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Chapter 1

Introduction

Nonparametric methods are gradually becoming popular in statistical anal-
ysis for analyzing problems in many fields, such as economics, biology, and
actuarial science. In most cases, this is because of a lack of information on the
variables being analyzed. Smoothing concerning functions, such as density
or cumulative distribution, plays a special role in nonparametric analysis.
Knowledge on a density function, or its estimate, allows one to characterize
the data more completely. We can derive other characteristics of a random
variable from an estimate of its density function, such as the probability it-
self, hazard rate, mean, and variance value. Furthermore from distribution
function estimate, we may analyze other probabilistic behaviours such as
mean residual life function, or even testing the ruling distribution itself.

1.1 Standard kernel methods
Let X1, X2, ..., Xn be independently and identically distributed random vari-
ables with an absolutely continuous distribution function FX and a density
fX . The simplest nonparametric estimator of fX is the histogram, which,
even though does not enjoy satisfiable properties, can give a preliminary in-
sight before further analysis. On the other hand, we have a quite nice classical
estimator of FX , which is the empirical distribution function defined by

Fn(x) = 1
n

n∑
i=1

I(Xi ≤ x), x ∈ R, (1.1)

where I(A) denotes the indicator function of a set A. It is obvious that Fn is
a step function of height n−1 at each observed sample point xi. When consid-
ered as a pointwise estimator, Fn(x) is an unbiased and strongly consistent
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estimator of FX(x). For the global point of view, the Glivenko-Cantelli The-
orem implies that supx∈R |Fn(x) − FX(x)| →a.s. 0. For details, see section
2.1 of Sterfling (1980). However, given the information that FX is absolutely
continuous, it seems to be more appropriate to use a smooth and continuous
estimator of FX rather than the empirical distribution function Fn.

Parzen (1962) and Rosenblatt (1956) introduced the kernel density esti-
mator (we will call it the standard or naive one) as a smooth and continuous
estimator of density functions. It is defined as

f̂h(x) = 1
nh

n∑
i=1

K
(
x−Xi

h

)
, x ∈ R, (1.2)

whereK is a function called a “kernel”, and h > 0 is the bandwidth, which is a
parameter that controls the smoothness of f̂h. It is usually assumed thatK is
a symmetric (about 0) continuous nonnegative function with

∫∞
−∞K(v)dv =

1, as well as h→ 0 and nh→∞ when n→∞. It is easy to prove that the
standard kernel density estimator is continuous and satisfies all the properties
of a density function.

Since distribution function is actually an integral of density function, this
kernel density estimator gave an idea to define a kernel distribution function
estimator. Nadaraya (1964) defined it as

F̂h(x) = 1
n

n∑
i=1

W
(
x−Xi

h

)
, x ∈ R, (1.3)

where W (v) =
∫ v
−∞K(w)dw. It is easy to prove that this kernel distribution

function estimator is continuous and satisfies all the properties of a distri-
bution function. Several properties of F̂h(x) are well known. The almost
sure uniform convergence of F̂h to FX was proved by Nadaraya (1964), Win-
ter (1973), and Yamato (1973), while Yukich (1989) extended this result to
higher dimensions. Watson and Leadbetter (1964) proved the asymptotic
normality of F̂h(x), and Chung-Smirnov Property was established by Winter
(1979) and Degenhardt (1993), i.e.

lim sup
n→∞

√
2n

log log n sup
{
|F̂h(x)− FX(x)|

∣∣∣x ∈ R
}

= 1 a.s.

Moreover, Several authors showed that the asymptotic performance of F̂h(x)
is better than that of Fn(x), see Azzalini (1981), Reiss (1981), Falk (1983),
Singh et al. (1983), Hill (1985), Swanepoel (1988), Shirahata and Chu (1992),
and Abdous (1993).
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A typical general measure of the accuracy of f̂h(x) is the mean integrated
squared error, defined as

MISE(f̂h) = E
[∫ ∞
−∞
{f̂h(x)− fX(x)}2w(x)dx

]
, (1.4)

where w is a weight function (replace fX with another function and f̂h with
its estimator for MISE in general). In this thesis, we consider only w(x) = 1.
For point-wise measures of accuracy, we will use bias, variance, and the mean
squared error MSE[f̂h(x)] = E[{f̂h(x)− fX(x)}2]. It is well known that the
MISE and the MSE can be computed with

MISE(f̂h) =
∫ ∞
−∞

MSE[f̂h(x)]dx (1.5)

MSE[f̂h(x)] = Bias2[f̂h(x)] + V ar[f̂h(x)]. (1.6)

Under the condition that fX has a continuous second order derivative f ′′X , it
has been proved by the above-mentioned authors that, as n→∞,

Bias[f̂h(x)] = h2

2 f
′′
X(x)

∫
u2K(u)du+ o(h2) (1.7)

V ar[f̂h(x)] = fX(x)
nh

∫
K2(u)du+ o

( 1
nh

)
(1.8)

and

Bias[F̂h(x)] = h2f
′
X(x)
2

∫ ∞
−∞

z2K(z)dz + o(h2) (1.9)

V ar[F̂h(x)] = 1
n
FX(x)[1− FX(x)]− 2h

n
r1fX(x) + o

(
h

n

)
, (1.10)

where r1 =
∫∞
−∞ yK(y)W (y)dy ≥ 0.

There have been many proposals in the literature for improving the bias
property of the standard kernel density estimator. Typically, under suffi-
cient smoothness conditions placed on the underlying density fX , the bias
is reduced from O(h2) to O(h4), and the variance remains in the order of
n−1h−1. Those methods that could potentially have greater impact include
bias reduction by geometric extrapolation by Terrel and Scott (1980), vari-
able bandwidth kernel estimators by Abramson (1982), variable location es-
timators by Samiuddin and El-Sayyad (1990), nonparametric transformation
estimators by Ruppert and Cline (1994), and multiplicative bias correction
estimators by Jones et al. (1995). One also could use, of course, the so-
called higher order kernel functions, but this method has a disadvantage in
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that negative values might appear in the density estimates and distribution
function estimates.

Because of the good performances of the method of Terrel and Scott for
density estimator, in section 3 we use a similar idea to improve the standard
kernel distribution function estimator. However, instead of using a fixed
multiplication factor for the bandwidth, we use a general term for that. It
can be shown that the proposed estimator, F̃X , has a smaller bias in the
sense of convergence rate, that isO(h4). Furthermore, even though the rate of
convergence of variance does not change, the variance of our proposed method
is smaller up to some constants. Conclusively, our proposed estimator has
improved MISE.

1.2 Boundary problem and Chen’s method
All of the previous explanations implicitly assume that the true density is
supported on the entire real line. If we deal with a nonnegative supported
distribution, the standard kernel density estimator will suffer the so-called
boundary bias problem. In this setting, the interval [0, h] is called a “bound-
ary region”, and points greater than h are called “interior points”.

In the boundary region, the standard kernel density estimator f̂h(x) usu-
ally underestimates fX(x). This is because it does not “feel” the boundary,
and it puts weights for the lack of data on the negative axis. To be more
precise, if we use a symmetric kernel supported on [−1, 1], we have

Bias[f̂h(x)] =
[∫ c

−1
K(u)du− 1

]
fX(x)− hf ′X(x)

∫ c

−1
uK(u)du+O(h2)

when x ≤ h, where c = xh−1. This means that the standard kernel density
is not consistent at x = 0 because

lim
n→∞

Bias[f̂h(0)] =
[∫ c

−1
K(u)du− 1

]
fX(0) 6= 0,

unless fX(0) = 0.
Several ways of removing the boundary bias problem in density estima-

tor, each with their own advantages and disadvantages, are data reflection
(Schuster 1985), simple nonnegative boundary correction (Jones and Foster
1996), boundary kernels (Müller 1991; Müller 1993; Müller and Wang 1994),
pseudodata generation (Cowling and Hall 1996), a hybrid method (Hall and
Wehrly 1991), empirical transformation (Marron and Ruppert 1994), a local
linear estimator (Lejeune and Sarda 1992; Jones 1993), data binning and a
local polynomial fitting on the bin counts (Cheng et al. 1997), and others.
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Most of them use symmetric kernel functions as usual, and then modify their
forms or transform the data.

Chen (2000) proposed a simple way to circumvent the boundary bias
that appears in the standard kernel density estimation. The remedy consists
in replacing symmetric kernels with asymmetric gamma kernels, which never
assign a weight outside of the support. In addition to satisfactory asymptotic
features, Chen reported good finite sample performances of this cure through
a simulation study.

LetK(y;x, h) be an asymmetric function parameterized by x and h, called
an “asymmetric kernel”. Then, the definition of the asymmetric kernel den-
sity estimator is

f̂(x) = 1
n

n∑
i=1

K(Xi;x, h). (1.11)

Since the density of Gamma(xh−1 + 1, h),

y
x
h e−

y
h

Γ
(
x
h

+ 1
)
h
x
h

+1
, (1.12)

is an asymmetric function parameterized by x and h, it is natural to use it as
an asymmetric kernel. Hence, Chen defined his first gamma kernel density
estimator as

f̂C(x) = 1
n

n∑
i=1

X
x
h
i e
−Xi

h

Γ
(
x
h

+ 1
)
h
x
h

+1
. (1.13)

The intuitive approach to seeing how Equation (1.13) can be used as a con-
sistent estimator is as follows. Let Y be a Gamma(xh−1 + 1, h) random
variable with the pdf stated in Equation (1.12); then,

E[f̂C(x)] =
∫ ∞

0
fX(y)K(y;x, h)dy = E[fX(Y )].

By Taylor expansion,

E[fX(Y )] = fX(x) + h
[
f ′X(x) + 1

2xf
′′
X(x)

]
+ o(h),

which will converge to fX(x) as n → ∞. For a detailed theoretical expla-
nation regarding the consistency of asymmetric kernels, see Bouezmarni and
Scaillet (2005).
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The bias and variance of Chen’s first gamma kernel density estimator are

Bias[f̂C(x)] =
[
f ′X(x) + 1

2xf
′′
X(x)

]
h+ o(h) (1.14)

V ar[f̂C(x)] =


fX(x)

2
√
πxn
√
h
, x

h
→∞

Γ(2κ+1)fX(x)
22κ+1Γ2(κ+1)nh ,

x
h
→ c,

(1.15)

for some c > 0. Since the result is quite similar, we do not discuss Chen’s
second gamma kernel density estimator in this thesis; consult Chen (2000)
for reference.

Chen’s gamma kernel density estimator obviously solved the boundary
bias problem because the gamma pdf is a nonnegative supported function,
so no weight will be put on the negative axis. However, it also has some
problems; they are:

• The variance depends on a factor x−1/2 in the interior, which means
the variance becomes much larger quickly when x is small,

• Zhang (2010) showed that the MSE is O(n−2/3) when x is close to the
boundary (worse than the standard kernel density estimator).

In this thesis, we try to improve Chen’s estimator. Using a similar idea
but with different parameters of gamma density as a kernel function, we
intend to reduce the variance. Then, we strive to reduce the bias by modifying
it with expansions of exponential and logarithmic functions. Hence, our
modified gamma kernel density estimator is not only free of the boundary
bias, but the variance also has smaller orders both in the interior and near
the boundary, compared with Chen’s method. As a result, the optimal orders
of the MSE and the MISE are smaller as well.

1.3 Goodness-of-fit tests
Many statistical methods depend on an assumption that the data under con-
sideration are drawn from a certain distribution, or at least from a distribu-
tion that is approximately similar to that particular distribution. For exam-
ple, test of normality for residuals are needed after fitting a linear regression
in order to satisfy the normality assumption of the model. Distributional
assumption is important because, in most cases, it dictates the methods
that can be used to estimate the unknown parameters and also determines
the procedures that staticticians may apply. There are some goodness-of-fit
tests available to determine whether a sample comes from the assumed dis-
tribution. Those popular tests include the Kolmogorov-Smirnov (KS) test,

8



Cramér-von Mises (CvM) test, Anderson-Darling test, and Durbin-Watson
test. In this thesis, we will be focusing ourselves to the KS and CvM tests.

In this setting, the Kolmogorov-Smirnov statistic utilizes the empirical
distribution function Fn to test the null hypothesis

H0 : FX = F

againsts the alternative hypothesis

H1 : FX 6= F,

where F is the assumed distribution function. The test statistic is defined as

KSn = sup
x∈R
|Fn(x)− F (x)|. (1.16)

If under a significance level α the value of KSn is larger than a certain value
from Kolmogorov distribution table, we will reject H0. Likewise, under the
same circumstance, the statistic of the Cramér-von Mises test is defined as

CvMn = n
∫ ∞
−∞

[Fn(x)− F (x)]2dF (x), (1.17)

and we reject the null hypothesis when the value of CvMn is larger than a
certain value from Cramér-von Mises table.

Several discussions regarding those goodness-of-fit tests have been around
for decades. The recent articles include the distribution of KS and CvM tests
for exponential populations (Evans et al. 2017), revision of two-sample KS
test (Finner and Gontscharuk 2018), KS test for mixed distributions (Zierk
et al. 2020), KS test for bayesian ensembles of phylogenies (Antoneli et al.
2018), CvM distance for neighbourhood-of-model validation (Baringhaus and
Henze 2016), rank-based CvM test (Curry et al. 2019), and model selection
using CvM distance in a fixed design regression (Chen et al. 2018).

Though the standard KS and CvM tests work really well, but it does not
mean they bear no problem. The lack of smoothness of Fn causes too much
sensitivity near the center of distribution, especially when n is small. Hence,
it is not unusual to find the supremum value of |Fn(x) − F (x)| is attained
when x is near the center of distribution, or the value of CvMn gets larger
because [Fn(x)−F (x)]2 is large when the data is highly concentrated in one
area. Furthermore, given the information that FX is absolutely continuous,
it seems to be more appropriate to use a smooth and continuous estimator
rather than the empirical distribution function for testing the goodness-of-fit.

It is natural if one uses the naive kernel distribution function estimator
in place of the empirical distribution function to smooth the KS and CvM
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statistics out. By doing that, we may expect to eliminate the over-sensitivity
that standard KS and CvM statistics have. Therefore, the formulas become

K̂S = sup
x∈R
|F̂X(x)− F (x)| (1.18)

and

ĈvM = n
∫ ∞
−∞

[F̂ (x)− F (x)]2dF (x). (1.19)

Omelka et al. (2009) proved that under the null hypothesis, the distribution
of those statistics converge to the same distributions as the standard ones.

