , kr; z) = 2r
∑

0<m1<···<mr
mi≡i mod 2

zmr

m
k1
1 · · ·m

kr
r

is known as the level two analogue of multiple polylogarithm.

Here, A(k1, . . . , kr; z) is 2r times Ath(k1, . . . , kr; z) which was introduced in [12, §5]. (Our Ak(z)

is A(k; z)). We can regard D(k1,...,kr)
n as a level two analogue of the multiple poly-Bernoulli numbers

B(k1,...,kr)
n and C(k1,...,kr)

n .

The following lemma will be needed in proving our main results and also in later discussion. We

denote 1, · · · , 1︸ ︷︷ ︸
r−times

by {1}r for the convenience.

Lemma 3.6. [12, Lemma 5.1]

1. For k1, . . . , kr ∈ Z≥1,

d

dt
A(k1, . . . , kr; z) =

 1
zA(k1, . . . , kr−1, kr − 1; z) (kr ≥ 2),

2

1−z2
A(k1, . . . , kr−1; z) (kr = 1).

2. A({1}r; z) = 2
r

r! (A1(z))
r = (−1)r

r! logr
(
1−z
1+z

)
.

We can obtain a recurrence formula for multi-polycosecant numbers as follows.

Proposition 3.7. For any index set (k1, . . . , kr) and n ≥ 0,

D
(k1,...,kr−1,kr−1)
n =

bn
2
c∑

m=0

(
n+ 1

2m+ 1

)
D

(k1,...,kr)
n−2m .

The proof of the proposition is similar to the single-indexed case. So, we omit the proof.
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Now let us discuss the process of the recurrence formula. By using the definition of A(k; z), we

have

A(k1, . . . , kr−1, 0; z) = 2r
∑

0<m1<···<mr
mi≡i mod 2

zmr

m
k1
1 · · ·m

kr−1
r

=
2rz

1− z2
∑

0<m1<···<mr−1
mi≡i mod 2

zmr−1

m
k1
1 · · ·m

kr−1
r

=
2z

1− z2
A(k1, . . . , kr−1; z).

By using the definition of multi-polycosecant numbers, we have

∞∑
n=0

D
(k1,...,kr−1,0)
n

tn

n!
=

A(k1, . . . , kr−1, 0; tanh t/2)

sinh t

= sinh t

∞∑
m=0

D
(k1,...,kr−1)
m

tm

m!

=
∞∑
q=0

t2q+1

(2q + 1)!

∞∑
m=0

D
(k1,...,kr−1)
m

tm

m!

=

∞∑
q=0

∞∑
l=2q+1

(
l

2q + 1

)
D

(k1,...,kr−1)
l−2q−1

tl

l!

=

∞∑
n=0

bn−1
2
c∑

m=0

(
n

2m+ 1

)
D

(k1,...,kr−1)
n−2m−1

tn

n!
.

By equating the coefficients of tn/n!, we get

D
(k1,...,kr−1,0)
n =

bn−1
2
c∑

m=0

(
n

2m+ 1

)
D

(k1,...,kr−1)
n−2m−1

From this we can see that the D
(k1,...,kr−1,0)
n can be written as a simple linear combination of

D
(k1,...,kr−1)
m for 0 ≤ m ≤ n− 1.

Let us look at the algorithm to compute the D(k1,...,kr)
n :

• Step 1 : Set the initial conditions:

D
(0)
0 = 1, D(0)

n = 0 for all n ≥ 1, D
(k)
0 = 1, for all k > 0 and D

(k)
0 = 0, if dep(k) > 1.

• Step 2 : For n > 0, we use the following recurrence relation to calculate D(k)
n .

(n+ 1)D(k1,...,kr)
n = D

(k1,...,kr−1,kr−1)
n −

bn
2
c∑

m=1

(
n+ 1

2m+ 1

)
D

(k1,...,kr)
n−2m . (3.11)
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This gives a way to express D(k)
n in terms of multi-polycosecant numbers with equal or lower

weights and n.

• Step 3 : We will use the above formula repeatedly until we get all the numbers satisfying the

initial conditions or in the form of D
(k1,...,kr−1,0)
m .

• Step 4 : Once we obtain a number in the form of D
(k1,...,kr−1,0)
m , we will use the following

formula.

D
(k1,...,kr−1,0)
n =

bn−1
2
c∑

m=0

(
n

2m+ 1

)
D

(k1,...,kr−1)
n−2m−1 . (3.12)

This will give a way to write D
(k1,...,kr−1,0)
n in terms of a simple linear combination of

D
(k1,...,kr−1)
m with 0 ≤ m ≤ n− 1.

• Step 5 : If we get all numbers satisfying the initial conditions, we use the backward substitu-

tion to obtain the desired result. Otherwise repeat the process.

Example 3.1. Let us find the D
(2,1,3)
2 by using the above algorithm.

By using equation (3.11), we have

D
(2,1,3)
2 =

1

3

(
D

(2,1,2)
2 −D(2,1,3)

0

)
=

1

3

(
1

3

(
D

(2,1,1)
2 −D(2,1,2)

0

)
−D(2,1,3)

0

)
=

1

3

(
1

3

(
1

3

(
D

(2,1,0)
2 −D(2,1,1)

0

)
−D(2,1,2)

0

)
−D(2,1,3)

0

)
.

By using equation (3.12)

D
(2,1,0)
2 = 2D

(2,1)
1 = D

(2,0)
1 = D

(2)
0

together with the initial values of D
(k)
0 gives

D
(2,1,3)
2 =

1

27
.

We obtain explicit formulas for the multi-index case as below. We write the multiple polycosecant

numbers as finite sums involving Stirling numbers.

Theorem 3.8. 1. For any index set k and n ≥ 0,

D(k)
n = 2r+1

∑
0<m1<···<mr−1<mr<n+2

mi≡i (mod 2)

1

m
k1
1 · · ·m

r−1
r−1m

kr+1
r

mr∑
p=1

n−mr+1∑
q=0

(−1)n(2p+q+1 − 1)

(
n

q

)



22

×

{
n− q
mr − 1

}[
mr

p

]
Bp+q+1

p+ q + 1
.

2. For any index set k and n ≥ 0,

D(k)
n =

∑
0<m1<···<mr−1<mr<n+2

mi≡i (mod 2)

1

m
k1
1 · · ·m

kr−1

r−1 m
kr+1
r

n+1∑
j=mr

(−1)j+mrj!

2j−r

(
j − 1

mr − 1

){
n+ 1

j

}
.

The proof of the formulas are similar to the single-indexed case. Here, we omit the proof of the

first explicit formula. To get an idea about the multi-indexed case we only give the proof of the

second formula.

Proof of Theorem 3.8 (Second Formula). Recall the notation k+ = (k1, . . . , kr−1, kr + 1), for any

index set k = (k1, . . . , kr) ∈ Zr≥1. By the definition, we have

∞∑
n=0

D(k)
n
tn

n!
=

A(k; tanh(t/2))

sinh t
=

d

dt
A(k+; tanh(t/2))

= 2r
d

dt

∑
0<m1<···<mr−1<mr

mi≡i mod 2

(tanh(t/2))mr

m
k1
1 · · ·m

kr−1

r−1 m
kr+1
r

. (3.13)

By using tanh t = −i tan(it) and formulas in [3, p.259]) and [4, Proposition 9], we can write

(tanh(t/2))mr = (−i)mrmr!

∞∑
n=mr

Tn,mr

in

2n
tn

n!

= (−i)mr

∞∑
n=mr

(−1)
n−mr

2

n∑
j=mr

(−2)n−jj!

(
j − 1

mr − 1

){
n

j

}
in

2n
tn

n!

= (−1)mr

∞∑
n=mr

n∑
j=mr

(−1)j
j!

2j

(
j − 1

mr − 1

){
n

j

}
tn

n!
.

We therefore have

∞∑
n=0

D(k)
n
tn

n!
=

∑
0<m1<···<mr−1<mr

mi≡i mod 2

(−1)mr

m
k1
1 · · ·m

kr−1

r−1 m
kr+1
r

×
∞∑

n=mr−1

n+1∑
j=mr

(−1)j
(j + 1)!

2j

(
j − 1

mr − 1

){
n+ 1

j

}
tn

n!
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=
∞∑

n=r−1

∑
0<m1<···<mr−1<mr≤n+1

mi≡i mod 2

1

m
k1
1 · · ·m

kr−1

r−1 m
kr+1
r

×
n+1∑
j=mr

(−1)j+mrj!

2j

(
j − 1

mr − 1

){
n+ 1

j

}
tn

n!
.

By equating the coefficients of tn/n!, we complete the proof of the theorem. �

In the following proposition, we give a formula for the special case k1 = · · · = kr = 1. This gives

a connection between multi-polycosecant numbers and Bernoulli numbers.

Proposition 3.9. For any r ≥ 1 and n ≥ r − 1, we have

D({1}r)
n =

2(1− 2n−r)

n+ 1

(
n+ 1

r

)
Bn−r+1. (3.14)

Proof. By using the identity

A({1}r; z) =
2r

r!
(A(1; z))r,

and the definition of multi-polycosecant numbers, we get

∞∑
n=0

D({1}r)
n

tn

n!
=
tr

r!
cscht. (3.15)

Let us recall the expansion of the hyperbolic cosecant function

cschx =
1

x
+

∞∑
n=1

2(1− 22n−1)B2nx
2n−1

(2n)!
. (3.16)

By substituting (3.16) in (3.15), we get

∞∑
n=0

D({1}r)
n

tn

n!
=
tr−1

r!
+

∞∑
m=1

2(1− 22m−1)B2m
t2m+r−1

r! (2m)!