Though both tests are versatile in most settings, but when the support
of the data is strictly smaller than the entire real line (let say the support
is an interval Ω ⊂ R), the naive kernel distribution function estimator also
suffers the boundary problem, as in the naive kernel density estimator. Even
though in some cases (e.g. fX(0) = 0 when 0 is the boundary point) the
boundary effects of F̂X(x) is not as severe as in the kernel density estimator,
but the problem still occurs. It is because the value of F̂X(x) is still larger
than 0 (or less than 1) at the boundary points. This phenomena cause large
value of |F̂X(x) − F (x)| in the boundary regions, and then K̂S and ĈvM
tend to be larger than they are supposed to be, leading to the rejection of H0
even though H0 is right. To make things worse, chapter 4 will illustrate how
this problem enlarges type-2 error by accepting the null hypothesis when it
is wrong.

1.4 The mean residual life function
Statistical inference for remaining lifetimes would be intuitively more appeal-
ing than the popular hazard rate function, since its interpretation as “the risk
of immediate failure” can be difficult to grasp. A function called the mean
residual life (or mean excess loss) which represents “the average remaining
time before failure” is easier to understand. The mean residual life (or MRL
for short) function is of interest in many fields relating to time and finance,
such as biomedical theory, survival analysis, and actuarial science.

Let us work under the same settings as in section 1.3, where the distribu-
tion is supported on an interval Ω ⊂ R, where inf Ω = ω′, sup Ω = ω′′, and
−∞ ≤ ω′ < ω′′ ≤ ∞. Also, let SX(t) = Pr(X > t) be the survival function,
SX(t) =

∫∞
t SX(x)dx be the cumulative survival function, and define a new

notation S̄X(t) =
∫∞
t SX(x)dx. Then

mX(t) = E(X − t|X > t), t ∈ Ω (1.20)
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is the definition of the mean residual life function, or can be written as

mX(t) = SX(t)
SX(t) . (1.21)

For a detailed discussion about the MRL function, see Embrechts et al.
(1997) or Guess and Proschan (1988). Murari and Sujit (1995) and Belzunce
et al. (1996) discussed the use of the MRL function for ordering and clas-
sifying distributions. On the other hand, Cox (1962), Kotz and Shanbhag
(1980), and Zoroa et al. (1990) proposed how to determine distribution via
an inversion formula of mX(t). Ruiz and Navarro (1994) have considered
the problem of characterization of the distribution function through the rela-
tionship between the MRL function and the hazard rate function. The MRL
functions of finite mixtures and order statistics have been studied as well by
Navarro and Hernandez (2008).

Some properties and applications of the MRL concept related to oper-
ational research and reliability theory in engineering are interesting topics.
While Nanda et al. (2010) discussed the properties of associated orderings
in the MRL function, Huynh et al. (2014) studied the usefulness of the MRL
models for maintenance decision-making. Another examples are the utiliza-
tion of the MRL functions of parallel system by Sadegh (2008), the MRL for
records by Raqab and Asadi (2008), the MRL of a k-out-of-n:G system by
Eryilmaz (2012), the MRL of a (n − k + 1)-out-of-n system by Poursaeed
(2010), the MRL in reliability shock models by Eryilmaz (2017), the MRL
subjected to Marshall-Olkin type shocks by Bayramoglu and Ozkut (2016),
the MRL of coherent systems by Eryilmaz et al. (2018) and Kavlak (2017),
the MRL for degrading systems by Zhao et al. (2018), and the MRL of rail
wagon bearings by Ghasemi and Hodkiewicz (2012).

The natural estimator of the MRL function is the empirical one, which is

mn(t) = Sn(t)
Sn(t) =

∑n
i=1(Xi − t)I(Xi > t)∑n

i=1 I(Xi > t) , t ∈ Ω, (1.22)

where I(A) is the usual indicator function on set A. Yang (1978), Ebrahimi
(1991), and Csörgő and Zitikis (1996) studied the properties of mn(t). Even
though it has several good attributes (e.g. unbiasedness and consistency),
the empirical MRL function is just a rough estimate of mX(t) and lack of
smoothness. Estimating is also impossible for large t because Sn(t) = 0 for
t > max{x1, x2, ..., xn}. Though we can just define mn(t) = 0 for such case,
it is a major disadvantage as analysing the behaviour of the MRL function
when t→∞ is of an interest.

Various parametric models of MRL have been discussed in literatures, for
example the transformed parametric MRL models by Sun and Zhang (2009),
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the upside-down bathtub-shaped MRL model by Shen et al. (2009), the
MRL order of convolutions of heterogeneous exponential random variables
by Zhao and Balakrishnan (2009), the proportional MRL model by Nanda et
al. (2006) and Chan et al. (2012), and the MRL models with time-dependent
coefficients by Sun et al. (2012).

Some nonparametric estimators of mX(t) which are related to the empiri-
cal one have been discussed in a fair amount of literature. For example, Ruiz
and Guillamón (1996) estimated the numerator inmn(t) by a recursive kernel
estimate and left the empirical survival function unchanged, while Chaubey
and Sen (1999) used the Hille’s Theorem in Hille (1948) to smooth both the
numerator and denominator in mn(t).

The other maneuver that can be used for estimating the MRL function
nonparametrically is the kernel method. We need two other functions derived
from the kernel K(x), which are

V (x) =
∫ ∞
x

K(z)dz and V(x) =
∫ ∞
x

V (z)dz. (1.23)

Hence, the naive kernel MRL function estimator can be defined as

m̂X(t) = ŜX(t)
ŜX(t)

=
h
∑n
i=1 V

(
t−Xi
h

)
∑n
i=1 V

(
t−Xi
h

) , t ∈ Ω. (1.24)

Guillamón et al. (1998) discussed the asymptotic properties of the naive
kernel MRL function estimator in detail.

However, as usually mX(t) is used for time or finance related data, which
are on nonnegative real line or bounded interval, the naive kernel MRL func-
tion estimator suffers the boundary bias problem as well. In the case of
fX(ω′) = 0 (or fX(ω′′) = 0), the boundary effects of m̂X(t) when t→ ω′ (or
t → ω′′) is not as bad as in the kernel density estimator, but the problems
still occur. It is because the term SX(ω′) and 1−SX(ω′′) in the Bias[ŜX(ω′)]
and Bias[ŜX(ω′′)] can never be 0 since SX(ω′) = 1 − SX(ω′′) = 1, which
means ŜX(t) causes the boundary problems for m̂X(t). Moreover, in the case
of fX(ω′) > 0 and fX(ω′′) > 0 (e.g. uniform distribution), not only ŜX(t),
but ŜX(t) also adds its share to the boundary problems for m̂X(t).

To make things worse, the naive kernel MRL function estimator does not
preserve one of the most important properties of the MRL function, which
is mX(ω′) + ω′ = E(X). It is reasonable if we expect m̂X(ω′) + ω′ ≈ X̄.
However, ŜX(ω′) is less than 1 and ŜX(ω′) is smaller than the average value
of X ′is, due to the weight that they still put on the outside of Ω. Accordingly,
there is no guarantee of how far or how close m̂X(ω′) + ω′ is to X̄.
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Though Abdous and Berred (2005) successfully adopted the idea of local
linear fitting for the MRL function estimation, in this thesis we are going
to try bijective transformation idea to remove the boundary effects. In this
situation there are no boundary effects at all, as we will not put any weight
outside the support.
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Chapter 2

New Type of Gamma Kernel
Density Estimator

In this chapter, we will start our discussion with the formulation of the
modified gamma kernel in detail. First we try to use another parameters
in gamma density function and then derive its properties. Then, we modify
it using some expansions, and calculate further about its new asymptotic
properties. At last, we will show the simulation result and compare three
kinds of kernel density estimator.

2.1 New type of gamma kernel density estimator
formulation

Before starting our discussion, we need to impose assumptions; they are:

A1. The bandwidth h > 0 satisfies h→ 0 and nh→∞ when n→∞,

A2. The density fX is three times continuously differentiable, and the fourth
derivative f (4)

X exists,

A3. The following integrals
∫ [f ′X(x)

fX(x)

]2
dx,

∫
x4
[
f ′′X(x)
fX(x)

]2
dx,

∫
x2[f ′′X(x)]2dx,

and
∫
x6[f ′′′X (x)]2dx are finite.

The first assumption is the usual assumption for the standard kernel density
estimator. Since we will use exponential and logarithmic expansions, we need
A2 to ensure the validity of our proofs. The last assumption is necessary to
make sure we can calculate the MISE.

As we stated before, the modification of the gamma kernel is started by
replacing the shape and the scale parameters of the gamma density with
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suitable functions of x and h, and this kernel is defined as a new gamma
kernel. Our purpose in doing this is to reduce the variance so that it is smaller
than the variance of Chen’s method. After trying several combinations of
functions, we chose the density of Gamma(h−1/2, x

√
h+ h), which is

K(y;x, h) = y
1√
h
−1
e
− y

x
√
h+h

Γ
(

1√
h

)
(x
√
h+ h)

1√
h

, (2.1)

as a kernel, and we define the new gamma kernel density “estimator” as

Ah(x) =
∑n
i=1X

1√
h
−1

i e
− Xi
x
√
h+h

nΓ
(

1√
h

)
(x
√
h+ h)

1√
h

, (2.2)

where n is the sample size, and h is the bandwidth.

Remark 2.1.1. Even though the formula in Equation (2.2) can work as a den-
sity estimator properly, it is not our proposed method (that is why we put
quotation marks around the word “estimator”). As we will state later, we need
another modification for Equation (2.2) before our proposed estimator is created.

After this, we need to derive the bias and the variance formulas of Ah(x).
Consult the following theorem.

Theorem 2.1.2. Assuming A1 and A2, for the function Ah(x) in Equation (2.2),
its bias and variance are

Bias[Ah(x)] =
[
f ′X(x) + 1

2x
2f ′′X(x)

]√
h+ o(

√
h) (2.3)

and

V ar[Ah(x)] =



R2
(

1√
h
−1
)
fX(x)

2(x+
√
h)
√
π(1−

√
h)R
(

2√
h
−2
)
nh

1
4

+O
(
h

1
4
n

)
, x

h
→∞

R2
(

1√
h
−1
)
fX(x)

2(c
√
h+1)
√
π(1−

√
h)R
(

2√
h
−2
)
nh

3
4

+O
(

1
nh

1
4

)
, x

h
→ c,

(2.4)

for some positive number c and

R(z) =
√

2πzz+ 1
2

ezΓ(z + 1) . (2.5)
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Remark 2.1.3. The function R(z) (Brown and Chen 1999) monotonically in-
creases with limz→∞R(z) = 1 and R(z) < 1, which means R2( 1

h
−1)

R( 2
h
−2) ≤ 1. From

these facts, we can conclude that V ar[Ah(x)] is O(n−1h−1/4) when x is in the
interior, and it is O(n−1h−3/4) when x is near the boundary. Both of these rates
of convergence are faster than the rates of the variance of Chen’s gamma kernel
estimator for both cases, respectively. Furthermore, instead of x−1/2, V ar[Ah(x)]
depends on (x +

√
h)−1, which means the value of the variance will not speed

up to infinity when x approaches 0.

Even though we have succeeded in reducing the order of the variance, we
now encounter a larger bias order. To avoid this problem, we use geometric
extrapolation to change the order of bias back to h.

Theorem 2.1.4. Let Ah(x) be the function in Equation (2.2). Assuming A1
and A2, if we define Jh(x) = E[Ah(x)], then

[Jh(x)]2[J4h(x)]−1 = fX(x) +O(h). (2.6)

Remark 2.1.5. The function J4h(x) is the expectation of the function in Equa-
tion (2.2) with 4h as the bandwidth. Furthermore, the term after fX(x) in
Equation (2.6) is in the order h, which is the same as the order of bias for Chen’s
gamma kernel density estimator. This theorem will lead us to the idea to modify
Ah(x). We present the explicit asymptotic formula of O(h) in the appendices.

Theorem 2.1.4 gives us the idea to modify Ah(x) and to define our new
estimator. Hence, we propose

f̃X(x) = [Ah(x)]2[A4h(x)]−1 (2.7)

as the modified gamma kernel density estimator, our proposed method. This
idea is actually straightforward. It uses the fact that the expectation of
the operation of two statistics is asymptotically equal (in probability) to
the operation of the expectation of each statistic. Though we do not use any
concept of convergence in probability in our proofs, the idea is still applicable
when using Taylor Expansion.

For the bias of our proposed estimator, we have the following theorem.

Theorem 2.1.6. Assuming A1 and A2, the bias of the modified gamma kernel
density estimator is

Bias[f̃X(x)] = −2
[
b(x)− a(x)

2fX(x)

]
h+ o(h) +O

( 1
nh

1
4

)
, (2.8)
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where

a(x) = f ′X(x) + 1
2x

2f ′′X(x) (2.9)

b(x) =
(
x+ 1

2

)
f ′′X(x) + x2

(
x

3 + 1
2

)
f ′′′X (x). (2.10)

As expected, the bias’ leading term is actually the same as the explicit
form of O(h) in theorem 2.1.4 (see appendices). Its order of convergence
changed back to h, the same as the bias of Chen’s method. This is quite the
accomplishment because if we can keep the order of the variance the same
as V ar[Ah(x)], we can then conclude that the MSE of our modified gamma
kernel density estimator is smaller than the MSE of Chen’s gamma kernel
estimator. However, before jumping into the calculation of variance, we need
the following theorem.