=
tr−1

r!
+

∞∑
n=r+1

2(1− 2n−r)

(n+ 1)

(
n+ 1

r

)
Bn−r+1

tn

n!
(n = 2m+ r − 1).

By equating the coefficients of tn/n!, we can obtain the desired results. �

Here is a table of multiple polycosecant numbers D(k)
n for some k and n.
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HHH
HHHk
n

0 1 2 3 4 5 6 7 8

(3) 1 0 −13
27 0 3103

3375 0 −859939
231525 0 12761501

496125

(2, 3) 0 1
8 0 − 43

192 0 10913
12960 0 −7849379

1451520 0

(3, 2, 1) 0 0 1
12 0 − 59

240 0 19051
9450 0 −8348311

595350

(2, 3, 4, 5) 0 0 0 1
110592 0 − 140399

1679616000 0 142414471589
147483721728000 0

(1, 1, 1, 1, 1) 0 0 0 0 1
5 0 −1 0 98

15

(6, 2, 2, 3, 4, 5) 0 0 0 0 0 − 1
93312000 0 − 25900907

98322481152000 0

Table 3.1: D(k)
n (0 ≤ n ≤ 8)

3.4 Congruence relations of polycosecant numbers

In this section, we preset our main results related to the congruence relations of polycosecant

numbers. First, we discuss the connection among the multiple polycosecant numbers and the finite

multiple T-values. Corresponding to the finite multiple zeta values (we refer [8]), we introduce the

finite analogue of the multiple T-values.

First, define the ring A by

A :=

∏
p Z/pZ
⊕pZ/pZ

,

where p runs over all prime numbers. Component-wise addition and multiplication equip A with

the structure of a ring. Moreover, the well-defined injective map Q ∈ r 7→ (r (mod p)) ∈ A makes

A into Q-algebra. Alternatively, A is isomorphic to
(∏

p Z/pZ
)
⊗ZQ or

∏
p Z/pZ modulo torsion.

Elements of A are presented by (a(p))p, where a(p) ∈ Z/pZ, and two elements (a(p))p and (b(p))p

are identified if and only if a(p) = b(p) for all but finitely many primes p.

Definition 3.3 (Finite multiple T-values). For an index set (k1, . . . , kr), we define the finite

multiple T-values TA (k1, . . . , kr) ∈ A by

TA (k1, . . . , kr)(p) := 2r
∑

0<m1<···<mr<p
mi≡i (mod 2)

1

m
k1
1 · · ·m

kr
r

(mod p) (3.17)

We obtain the following congruence relation for the multi-polycosecant numbers which is the

level two analogue of Theorem 8 in [6].

Theorem 3.10. Let ki ∈ Z and p be an odd prime. When r is even, we have

TA (k1, . . . , kr)(p) = −D(k1,...,kr−1,kr−1)
p−2 (mod p). (3.18)



25

When r is odd, we have

TA (k1, . . . , kr)(p) = D
(k1,...,kr−1,kr+1,−1)
p−2 (mod p). (3.19)

Proof. By considering the explicit formula (2) in Theorem 3.8, we have

D
(k1,...,kr−1,kr−1)
p−2 =

∑
0<m1<···<mr−1<mr<p

mi≡i mod2

2r

m
k1
1 · · ·m

kr−1

r−1 m
kr
r

×
p−1∑
j=mr

(−1)j+mrj!

2j

(
j − 1

mr − 1

)
p− 1

j

 . (3.20)

By using the congruence [6, §4]

(−1)jj!


p− 1

j

 ≡ −1 (mod p),

we can write the inner sum of the above equation as

p−1∑
j=mr

(−1)j+mrj!

2j

(
j − 1

mr − 1

)
p− 1

j

 ≡ (−1)mr−1
p−1∑
j=mr

2p−1−j
(
j − 1

mr − 1

)
(mod p). (3.21)

Consider the inner sum
∑p−1

j=mr
2p−1−j

(
j−1
mr−1

)
and put mr = p− 1− i. Then, we have

p−1∑
j=p−1−i

2p−1−j
(

j − 1

p− 2− i

)
= 2i

(
p− 2− i
p− 2− i

)
+ 2i−1

(
p− 1− i
p− 2− i

)
+ · · ·+ 21

(
p− 3

p− 2− i

)

+ 20
(

p− 2

p− 2− i

)
= 2i + 2i−1(p− 1− i) + · · ·+ 2

(p− 1− i)(p− i) · · · (p− 4)(p− 3)

(i− 1)!

+
(p− 1− i)(p− i) · · · (p− 3)(p− 2)

i!

≡
i∑

j=0

2i−j
(p− 1− i)(j)

j!
(mod p)

≡
i∑

j=0

(−1)j2i−j
(
i+ 1

j

)
(mod p)

≡ 1

2
[(−1)i + 1] (mod p).

By putting i = p− 1−mr, we get



26

p−1∑
j=mr

1

2j

(
j − 1

mr − 1

)
≡ 1

2
[(−1)mr + 1] (mod p). (3.22)

By using the equations (3.22) and (3.21) we can write the equation (3.20) as follows.

D
(k1,...,kr−1,kr−1)
p−2 ≡ −

∑
0<m1<···<mr−1<mr<p

mi≡i mod2

2r

m
k1
1 · · ·m

kr−1

r−1 m
kr
r

× 1

2
[(−1)mr + 1] (mod p). (3.23)

When r is even, mr becomes even. Then by using the definition of the finite multiple T-values, we

get the first formula.

When r is odd, we consider the index set (k1, . . . , kr−1, kr + 1,−1). Then, by using the explicit

formula (2) in Theorem 3.8, we have

D
(k1,...,kr−1,kr+1,−1)
p−2 =

∑
0<m1<···<mr<mr+1<p

mi≡i (mod 2)

2r+1

m
k1
1 · · ·m

kr−1

r−1 m
kr+1
r m0

r+1

×
p−1∑

j=mr+1

(−1)j+mr+1j!

2j

(
j − 1

mr+1 − 1

)
p− 1

j

 . (3.24)

Then, mr+1 becomes even and the last sum is congruent to −1 (mod p) as shown in the previous

case. Now, since the number of even mr+1 in the range mr < mr+1 < p is 1
2(p −mr) (note mr is

odd), the sum
∑

mr<mr+1<p

1

m
0
r+1

is congruent to −mr
2 (mod p) and the conclusion follows. �

We obtain several congruence relations of polycosecant numbers with negative upper index. We

recall the following identity which will be needed in proving our main results.

Proposition 3.11. [1] For any positive integers n,m, we have
n

m

 =
(−1)m

m!

m∑
l=0

(−1)l
(
m

l

)
ln.

By using Euler’s Theorem, we obtain the following theorem which is an analogue of Kummer’s

congruence for poly-Bernoulli numbers.
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Theorem 3.12. Let n,m, k,N be natural numbers and p be a prime number satisfying 2n, 2m ≥ N ,

2n ≡ 2m (mod pN−1(p− 1)). We have

D
(−2k−1)
2n ≡ D(−2k−1)

2m (mod pN ) (3.25)

Proof. Suppose n ≥ m without loss of generality. By the duality (Theorem 3.1), 3.25 is equivalent

to the congruence D
(−2n−1)
2k ≡ D(−2m−1)

2k (mod pN ) which we now prove. Then, by using the second

explicit formula of D(k)
n , we have

D
(−2n−1)
2k =

k∑
l=0

2k∑
q=2l

(−1)q(q + 1)!

2q

(
q

2l

)
2k + 1

q + 1

 (2l + 1)2n

This can be written as

D
(−2n−1)
2k =

k∑
l=0

p|(2l+1)

2k∑
q=2l

(−1)q(q + 1)!

2q

(
q

2l

)
2k + 1

q + 1

 (2l + 1)2n

+
k∑
l=0

p-(2l+1)

2k+1∑
q=2l

(−1)q(q + 1)!

2q

(
q

2l

)
2k + 1

q + 1

 (2l + 1)2n

≡
k∑
l=0

p-(2l+1)

2k∑
q=2l

(−1)q(q + 1)!

2q

(
q

2l

)
2k + 1

q + 1

 (2l + 1)2n (mod pN ).

By using Euler’s Theorem, we have

D
(−2n−1)
2k ≡

k∑
l=0

p-(2l+1)

2k∑
q=2l

(−1)q(q + 1)!

2q

(
q

2l

)
2k + 1

q + 1

 (2l + 1)2m (mod pN ).

Therefore, we get D
(−2n−1)
2k ≡ D

(−2m−1)
2k (mod pN ) and the duality relation in Theorem 3.1 gives

the desired result. �

We obtain the following theorem by using Fermat’s Little Theorem.

Theorem 3.13. Let k be an even integer and p > 2 be a prime number. We have

D
(−k−1)
m(p−1) ≡ 1 (mod p) (3.26)

for all m ≥ 1.
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Proof. We first prove the case of m = 1. From formula (2) of Theorem 3.4, we get

D
(−k−1)
p−1 =

p−1
2∑

m=0

p−1∑
l=2m

(−1)l(l + 1)!

2l

(
l

2m

)
p

l + 1

 (2m+ 1)k

≡
b p−3

2
c∑

m=0

p−2∑
l=2m

(−1)l(l + 1)!

2l

(
l

2m

)
p

l + 1

 (2m+ 1)k (mod p).

By substituting Proposition 3.11 into the above equation, we get

D
(−k−1)
p−1 ≡

b p−3
2
c∑

m=0

(2m+ 1)k
p−2∑
l=2m

1

2l

(
l

2m

) l+1∑
t=1

(−1)t+1

(
l + 1

t

)
tp (mod p)

≡ −
b p−3

2
c∑

m=0

(2m+ 1)k+1
p−2∑
l=2m

1

2l

(
l + 1

2m+ 1

) l+1∑
t=1

(−1)t
(

l

t− 1

)
tp−1 (mod p).

By using Fermat’s Little Theorem, we have

D
(−k−1)
p−1 ≡ −

b p−2
2
c∑

m=0

(2m+ 1)k+1
p−2∑
l=2m

1

2l

(
l + 1

2m+ 1

) l+1∑
t=1

(−1)t
(

l

t− 1

)
(mod p).

We have

l+1∑
t=1

(−1)t
(

l

t− 1

)
=

0 l ≥ 1

−1 l = 0.

We can see that, only the term with m = 0, l = 0 remains. Therefore, the conclusion follows. For

general m, we see from Theorem 3.12 that

D
(−k−1)
m(p−1) ≡ D

(−k−1)
(p−1) ≡ 1 (mod p)

�



Chapter 4

Relations of the level two

Arakawa-Kaneko zeta function to

multiple T-functions and multiple

T-values

4.1 Level two analogue of Arakawa-Kaneko zeta functions and

single variable multiple zeta functions

Kaneko and Tsumura defined the single variable multiple zeta function of level two as follows.

Definition 4.1. (Kaneko, Tsumura [12]) For k1, . . . , kr−1 ∈ Z≥1 and Re(s) > 1, we write

T0(k1, . . . , kr−1, s) =
∑

0<m1<···<mr
mi≡i (mod 2)

1

m
k1
1 · · ·m

kr−1

r−1 m
s
r

.

Furthermore, as its normalized version,

T (k1, . . . , kr−1, s) = 2rT0(k1, . . . , kr−1, s).

The values T (k1, . . . , kr−1, kr) (kj ∈ Z≥1, kr ≥ 2 : admissible) are called the multiple T-values.

When kr > 1, we see that

A(k1, . . . , kr; 1) = T (k1, . . . , kr).

We obtain a level two version of [2, Proposition 2] which will be needed in proving our main

results as follows.

29
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Proposition 4.1. 1. For Re(s) > 1

T (k1, . . . , kn−1, s) =
1

Γ(s)

ˆ ∞
0

ts−1

sinh(t)
A(k1, . . . , kn−1; e

−t)dt.

2. For Re(s) > 1, n ≥ 2, j ≥ 0

ˆ ∞
0

ts+j−1A(k1, . . . , kn−1; e
−t)dt = Γ(s+ j)T (k1, . . . , kn−2, s+ j + kn−1).

Proof. To prove (1), we use the definition

T (k1, . . . , kn−1, s) = 2n
∑

0<m1<···<mn
mi≡i (mod 2)

1

m
k1
1 · · ·m

kn−1

n−1 m
s
n

= 2n
∑

0<m1<···<mn−1

mi≡i (mod 2)

1

m
k1
1 · · ·m

kn−1

n−1

∑
mn=mn−1+1

mn 6≡mn−1 (mod 2)

1

ms
n
,

and use the standard expression

1

ns
=

1

Γ(s)

ˆ ∞
0

e−ntts−1dt (4.1)

to convert the inner sum into the integral. Then we can get the desired results.

To obtain (2), we only need to use the definition

A(k1, . . . , kn−1; e
−t) = 2n−1

∑
0<m1<···<mn−1

mi≡i (mod 2)

e−mn−1t

m
k1
1 · · ·m

kn−1

n−1

and use equation (4.1) to obtain

ˆ ∞
0

e−mn−1tts+j−1dt =
Γ(s+ j)

ms+j
n−1

.

This completes the proof of the proposition. �

According to these functions, Kaneko and Tsumura defined a level two analogue of ξ(k1, . . . , kr; s)

as follows.

Definition 4.2. (M. Kaneko, H. Tsumura [12, §5]) For k1, . . . , kr ∈ Z≥1 and Re(s) > 0, we write

ψ(k1, . . . , kr; s) =
1

Γ(s)

ˆ ∞
0

ts−1
A(k1, . . . , kr; tanh t/2)

sinh(t)
dt.
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The following theorem says that the values at non-positive integers of ψ(k1, . . . , kr; s) interpolate

multi-polycosecant numbers D(k1,...,kr)
m .

Theorem 4.2. The function ψ(k1, . . . , kr; s) can be continued analytically to C as an entire func-

tion and satisfies

ψ(k1, . . . , kr;−m) = (−1)mD(k1,...,kr)
m (m ∈ Z≥0)

where (k1, . . . , kr) ∈ Zr≥1.

Proof. By the definition

ψ(k1, . . . , kr; s) =
1

Γ(s)

ˆ ∞
0

ts−1
A(k1, . . . , kr; tanh t/2)

sinh(t)
dt,

we can see that ψ(k1, . . . , kr; s) is in the form of Mellin transform of the function A(k1,...,kr;tanh t/2)
sinh(t) .

Also, we have

A(k1, . . . , kr; tanh(t/2))

sinh t
=

∞∑
n=0

D(k1,...,kr)
n

tn

n!
.

Then by using a standard method (cf. [19, §4 of Part 1]), we can obtain that ψ(k1, . . . , kr; s) is an

entire function of s and the desired formula at the point s = −m. �

4.2 Relations among the functions ψ and T

In this section, we present our newly obtained results on the level two analogue of Arakawa-Kaneko

zeta functions. We deduce that the Arakawa-Kaneko zeta function of level two can be written as

a linear combination multiple T-functions.

Let us consider the integral representation of the level two multiple polylogarithm A(k; z) as

follows.

A(k; z) =

ˆ
0<t1<t2···<tk<z

2dt1

1− t21

dt2
t2
· · ·

dtk1
tk1︸ ︷︷ ︸

(k1−1)−times

· · ·
2dtk−kr+1

1− t2k−kr+1

dtk−kr+2

tk−kr+2
· · · dtk

tk︸ ︷︷ ︸
(kr−1)−times

,

where k = (k1, . . . , kr).

By using the formula

ˆ
a<t1···<tr<b

dt1
t1
· · · dtr

tr︸ ︷︷ ︸
r-times

=
1

r!

(
log

b

a

)r
, (4.2)
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we can write above integral expression as

A(k1, . . . , kr; z) =
2r∏r

i=1(ki − 1)!

ˆ
0<t1<t2···<tr<z

dt1

1− t21

(
log

t2
t1

)k1−1
· · · dtr

1− t2r

(
log

z

tr

)kr−1
.

(4.3)

Change the variables in equation 4.3 by using tj 7→
1−tr+1−j

1+tr+1−j
(j = 1, 2, . . . , r). Then, we get

A(k1, . . . , kr; z) =
1∏r

i=1(ki − 1)!

ˆ
Er(z)

dtr
tr

(
log

(1 + tr)(1− tr−1)
(1− tr)(1 + tr−1)

)k1−1
· · · dt2

t2

(
log

(1 + t2)(1− t1)
(1− t2)(1 + t1)

)kr−1−1 dt1
t1

(
log

(1 + t1)z

(1− t1)

)kr−1
,

(4.4)

where

Er(z) :=

{
(t1, . . . , tr) |

1− z
1 + z

< t1 < · · · < tr < 1

}
.

The following theorem was first obtained by Naho Kawasaki. We prove the following theorem

by using the integral representations of ψ and T .

Theorem 4.3. For any index set k = (k1, . . . , kr) ∈ Zr≥1 and m ∈ Z≥1, we have

ψ(k;m) =
∑

|j|=m−1, d(j)=n

b
(
(k+)∗; j

)
T
(
(k+)∗ + j

)
,

where the sum runs over all j ∈ Zr≥0 of weight m and depth n := d(k∗+) = |k|+1− d(k).

Kawasaki and Ohno [13] have given an alternative proof of Theorem 2.5 by using the associated

integral representations of ξ(k;m) (see [13, Theorem 2.2]). By a similar argument as in the proof

of Theorem 2.2 in [13], Kawasaki obtained Theorem 4.3. Here we give a proof by similar arguments

as in [11]. To prove the theorem, we obtain some integral expressions for ψ(k1, . . . , kr; s) in the

following proposition. This formula is corresponding to Proposition 2.6 (i) in [11].

Proposition 4.4. Let (k+)∗ = (l1, . . . , ln). Then we have,

ψ(k1, . . . , kr; s) =
1∏n

i=1 Γ(li)Γ(s)

ˆ ∞
0
· · ·
ˆ ∞
0

(x1 + · · ·+ xn)s−1x
l1−1
1 · · ·xln−1n

× 1

sinh (x1 + · · ·+ xn) sinh (x2 + · · ·+ xn) · · · sinh (xn)
dx1 · · · dxn

for Re(s) > 1− r.
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Proof. We take the index (k1, . . . , kr) as

(k1, . . . , kr) = ( 1, . . . , 1︸ ︷︷ ︸
(a1−1)-times

, b1 + 1, . . . , 1, . . . , 1︸ ︷︷ ︸
(ah−1)-times

, bh + 1),

for integers h ≥ 1, ai ≥ 1 (1 ≤ i ≤ h), bi ≥ 1 (1 ≤ i ≤ h− 1), and bh ≥ 0. By using Lemma 3.6 we

can write the integral expression of A(k; z) as:

A(k1, . . . , kr; z)

=

ˆ z

0

dxh
xh

ˆ xh

0
· · ·
ˆ xh

0

dxh
xh︸ ︷︷ ︸

bh-times

ˆ xh

0

1

ah!