Theorem 2.1.7. Assuming A1 and A2, for the function in Equation (2.2) with
bandwidth h, Ah(x), and with bandwidth 4h, A4h(x), the covariance of them is
equal to

Cov[Ah(x), A4h(x)] =
R
(

1√
h
− 1

)
R
(

1
2
√
h
− 1

)
2
√
πR

(
3

2
√
h
− 2

)
(3x+ 5

√
h)

(
3
2 − 2

√
h
) 3

2
√
h
− 3

2

(2− 2
√
h)

1√
h
− 1

2 (1− 2
√
h)

1
2
√
h
− 1

2

×
(
x+
√
h

3x+ 5
√
h

) 1
2
√
h
−1 (2x+ 4

√
h

3x+ 5
√
h

) 1√
h
−1
fX(x)
nh

1
4

+O

h 1
4

n

 ,
when xh−1 →∞, and

Cov[Ah(x), A4h(x)] =
R
(

1√
h
− 1

)
R
(

1
2
√
h
− 1

)
2
√
πR

(
3

2
√
h
− 2

)
(3c
√
h+ 5)

(
3
2 − 2

√
h
) 3

2
√
h
− 3

2

(2− 2
√
h)

1√
h
− 1

2 (1− 2
√
h)

1
2
√
h
− 1

2

×
(
c
√
h+ 1

3c
√
h+ 5

) 1
2
√
h
−1 (2c

√
h+ 4

3c
√
h+ 5

) 1√
h
−1
fX(x)
nh

3
4

+O
( 1
nh

1
4

)
,

when xh−1 → c > 0.

Theorem 2.1.8. Assuming A1 and A2, the variance of the modified gamma
kernel density estimator is

V ar[f̃X(x)] = 4V ar[Ah(x)] + V ar[A4h(x)]− 4Cov[Ah(x), A4h(x)] + o
( 1
nh

1
4

)
,

where its orders of convergence are O(n−1h−1/4) in the interior and O(n−1h−3/4)
in the boundary region.
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As a conclusion to theorems 2.1.6 and 2.1.8, with the identity of MSE,
we have

MSE[f̃X(x)] =


O(h2) +O

(
1

nh
1
4

)
, x

h
→∞

O(h2) +O
(

1
nh

3
4

)
, x

h
→ c.

(2.11)

The theoretical optimum bandwidths are h = O(n−4/9) in the interior and
O(n−4/11) in the boundary region. As a result, the optimum orders of con-
vergence are O(n−8/9) and O(n−8/11), respectively. Both of them are smaller
than the optimum orders of Chen’s estimator, which are O(n−4/5) in the in-
terior and O(n−2/3) in the boundary region. Furthermore, since the MISE is
just the integration of MSE, it is clear that the orders of convergence of the
MISE are the same as of the MSE.

Calculating the explicit formula of MISE(f̃X) is nearly impossible be-
cause of the complexity of the formulas of Bias[f̃X(x)] and V ar[f̃X(x)]. How-
ever, there is one thing we would like to discuss regarding this matter. Us-
ing a similar argument stated by Chen (2000), the boundary region part
of V ar[f̃X(x)] is negligible while integrating the variance. Thus, instead of
computing

∫
boundary V ar[f̃X(x)] +

∫
interior V ar[f̃X(x)], it is sufficient to just

calculate
∫∞

0 V ar[f̃X(x)]dx using the formula of the variance in the interior.
With that, computing

MISE(f̃X) =
∫ ∞

0
Bias2[f̃X(x)]dx+

∫ ∞
0

V ar[f̃X(x)]dx

can be approximated by using numerical methods (assuming fX is known).

2.2 Simulation studies
In this section, we provide the results of a simulation study we did to show
the performances of our proposed method and compare them with other
estimators’ results. The measures of error we use in this thesis are the MISE,
the MSE, bias, and variance. Since we are working under assumptions A1,
A2, and A3, the MISE of our proposed estimator is finite. We calculated the
average integrated squared error (AISE), the average squared error (ASE),
simulated bias, and simulated variance, with a sample size of n = 50 and
10000 repetitions for each case.

We compared four gamma kernel density estimators: Chen’s gamma ker-
nel density estimator f̂C(x), two nonnegative bias-reduced Chen’s gamma
estimators f̂KI1(x) and f̂KI2(x) (Igarashi and Kakizawa 2015, eq. 10 and 11),
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and our modified gamma kernel density estimator f̃X(x). We generated sev-
eral distributions for this study; they are exponential distribution exp(1/2),
gamma distribution Gamma(2, 3), log-normal distribution log.N(0, 1), in-
verse Gaussian distribution IG(1, 2), Weibull distribution Weibull(3, 2), and
absolute normal distribution abs.N(0, 1). The least squares cross-validation
technique was used to determine the value of the bandwidths.

Table 2.1 compares AISEs, representing the general measure of error. As
we can see, the proposed method outperformed the other estimators. Since
one of our main concerns is eliminating the boundary bias problem, it is
necessary to take our attention to the values of the measures of error in the
boundary region. Tables 2.2, 2.3, and 2.4 show the ASE, bias, and variance of
those four estimators when x = 0.01. Once again, our estimator had the best
results. Though the differences among the values of bias were relatively not
big (Table 2.3), from Table 2.4, we can witness how our variance reduction
has an effect.

As further illustrations, we also provide graphs of point-wise ASE, bias,
squared bias, and variance to compare our estimator’s performances with
those of the others. We generated exponential, gamma, and absolute normal
distributions 1000 times to produce Figs. 2.1, 2.2, and 2.3.

In some cases, we found that the bias value of our proposed estimator
was away from 0 more than the other estimators (e.g., Fig. 2.1(a) around
x = 1, Fig. 2.2(a) around x = 4, and Fig. 2.3(a) around x = 0.2). Though
this could reflect poorly on the proposed estimator, from the variance parts
(Figs. 2.1(b), 2.2(b), and 2.3(b)), we see that our estimator never failed to
give the smallest value of variance, confirming that we succeeded in reducing
variance with our method. Moreover, the result of the variance reduction
is the reduction of point-wise ASE itself, shown in Figs. 2.1(d), 2.2(d),
and 2.3(d). One may take note of Fig. 2.2(d) when x ∈ [1, 4] because
the estimators of Igarashi and Kakizawa slightly outperformed the proposed
method. However, as x got larger, ASE[f̂KI1(x)] and ASE[f̂KI2(x)] failed
to get closer to 0 (they will when x is large enough), while ASE[f̃X(x)]
approached 0 immediately.
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Table 2.1: Comparison of the average integrated squared error (×105)
Distributions f̂C(x) f̂KI1(x) f̂KI2(x) f̃X(x)
exp(1/2) 970 1367 1304 831
Gamma(2, 3) 313 2091 1913 196
log.N(0, 1) 342 1845 1688 206
IG(1, 2) 1002 680 660 297
Weibull(3, 2) 7896 4198 4120 1832
abs.N(0, 1) 8211 3785 3719 2905

Table 2.2: Comparison of the average squared error (×105) when x = 0.01
Distributions f̂C(x) f̂KI1(x) f̂KI2(x) f̃X(x)
exp(1/2) 1600 1547 1553 991
Gamma(2, 3) 207 384 359 168
log.N(0, 1) 36 178 160 34
IG(1, 2) 1006 829 781 422
Weibull(3, 2) 1528 708 643 304
abs.N(0, 1) 2389 2018 1999 721

Table 2.3: Comparison of the bias (×104) when x = 0.01
Distributions f̂C(x) f̂KI1(x) f̂KI2(x) f̃X(x)
exp(1/2) −1054 −1865 −1904 −858
Gamma(2, 3) 391 583 561 233
log.N(0, 1) 150 417 395 120
IG(1, 2) 961 869 840 386
Weibull(3, 2) 1215 821 780 342
abs.N(0, 1) −1383 303 297 157

Table 2.4: Comparison of the variance (×105) when x = 0.01
Distributions f̂C(x) f̂KI1(x) f̂KI2(x) f̃X(x)
exp(1/2) 490 1465 1469 244
Gamma(2, 3) 54 43 44 11
log.N(0, 1) 39 36 36 35
IG(1, 2) 835 739 753 273
Weibull(3, 2) 532 340 343 184
abs.N(0, 1) 476 1926 1910 211

20



(a) bias (b) variance

(c) squared bias (d) average squared error

Figure 2.1: Comparison of point-wise bias, variance, and ASE of f̃X(x), f̂C(x),
f̂KI1(x), and f̂KI2(x) for estimating density of exp(1/2) with sample size 150.

(a) bias (b) variance

(c) squared bias (d) average squared error

Figure 2.2: Comparison of the point-wise bias, variance, and ASE of f̃X(x),
f̂C(x), f̂KI1(x), and f̂KI2(x) for estimating density of Gamma(2, 3) with sample
size 150.

21



(a) bias (b) variance

(c) squared bias (d) average squared error

Figure 2.3: Comparison of the point-wise bias, variance, and ASE of f̃X(x),
f̂C(x), f̂KI1(x), and f̂KI2(x) for estimating density of abs.N(0, 1) with sample
size 150.
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Chapter 3

Modified Kernel Distribution
Function Estimator

We will start our discussion in this chapter with the derivation of our pro-
posed distribution function estimator. After that, we present our calculation
for the bias and the variance to show our estimator is theoretically better
than the standard one. At last, we will show the simulation study.

3.1 MISE reduction by geometric extrapolation
In this section, we will apply geometric extrapolation method to the kernel
distribution function estimator, in order to reduce bias. The idea of re-
ducing bias by geometric extrapolation is doing a self-elimination technique
between two standard kernel distribution function estimators with different
bandwidths, with some helps of exponential and logarithmic expansions. By
doing that, vanishing the h2 term of the asymptotic bias is possible, and the
the order of convergence changes to h4.

Before starting our main purpose, we need to impose some assumptions,
they are:

B1. The kernel K is a nonnegative continuous function, symmetric about
0, and it integrates to 1,

B2. The integral
∫∞
−∞w

4K(x)dw is finite,

B3. The bandwidth h > 0 satisfies h→ 0 and nh→∞ when n→∞,

B4. The density fX is three times continuously differentiable, and the fourth
derivative f (4)

X exists,
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B5. The integrals
∫∞
−∞

[f ′X(x)]2
FX(x) dx and

∫∞
−∞ f

′′′
X (x)dx are finite.

The first and third ones are the usual assumptions for the standard kernel
distribution function estimator. Since we will use exponential and logarith-
mic expansions, we need B2 and B4 to ensure the validity of our proofs. For
the last assumption, it is necessary to make sure we can calculate MISE.

We now ready to begin the explanation about how to modify the standard
kernel distribution function estimator and reduce its bias. First, we have this
following theorem.

Theorem 3.1.1. Let jh(x) = E[F̂h(x)] and a(6= 1) be a positive number. Under
the assumptions B1-B4, we have

[jh(x)]t1 [jah(x)]t2 = FX(x) +O(h4), (3.1)

where t1 = a2

a2−1 and t2 = − 1
a2−1 .

Remark 3.1.2. The function jah(x) is an expectation of the standard kernel
distribution function estimator with ah as the bandwidth, that is, jah(x) =
E[F̂ah(x)], where

F̂ah(x) = 1
n

n∑
i=1

W
(
x−Xi

ah

)
.

Furthermore, the term after FX(x) in (3.1) is in the order of h4, which is smaller
than the order of bias of the standard kernel distribution function estimator. Even
though this theorem does not state about a bias of some estimator, it will lead us
to the idea to modify the standard kernel distribution function estimator. About
the explicit asymptotic formula of O(h4), we will present it in the appendices.

The theorem 3.1.1 gives us an idea to modify kernel distribution function
estimator which will have, intuitively, similar property for bias. Hence, we
propose a new estimator of distribution function as

F̃X(x) = [F̂h(x)]
a2
a2−1 [F̂ah(x)]−

1
a2−1 . (3.2)

Remark 3.1.3. As we can see, the number a acts as the second smoothing
parameter here, because it controls the smoothness of F̂ah (since it is placed
inside the function W ) and determines how much the effect of F̂h and F̂ah as a
part of their power. Larger a means the effect of F̂h is larger for F̃X , and vice
versa. Furthermore, when a→∞, we will find that F̃X → F̂h. Oppositely, when
a really close to 0, the effect of F̂h is almost vanished. However, different with
bandwidth h, the number a is purely our choice and does not depend on the
sample size n. Letting a too close to 0 is not wise, since it acts as a denominator
in the argument of function W .
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Now, for the bias of our proposed estimator, we have the theorem below.
As expected, its leading term in this formulas is actually the same as the
explicit form of O(h4) in theorem 3.1.1 (see appendices).

Theorem 3.1.4. Under the assumptions B1-B4, the bias of F̃X(x) is given by

Bias[F̃X(x)] = h4a2a
2
2(x)− 2a4(x)FX(x)

2FX(x) + o(h4) +O
( 1
n

)
, (3.3)

where

a2(x) = f ′X(x)
2

∫ ∞
−∞

w2K(w)dw and a4(x) = f ′′′X (x)
24

∫ ∞
−∞

w4K(w)dw.

Remark 3.1.5. The factor [f ′X(x)]2
FX(x) gives us some uncertain feelings that this

bias may be unbounded in some points of real line, especially when x → −∞.
However, even though we did not state it in the theorem, the assumption B5
ensures us that the bias is valid and bounded a.s. on the real line. For a brief
example, when the true distribution is the standard normal distribution with
fX = φ, we have, by simple L’Hôpital’s rule,

lim
x→−∞

[f ′X(x)]2
FX(x) = lim

x→−∞

x2φ2(x)
Φ(x) = lim

x→−∞

2x(1− x2)φ2(x)
φ(x) = 0.

Remark 3.1.6. As we expected before, the bias is in the order of h4. This
order is same as if we use forth order kernel function for the standard kernel
distribution function estimator. However, since in some points in real line we
may find negative estimates if we use those kind of kernel function, our proposed
estimator is more appealing.

Next, we discuss about the property of variance. Interestingly enough,
there is no differences between the variance of our proposed estimator and
the variance of the standard kernel distribution function estimator, in the
sense of convergence order, as stated in the theorem below.

Theorem 3.1.7. Under the assumptions B1-B4, the variance of F̃X(x) is

V ar[F̃X(x)] = V ar[Fn(x)]− h

n

[
2(a4 + 1)
(a2 − 1)2 r1 + r2

]
fX(x) + o

(
h

n

)
, (3.4)

where

r2 =
∫ ∞
−∞

y
[
K(y)W

(
y

a

)
+ 1
a
W (y)K

(
y

a

)]
dy.
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Remark 3.1.8. Actually in many cases, we usually omit the h
n
term and just

denote it as O
(
h
n

)
. However, since the dominant term of the variance of the

standard kernel distribution function estimator and our proposed method are
same, we need the second order term to compare them. It is easy to show that

a2

(a2−1)2 r2 ≥ 0 and a4+1
(a2−1)2 ≥ 1 when a < 1 (which is suggested). Hence, up

to some constants, the variance of our proposed estimator is smaller than the
standard kernel distribution function estimator’s variance.

As we can see, since both of the bias and the variance of our proposed
estimator are smaller, then we can conclude that the MISE of our proposed
estimator is smaller than the MISE of the standard kernel distribution func-
tion estimator.

3.2 Simulations
In this section, we present the results of our simulation study to support
the theoretical discussion. We generated random samples from the standard
normal distribution, normal distribution with mean 1 and variance 2, Laplace
Distribution with mean 0 and scale parameter 1, and Laplace Distribution
with mean 1 and scale parameter 2. The size of each sample is 50, and we did
1000 repetitions for each case. Cross-validation is our method of choice for

Table 3.1: AISE of Standard and Proposed Method
Estimators N(0, 1) N(1, 2) Lap(0, 1) Lap(1, 2)
standard 0.06523 0.07502 0.09098 0.08511
a=0.01 0.03106 0.034894 0.03043 0.04096
a=0.1 0.03127 0.035002 0.03066 0.04149
a=0.25 0.03199 0.0397 0.04353 0.04488
a=0.5 0.04837 0.0469 0.04499 0.04902
a=0.75 0.04917 0.04761 0.04940 0.04947
a=2 0.05415 0.05017 0.06899 0.06760
a=3 0.05745 0.05032 0.0695 0.06826

determining the bandwidths, and the kernel function we used is the Gaussian
Kernel function. We calculated AISE (Average Integrated Squared Error)
as an estimator for MISE, and compared the standard kernel distribution
function estimator F̂h(x) and our proposed estimator F̃X(x) with several
number of a’s. The result can be seen in the Table 3.1.

As we can see, the proposed method gives us good results, especially if
we use smaller a. However, at some point, the differences become smaller
and smaller. That is why it is unnecessary to use too small a.
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(a) a = 0.01 (b) a = 3

(c) a = 0.25

Figure 3.1: F̃X(x) with several a’s.

The next study we did is drawing the the graphs of our proposed method
with several a’s (a = 0.01, a = 0.25, and a = 3), and comparing them with
the graph of the true distribution function of the sample. Our purpose of
doing this is to see the effect of different a’s in our estimations. We generated
sample with size 50 from the normal distribution with mean 1 and variance
2. The method of choosing bandwidths and the kernel function we used are
same as before.

As we can see, even though Figure 3.1(a) gives us the most accurate
estimation, but the graph is not as smooth as it should be and similar to a
step function. On the other hand, Figure 3.1(b) gives us the smoothest line,
but it is the most inaccurate graph among all three.

In this simulation study, the best one is when a = 0.25 (Figure 3.1(c)).
It is smooth enough and the accuracy is not so different with Figure 3.1(a).
It does not mean in general a = 0.25 is the best one, but from this we can
conclude that we have to choose a wisely to get the desired result.

Even though in this paper we cannot prove mathematically that F̃X → Fn
when a→ 0, but the similarity of Figure 3.1(a) with a step function provides
us an intuition that when a is very close to 0, the behaviour of our proposed
estimator is becoming more similar to the empirical distribution function.
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Chapter 4

Kernel-smoothed Goodness-of-fit
Tests for Data on General Interval

Some methods mentioned in section 1.2 to eliminate the boundary bias prob-
lem of naive kernel density might be reasonably applicable for naive kernel
distribution case as well. However, in this chapter we will try another idea,
which is utilizing bijective mappings, and extend it to modify the KS and
CvM tests. Here we are working under the settings mentioned that the sup-
port of the distribution is an interval Ω ⊂ R.

4.1 Boundary-free kernel distribution function es-
timator

It is obvious that if we can find an appropiate function g that maps R to Ω
bijectively, we will not put any weight outside the support. Hence, instead of
usingX1, X2, ..., Xn, we will apply the kernel method for g−1(X1), g−1(X2), ...,
g−1(Xn). To make sure our idea is mathematically applicable, we need to
impose some conditions before moving on to our main focus. The conditions
we took are:

C1. the kernel K(v) is nonnegative, continuous, and symmetric at v = 0,

C2. the integral
∫∞
−∞ v

2K(v)dv is finite and
∫∞
−∞K(v)dv = 1,

C3. the bandwidth h > 0 satisfies h→ 0 and nh→∞ when n→∞,

C4. the increasing function g transforms R onto Ω,

C5. the density fX and the function g are twice differentiable.
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The conditions C1-C3 are standard conditions for kernel method. Albeit it
is sufficient for g to be a bijective function, but the increasing property in
C4 makes the proofs of our theorems simpler. The last condition is needed
to derive the biases and the variances formula.

Under those conditions, we define the boundary-free kernel distribution
function estimator as

F̃X(x) = 1
n

n∑
i=1

W

(
g−1(x)− g−1(Xi)

h

)
, x ∈ Ω, (4.1)

where h > 0 is the bandwidth and g is an appropriate bijective function. As
we can see, F̃X(x) is basically just a result of simple subsitution of g−1(x) and
g−1(Xi) to the formula of F̂X(x). Though it looks simple, but the argument
behind this idea is due to the change-of-variable property of distribution func-
tion, which cannot always be done to another probability-related functions.
Its bias and variance are given in the following theorem.

Theorem 4.1.1. Under the conditions C1-C5, the bias and the variance of F̃X(x)
are

Bias[F̃X(x)] = h2

2 c1(x)
∫ ∞
−∞

v2K(v)dv + o(h2) (4.2)

V ar[F̃X(x)] = 1
n
FX(x)[1− FX(x)]− 2h

n
g′(g−1(x))fX(x)r1 + o

(
h

n

)
, (4.3)

where

c1(x) = g′′(g−1(x))fX(x) + [g′(g−1(x))]2f ′X(x). (4.4)

Remark 4.1.2. Since g is an increasing function, the variance of our proposed
estimator will be smaller than V ar[F̂X(x)] when g′(g−1(x)) ≥ 1. On the other
hand, though it is difficult to conclude in general case, if we carefully take the
mapping g, the bias of our proposed method is much faster to converge to 0
than Bias[F̂X(x)]. For example, when Ω = R+ and we choose g(x) = ex,
in the boundary region when x → 0 the bias will converge to 0 faster and
V ar[F̃X(x)] < V ar[F̂X(x)].

Similar to most of kernel type estimators, our proposed estimator attains
asymptotic normality, as stated in the following theorem.

Theorem 4.1.3. Under the condition C1-C5, the limiting distribution

F̃X(x)− FX(x)√
V ar[F̃X(x)]

→D N(0, 1) (4.5)

holds.
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Furthermore, we also establish strong consistency of the proposed method.

Theorem 4.1.4. Under the condition C1-C5, the consistency

sup
x∈Ω
|F̃X(x)− FX(x)| →a.s. 0 (4.6)

holds.

Even though it is not exactly related to our main topic of goodness-of-fit
tests, but it is worth to add that from F̃X we can derive another kernel-type
estimator. It is clear that the density function fX is equal to F ′X , then we
can define a boundary-free kernel density estimator as f̃X = d

dx F̃X , which is

f̃X(x) = 1
nhg′(g−1(x))

n∑
i=1

K

(
g−1(x)− g−1(Xi)

h

)
, x ∈ Ω. (4.7)

As F̃X eliminates boundary bias problem, this new estimator f̃X does the
same thing and can be a good competitor for another boundary bias reduction
kernel density estimators. The bias and the variance of its are as follow.

Theorem 4.1.5. Under the condition C1-C5, also if g′′′ exists and f ′′X is contin-
uous, then the bias and the variance of f̃X(x) are

Bias[f̃X(x)] = h2c2(x)
2g′(g−1(x))

∫ ∞
−∞

v2K(v)dv + o(h2) (4.8)

V ar[f̃X(x)] = fX(x)
nhg′(g−1(x))

∫ ∞
−∞

K2(v)dv + o
( 1
nh

)
, (4.9)

where

c2(x) = g′′′(g−1(x))fX(x) + 3g′′(g−1(x))g′(g−1(x))f ′X(x) + [g′(g−1(x))]3f ′′X(x).

4.2 Boundary-free kernel-smoothed KS and CvM
tests

As we discussed before, the problem of the standard KS and CvM statistics
is in the over-sensitivity near the center of distribution, because of the lack
of smoothness of the empirical distribution function. Since the area around
the center of distribution has the highest probability density, most of the
realizations of the sample are there. As a result, Fn(x) jumps a lot in those
area, and it causes some unstability of estimation especially when n is small.
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Conversely, though smoothing KSn and CvMn out using kernel distribution
function can eliminate the oversensitivity near the center, the value of K̂S
and ĈvM become larger than it should be when the data we are dealing with
is supported on an interval smaller than the entire real line. This phenomenon
is caused by the boundary problem.

Therefore, the clear solution to overcome the problems of standard and
naive kernel goodness-of-fit tests together is to keep the smoothness of F̂X and
to get rid of the boundary problem simulateously. One of the idea is by uti-
lizing the boundary-free kernel distribution function estimator in section 4.1.
Therefore, we propose boundary-free kernel-smoothed Kolmogorov-Smirnov
statistic as

K̃S = sup
x∈R
|F̃X(x)− F (x)| (4.10)

and boundary-free kernel-smoothed Cramér-von Mises statistic as

C̃vM = n
∫ ∞
−∞

[F̃X(x)− F (x)]2dF (x), (4.11)

where F̃X is our proposed estimator with a suitable function g.

Remark 4.2.1. Although the supremum and the integral are evaluated througout
the entire real line, but we can just compute them over Ω, as on the outside of
the support we have FX(x) = F̃X(x).

Although the formulas seem similar, one might expect both proposed tests
are totally different with the standard KS and CvM tests. However, these
two following theorems explain that the standard ones and our proposed
methods turn out to be equivalent in the sense of distribution.

Theorem 4.2.2. Let FX and F be distribution functions on set Ω. If KSn and
K̃S are the standard and the proposed Kolmogorov-Smirnov statistics, respec-
tively, then under the null hypothesis FX = F ,

|KSn − K̃S| →p 0. (4.12)

Theorem 4.2.3. Let FX and F be distribution functions on set Ω. If CvMn

and C̃vM are the standard and the proposed Cramér-von Mises statistics, re-
spectively, then under the null hypothesis FX = F ,

|CvMn − C̃vM | →p 0. (4.13)

Those equivalencies allow us to use the same distribution tables of the
standard goodness-of-fit tests for our new statistics. It means, with the same
significance level α, the critical values are same.
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Table 4.1: AISE (×105) comparison of DF estimators
Distributions F̂X F̃log F̃Φ−1◦γ F̃probit F̃logit

Gamma(2, 2) 2469 2253 2181 - -
Weibull(2, 2) 2224 1003 1350 - -
log .N(0, 1) 1784 1264 1254 - -
abs.N(0, 1) 2517 544 727 - -
U(0, 1) 5074 - - 246 248
Beta(1, 3) 7810 - - 170 172
Beta(2, 2) 6746 - - 185 188
Beta(3, 1) 7801 - - 154 156

4.3 Numerical results
We will show the results of our numerical studies in this section. The studies
consist of two parts, the simulations of the proposed estimators F̃X and f̃X ,
and then the results of the new goodness-of-fit tests K̃S and C̃vM .

4.3.1 boundary-free kernel DF and PDF estimations re-
sults

For the simulation to show the performances of the new distribution function
estimator, we calculated the average integrated squared error (AISE) and
repeated them 1000 times for each case. We compared the naive kernel
distribution function estimator F̂X and our proposed estimator F̃X . In the
case of the proposed method, we chose two mappings g−1 for each case.
When Ω = R+, we used the logarithm function log(x) and a composite of
two functions Φ−1 ◦ γ, where γ(x) = 1 − ex. However, if Ω = [0, 1], we
utilized probit and logit functions. With size 50, the generated samples
were drawn from gamma Gamma(2, 2), weibull Weibull(2, 2), standard log-
normal log .N(0, 1), absolute-normal abs.N(0, 1), standard uniform U(0, 1),
and beta distributions with three different sets of parameters (Beta(1, 3),
Beta(2, 2), and Beta(3, 1)). The kernel function we used here is the Gaussian
Kernel and the bandwidths were chosen by cross-validation technique. We
actually did the same simulation study using the Epanechnikov Kernel, but
the results are quite similar. Graphs of some chosen cases are shown as well
in Figure 4.1.

As we can see in Table 4.1, our proposed estimator outperformed the
naive kernel distribution function. Though the differences are not so big
in the cases of gamma, weibull, and the log-normal distributions, but the
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(a) X ∼ Gamma(2, 2) (b) X ∼ abs.N(0, 1)

(c) X ∼ U(0, 1) (d) X ∼ Beta(2, 2)

Figure 4.1: Graphs comparisons of FX(x), F̂X(x), and F̃X(x) for several distri-
butions, with sample size n = 50.

gaps are glaring in the absolute-normal case or when the support of the
distributions is the unit interval. The cause of this phenomena might be
seen in Figure 4.1.

Albeit the shapes of F̃log and F̃Φ−1◦γ are more similar to the theoretical
distribution in Figure 4.1(a), but we have to admit that the shape of F̂X
is not so much different with the rests. However in Figure 4.1(b), 4.1(c),
and 4.1(d), it is obvious that the naive kernel distribution function is too
far-off the mark, particularly in the case of Ω = [0, 1]. As the absolute-
normal, uniform, and beta distributions have quite high probability density
near the boundary point x = 0 (also x = 1 for unit interval case), the
naive kernel estimator spreads this “high density information” around the
boundary regions. However, since F̂X cannot detect the boundaries, it puts
this “high density information” outside the support as well. This is not
happening too severely in the case of Figure 4.1(a) because the probability
density near x = 0 is fairly low. Hence, although the value of F̂X(x) might
be still positive when x ≈ 0−, but it is not so far from 0 and vanishes quickly

Remark 4.3.1. Figure 4.1(c) and 4.1(d) also gave a red-alert if we try to use
the naive kernel distribution function estimator in place of empirical distribution
function for goodness-of-fit tests. As the shapes of F̂X in Figure 4.1(c) and 4.1(d)
resemble the normal distribution function a lot, if we test H0 : X ∼ N(µ, σ2),
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Table 4.2: AISE (×105) comparison of density estimators
Distributions f̂X f̃log f̃Φ−1◦γ f̃probit f̃logit

Gamma(2, 2) 925 744 624 - -
Weibull(2, 2) 6616 3799 3986 - -
log .N(0, 1) 7416 3569 2638 - -
abs.N(0, 1) 48005 34496 14563 - -
U(0, 1) 36945 - - 14235 21325
Beta(1, 3) 109991 - - 18199 28179
Beta(2, 2) 52525 - - 5514 6052
Beta(3, 1) 109999 - - 17353 28935

we will find the tests may not reject the null hypothesis. This shall cause the
increment of type-2 error.