(
log

(1− xh−1)(1 + xh)

(1 + xh−1)(1− xh)

)ah dxh−1
xh−1

·
ˆ xh−1

0

dxh−1
xh−1

ˆ xh−1

0
· · ·
ˆ xh−1

0

dxh−1
xh−1︸ ︷︷ ︸

(bh−1−1)-times

ˆ xh−1

0

1

ah−1!

(
log

(1− xh−2)(1 + xh−1)

(1 + xh−2)(1− xh−1)

)ah−1 dxh−2
xh−2

· · ·
ˆ x3

0

dx3
x3

ˆ x3

0
· · ·
ˆ x3

0

dx3
x3︸ ︷︷ ︸

(b3−1)-times

ˆ x3

0

1

a3!

(
log

(1− x2)(1 + x3)

(1 + x2)(1− x3)

)a3 dx2
x2

ˆ x2

0

dx2
x2

ˆ x2

0
· · ·
ˆ x2

0

dx2
x2︸ ︷︷ ︸

(b2−1)-times

·
ˆ x2

0

1

a2!

(
log

(1− x1)(1 + x2)

(1 + x1)(1− x2)

)a2 dx1
x1

ˆ x1

0

dx1
x1

ˆ x1

0
· · ·
ˆ x1

0

dx1
x1

ˆ x1

0︸ ︷︷ ︸
(b1−1)-times

1

a1!

(
log

(1 + x)

(1− x)

)a1 dx
x
.

The paths of the integration are in the domain C\ [1,∞), and the formula is valid for z ∈ C\ [1,∞).

Put z = tanh t/2 in the above equation and change the variables accordingly. Then, we get

A(k1, . . . , kr; tanh t/2)

=

ˆ t

0

ˆ tb1+···+bh

0
· · ·
ˆ t2

0

1

sinh (tb1+···+bh) · · · sinh (tb1+···+bh−1+2)︸ ︷︷ ︸
(bh−1)-times

× 1

ah!

(tb1+···+bh−1+1 − tb1+···+bh−1
)ah

sinh (tb1+···+bh−1+1)
· 1

sinh (tb1+···+bh−1
) · · · sinh (tb1+···+bh−2+2)︸ ︷︷ ︸

(bh−1−1)-times

× · · · 1

a3!

(tb1+b2+1 − tb1+b2)a3

sinh (tb1+b2+1)
· 1

sinh (tb1+b2) · · · sinh (tb1+2)︸ ︷︷ ︸
(b2−1)-times

1

a2!

(tb1+1 − tb1)a2

sinh (tb1+1)
· 1

sinh (tb1) · · · sinh (t2)︸ ︷︷ ︸
(b1−1)-times

· 1

a1!

t
a1
1

sinh (t1)
dt1dt2 · · · dtb1+···+bh .

By substituting the above equation in Definition 4.2 and changing the variables as: t = x1+· · ·+xn,

tb1+···+bh = x2 + · · ·+ xn, tb1+···+bh−1 = x3 + · · ·+ xn, . . ., t2 = xn−1 + xn, t1 = xn, we obtain the
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desired formula. We should note that the dual index (k+)∗ = (l1, . . . , ln) is given by

(k+)∗ = (1, . . . , 1︸ ︷︷ ︸
bh-times

, ah + 1, 1, . . . , 1︸ ︷︷ ︸
(bh−1−1)-times

, ah−1 + 1, . . . , 1, . . . , 1︸ ︷︷ ︸
(b1−1)-times

, a1 + 1)

and the depth n = b1 + · · ·+ bh + 1. �

Proof of Theorem 4.3. In order to obtain the formula, put s = m in the above proposition and

expand (x1 + · · ·+ xk)
m−1 by the multinomial theorem. Then the theorem follows from the below

lemma. �

Lemma 4.5. [12, Lemma 5.4] For l1, . . . , lr−1 ∈ Z≥1 and Re(s) > 1, we have

T (l1, . . . , lr−1, s) =
1

Γ(l1) · · ·Γ(lr−1)Γ(s)

ˆ ∞
0
· · ·
ˆ ∞
0

x
l1−1
1 · · ·xlr−1−1

r−1 xs−1r

r∏
j=1

1

sinh (xj + · · ·+ xr)
dx1 · · · dxr.

We obtain the following formula which will also be needed in proving our results.

Lemma 4.6. 1. For k1, . . . , kr ∈ Z≥1

d

dt
A

(
k1, . . . , kr;

1− z
1 + z

)
=


− 2

1−z2
A
(
k1, . . . , kr−1, kr − 1; 1−z

1+z

)
(kr ≥ 2)

−1
zA
(
k1, . . . , kr−1;

1−z
1+z

)
(kr = 1).

2. For r ≥ 1

A

(
{1}r;

1− z
1 + z

)
=

1

r!

(
A

(
1;

1− z
1 + z

))r
=

(−1)r

r!
logr z.

The proof of the above lemma is similar to the proof of Lemma 3.6.

In order to prove the next theorem, we establish the following lemma.

Lemma 4.7. For any index k, we have

2

1− z2
A

(
{1}j ;

1− z
1 + z

)
A(k; z) =

d

dz

(
j∑
i=0

A

(
{1}j−i;

1− z
1 + z

)
A(k, i+ 1; z)

)
. (4.5)

Proof. By using Lemma 3.6 and Lemma 4.6, we can easily obtain the desired result by induction

on j. �

Now we present the following Euler-type connection formula associated with the multiple poly-

logarithm functions of level two, corresponding to Theorem 2.6 in Chapter 2.
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Theorem 4.8. Let k be any index. Then we have

A

(
k;

1− z
1 + z

)
=
∑

k
′
,j≥0

Ck(k′; j)A

(
{1}j ;

1− z
1 + z

)
A(k′; z),

where the sum on the right runs over indices k′ and integers j ≥ 0 that satisfy |k′|+j ≤ |k|, and

Ck(k′; j) is a Q−linear combination of multiple T−values of weight |k| − |k′| − j. We understand

Ath∅(z) = 1 and |∅|= 0 for the empty index ∅, and the constant 1 is regarded as a multiple T -value

of weight 0.

Proof. We prove this by induction on the weight k. When k = (1), the trivial identity

A1

(
1− z
1 + z

)
= A1

(
1− z
1 + z

)
itself gives the desired form, thus C(1)(∅; 0) = C(1)((1); 0) = 0 and C(1)(∅; 1) = 1. Suppose the

weight |k| > 1 and assume the statement holds for any index of weight less than |k|.

For k = (k1, . . . , kr), set k− = (k1, . . . , kr−1, kr − 1).

First, assume that k is admissible. Then by the differential relation and the induction hypothesis,

we get

d

dz
A

(
k;

1− z
1 + z

)
= − 2

1− z2
A

(
k−;

1− z
1 + z

)
= − 2

1− z2
∑
l,j≥0

Ck−
(l; j)A

(
{1}j ;

1− z
1 + z

)
A(l; z). (4.6)

Let the depth of l be s. By substituting (4.5) from Lemma 4.7 into (4.6) and integrating, we get

A

(
k;

1− z
1 + z

)
= −

∑
l,j≥0

Ck−
(l; j)

(
j∑
i=0

A

(
{1}j−i;

1− z
1 + z

)
A(l, i+ 1; z)

)
+ C,

where C is a constant. Since

lim
z→0

A

(
{1}j−i;

1− z
1 + z

)
A(l, i+ 1; z) = 0,

we have C = T (k). Now we can obtain the desired result.

In order to prove the non-admissible case, we recall that A
(
k; 1−z

1+z

)
satisfies the shuffle relation

(cf. [5]). Suppose k is not admissible. Then, we can write A
(
k; 1−z

1+z

)
as a polynomial of A

(
1; 1−z

1+z

)
with each coefficient of Ai

(
1; 1−z

1+z

)
being a linear combination of A

(
k′; 1−z

1+z

)
,k′ : admissible. Write
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this polynomial as

A

(
k;

1− z
1 + z

)
=

m∑
j=0

ai ·A
j

(
1;

1− z
1 + z

)
.

Then ai can be written in the desired form (admissible case). We know that

Aj

(
1;

1− z
1 + z

)
= j! A

(
{1}j ;

1− z
1 + z

)
and

A

(
{1}i;

1− z
1 + z

)
A

(
{1}j ;

1− z
1 + z

)
=

(
i+ j

i

)
A

(
{1}i+j ;

1− z
1 + z

)
.

Hence ai ·A
j
(

1; 1−z
1+z

)
can be written in the claimed form, and the proof is done. �

From Theorem 4.8, we can obtain formulas expressing ψ(k; s) in terms of multiple zeta functions.

Theorem 4.9. Let k be any index set. The function ψ(k; s) can be written in terms of multiple

T−functions as

ψ(k; s) =
∑

k
′
,j≥0

Ck(k′; j)

(
s+ j − 1

j

)
T (k′; s+ j)

Here, the sum is over indices k′ and integers j ≥ 0 that satisfy |k′|+j ≤ |k|, and Ck(k′; j) is the

same as in Theorem 4.8.

Proof. Let r, l be the depths of k and k′ respectively. Put z = e−t in the above lemma.

A

(
k;

1− e−t

1 + e−t

)
=
∑

k
′
,j≥0

CK(k′; j)A

(
{1}j ;

1− e−t

1 + e−t

)
A(k′; e−t).

By using Lemma 3.6 we can write the above equation as

A (k; tanh t/2) =
∑

k
′
,j≥0

Ck(k′; j)
tj

j!
A(k′; e−t). (4.7)

Recall the definition

ψ(k; s) =
1

Γ(s)

ˆ ∞
0

ts−1
A(k; tanh t/2)

sinh(t)
dt,

and we substitute equation (4.7) into the above equation and apply Proposition 4.1 to obtain the

desired formula for ψ(k; s). �
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Example 4.1. We give examples for the identity in Theorem 4.8 up to weight 5.

A

(
2;

1− z
1 + z

)
= −A

(
1;

1− z
1 + z

)
A(1; z)−A(2; z) + T (2)

A

(
3;

1− z
1 + z

)
= A

(
1;

1− z
1 + z

)
A(1, 1; z) + A (1, 2; z) + A(2, 1; z)− T (2)A(1; z) + T (3),

A

(
1, 2;

1− z
1 + z

)
= −A

(
1, 1;

1− z
1 + z

)
A(1; z)−A

(
1;

1− z
1 + z

)
A(2; z)−A(3; z) + T (1, 2),

A

(
2, 1;

1− z
1 + z

)
= A

(
1;

1− z
1 + z

)
A(2; z) + T (2)A

(
1;

1− z
1 + z

)
+ 2A(3; z)− 2T (1, 2),

A

(
4;

1− z
1 + z

)
= −A

(
1;

1− z
1 + z

)
A(1, 1, 1; z)−A(1, 1, 2; z)−A(1, 2, 1; z)−A(2, 1, 1; z)

+ T (2)A(1, 1; z)− T (3)A(1; z) + T (4),

A

(
1, 3;

1− z
1 + z

)
= A

(
1, 1;

1− z
1 + z

)
A(1, 1; z) + A

(
1;

1− z
1 + z

)
A(1, 2; z) + A

(
1;

1− z
1 + z

)
A(2, 1; z)

+ A(1, 3; z) + A(2, 2; z) + A(3, 1; z)− T (1, 2)A(1; z) + T (1, 3),

A

(
2, 2;

1− z
1 + z

)
= −A

(
1;

1− z
1 + z

)
A(2, 1; z)− T (2)A

(
1;

1− z
1 + z

)
A(1; z)

−A(2, 2; z)− 2A(3, 1; z)− T (2)A(2; z) + 2T (1, 2)A(1; z) + T (2, 2),

A

(
3, 1;

1− z
1 + z

)
= −A

(
1;

1− z
1 + z

)
A(1, 2; z) + T (3)A

(
1;

1− z
1 + z

)
− 2A(1, 3; z)−A(2, 2; z)

+ T (2)A(2; z)− 2T (1, 3)− T (2, 2),

A

(
1, 1, 2;

1− z
1 + z

)
= −A

(
1, 1, 1;

1− z
1 + z

)
A(1; z)−A

(
1, 1;

1− z
1 + z

)
A(2; z)

−A

(
1;

1− z
1 + z

)
A(3; z)−A(4; z) + T (1, 1, 2),

A

(
1, 2, 1;

1− z
1 + z

)
= A

(
1, 1;

1− z
1 + z

)
A(2; z) + 2A

(
1;

1− z
1 + z

)
A(3; z) + T (1, 2)A

(
1;

1− z
1 + z

)
+ 3A(4; z)− 3T (1, 1, 2),

A

(
2, 1, 1;

1− z
1 + z

)
= T (2)A

(
1, 1;

1− z
1 + z

)
−A

(
1;

1− z
1 + z

)
A(3; z)− 2T (1, 2)A

(
1;

1− z
1 + z

)
− 3A(4; z) + 3T (1, 1, 2),

A

(
5;

1− z
1 + z

)
= A

(
1;

1− z
1 + z

)
A(1, 1, 1, 1; z) + A(1, 1, 1, 2; z) + A(1, 1, 2, 1; z) + A(1, 2, 1, 1; z)

+ A(2, 1, 1, 1; z)− T (2)A(1, 1, 1; z) + T (3)A(1, 1; z)− T (4)A(1; z) + T (5),

A

(
1, 4;

1− z
1 + z

)
= −A

(
1, 1;

1− z
1 + z

)
A(1, 1, 1; z)−A

(
1;

1− z
1 + z

)
A(1, 1, 2; z)

−A

(
1;

1− z
1 + z

)
A(1, 2, 1; z)−A

(
1;

1− z
1 + z

)
A(2, 1, 1; z)−A(1, 1, 3; z)

−A(1, 2, 2; z)−A(1, 3, 1; z)−A(2, 1, 2; z)−A(2, 2, 1; z)−A(3, 1, 1; z)

+ T (1, 2)A(1, 1; z)− T (1, 3)A(1; z) + T (1, 4),
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A

(
2, 3;

1− z
1 + z

)
= A

(
1;

1− z
1 + z

)
A(2, 1, 1; z) + T (2)A

(
1;

1− z
1 + z

)
A(1, 1; z) + A(2, 1, 2; z)

+ A(2, 2, 1; z) + 2A(3, 1, 1; z) + T (2)A(1, 2; z) + T (2)A(2, 1; z)

− 2T (1, 2)A(1, 1; z)− T (2, 2)A(1; z) + T (2, 3),

A

(
3, 2;

1− z
1 + z

)
= A

(
1;

1− z
1 + z

)
A(1, 2, 1; z)− T (3)A

(
1;

1− z
1 + z

)
A(1; z) + A(1, 2, 2; z)

+ 2A(1, 3, 1; z) + A(2, 2, 1; z)− T (2)A(2, 1; z)− T (3)A(2; z)

+ 2T (1, 3)A(1; z) + T (2, 2)A(1; z) + T (3, 2),

A

(
4, 1;

1− z
1 + z

)
= A

(
1;

1− z
1 + z

)
A(1, 1, 2; z) + T (4)A

(
1;

1− z
1 + z

)
+ 2A(1, 1, 3; z)

+ A(1, 2, 2; z) + A(2, 1, 2; z)− T (2)A(1, 2; z) + T (3)A(2; z)

− 2T (1, 4)− T (2, 3)− T (3, 2),

A

(
1, 1, 3;

1− z
1 + z

)
= A

(
1, 1, 1;

1− z
1 + z

)
A(1, 1; z) + A

(
1, 1;

1− z
1 + z

)
A(1, 2; z)

+ A

(
1, 1;

1− z
1 + z

)
A(2, 1; z) + A

(
1;

1− z
1 + z

)
A(1, 3; z)

+ A

(
1;

1− z
1 + z

)
A(2, 2; z) + A

(
1;

1− z
1 + z

)
A(3, 1; z) + A(1, 4; z)

+ A(2, 3; z) + A(3, 2; z) + A(4, 1; z)− T (1, 1, 2)A(1; z) + T (1, 1, 3),

A

(
1, 2, 2;

1− z
1 + z

)
= −A

(
1, 1;

1− z
1 + z

)
A(2, 1; z)−A

(
1;

1− z
1 + z

)
A(2, 2; z)

− 2A

(
1;

1− z
1 + z

)
A(3, 1; z)− T (1, 2)A

(
1;

1− z
1 + z

)
A(1; z)−A(2, 3; z)

− 2A(3, 2; z) + 3T (1, 1, 2)A(1; z)− 3A(4, 1; z)− T (1, 2)A(2; z)

+ T (1, 2, 2),

A

(
1, 3, 1;

1− z
1 + z

)
= −A

(
1, 1;

1− z
1 + z

)
A(1, 2; z)− 2A

(
1;

1− z
1 + z

)
A(1, 3; z)

−A

(
1;

1− z
1 + z

)
A(2, 2; z) + T (1, 3)A

(
1;

1− z
1 + z

)
+ T (1, 2)A(2; z)

− 3A(1, 4; z)− 2A(2, 3; z)−A(3, 2; z)− 3T (1, 1, 3)− T (1, 2, 2),

A

(
2, 1, 2;

1− z
1 + z

)
= −T (2)A

(
1, 1;

1− z
1 + z

)
A(1; z) + A

(
1;

1− z
1 + z

)
A(3, 1; z)

− T (2)A

(
1;

1− z
1 + z

)
A(2; z) + 2T (1, 2)A

(
1;

1− z
1 + z

)
A(1; z) + A(3, 2; z)

+ 3A(4, 1; z)− T (2)A(3; z) + 2T (1, 2)A(2; z)− 3T (1, 1, 2)A(1; z) + T (2, 1, 2),

A

(
2, 2, 1;

1− z
1 + z

)
= A

(
1;

1− z
1 + z

)
A(2, 2; z) + T (2)A

(
1;

1− z
1 + z

)
A(2; z) + T (2, 2)A

(
1;

1− z
1 + z

)
+ 2A(2, 3; z) + 2A(3, 2; z) + 2T (2)A(3; z)− 2T (1, 2)A(2; z)

− 2T (1, 2, 2)− 2T (2, 1, 2),
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A

(
3, 1, 1;

1− z
1 + z

)
= T (3)A

(
1, 1;

1− z
1 + z

)
+ A

(
1;

1− z
1 + z

)
A(1, 3; z)− 2T (1, 3)A

(
1;

1− z
1 + z

)
− T (2, 2)A

(
1;

1− z
1 + z

)
+ 3A(1, 4; z) + A(2, 3; z)− T (2)A(3; z)

+ 3T (1, 1, 3) + 2T (1, 2, 2) + T (2, 1, 2),

A

(
1, 1, 1, 2;

1− z
1 + z

)
= −A

(
1, 1, 1, 1;

1− z
1 + z

)
A(1; z)−A

(
1, 1, 1;

1− z
1 + z

)
A(2; z)

−A

(
1, 1;

1− z
1 + z

)
A(3; z)−A

(
1;

1− z
1 + z

)
A(4; z)−A(5; z)

+ T (1, 1, 1, 2),

A

(
1, 1, 2, 1;

1− z
1 + z

)
= A

(
1, 1, 1;

1− z
1 + z

)
A(2; z) + 2A

(
1, 1;

1− z
1 + z

)
A(3; z) + 3A

(
1;

1− z
1 + z

)
A(4; z)

+ T (1, 1, 2)A

(
1;

1− z
1 + z

)
+ 4A(5; z)− 4T (1, 1, 1, 2),

A

(
1, 2, 1, 1;

1− z
1 + z

)
= −A

(
1, 1;

1− z
1 + z

)
A(3; z) + T (1, 2)A

(
1, 1;

1− z
1 + z

)
− 3A

(
1;

1− z
1 + z

)
A(4; z)

− 3T (1, 1, 2)A

(
1;

1− z
1 + z

)
− 6A(5; z) + 6T (1, 1, 1, 2),

A

(
2, 1, 1, 1;

1− z
1 + z

)
= T (2)A

(
1, 1, 1;

1− z
1 + z

)
− 2T (1, 2)A

(
1, 1;

1− z
1 + z

)
+ A

(
1;

1− z
1 + z

)
A(4; z) + 3T (1, 1, 2)A

(
1;

1− z
1 + z

)
+ 4A(5; z)− 4T (1, 1, 1, 2).