Remark 4.3.2. It is worth to note that in Table 4.1, even though F̃probit per-
formed better, but its differences are too little to claim that it outperformed
F̃logit. From here we can conclude that probit and logit functions work pretty
much the same for F̃X .

Since we introduced f̂X as a new boundary-free kernel density estimator,
we also provide some illustrations of its performances in this subsection. Un-
der the same settings as in the simulation study of the distribution function
case, we can see the results of its simulation in Table 4.2 and Figure 4.2.

From AISE point of view, once again our proposed estimator outper-
formed the naive kernel one, and huge gaps happened as well when the sup-
port of the distribution is the unit interval. We may take some interests in
Figure 4.2(b), 4.2(c), and 4.2(d), as the graphs of F̂X are too different with
the theoretical ones, and more similar to the gaussian bell shapes instead.

4.3.2 boundary-free kernel-type KS and CvM tests simu-
lations

We provide the results of our simulation studies regarding the new Kolmogorov-
Smirnov and Cramér-von Mises tests in this part. As a measure of compar-
ison, we calculated the percentage of rejecting several null hypothesis when
the samples were drawn from certain distributions. When the actual distri-
bution and the null hypothesis are same, we expect the percentage should
be close to 100α% (significance level in percent). However, if the real dis-
tribution does not match the H0, we hope to see the percentage is as large
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(a) X ∼ Gamma(2, 2) (b) X ∼ abs.N(0, 1)

(c) X ∼ U(0, 1) (d) X ∼ Beta(2, 2)

Figure 4.2: Graphs comparisons of fX(x), f̂X(x), and f̃X(x) for several distri-
butions, with sample size n = 50.

as possible. To illustrate how the behaviours of the statistics change, we
generated a sequential numbers of sample sizes, started from 10 until 100,
with 1000 repetitions for each case. We chose level of significance α = 0.01,
and we compared the standard KS and CvM tests with our proposed tests.

From Figure 4.3, we see that the modified KS and CvM tests outper-
formed the standard ones, especially the proposed KS test with logarithm
as the bijective transformation. From Figure 4.3(a), 4.3(c), and 4.3(d), KS
test with log function has the highest percentage of rejecting H0 even when
the sample sizes were still 10. However, even though the new CvM test
with logarithmic function was always the second highest in the beginning,
C̃vM log was also the first one that reached 100%. On the other hand, based
on Figure 4.3(b) we can say all statistical tests (standard and proposed) were
having similar stable behaviours, as their numbers were still in the interval
0.5%−2%. However at this time, C̃vM log performed slightly better than the
others, because its numbers in general were the closest to 1%.

Similar things happened when we drew the samples from the standard log-
normal distribution, which our proposed methods outperformed the standard
ones. However this time, the modified KS test with g−1 = log always gave the
best results. Yet, we may take some notes from Figure 4.4. First, although
when n = 10 all the percentages were far from 1% in Figure 4.4(c), but
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vs gamma.png

(a) H0 : Gamma(2, 2)
vs weibull.png

(b) H0 : Weibull(2, 2)

vs logn.png

(c) H0 : log .N(0, 1)
vs absn.png

(d) H0 : abs.N(0, 1)

Figure 4.3: Simulated percentage (%) of rejecting null hypothesis when the
samples were drawn from Weibull(2, 2).

vs gamma.png

(a) H0 : Gamma(2, 2)
vs weibull.png

(b) H0 : Weibull(2, 2)

vs logn.png

(c) H0 : log .N(0, 1)
vs absn.png

(d) H0 : abs.N(0, 1)

Figure 4.4: Simulated percentage (%) of rejecting null hypothesis when the
samples were drawn from log .N(0, 1).
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vs uniform.png

(a) H0 : U(0, 1)
vs beta.png

(b) H0 : Beta(1, 3)

vs beta22.png

(c) H0 : Beta(2, 2)
vs beta31.png

(d) H0 : Beta(3, 1)

Figure 4.5: Simulated percentage (%) of rejecting null hypothesis when the
samples were drawn from Beta(1, 3).

after n = 20 every tests went stable inside 0.5% − 2% interval. Second,
as seen in Figure 4.4(d), it seems difficult to reject H0 : abs.N(0, 1) when
the actual distribution is log .N(0, 1), even K̃Slog could only reach 100%
rejection after n = 80. While, on the other hand, it was quite easy to reject
H0 : Gamma(2, 2) as most of the tests already reached 100% rejection when
n = 20 (similar to Figure 4.3(a)).

Something more extreme happened in Figure 4.5, as all of the tests could
reach 100% rejection rate since n = 30, even since n = 10 in Figure 4.5(d).
Though seems strange, the cause of this phenomenon is obvious. The shape
of the distribution function of Beta(1, 3) is so different with other three
distributions in this study, especially with Beta(3, 1). Hence, even with small
sample size, the tests could reject the false null hypothesis. However, we still
are able to claim that our proposed tests worked better than the standard
goodness-of-fit tests, because before all the tests reached 100% point, the
standard KS and CvM tests had the lowest percentages.

From this numerical studies, we can conclude that both the standard and
the proposed KS and CvM tests will give the same result when the sample
size is large. However, if the sample size is small, our proposed methods will
give better and more reliable results.
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Chapter 5

Kernel-type Mean Residual Life
Function Estimators for Data on
General Interval

In this chapter we are going to remove the boundary effects on the naive
kernel MRL function estimator by utilizing transformations that map Ω to
R bijectively (similar to chapter 4). However, even though the idea is easy
to understand, we cannot just substitute t with g−1(t) and Xi with Yi in
the formula of m̂X(t), due to avoiding nonintegrability. We need to modify
the naive kernel MRL function estimator before substituting g−1(t) and Yi in
order to preserve the integrability and to ensure that the new formulas are
good estimators of the mean excess loss function.

Before moving on to our main focus, we need to impose some conditions:

D1. The kernel K(x) is a continuous nonnegative function and symmetric
at x = 0 with

∫∞
−∞K(x)dx = 1

D2. The bandwidth h > 0 satisfies h→ 0 and nh→∞ when n→∞

D3. The function g : R→ Ω is continuous and strictly increasing

D4. The density fX and the function g are continuously differentiable at
least twice

D5. The integrals
∫∞
−∞ g

′(ux)K(x)dx and
∫∞
−∞ g

′(ux)V (x)dx are finite for
all u in an ε-neighbourhood of the origin

D6. The expectations E(X), E(X2), and E(X3) exist.
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The first and the second conditions are standard assumptions for kernel meth-
ods, and D3 is needed for the bijectivity and the simplicity of the transforma-
tion. Since we will use some expansions of the survival and the cumulative
survival functions, D4 is important to ensure the validity of our proofs. The
last two conditions are necessary to make sure we can derive the bias and
the variance formulas.

5.1 Estimators of the survival function and the
cumulative survival function

Before jumping into the estimation of the mean residual life function, we will
first discuss on the estimations of each component, which are the survival
function SX(t) and the cumulative survival function SX(t). In this thesis,
we proposed two sets of estimators using the idea of transformation. Based
on those two sets of estimators, we will propose two estimators of the MRL
function in section 5.2.

The first idea came from equation (4.7), which is a boundary-free trans-
formed kernel density estimator. Then, by doing simple subtitution technique
on

∫ ω′′
t f̃X(x)dx, the first proposed survival function estimator is

S̃X,1(t) = 1
n

n∑
i=1

V1,h(g−1(t), g−1(Xi)), t ∈ Ω, (5.1)

where

V1,h(x, y) = 1
h

∫ ∞
x

K
(
z − y
h

)
dz. (5.2)

Using the same approach, we define the first proposed cumulative survival
function estimator as

S̃X,1(t) = 1
n

n∑
i=1

V1,h(g−1(t), g−1(Xi)), t ∈ Ω, (5.3)

where

V1,h(x, y) =
∫ ∞
x

g′(z)V
(
z − y
h

)
dz. (5.4)

Their biases and variances are given in the following theorem.
Theorem 5.1.1. Under the condition D1-D6, the biases and the variances of
S̃X,1(t) and S̃X,1(t) are

Bias[S̃X,1(t)] = −h
2

2 b1(t)
∫ ∞
−∞

y2K(y)dy + o(h2) (5.5)
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V ar[S̃X,1(t)] = 1
n
SX(t)FX(t)− h

n
g′(g−1(t))fX(t)

∫ ∞
−∞

V (y)W (y)dy + o

(
h

n

)

and

Bias[S̃X,1(t)] = h2

2 b2(t)
∫ ∞
−∞

y2K(y)dy + o(h2) (5.6)

V ar[S̃X,1(t)] = 1
n

[2S̄X(t)− S2
X(t)] + o

(
h

n

)
, (5.7)

where

b1(t) = g′′(g−1(t))fX(t) + [g′(g−1(t))]2f ′X(t) (5.8)

b2(t) = [g′(g−1(t))]2fX(t) +
∫ ∞
g−1(t)

g′′(x)g′(x)fX(g(x))dx. (5.9)

Furthermore, the covariance of them is

Cov[S̃X,1(t), S̃X,1(t)] = 1
n
SX(t)FX(t) + o

(
h

n

)
. (5.10)

Remark 5.1.2. Because d
dt S̃X,1(t) = −S̃X,1(t), it means that our first set of

estimators preserves the relationship between the theoretical SX(t) and SX(t).

We have utilized the relationship among density, survival, and cumulative
survival functions to construct the first set of estimators, now we are going
to use another maneuver to build our second set of estimators. The second
proposed survival function estimator is defined as

S̃X,2(t) = 1
n

n∑
i=1

V2,h(g−1(t), g−1(Xi)), t ∈ Ω, (5.11)

where

V2,h(x, y) = V
(
x− z
h

)
. (5.12)

As we can see, S̃X,2(t) is basically just a result of a simple subsitution of g−1(t)
and g−1(Xi) to the formula of ŜX(t). This can be done due to the change-
of-variable property of the survival function (for a brief explanation of the
change-of-variable property, see lemma .0.2). Though it is a bit trickier, the
change-of-variable property of the cumulative survival function leads us to the
construction of our second proposed cumulative survival function estimator,
which is

S̃X,2(t) = 1
n

n∑
i=1

V2,h(g−1(t), g−1(Xi)), t ∈ Ω, (5.13)
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where

V2,h(x, y) =
∫ y

−∞
g′(z)V

(
x− z
h

)
dz. (5.14)

In the above formula, multiplying V with g′ is necessary to make sure that
S̃X,2(t) is an estimator of SX(t) (see equation (35)). Now, with S̃X,2(t) and
S̃X,2(t), their biases and variances are as follows.

Theorem 5.1.3. Under the condition D1-D6, the biases and the variances of
S̃X,2(t) and S̃X,2(t) are

Bias[S̃X,2(t)] = −h
2

2 b1(t)
∫ ∞
−∞

y2K(y)dy + o(h2) (5.15)

V ar[S̃X,2(t)] = 1
n
SX(t)FX(t)− h

n
g′(g−1(t))fX(t)

∫ ∞
−∞

V (y)W (y)dy + o

(
h

n

)

and

Bias[S̃X,2(t)] = h2

2 b3(t)
∫ ∞
−∞

y2K(y)dy + o(h2) (5.16)

V ar[S̃X,2(t)] = 1
n

[2S̄X(t)− S2
X(t)] + o

(
h

n

)
, (5.17)

where

b3(t) = [g′(g−1(t))]2fX(t)− g′′(g−1(t))SX(t). (5.18)

Furthermore, the covariance of them is

Cov[S̃X,2(t), S̃X,2(t)] = 1
n
SX(t)FX(t) + o

(
h

n

)
. (5.19)

Remark 5.1.4. As we can see in theorem 5.1.1 and theorem 5.1.3, a lot of
similarities are possessed by both sets of estimators. For example, both of them
have the same covariances, which means the statistical relationship between
S̃X,2(t) and S̃X,2(t) is same to the one of S̃X,1(t) and S̃X,1(t).

Remark 5.1.5. We can prove that both S̃X,1(ω′) and S̃X,2(ω′) are always equal
to 1, and it is obvious that both S̃X,1(ω′′) and S̃X,2(ω′′) are 0. Hence, it is clear
that their variances are 0 when t approaches the boundaries. This is one of the
reasons our proposed methods outperform the naive kernel estimator.
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5.2 Estimators of the mean residual life function
In this section, we will discuss the estimation of the mean residual life func-
tion. As we already have defined the survival function and the cumulative
survival function estimators, we just need to plug them into the MRL func-
tion formula. Hence, our proposed estimators of the mean excess loss function
are

m̃X,1(t) = S̃X,1(t)
S̃X,1(t)

=
h
∑n
i=1

∫∞
g−1(t) g

′(z)V
(
z−g−1(Xi)

h

)
dz∑n

i=1
∫∞
g−1(t) K

(
z−g−1(Xi)

h

)
dz

, t ∈ Ω (5.20)

and

m̃X,2(t) = S̃X,2(t)
S̃X,2(t)

=
∑n
i=1

∫ g−1(Xi)
−∞ g′(z)V

(
g−1(t)−z

h

)
dz∑n

i=1 V
(
g−1(t)−g−1(Xi)

h

) , t ∈ Ω. (5.21)

At first glance, m̃X,1(t) seems more representative to the theoretical mX(t),
since the mathematical relationship between S̃X,1(t) and S̃X,1(t) are same
as the relationship between the numerator and the denumerator of mX(t),
as stated in Remark 5.1.2. This is not a major problem for m̃X,2(t), as we
stated in Remark 5.1.4 that the relationship between S̃X,2(t) and S̃X,2(t) is
statistically same to the relationship between S̃X,1(t) and S̃X,1(t). However,
when a statistician wants to keep the mathematical relationship between
the survival and the cumulative survival functions in their estimates, it is
suggested to use m̃X,1(t) instead.