Accordingly, we have

ψ(2; s) = −T (2, s)− sT (1, s+ 1) + T (2)T (s),

ψ(3; s) = T (1, 2, s) + T (2, 1, s) + sT (1, 1, s+ 1)− T (2)T (1, s) + T (3)T (s),

ψ(1, 2; s) = −T (3, s)− sT (2, s+ 1)− s(s+ 1)

2
T (1, s+ 2) + T (1, 2)T (s),

ψ(2, 1; s) = 2T (3, s) + sT (2, s+ 1) + sT (2)T (s+ 1)− 2T (1, 2)T (s),

ψ(4; s) = −T (1, 1, 2, s)− T (1, 2, 1, s)− T (2, 1, 1, s)− sT (1, 1, 1, s+ 1) + T (2)T (1, 1, s)

− T (3)T (1, s) + T (4)T (s),

ψ(1, 3; s) = T (1, 3, s) + T (3, 1, s) + T (2, 2, s) + sT (1, 2, s+ 1) + sT (2, 1, s+ 1)

+
s(s+ 1)

2
T (1, 1, s+ 2)− T (1, 2)T (1, s) + T (1, 3)T (s),

ψ(2, 2; s) = −2T (3, 1, s)− T (2, 2, s)− sT (2, 1, s+ 1)− sT (2)T (1, s+ 1)− T (2)T (2, s)

+ 2T (1, 2)T (1, s) + T (2, 2)T (s),

ψ(3, 1; s) = −2T (1, 3, s)− T (2, 2; s)− sT (1, 2, s+ 1) + T (2)T (2, s) + sT (3)T (s+ 1)

− 2T (1, 3)T (s)− T (2, 2)T (s),
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ψ(1, 1, 2; s) = −T (4, s)− sT (3, s+ 1)− s(s+ 1)

2
T (2, s+ 2)− s(s+ 1)(s+ 2)

6
T (1, s+ 3)

+ T (1, 1, 2)T (s),

ψ(1, 2, 1; s) = 3T (4, s) + 2sT (3, s+ 1) +
s(s+ 1)

2
T (2, s+ 2) + sT (1, 2)T (s+ 1)− 3T (1, 1, 2)T (s),

ψ(2, 1, 1; s) = −3T (4, s)− sT (3, s+ 1) +
s(s+ 1)

2
T (2)T (s+ 2)− 2sT (1, 2)T (s+ 1)

+ 3T (1, 1, 2)T (s),

ψ(5; s) = T (1, 1, 1, 2, s) + T (1, 1, 2, 1, s) + T (1, 2, 1, 1, s) + T (2, 1, 1, 1, s) + sT (1, 1, 1, 1, s+ 1)

− T (2)T (1, 1, 1, s) + T (3)T (1, 1, s)− T (4)T (1, s) + T (5)T (s),

ψ(1, 4; s) = −T (1, 3, 1, s)− T (3, 1, 1, s)− T (2, 2, 1, s)− T (1, 2, 2, s)− T (2, 1, 2, s)

− T (1, 1, 3, s)− sT (1, 2, 1, s+ 1)− sT (2, 1, 1, s+ 1)

− s(s+ 1)

2
T (1, 1, 1, s+ 2)− sT (1, 1, 2, s+ 1)

+ T (1, 2)T (1, 1, s)− T (1, 3)T (1, s) + T (1, 4)T (s),

ψ(2, 3; s) = 2T (3, 1, 1, s) + T (2, 2, 1, s) + T (2, 1, 2, s) + sT (2, 1, 1, s+ 1) + T (2)sT (1, 1, s+ 1)

+ T (2)T (2, 1, s) + T (2)T (1, 2, s)− 2T (1, 2)T (1, 1, s)

− T (2, 2)T (1, s) + T (2, 3)T (s),

ψ(3, 2; s) = 2T (1, 3, 1, s) + T (2, 2, 1, s) + T (1, 2, 2, s) + sT (1, 2, 1, s+ 1)

− T (3)sT (1, s+ 1)− T (2)T (2, 1, s)− T (3)T (2, s)

+ 2T (1, 3)T (1, s) + T (2, 2)T (1, s) + T (3, 2)T (s),

ψ(4, 1; s) = T (1, 2, 2, s) + T (2, 1, 2, s) + 2T (1, 1, 3, s) + sT (1, 1, 2, s+ 1)

+ T (4)sT (s+ 1)− T (2)T (1, 2, s) + T (3)T (2, s)

− 2T (1, 4)T (s)− T (2, 3)T (s)− T (3, 2)T (s),

ψ(1, 1, 3; s) = T (1, 4, s) + T (4, 1, s) + T (3, 2, s) + T (2, 3, s) + sT (3, 1, s+ 1)

+
s(s+ 1)

2
T (2, 1, s+ 2) + sT (2, 2, s+ 1)

+
s(s+ 1)

2
T (1, 2, s+ 2) + sT (1, 3, s+ 1)

+
s(s+ 1)(s+ 2)

6
T (1, 1, s+ 3)− T (1, 1, 2)T (1, s) + T (1, 1, 3)T (s),

ψ(1, 2, 2; s) = −3T (4, 1; z)− 2T (3, 2; z)− T (2, 3; z)− 2sT (3, 1, s+ 1)

− s(s+ 1)

2
T (2, 1, s+ 2)− sT (2, 2, s+ 1)− T (1, 2)T (2, s)

− T (1, 2)sT (1, s+ 1) + 3T (1, 1, 2)T (1, s) + T (1, 2, 2)T (s),

ψ(1, 3, 1; s) = −T (3, 2; z)− 2T (2, 3; z)− 3T (1, 4; z)− s(s+ 1)

2
T (1, 2, s+ 2)

− 2sT (1, 3, s+ 1)− sT (2, 2, s+ 1) + T (1, 3)sT (s+ 1)

+ T (1, 2)T (2, s)− 3T (1, 1, 3)T (s)− T (1, 2, 2)T (s),
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ψ(2, 1, 2; s) = 3T (4, 1; z) + T (3, 2; z) + sT (3, 1, s+ 1)− T (2)
s(s+ 1)

2
T (1, s+ 2)

− T (2)sT (2, s+ 1) + 2T (1, 2)sT (1, s+ 1)− T (2)T (3, s)

+ 2T (1, 2)T (2, s)− 3T (1, 1, 2)T (1, s) + T (2, 1, 2)T (s),

ψ(2, 2, 1; s) = 2T (2, 3; z) + 2T (3, 2; z) + T (2)sT (2, s+ 1) + T (2, 2)sT (s+ 1)

+ 2T (2)T (3, s)− 2T (1, 2, 2)T (s) + sT (2, 2, s+ 1)

− 2T (1, 2)T (2, s)− 2T (2, 1, 2)T (s),

ψ(3, 1, 1; s) = T (2, 3; s) + 3T (1, 4; s)

− T (2)T (3, s)− 2T (1, 3)sT (s+ 1)− T (2, 2)sT (s+ 1)

+ sT (1, 3, s+ 1) + T (3)
s(s+ 1)

2
T (s+ 2)

+ 2T (1, 2, 2)T (s) + T (2, 1, 2)T (s) + 3T (1, 1, 3)T (s),

ψ(1, 1, 1, 2; s) = −T (5; z)− sT (4, s+ 1)− s(s+ 1)

2
T (3, s+ 2)

− s(s+ 1)(s+ 2)

6
T (2, s+ 3)− s(s+ 1)(s+ 2)(s+ 3)

24
T (1, s+ 4)

+ T (1, 1, 1, 2)T (s),

ψ(1, 1, 2, 1; s) = 4T (5; z) + 3sT (4, s+ 1) + s(s+ 1)T (3, s+ 2)

s(s+ 1)(s+ 2)

6
T (2, s+ 3) + T (1, 1, 2)sT (s+ 1)− 4T (1, 1, 1, 2)T (s),

ψ(1, 2, 1, 1; s) = −6T (5; z)− 3sT (4, s+ 1)− s(s+ 1)

2
T (3, s+ 2)

+ T (1, 2)
s(s+ 1)

2
T (s+ 2)− 3T (1, 1, 2)sT (s+ 1) + 6T (1, 1, 1, 2)T (s),

ψ(2, 1, 1, 1; s) = 4T (5; z) + sT (4, s+ 1) + T (2)
s(s+ 1)(s+ 2)

6
T (s+ 3)

− T (1, 2)s(s+ 1)T (s+ 2) + 3T (1, 1, 2)sT (s+ 1)− 4T (1, 1, 1, 2)T (s).

4.2.1 Some explicit forms of Arakawa-Kaneko zeta functions of level two

Theorem 4.8 and Theorem 4.9 can be written explicitly for some special arguments. In this section,

we obtain some explicit forms of Theorem 4.8 and Theorem 4.9.

Let us consider the following lemma which will be needed in proving our main results under this

section.

Lemma 4.10. For integers m ≥ 0 and n > 0, we get

zˆ

0

logm(t) logn
(

1− t
1 + t

)
dt

t
= (−1)nn!

m∑
l=0

l!

(
m

l

)
(−1)l(log(z))m−lA({1}n−1, l + 2; z). (4.8)
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In particular,

1ˆ

0

logm(t) logn
(

1− t
1 + t

)
dt

t
= (−1)n+mn!m!T ({1}n−1,m+ 2). (4.9)

Proof. From Lemma (4.6), we have

zˆ

0

logm(t) logn
(

1− t
1 + t

)
dt

t
= (−1)nn!

zˆ

0

logm(t)A({1}n; t)

t
dt

= (−1)nn!
m∑
l=0

l!

(
m

l

)
(−1)l(log(z))m−lA({1}n−1, l + 2; z).

By setting z → 1 in the above equation, we get

1ˆ

0

logm(t) logn
(

1− t
1 + t

)
dt

t
= (−1)n+mn!m! A({1}n−1,m+ 2; 1)

= (−1)n+mn!m!T ({1}n−1,m+ 2).

This completes the proof of the lemma. �

We obtain the following identity as a level two generalization of Lemma 3.7 in [12].

Theorem 4.11. For any positive integers j and r with j ≤ r,

A

(
{1}j−1, 2, {1}r−j ;

1− z
1 + z

)
=

r−j∑
i=0

(−1)i
(
i+ j

i

)
T (i+ j + 1)A

(
{1}r−j−i;

1− z
1 + z

)

+ (−1)r−j−1
r∑

l=r−j

(
l

r − j

)
A

(
{1}r−l;

1− z
1 + z

)
A(l + 1; z).

Proof. Set k1 = · · · = kj−1 = 1, kj = 2, kj+1 = · · · = kr = 1 and replacing z by 1−z
1+z in (4.4). For

convenience, we let E′r(z) := Er

(
1−z
1+z

)
, where

Er(z) :=

{
(t1, . . . , tr) |

1− z
1 + z

< t1 < · · · < tr < 1

}
.

Then, we have

A

(
{1}j−1, 2, {1}r−j ;

1− z
1 + z

)
=

ˆ
E
′
r(z)

log
(1 + tr+1−j)(1− tr−j)
(1− tr+1−j)(1 + tr−j)

dt1
t1
· · · dtr

tr

=

ˆ
E
′
r(z)

log

(
1− tr−j
1 + tr−j

)
dt1
t1
· · · dtr

tr
−
ˆ
E
′
r(z)

log

(
1− tr+1−j
1 + tr+1−j

)
dt1
t1
· · · dtr

tr
.
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By using (4.2), we get

A

(
{1}j−1, 2, {1}r−j ;

1− z
1 + z

)

=

1ˆ

z

1

(r − j − 1)!
logr−j−1

(
tr−j
z

)
· 1

j!
logj

(
1

tr−j

)
log

(
1− tr−j
1 + tr−j

)
dtr−j
tr−j

−
1ˆ

z

1

(r − j)!
logr−j

(
tr−j+1

z

)
· 1

(j − 1)!
logj−1

(
1

tr−j+1

)
log

(
1− tr−j+1

1 + tr−j+1

)
dtr−j+1

tr−j+1
.

Applying Binomial theorem, we get

A

(
{1}j−1, 2, {1}r−j ;

1− z
1 + z

)

=

r−1−j∑
i=0

(
r − 1− j

i

)
(−1)r−1−i

(r − j − 1)! j!
logr−1−j−i(z)

1ˆ

z

logi+j(t) log
(1− t)
(1 + t)

dt

t

−
r−j∑
i=0

(
r − j
i

)
(−1)r−1−i

(r − j)! (j − 1)!
logr−j−i(z)

1ˆ

z

logi+j−1(t) log
(1− t)
(1 + t)

dt

t

=

r−j∑
i=0

(−1)r−i−1

(r − j − i)!
(i+ j)

i! j!
logr−j−i(z)

zˆ

1

logi+j−1(t) log

(
1− t
1 + t

)
dt

t
. (4.10)

Substitute (4.8) and (4.9) with n = 1 into (4.10). Then, we get

A

(
{1}j−1, 2, {1}r−j ;

1− z
1 + z

)
=

r−j∑
i=0

(−1)r+j

(r − j − i)!

(
i+ j

i

)
logr−j−i(z)T (i+ j + 1)

+

r−j∑
i=0

i+j−1∑
l=0

(−1)r−i+l

(r − l − 1)!

(
i+ j

i

)(
r − l − 1

r − j − i

)
logr−l−1(z)A(l + 2; z). (4.11)

By substituting Lemma 4.6 into the above equation, we get

A

(
{1}j−1, 2, {1}r−j ;

1− z
1 + z

)
=

r−j∑
i=0

(−1)i
(
i+ j

i

)
T (i+ j + 1)A

(
{1}r−j−i;

1− z
1 + z

)

+

r−j∑
i=0

i+j−1∑
l=0

(−1)i+1

(
i+ j

i

)(
r − l − 1

r − j − i

)
A

(
{1}r−l−1;

1− z
1 + z

)
A(l + 2; z). (4.12)
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In order to obtain the desired formula, let us simplify the last term as follows.

r−j∑
i=0

i+j−1∑
l=0

(−1)i+1

(
i+ j

i

)(
r − l − 1

r − j − i

)
A

(
{1}r−l−1;

1− z
1 + z

)
A(l + 2; z)

=

r−j∑
i=0

i+j∑
l=1

(−1)i+1

(
i+ j

i

)(
r − l

r − j − i

)
A

(
{1}r−l;

1− z
1 + z

)
A(l + 1; z)

=
r∑
l=1

r−j∑
i=0

(−1)i+1

(
i+ j

i

)(
r − l

r − j − i

)
A

(
{1}r−l;

1− z
1 + z

)
A(l + 1; z).

Here, (
r − l

r − j − i

)
=

(
r − l

i+ j − 1

)
.

By using the binomial identity 176 in [17], we get

r−j∑
i=0

(−1)i+1

(
i+ j

i

)(
r − l

i+ j − l

)
=


0 (j < r − l),

(−1)r−j−1
(
l

r−j
)

(r − l ≤ j ≤ r).

Substituting this into the above equation, we get

r−j∑
i=0

i+j−1∑
l=0

(−1)i+1

(
i+ j

i

)(
r − l − 1

r − j − i

)
A

(
{1}r−l−1;

1− z
1 + z

)
A(l + 2; z)

=

r∑
l=r−j

(−1)r−j−1
(

l

r − j

)
A

(
{1}r−j ;

1− z
1 + z

)
A(l + 1; z).

By substituting this in equation 4.12, we get the desired results. �

Accordingly, we can obtain the following theorem for ψ which can be regarded as an explicit

form of Theorem 4.9 at some special arguments.

Theorem 4.12. For positive integers j, r and Re(s) > 1 with j ≤ r,

ψ({1}j−1, 2, {1}r−j ; s)

=

r−j∑
i=0

(−1)i
(
i+ j

i

)(
s+ r − i− j − 1

r − i− j

)
T (i+ j + 1)T (s+ r − i− j)

+ (−1)r−j−1
r∑

l=r−j

(
l

r − j

)(
s+ r − l − 1

r − l

)
T (l + 1, s+ r − l).

Proof. Let us consider Theorem 4.11.
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A

(
{1}j−1, 2, {1}r−j ;

1− z
1 + z

)
=

r−j∑
i=0

(−1)i
(
i+ j

i

)
T (i+ j + 1)A

(
{1}r−j−i;

1− z
1 + z

)

+ (−1)r−j−1
r∑

l=r−j

(
l

r − j

)
A

(
{1}r−l;

1− z
1 + z

)
A(l + 1; z). (4.13)

Now we can see that the right side the the above equation is in the form of Theorem 4.8. We

can write the each term of the equation (4.13) in the form of Theorem 4.9. This readily gives the

desired result. �

In order to prove the next result we consider the following shuffle product identity.

Lemma 4.13. For the integers m,n ≥ 1, we have

m∑
j=1

(−1)j(ym−j � yjxn) = −
∑

α1+···+αm=m+n,∀αi≥1
yxα1 · · · yxαm−1yxαm .

Proof. Consider the left hand-side of the above equation.

m∑
j=1

(−1)jym−j � yjxn

= (−1)mymxn +
m−1∑
j=1

(−1)j
(
y(ym−j−1 � yjxn) + y(ym−j � yj−1xn)

)

= (−1)mymxn +
m∑
j=2

(−1)j−1y(ym−j � yj−1xn) +
m−1∑
j=1

(−1)jy(ym−j � yj−1xn)

= (−1)mymxn + (−1)m−1ymxn − y(ym−1 � xn)

= −y(ym−1 � xn). (4.14)

By using the shuffle product formula. we obtain the desired result. �

We obtain the following formula for A(k; z).