Theorem 5.2.1. Under the condition D1-D6, the biases and the variances of
m̃X,i(t), i = 1, 2, are

Bias[m̃X,1(t)] = h2

2SX(t) [b2(t) +mX(t)b1(t)]
∫ ∞
−∞

y2K(y)dy + o(h2) (5.22)

Bias[m̃X,2(t)] = h2

2SX(t) [b3(t) +mX(t)b1(t)]
∫ ∞
−∞

y2K(y)dy + o(h2) (5.23)

V ar[m̃X,i(t)] = 1
n

b4(t)
S2
X(t) −

h

n

b5(t)
S2
X(t)

∫ ∞
−∞

V (y)W (y)dy + o

(
h

n

)
, (5.24)

where

b4(t) = 2S̄X(t)− SX(t)m2
X(t) and b5(t) = g′(g−1(t))fX(t)m2

X(t). (5.25)

Similar to most of kernel type estimators, our proposed estimators attain
asymptotic normality, as stated in theorem 5.2.2.
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Theorem 5.2.2. Under the condition D1-D6, the limiting distribution
m̃X,i(t)−mX(t)√
V ar[m̃X,i(t)]

→D N(0, 1) (5.26)

holds for i = 1, 2.

Furthermore, we also establish strong consistency of the proposed esti-
mators in the form of the following theorem.

Theorem 5.2.3. Under the condition D1-D6, the consistency

sup
t∈Ω
|m̃X,i(t)−mX(t)| →a.s. 0 (5.27)

holds for i = 1, 2.

The last property that we would like to discuss is the behaviour of our
proposed estimators when t is in the boundary regions. As stated in section
1.4, we want our estimators to preserve the behaviour of the theoretical MRL
function, specifically the property of mX(ω′) = E(X) − ω′. If we can prove
this, then not only will our proposed methods be free of boundary problems,
but also superior in the sense of them preserving the key property of the
MRL function.

Theorem 5.2.4. Let m̃X,1(t) and m̃X,2(t) be the transformed kernel mean resid-
ual life function estimators. Then

m̃X,1(ω′) + ω′ = X̄ +Op(h2) (5.28)

and

m̃X,2(ω′) + ω′ = X̄. (5.29)

Remark 5.2.5. Please note that, although for convenience it is written as
m̃X,i(ω′) (or m̃X,i(ω′′)), but we actually mean it as limt→ω′+ m̃X,i(t) (or limt→ω′′−

m̃X,i(t)), since g−1(ω′) (or g−1(ω′′)) might be undefined.

Remark 5.2.6. From equation (5.29), because

E[m̃X,2(ω′)] = E(X)− ω′ = mX(ω′).

we can say that m̃X,2(ω′) is unbiased. In other words, its bias is exactly 0.
On the other hand, even though m̃X,1(ω′) is not exactly the same as X̄ − ω′,
we can at least say they are close enough, and the rate of h2 error is relatively
small. However, from this we may take a conclusion that m̃X,2(t) is superior than
m̃X,1(t) in the aspect of preserving behaviour of the theoretical MRL function
near the boundary.
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5.3 Numerical studies
In this section, we show the results of our numerical studies. The studies are
divided into two parts, the simulations and the real data analysis.

5.3.1 simulation results
In this study, we calculated the average integrated squared error (AISE) and
the average squared error (ASE) with n = 50 as the sample size, and repeated
them 10000 times for each case. We compared four estimators: empirical
mn(t); naive kernel m̂X(t); and our two proposed estimators m̃X,1(t) and
m̃X,2(t). The distributions which we generated are standard uniform U(0, 1),
beta Beta(3, 2), gamma Gamma(2, 3), Weibull Weibull(3, 2), and absolute-
normal abs.N(0, 1) distributions. For U(0, 1) and Beta(3, 2), we took g = Φ,
the standard normal distribution function; and we chose g−1 = log for the
rests. The kernel function we used here is the Epanechnikov Kernel and
the bandwidths were chosen by cross-validation technique. We actually did
the same simulation study using Gaussian Kernel, but the results are quite
similar. That being the case, we do not show those results in this thesis.

(Table 5.1) compares the AISE in order to illustrate the general measure
of error among the estimators. (Table 5.2) compares the ASE of each estimate
when t = 0.001, as a representation of the error when t is in the boundary
region. For (Table 5.3), the ASE at t = E(X) represents the error when the
point of evaluation is moderate. The last table represents the error of the
estimators when t is large enough.

As we can see in the tables, our proposed estimators gave the best results
for all cases. This is particularly true for our second proposed estimator in
most cases. Though our first proposed estimator’s performances are not as
good as the second one, it is still fairly comparable because the differences
are not huge. Furthermore, the first proposed estimator is better than the
empirical and the naive kernel estimators in most cases.

We may take interest in (Table 5.2) as the empirical MRL function gave
similar results as our second proposed estimator did. However, this is rea-
sonable due to the fact that mn(0) = X̄, same as m̃X,2(0) according to
theorem 5.2.4. In (Table 5.3), even though our second estimator still out-
performed the others, the margins of difference with the other estimators are
not big. This can be explained as t = E(X) has high density, neither it
has boundary problems nor lack of data as in the tail. However, (Table 5.4)
showed another story. As the tail of distribution has lesser density of data,
the empirical and naive kernel estimators dropped to 0 quickly.

As further illustrations, we also provide some graphs to compare our
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Table 5.1: Average integrated squared error comparison
Distributions Empirical Naive Proposed 1 Proposed 2

U(0, 1) 12.62201 12.92260 6.43667 6.06429
Beta(3, 2) 31.49324 35.09813 14.27382 10.09131
Gamma(2, 3) 58.86433 66.06180 29.01258 24.51671
Weibull(3, 2) 0.14887 0.27073 0.11483 0.04073
abs.N(0, 1) 0.13255 0.09379 0.07700 0.04943

Table 5.2: Average squared error comparison when t = 0.001
Distributions Empirical Naive Proposed 1 Proposed 2

U(0, 1) 0.08082 0.27639 0.08728 0.08082
Beta(3, 2) 0.23834 0.77734 0.28031 0.23833
Gamma(2, 3) 0.35739 0.82174 0.37886 0.35739
Weibull(3, 2) 0.00741 0.05175 0.00958 0.00741
abs.N(0, 1) 0.00728 0.07433 0.00803 0.00728

Table 5.3: Average squared error comparison when t = E(X)
Distributions Empirical Naive Proposed 1 Proposed 2

U(0, 1) 0.20656 0.26846 0.20237 0.18102
Beta(3, 2) 0.42396 0.61622 0.42069 0.31329
Gamma(2, 3) 0.76834 1.01913 0.73909 0.56705
Weibull(3, 2) 0.00806 0.02740 0.03183 0.00665
abs.N(0, 1) 0.01176 0.02295 0.01127 0.00566

Table 5.4: Average squared error comparison when t = E(X) + σ

Distributions Empirical Naive Proposed 1 Proposed 2

U(0, 1) 3.09158 3.06731 1.33397 1.34459
Beta(3, 2) 5.89501 6.03789 1.85105 1.51738
Gamma(2, 3) 10.61608 11.18569 4.26919 4.00378
Weibull(3, 2) 0.13199 0.12829 0.06907 0.01307
abs.N(0, 1) 0.08860 0.08057 0.03929 0.02293
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proposed estimators’ performances with the other estimators. (Figure 5.1) is
about the graphs comparison of the empirical, the naive kernel, and our two
proposed estimators. By (Figure 5.2), we compare the point-wise simulated
bias of the same estimators. From those, we can say that our proposed
estimators outperformed the empirical and the naive kernel estimators.

There are three things that we want to emphasize from these figures.
First, instead of resembling the theoretical shape, the graphs of the naive
kernel estimator are more like a smoothed version of the graphs of the em-
pirical estimator, especially in (Figure 5.1(a)) and (Figure 5.1(b)). This is
somewhat interesting, as even though lack of smoothness, empirical type
estimators (e.g. empirical distribution function) usually quite resemble the
shape of the theoretical ones. However, in this MRL function case, the em-
pirical MRL function cannot be used as a reference, because its shape is
too unstable and too different to the theoretical shape (see (Figure 5.1(a)),
(Figure 5.1(b)), and (Figure 5.1(d))). Same goes for the naive kernel MRL
function estimator. Even though (Figure 5.1(c)) and (Figure 5.1(d)) showed
the naive kernel estimator has nice graphs, it performed fairly poorly in
(Figure 5.1(a)) and (Figure 5.1(b)). On the other hand, the graphs of our
proposed estimators resemble the theoretical ones. The difference is quite
striking in (Figure 5.1(a)), where the empirical and naive kernel estimators
are jumpy, but the proposed estimators gave almost straight-line graphs.

The second thing we want to emphasize is, from all figures we can see
that the boundary bias problems affect naive kernel estimator severely, as
(Figure 5.2) shows the simulated bias values of m̂X(t) near t = 0 are the
farthest from 0. We can also conclude that the empirical MRL function does
not suffer from the boundary bias problems, as its bias is almost 0 near t = 0.
However, as t goes larger, the bias drops to negative value quickly, especially
in (Figure 5.2(a)). In contrast, our estimators, especially the second one,
gave almost straight line at 0-ordinate in (Figure 5.2(b)), which means its
simulated bias is almost always 0. And at last, we can conclude that though
all of the graphs of the estimators presented here will fade to 0 when t is
large enough, our proposed estimators are more stable and fading to 0 much
slower than the other two estimators.

5.3.2 real data analysis
In this analysis, we used the UIS Drug Treatment Study Data from Hosmer
and Lemeshow (1998) to show the performances our proposed methods for
real data. The data set records the result of an experiment about how long
someone who got drug treatment to relapse (reuse) the drug again. The
variable we used in the calculation is the “time” variable, which represents
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(a) X ∼ exp
( 1

2
)

(b) X ∼ Gamma(2, 3)

(c) X ∼Weibull(3, 2) (d) X ∼ abs.N(0, 1)

Figure 5.1: Graphs comparisons of mX(t), mn(t), m̂X(t), m̃X,1(t), and m̃X,2(t)
for several distributions, with sample size n = 50.

(a) X ∼ exp
( 1

2
)

(b) X ∼ abs.N(0, 1)

Figure 5.2: Simulated bias comparisons of mn(t), m̂X(t), m̃X,1(t), and m̃X,2(t)
for several distributions, with sample size n = 50 and 500 repetitions.
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Figure 5.3: Comparison of mn(t), m̂X(t), m̃X,1(t), and m̃X,2(t) for UIS data

the number of days after the admission to drug treatment until drug relapse.
(Figure 5.3) shows that, once again, the naive kernel estimator is just a

smoothed version of the empirical MRL function. Furthermore, soon after
mn(t) touches 0, m̂X(t) also reaches 0. Conversely, though our proposed
estimators are decreasing as well, but the speeds are much slower than the
other two.
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Appendix

Proof of theorem 2.1.2
First, by usual reasoning of i.i.d. random variables, we have

E[Ah(x)] =
∫ ∞

0

w
1√
h
−1
e
− w

x
√
h+h

Γ
(

1√
h

)
(x
√
h+ h)

1√
h

fX(w)dw.

If we define a random variable W ∼ Gamma(h−1/2, x
√
h+ h) with mean

µW = h−1/2(x
√
h+ h),

V ar(W ) = h−1/2(x
√
h + h)2, and E[(W − µW )3] = 2h−1/2(x

√
h + h)3, we

can see the integral as an expectation of fX(W ), and we are then able to use
Taylor expansion twice, first around µW , and next around x. This results in

E[fX(W )] = E

[
fX(µW ) + f ′X(µW )(W − µW ) + f ′′X(µW )

2 (W − µW )2 + ...

]

= fX(x+
√
h) + 1

2f
′′
X(x+

√
h) 1√

h
(x
√
h+ h)2 + ...

= fX(x) +
[
f ′X(x) + 1

2x
2f ′′X(x)

]√
h+ o(

√
h).

Hence, we have the bias is in the order of
√
h.

Next, we derive the formula of the variance, which is

V ar[Ah(x)] = n−1E[K2(X1;x, h)] +O(n−1).
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First, we take a look at the expectation part,

E[K2(X1;x, h)] =
∫ ∞

0

v
2√
h
−2
e
− 2v
x
√
h+h

Γ2
(

1√
h

)
(x
√
h+ h)

2√
h

fX(v)dv

=
Γ
(

2√
h
− 1

) (
x
√
h+h
2

) 2√
h
−1

Γ2
(

1√
h

)
(x
√
h+ h)

2√
h

×
∫ ∞

0

v

(
2√
h
−1
)
−1
e
− 2v
x
√
h+h

Γ
(

2√
h
− 1

) (
x
√
h+h
2

) 2√
h
−1
fX(v)dv

= B(x, h)E[fX(V )],

where V is a Gamma(2h−1/2 − 1, (x
√
h + h)/2) random variable, B(x, h)

is a factor outside the integral, and the integral itself can be considered
as E[fX(V )]. Similar as before, the random variable V has mean µV =
(2h−1/2 − 1)(x

√
h+ h/2) and

V ar(V ) = (2h−1/2 − 1)(x
√
h+ h)2/4.

In the same fashion as in E[fX(W )] before, we have

E[fX(V )] = fX

(
x+
√
h− x

√
h+ h

2

)
+ 1

2f
′′
X

(
x+
√
h− x

√
h+ h

2

)

×
(

2√
h
− 1

)(
x
√
h+ h

2

)2

+ ...

= fX(x) +O(
√
h).

Now, let R(z) =
√

2πzz+ 1
2

ezΓ(z+1) ; then, B(x, h) can be rewritten to become

B(x, h) =
√

2π
(

2√
h
− 2

) 2√
h
− 3

2

e
2√
h
−2
R
(

2√
h
− 2

) e
2√
h
−2
R2
(

1√
h
− 1

)
2π
(

1√
h
− 1

) 2√
h
−1

1
2

2√
h
−1(x
√
h+ h)

=
R2
(

1√
h
− 1

)
2(x+

√
h)
√
π(1−

√
h)R

(
2√
h
− 2

)
h

1
4

.

Thus, we obtain Equation 2.4, and the proof is completed.
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Proof of theorem 2.1.4
We have already expanded Jh(x) until the

√
h term. Now, extending it until

the h term results in

Jh(x) = fX(x) +
√
hf ′X(x) + o(

√
h) + 1

2(x2
√
h+ 2xh+ h

√
h)

×[f ′′X(x) +
√
hf ′′′X (x) + o(

√
h)] + ...

= fX(x)
[
1 +

{
f ′X(x) + 1

2x
2f ′′X(x)

} √
h

fX(x)

+
{(
x+ 1

2

)
f ′′X(x) + x2

(
x

3 + 1
2

)
f ′′′X (x)

}
h

fX(x) + o(h)
]

= fX(x)
[
1 + a(x)

fX(x)
√
h+ b(x)

fX(x)h+ o(h)
]
,

where a(x) = f ′X(x)+1
2x

2f ′′X(x), and b(x) =
(
x+ 1

2

)
f ′′X(x)+x2

(
x
3 + 1

2

)
f ′′′X (x).

By taking the natural logarithm and using its expansion, we have

log Jh(x) = log fX(x) +
∞∑
k=1

(−1)k−1

k

[
a(x)
fX(x)

√
h+ b(x)

fX(x)h+ o(h)
]k

= log fX(x) + a(x)
fX(x)

√
h+

[
b(x)− a2(x)

2fX(x)

]
h

fX(x) + o(h).

Next, if we define J4h(x) = E[A4h(x)] (using quadrupled bandwidth), i.e.,

ln J4h(x) = ln fX(x) + 2a(x)
fX(x)

√
h+ 4

fX(x)

[
b(x)− a2(x)

2fX(x)

]
h+ o(h),

we can set up conditions to eliminate the term
√
h while keeping the term

ln fX(x). Now, since ln[Jh(x)]t1 [J4h(x)]t2 equals

(t1 + t2) ln fX(x) + (t1 + 2t2) a(x)
fX(x)

√
h+ (t1 + 4t2)

[
b(x)− a2(x)

2fX(x)

]
h

fX(x) + o(h),

the conditions we need are t1 + t2 = 1 and t1 + 2t2 = 0. It is obvious that
the solution is t1 = 2 and t2 = −1, and we get

ln[Jh(x)]2[J4h(x)]−1 = ln fX(x)− 2
fX(x)

[
b(x)− a2(x)

2fX(x)

]
h+ o(h).
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If we take the exponential function and use its expansion, we have

[Jh(x)]2[J4h(x)]−1 = fX(x)
∞∑
k=0

(−1)k
k!

[
2

fX(x)

{
b(x)− a2(x)

2fX(x)

}
h+ o(h)

]k

= fX(x)
[
1− 2

fX(x)

{
b(x)− a2(x)

2fX(x)

}
h+ o(h)

]

= fX(x)− 2
[
b(x)− a2(x)

2fX(x)

]
h+ o(h).

Proof of theorem 2.1.6
Because of the definition of Jh(x) and J4h(x), we can rewrite Ah(x) = Jh(x)+
Y and A4h(x) = J4h(x)+Z, where Y and Z are random variables with E(Y )
and E(Z) are both 0, V ar(Y ) = V ar[Ah(x)], and V ar(Z) = V ar[A4h(x)].
Then, by the expansion (1 + p)q = 1 + pq +O(p2), we get

f̃X(x) = [Jh(x)]2[J4h(x)]−1
[
1 + Y

Jh(x)

]2 [
1 + Z

J4h(x)

]−1

= [Jh(x)]2[J4h(x)]−1
[
1 + 2Y

Jh(x) +O

{
Y 2

J2
h(x)

}]

×
[
1− Z

J4h(x) +O

{
Z2

J2
4h(x)

}]

= [Jh(x)]2[J4h(x)]−1 + 2Jh(x)
J4h(x)Y −

[
Jh(x)
J4h(x)

]2

Z +O[(Y + Z)2].

Hence,

E[f̃X(x)] = [Jh(x)]2[J4h(x)]−1 + 2Jh(x)
J4h(x)E(Y )−

[
Jh(x)
J4h(x)

]2

E(Z)

+O[E{(Y + Z)2}]

= fX(x)− 2
[
b(x)− a(x)

2fX(x)

]
h+ o(h) +O

( 1
nh

1
4

)
,

and its bias is

Bias[f̃X(x)] = −2
[
b(x)− a(x)

2fX(x)

]
h+ o(h) +O

( 1
nh

1
4

)
.
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Proof of theorem 2.1.7
By usual calculation of i.i.d. random variables, we have

Cov[Ah(x), A4h(x)] = 1
n
E[K(X1;x, h)K(X1;x, 4h)] +O

( 1
n

)
.

Now, for the expectation,

E[K(X1;x, h)K(X1;x, 4h)]

=
∫ ∞

0

t
1√
h
−1
e
− t

x
√
h+h

Γ
(

1√
h

)
(x
√
h+ h)

1√
h

t
1

2
√
h
−1
e
− t

2x
√
h+4h

Γ
(

1
2
√
h

)
(2x
√
h+ 4h)

1
2
√
h

fX(t)dt

=
Γ
(

3
2
√
h
− 1

) [
2
√
h(x+

√
h)(x+2

√
h)

3x+5
√
h

] 3
2
√
h
−1

Γ
(

1√
h

)
Γ
(

1
2
√
h

)
(x
√
h+ h)

1√
h (2x
√
h+ 4h)

1
2
√
h

×
∫ ∞

0

t

(
3

2
√
h
−1
)
−1
e
−t
[

3x+5
√
h

2
√
h(x+

√
h)(x+2

√
h)

]
Γ
(

3
2
√
h
− 1

) [
2
√
h(x+

√
h)(x+2

√
h)

3x+5
√
h

] 3
2
√
h
−1
fX(t)dt

= C(x, h)E[fX(T )],

where C(x, h) is the factor outside the integral, and T is a random variable
with mean

µT = 3(x+
√
h)(x+ 2

√
h)

3x+ 5
√
h

+O(
√
h)

and variance V ar(T ) = O(
√
h). Utilizing Taylor expansion results in

E[fX(T )] = fX(x) +
[

3(x+
√
h)(x+ 2

√
h)

3x+ 5
√
h

− x+O(
√
h)
]
f ′X(x) + o(

√
h)

+1
2f
′′
X

[
3(x+

√
h)(x+ 2

√
h)

3x+ 5
√
h

+O(
√
h)
]
O(
√
h)

= fX(x) +O(
√
h).
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Using the definition of R(z) as before, we get

C(x, h) = [2
√
h(x+

√
h)(x+ 2

√
h)]

3
2
√
h
−1

(x
√
h+ h)

1√
h (2x
√
h+ 4h)

1
2
√
h (3x+ 5

√
h)

3
2
√
h
−1

×
√

2π
(

3
2
√
h
− 2

) 3
2
√
h
− 3

2

e
3

2
√
h
−2
R
(

3
2
√
h
− 2

) e
1√
h
−1
R
(

1√
h
− 1

)
√

2π
(

1√
h
− 1

) 1√
h
− 1

2

e
1

2
√
h
−1
R
(

1
2
√
h
− 1

)
√

2π
(

1
2
√
h
− 1

) 1
2
√
h
− 1

2

=
R
(

1√
h
− 1

)
R
(

1
2
√
h
− 1

)
2h 1

4
√
πR

(
3

2
√
h
− 2

)
(3x+ 5

√
h)

(
3
2 − 2

√
h
) 3

2
√
h
− 3

2

(2− 2
√
h)

1√
h
− 1

2 (1− 2
√
h)

1
2
√
h
− 1

2

×
(
x+
√
h

3x+ 5
√
h

) 1
2
√
h
−1 (2x+ 4

√
h

3x+ 5
√
h

) 1√
h
−1

,

when x > h (for x ≤ h, the calculation is similar). Hence, the covariance
term is

Cov[Ah(x), A4h(x)] =
R
(

1√
h
− 1

)
R
(

1
2
√
h
− 1

)
2
√
πR

(
3

2
√
h
− 2

)
(3x+ 5

√
h)

(
3
2 − 2

√
h
) 3

2
√
h
− 3

2

(2− 2
√
h)

1√
h
− 1

2 (1− 2
√
h)

1
2
√
h
− 1

2

×
(
x+
√
h

3x+ 5
√
h

) 1
2
√
h
−1 (2x+ 4

√
h

3x+ 5
√
h

) 1√
h
−1
fX(x)
nh

1
4

+O

h 1
4

n

 ,
when xh−1 →∞, and

Cov[Ah(x), A4h(x)] =
R
(

1√
h
− 1

)
R
(

1
2
√
h
− 1

)
2
√
πR

(
3

2
√
h
− 2

)
(3c
√
h+ 5)

(
3
2 − 2

√
h
) 3

2
√
h
− 3

2

(2− 2
√
h)

1√
h
− 1

2 (1− 2
√
h)

1
2
√
h
− 1

2

×
(
c
√
h+ 1

3c
√
h+ 5

) 1
2
√
h
−1 (2c

√
h+ 4

3c
√
h+ 5

) 1√
h
−1
fX(x)
nh

3
4

+O
( 1
nh

1
4

)
,

when xh−1 → c > 0.
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Proof of theorem 2.1.8
It is easy to prove that [Jh(x)][J4h(x)]−1 = 1+O(

√
h) by using the expansion

of (1 + p)q. This fact brings us to

V ar[f̃X(x)] = V ar[2{1 +O(
√
h)}Y − {1 +O(

√
h)}2Z] + V ar[O{(Y + Z)2}]

= V ar[2Ah(x)− A4h(x)] + o
( 1
nh

1
4

)
= 4V ar[Ah(x)] + V ar[A4h(x)]− 4Cov[Ah(x), A4h(x)] + o

( 1
nh

1
4

)
.

Last, since the equation above is just a linear combination of two variance
formulas, the orders of the variance do not change, which are n−1h−1/4 in the
interior and n−1h−3/4 in the boundary region.

Proof of theorem 3.1.1
Let jh(x) = E[F̂h(x)], and extend the expansion until h4 term. In detail,

jh(x) =
∫ ∞
−∞

W
(
x− v
h

)
fX(v)dv

=
∫ ∞
−∞

FX(x− hw)K(w)dw

= FX(x) + h2a2(x) + h4a4(x) + o(h4)

= FX(x)
[
1 + h2 a2(x)

FX(x) + h4 a4(x)
FX(x) + o(h4)

]
,

where a2(x) = f ′X(x)
2

∫∞
−∞w

2K(w)dw and a4(x) = f ′′′X (x)
24

∫∞
−∞w

4K(w)dw. By
taking a natural logarithm and using its expansion, we have

log jh(x) = logFX(x)
[
1 + h2 a2(x)

FX(x) + h4 a4(x)
FX(x) + o(h4)

]

= logFX(x) +
∞∑
k=1

(−1)k−1

k

[
h2 a2(x)
FX(x) + h4 a4(x)

FX(x) + o(h4)
]k

= logFX(x) + h2 a2(x)
FX(x) + h4 2a4(x)FX(x)− a2

2(x)
2F 2

X(x) + o(h4).

Next, if we define jah(x) = E[F̂ah(x)], i.e.

log jah(x) = logFX(x) + a2h2 a2(x)
FX(x) + a4h4 2a4(x)FX(x)− a2

2(x)
2F 2

X(x) + o(h4),
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we can set up some conditions to eliminate the term h2 but keep the term
logFX(x). Since

log[jh(x)]t1 [jah(x)]t2 = (t1 + t2) logFX(x) + (t1 + a2t2)h2 a2(x)
FX(x)

+(t1 + a4t2)h4 2a4(x)FX(x)− a2
2(x)

2F 2
X(x) + o(h4),

the conditions we need are t1 + t2 = 1 and t1 + a2t2 = 0. It is obvious that
the solutions are t1 = a2

a2−1 and t2 = − 1
a2−1 , and we get

log[jh(x)]
a2
a2−1 [jah(x)]−

1
a2−1 = logFX(x)− h4a2 2a4(x)FX(x)− a2

2(x)
2F 2

X(x) + o(h4).

To neutralize the natural logarithmic function, we can use exponential func-
tion and its expansion, then we have

[jh(x)]
a2
a2−1 [jah(x)]−

1
a2−1 = exp[log{jh(x)}

a2
a2−1{jah(x)}−

1
a2−1 ]

= FX(x)
∞∑
k=0

(−1)k
k!

[
h4a2 2a4(x)FX(x)− a2

2(x)
2F 2

X(x) + o(h4)
]k

= FX(x) + h4a2a
2
2(x)− 2a4(x)FX(x)

2FX(x) + o(h4).

Proof of theorem 3.1.4
In order to investigate the bias of our proposed estimator, we rewrite F̂h(x) =
jh(x) + Y and F̂ah(x) = jah(x) + Z, where Y and Z are random variables
with E(Y ) = E(Z) = 0, V ar(Y ) = V ar[F̂h(x)], and V ar(Z) = V ar[F̂ah(x)].
These forms are actually reasonable, because of the definition of jh(x) and
jah(x). Then, by the expansion (1 + p)q = 1 + pq +O(p2), we have

F̃X(x) = [jh(x) + Y ]
a2
a2−1 [jah(x) + Z]−

1
a2−1

= [jh(x)]
a2
a2−1 [jah(x)]−

1
a2−1

[
1 + Y

jh(x)

] a2
a2−1

[
1 + Z

jah(x)

]− 1
a2−1

= [jh(x)]
a2
a2−1 [jah(x)]−

1
a2−1 + a2

a2 − 1

[
jh(x)
jah(x)

] 1
a2−1

Y

− 1
a2 − 1

[
jh(x)
jah(x)

] a2
a2−1

Z +O[(Y + Z)2].
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Hence,

E[F̃X(x)] = [jh(x)]2[jah(x)]−1 + 2jh(x)
jah(x)E(Y )−

[
jh(x)
jah(x)

]2

E(Z)

+O[E{(Y + Z)2}]

= FX(x) + h4a2a
2
2(x)− 2a4(x)FX(x)

2FX(x) + o(h4) +O
( 1
n

)
,

and the bias is obtained.

Proof of theorem 3.1.7
Before we derive the variance, we need to calculate jh(x)

jah(x) first. Once again
by using (1 + p)q = 1 + pq +O(p2), we get

jh(x)
jah(x) =

FX(x)
[
1 + h2 a2(x)

FX(x) + h4 a4(x)
FX(x) + o(h4)

]
FX(x)

[
1 + a2h2 a2(x)

FX(x) + a4h4 a4(x)
FX(x) + o(h4)

]
=

1 + h2 a2(x)
FX(x) + h4 a4(x)

FX(x) + o(h4)
1 +O(h2)

= 1 + h2 a2(x)
FX(x) + h4 a4(x)

FX(x) + o(h4) +O(h2) = 1 +O(h2).