Theorem 4.14. For any positive integers r and k,

A

(
{1}r−1, k;

1− z
1 + z

)
=

k−2∑
j=0

(−1)k−jT ({1}j , r + 1)A({1}k−2−j ; z)

+ (−1)k−1
∑

a1+···+ak=r
∀aj≥0

A

(
{1}ak ;

1− z
1 + z

)
A(a1 + 1, · · · , ak−1 + 1; z).
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Proof. Set k1 = · · · = kr−1 = 1, kr = k in (4.4) and replacing z by 1−z
1+z . For convenience, we let

E′r(z) := Er

(
1−z
1+z

)
. Then, we get

A

(
{1}r−1, k;

1− z
1 + z

)
=

1

(k − 1)!

ˆ
E
′
r(z)

logk−1
(1− z)(1 + t1)

(1 + z)(1− t1)
dt1
t1
· · · dtr

tr

=
k−1∑
j=1

(−1)j

(k − 1− j)! j!
logk−1−j

(
1− z
1 + z

) ˆ
E
′
r(z)

logj
(

1− t1
1 + t1

)
dt1
t1
· · · dtr

tr

+
1

(k − 1)!
logk−1

(
1− z
1 + z

) ˆ
E
′
r(z)

dt1
t1
· · · dtr

tr
.

By using (4.2), we get

A

(
{1}r−1, k;

1− z
1 + z

)
=

k−1∑
j=1

(−1)r−1+j

(k − 1− j)! j! (r − 1)!
logk−1−j

(
1− z
1 + z

) ˆ 1

z
logr−1(t) logj

(
1− t
1 + t

)
dt

t

+
(−1)r

(k − 1)! r!
logk−1

(
1− z
1 + z

)
logr(z). (4.15)

Substitute (4.8) and (4.9) into above equation. Then, we get

A

(
{1}r−1, k;

1− z
1 + z

)
=

k−1∑
j=1

1

(k − 1− j)!
logk−1−j

(
1− z
1 + z

)
T ({1}j−1, r + 1)

+
k−1∑
j=1

r−1∑
l=0

(−1)r−l

(k − 1− j)! (r − 1− l)!
logk−1−j

(
1− z
1 + z

)
logr−l−1(z)A({1}j−1, l + 2; z)

+
(−1)r

(k − 1)! r!
logk−1

(
1− z
1 + z

)
logr(z). (4.16)

By substituting Lemma 4.6 into the above equation, we get

A

(
{1}r−1, k;

1− z
1 + z

)
= (−1)k−1A({1}k−1; z)A

(
{1}r;

1− z
1 + z

)
+
k−1∑
j=1

(−1)k−1−jA({1}k−1−j ; z)T ({1}j−1, r + 1)

+

k−1∑
j=1

r−1∑
i=0

(−1)k−jA({1}k−1−j ; z)A
(
{1}r−i−1;

1− z
1 + z

)
A({1}j−1, i+ 2; z).

This can be written as
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A

(
{1}r−1, k;

1− z
1 + z

)
=

k−1∑
j=1

(−1)k−1−jT ({1}j−1, r + 1)A({1}k−1−j ; z)

+ (−1)k
r−1∑
i=0

A

(
{1}i;

1− z
1 + z

)( k−1∑
j=1

(−1)jA({1}k−1−j ; z)A({1}j−1, r + 1− i; z)

)

+ (−1)k−1A

(
{1}r;

1− z
1 + z

)
A({1}k−1; z). (4.17)

We know that A(k; z) satisfies the shuffle relation. Setting m = k − 1 and n = r − j in Lemma

4.13, we can write the inner summation of the second term of equation (4.17) as bellow.

k−1∑
j=1

(−1)jA({1}k−1−j ; z)A({1}j−1, r + 1− i; z) = −
∑

|k′|=k−1+r−i,∀ki≥1
d(k
′
)=k−1

A(k′; z).

By substituting this into equation 4.17, we get

A

(
{1}r−1, k;

1− z
1 + z

)
=

k−2∑
j=0

(−1)k−jT ({1}j , r + 1)A({1}k−2−j ; z)

+ (−1)k−1
r−1∑
i=0

A

(
{1}i;

1− z
1 + z

) ∑
|k′|=k−1+r−i,∀ki≥1

d(k
′
)=k−1

A(k′; z)

+ (−1)k−1A

(
{1}r;

1− z
1 + z

)
A({1}k−1; z)

=
k−2∑
j=0

(−1)k−jT ({1}j , r + 1)A({1}k−2−j ; z)

+ (−1)k−1
r∑
i=0

A

(
{1}i;

1− z
1 + z

) ∑
|k′|=k−1+r−i,∀ki≥1

d(k
′
)=k−1

A(k′; z). (4.18)

We can write the second term of the above equation as

(−1)k−1
∑

a1+···+ak=r
∀aj≥0

A

(
{1}ak ;

1− z
1 + z

)
A(a1 + 1, · · · , ak−1 + 1; z). (4.19)

From this we can obtain the desired result. �
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Kaneko and Tsumura obtained a formula for ψ({1}r−1, k; s) in [12, Theorem 5.3] which is the

level two analogue of [2, Theorem 8]. We provide a proof by using Theorems 4.14, 4.8 and 4.3.

Theorem 4.15 ([12] Theorem 5.3). For r, k ≥ 1, we have

ψ({1}r−1, k; s) = (−1)k−1
∑

a1+···+ak=r
∀aj≥0

(
s+ ak − 1

ak

)
T (a1 + 1, . . . , ak−1 + 1, ak + s)

+
k−2∑
j=0

(−1)jT ({1}r−1, k − j)T ({1}j−1, s).

Proof. Consider Theorem 4.14.

A

(
{1}r−1, k;

1− z
1 + z

)
=

k−2∑
j=0

(−1)k−jT ({1}j , r + 1)A({1}k−2−j ; z)

+ (−1)k−1
∑

a1+···+ak=r
∀aj≥0

A

(
{1}ak ;

1− z
1 + z

)
A(a1 + 1, . . . , ak−1 + 1; z). (4.20)

We can see that the right side the the above equation is in the form of Theorem 4.8. Then,

we can write the each term of equation (4.20) in the form of Theorem 4.9. By using the duality

relation of T , we can obtain the desired result. �

We obtain the level two analogue of [2, Theorem 9] which gives the result on special values at

positive integers..

Theorem 4.16. Let m, r ≥ 1, k ≥ 2 be integers. Then, we have

ψ({1}r−1, k;m+ 1) + (−1)kψ({1}m−1, k; r + 1) =
k−2∑
j=0

(−1)jT ({1}r−1, k − j)T ({1}m−1, 2 + j).

(4.21)

Proof. By the definition

ψ({1}r−1, k;m+ 1) =
1

m!

ˆ ∞
0

tm

sinh(t)
A({1}r−1, k; tanh t/2)dt.

Then by using the identity

A({1}m; tanh t/2) =
tm

m!
,

we have
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ψ({1}r−1, k;m+ 1)

=

ˆ ∞
0

A({1}r−1, k; tanh t/2)A({1}m; tanh t/2)
1

sinh(t)
dt

=

ˆ ∞
0

A({1}r−1, k; tanh t/2)
d

dt
A({1}m−1, 2; tanh t/2)dt

= T ({1}r−1, k)T ({1}m−1, 2)−
ˆ ∞
0

d

dt
A({1}r−1, k; tanh t/2)A({1}m−1, 2; tanh t/2)dt

= T ({1}r−1, k)T ({1}m−1, 2)−
ˆ ∞
0

A({1}r−1, k − 1; tanh t/2)
d

dt
A({1}m−1, 3; tanh t/2)dt

= T ({1}r−1, k)T ({1}m−1, 2)− T ({1}r−1, k − 1)T ({1}m−1, 3)

+

ˆ ∞
0

A({1}r−1, k − 2; tanh t/2)
d

dt
A({1}m−1, 4; tanh t/2)dt

= · · ·

=

k−2∑
j=0

(−1)jT ({1}r−1, k − j)T ({1}m−1, 2 + j)

+ (−1)k+1
ˆ ∞
0

A({1}r; tanh t/2)A({1}m−1, k; tanh t/2)
dt

sinh t

=
k−2∑
j=0

(−1)jT ({1}r−1, k − j)T ({1}m−1, 2 + j) + (−1)k+1ψ({1}m−1, k; r + 1).

From this we can obtain the desired result. �

Kaneko and Tsumura obtained the following formula for ψ at positive integers. It can be con-

sidered as a special case of Theorem 4.3.

Corollary 4.17 ([12] Theorem 5.5). Let r, k ≥ 1 and m ≥ 0 be integers. Then we have

ψ({1}r−1, k;m+ 1) =
∑

a1+···+ak=m
∀aj≥0

(
ak + r

r

)
T (a1 + 1, . . . , ak−1 + 1, ak + r + 1).

We give a proof to the above theorem by using Theorem 4.15 and Theorem 4.16.

Proof. To prove this, put s = m+ 1 in Theorem 4.15. Then, we have

ψ({1}r−1, k;m+ 1) = (−1)k−1
∑

a1+···+ak=r
∀aj≥0

(
ak +m

m

)
T (a1 + 1, . . . , ak−1 + 1, ak +m+ 1)

+
k−2∑
j=0

(−1)jT ({1}r−1, k − j)T ({1}j−1,m+ 1).



50

Then compare this with Theorem 4.16 and the duality T ({1}j ,m+ 1) = T ({1}m−1, 2 + j). Then,

we obtain the desired formula for m ≥ 1. By using the definition and the above mentioned duality

we can directly obtain the desired formula for the case m = 0. �
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