The calculation of the variance is

V ar[F̃X(x)] = V ar

[
a2

a2 − 1{1 +O(h2)}
1

a2−1Y − 1
a2 − 1{1 +O(h2)}

a2
a2−1Z

]
+O[V ar{(Y + Z)2}]

= V ar

(
a2

a2 − 1Y −
1

a2 − 1Z
)

+O

(
h2

n
+ 1
n2

)

= V ar

[
a2

a2 − 1 F̂h(x)− 1
a2 − 1 F̂ah(x)

]
+ o

(
h

n

)
.

Because this is just a variance of linear combination of two standard kernel
distribution function estimators, the order of the variance does not change,
that is 1

n
. For the explicit formula of the variance, first we calculate

a4

(a2 − 1)2V ar[F̂h(x)] + 1
(a2 − 1)2V ar[F̂ah(x)]− 2a2

(a2 − 1)2Cov[F̂h(x), F̂ah(x)].
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Since we already knew about the formulas of V ar[F̂h(x)] and V ar[F̂ah(x)],
we only need to take a look to the covariance part, that is

1
n

[
E
{
W
(
x−X1

h

)
W
(
x−X1

ah

)}
− E

{
W
(
x−X1

h

)}
E
{
W
(
x−X1

ah

)} ]
.

Because,

E
[
W
(
x−X1

h

)]
= E

[
W
(
x−X1

ah

)]
= FX(x) +O(h2),

we only need to calculate

E
[
W
(
x−X1

h

)
W
(
x−X1

ah

)]
=
∫ ∞
−∞

FX(x− yh)
[
K(y)W

(
y

a

)
+ 1
a
W (y)K

(
y

a

)]
dy

=
∫ ∞
−∞

[FX(x)− hyfX(x) + o(h)]
[
K(y)W

(
y

a

)
+ 1
a
W (y)K

(
y

a

)]
dy

= FX(x)
[∫ ∞
−∞

K(y)W
(
y

a

)
dy + 1

a

∫ ∞
−∞

W (y)K
(
y

a

)
dy
]
− hfX(x)r2 + o(h),

where r2 =
∫∞
−∞ y

[
K(y)W

(
y
a

)
+ 1

a
W (y)K

(
y
a

)]
dy. For the first term of the

right-hand side, we have∫ ∞
−∞

K(y)W
(
y

a

)
dy = 1− 1

a

∫ ∞
−∞

W (y)K
(
y

a

)
dy.

Thus we get

E
[
W
(
x−X1

h

)
W
(
x−X1

ah

)]
= FX(x)− hfX(x)r2 + o(h).

As a result, we can show that

Cov[F̂h(x), F̂ah(x)] = 1
n
FX(x)[1− FX(x)]− h

n
fX(x)r2 + o

(
h

n

)
,

and then

V ar[F̃X(x)] = 1
n
FX(x)[1− FX(x)]− h

n

[
2(a4 + 1)
(a2 − 1)2 r1 + r2

]
fX(x) + o

(
h

n

)
.
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Proof of theorem 4.1.1
Utilizing the usual reasoning of i.i.d. random variables and the transforma-
tion property of expectation, with Y = g−1(X1), we have

E[F̃X(x)] =
∫ ∞
−∞

W

(
g−1(x)− y

h

)
fY (y)dy

= 1
h

∫ ∞
−∞

FY (y)K
(
g−1(x)− y

h

)
dy

=
∫ ∞
−∞

FY (g−1(x)− hv)K(v)dv

=
∫ ∞
−∞

[
FY (g−1(x))− hvfY (g−1(x)) + h2

2 v
2f ′Y (g−1(x)) + o(h2)

]
K(v)dv

= FX(x) + h2

2 c1(x)
∫ ∞
−∞

v2K(v)dv + o(h2),

and we obtained the Bias[F̃X(x)]. For the variance of F̃X(x), we first calcu-
late

E

[
W 2

(
g−1(x)− g−1(X1)

h

)]

= 2
h

∫ ∞
−∞

FY (y)W
(
g−1(x)− y

h

)
K

(
g−1(x)− y

h

)
dy

= 2
∫ ∞
−∞

[FY (g−1(x))− hvfY (g−1(x)) + o(h)]W (v)K(v)dv

= FX(x)− 2hg′(g−1(x))fX(x)r1 + o(h),
and we got the variance.

Proof of theorem 4.1.3
For some δ > 0, using Hölder and Cramér cr inequalities, we have

E

∣∣∣∣∣W
(
g−1(x)− g−1(X1)

h

)
− E

{
W

(
g−1(x)− g−1(X1)

h

)}∣∣∣∣∣
2+δ


≤ 22+δE

∣∣∣∣∣W
(
g−1(x)− g−1(X1)

h

)∣∣∣∣∣
2+δ
 .

But, since 0 ≤ W (v) ≤ 1 for any v ∈ R, then

E

∣∣∣∣∣W
(
g−1(x)− g−1(X1)

h

)
− E

{
W

(
g−1(x)− g−1(X1)

h

)}∣∣∣∣∣
2+δ
 ≤ 22+δ <∞.
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Also, because V ar
[
W
(
g−1(x)−g−1(X1)

h

)]
= O(1), we get

E
[∣∣∣W (

g−1(x)−g−1(X1)
h

)
− E

{
W
(
g−1(x)−g−1(X1)

h

)}∣∣∣2+δ]
nδ/2

[
V ar

{
W
(
g−1(x)−g−1(X1)

h

)}]1+δ/2 → 0

when n→∞. Hence, by Loeve (1963), and with the fact F̃X(x)→p FX(x),
we can conclude its asymptotic normality.

Proof of theorem 4.1.4
Let FY and F̂Y be the distribution function and the naive kernel distribution
function estimator, respectively, of Y1, Y2, ..., Yn, where Yi = g−1(Xi). Since
F̂Y is a naive kernel distribution function, then Nadaraya (1964) guarantees
that supy∈R |F̂Y (y)− FY (y)| →a.s. 0, which implies that

sup
x∈Ω
|F̂Y (g−1(x))− FY (g−1(x))| →a.s. 0.

However, because FY (g−1(x)) = FX(x), and it is clear that F̂Y (g−1(x)) =
F̃X(x), then this theorem is proven.

Proof of theorem 4.1.5
Using the similar reasoning as in the proof of theorem 4.1.1, we have

E[f̂X(x)] = 1
hg′(g−1(x))

∫ ∞
−∞

K

(
g−1(x)− y

h

)
fY (y)dy

= 1
g′(g−1(x))

∫ ∞
−∞

fY (g−1(x)− hv)K(v)dv

= fY (g−1(x))
g′(g−1(x)) + h2f ′′Y (g−1(x))

2g′(g−1(x))

∫ ∞
−∞

v2K(v)dv + o(h2),

and we obtained the bias formula. For the variance, first we have to calculate

1
hg′(g−1(x))E

[
K2

(
g−1(x)− Y

h

)]
= 1

g′(g−1(x))

∫ ∞
−∞

fY (g−1(x)− hv)K2(v)dv

= fX(x)
∫ ∞
−∞

K2(v)dv + o(1),

and the rests are easily done.
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Proof of theorem 4.2.2
First, we need to consider the following inequality

|KSn − K̃S| =
∣∣∣∣∣sup
v∈Ω
|Fn(v)− F (v)| − sup

z∈Ω
|F̃X(z)− F (z)|

∣∣∣∣∣
≤ sup

x∈Ω

∣∣∣|Fn(x)− F (x)| − |F̃X(x)− F (x)|
∣∣∣

≤ sup
x∈Ω
|Fn(x)− F (x)− F̃X(x) + F (x)|

= sup
x∈Ω
|F̃X(x)− Fn(x)|.

Now, let Fn,Y and F̂Y be the empirical distribution function and the naive
kernel distribution function estimator, respectively, of Y1, Y2, ..., Yn, where
Yi = g−1(Xi). Hence, Omelka et al. (2009) guarantees that supy∈R |F̂Y (y)−
Fn,Y (y)| = op(n−1/2), which further implies that

sup
x∈Ω
|F̂Y (g−1(x))− Fn,Y (g−1(x))| →p 0

with rate n−1/2. But, F̂Y (g−1(x)) = F̃X(x) and Fn,Y (g−1(x)) = Fn(x), which
conclude that the equivalency is proven.

Proof of theorem 4.2.3
In this proof, we assume the bandwidth h = o(n−1/4). Let us define

∆n = n
∫ ∞
−∞

[F̃X(x)− F (x)]2dF (x)− n
∫ ∞
−∞

[Fn(x)− F (x)]2dF (x).

Then, we have

∆n = n
∫ ∞
−∞

[
F̃X(x)− F (x)− Fn(x) + F (x)

] [
F̃X(x)− F (x) + Fn(x)− F (x)

]
dF (x)

= n
∫ ∞
−∞

1
n

n∑
i=1

[W ∗
i (x)− I∗i (x)] 1

n

n∑
j=1

[
W ∗
j (x) + I∗j (x)

]
dF (x),

where

W ∗
i (x) = W

(
g−1(x)− g−1(Xi)

h

)
− F (x) and I∗i (x) = I(Xi ≤ x)− F (x).

Note that if i 6= j, Wi(·) and Wj(·), also I∗i (·) and I∗j (·), are independent.
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It follows from the Chauchy-Schwarz Inequality that

E(|∆n|) ≤ n
∫ ∞
−∞

√√√√√√E
{ 1

n

n∑
i=1

(W ∗
i (x)− I∗i (x))

}2
E


 1
n

n∑
j=1

(W ∗
j (x) + I∗j (x))


2
dF (x).

Let us define the bias

bn(x) = E

[
W

(
g−1(x)− g−1(Xi)

h

)]
− F (x) = O(h2).

Hence, it follows from the independence that

E

{ 1
n

n∑
i=1

(W ∗
i (x)− I∗i (x))

}2
 = E

{ 1
n

n∑
i=1

(W ∗
i (x)− bn(x)− I∗i (x))

}2
+ b2

n(x)

= 1
n
E[{W ∗

1 (x)− bn(x) + I∗1 (x)}2] + b2
n(x).

Furthermore, we have
E[{W ∗

1 (x)− bn(x)− I∗1 (x)}2]
= E[{W ∗

1 (x)− I∗1 (x)}2]− 2bn(x)E[W ∗
1 (x)− I∗1 (x)] + b2

n(x)
= E[{W ∗

1 (x)}2 − 2W ∗
1 (x)I∗1 (x)− {I∗1 (x)}2]− b2

n(x).
It follows from the mean squared error of F̃X(x) that

E[{W ∗
1 (x)}2] = F (x)[1− F (x)]− 2hr1g

′(g−1(x))fX(x) +O(h2).
From the definition, we have

E[W ∗
1 (x)I∗1 (x)]

= E

[
W

(
g−1(x)− g−1(X1)

h

)
I(X1 ≤ x)− F (x)W

(
g−1(x)− g−1(X1)

h

)

−F (x)I(X1 ≤ x) + F 2(x)
]

= E

[
W

(
g−1(x)− g−1(X1)

h

)
I(X1 ≤ x)

]
− F 2(x)− bn(x)F (x).

For the first term we have

E

[
W

(
g−1(x)− Y

h

)
I(Y ≤ g−1(x))

]

=
∫ g−1(x)

−∞
W

(
g−1(x)− y

h

)
fY (y)dy

= W (0)FY (g−1(x)) +
∫ ∞

0
FY (g−1(x)− hv)K(v)dv

= W (0)F (x) + F (x)
∫ ∞

0
K(v)dv +O(h).
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Since K(·) is symmetric around the origin, we have W (0) = 1/2. Thus,
E[W ∗

1 (x)I∗1 (x)] = F (x)[1− F (x)] +O(h).
Next we will evaluate E [{n−1∑n

i=1(W ∗
i (x) + I∗i (x))}2]. Using the bias

term bn(x), we have

E

{ 1
n

n∑
i=1

(W ∗
i (x) + I∗i (x))

}2
 = E

{ 1
n

n∑
i=1

(W ∗
i (x)− bn(x) + I∗i (x))

}2
+ b2

n(x)

= 1
n
E[{W ∗

1 (x)− bn(x) + I∗1 (x)}2] + b2
n.

Based on previous calculations, we get

E

{ 1
n

n∑
i=1

(W ∗
i (x) + I∗i (x))

}2
 = O

( 1
n

+ h4
)
.

Therefore, if h = o(n−1/4), we have E(|∆n|) = o(1). Using the Markov
Inequality, we can show that ∆n →p 0, and then two statistics are equivalent
under H0.

Some lemmas needed to prove the theorems
Though sometimes not stated explicitly in the proofs of our theorems, the
following lemmas are needed for the calculations.
Lemma .0.1. Under the condition D1, the following equations hold∫ ∞

−∞
V (x)K(x)dx = 1

2 (30)∫ ∞
−∞

xV (x)K(x)dx = −1
2

∫ ∞
−∞

V (x)W (x)dx (31)∫ ∞
−∞

V(x)K(x)dx =
∫ ∞
−∞

V (x)W (x)dx. (32)

Proof. All of the above equations can be proven using the integration by parts
and the definitions of V (x), V(x), and W (x).
Lemma .0.2. Let fY (t) and SY (t) be the probability density function and the
survival function of Y = g−1(X), and let a(t) =

∫∞
t g′(y)SY (y)dy and A(t) =∫∞

t g′(y)a(y)dy. Then, under the condition D6, we have for t ∈ Ω,
fY (g−1(t)) = g′(g−1(t))fX(t) (33)

SY (g−1(t)) = SX(t) (34)
a(g−1(t)) = SX(t) (35)
A(g−1(t)) = S̄X(t). (36)
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Proof. Using the change-of-variable technique, it is obvious that fY (t) = g′(t)
fX(g(t)), and it validifies equation (33). For equation (34), by the definition,

SY (g−1(t)) = Pr[Y > g−1(t)] = Pr[g(Y ) > t] = Pr(X > t) = SX(t).

Equation (35) is easily done using integration by x = g(y) substitution, which is

a(g−1(t)) =
∫ ∞
g−1(t)

g′(y)SY (y)dy =
∫ ω′′

t
SY (g−1(x))dx =

∫ ω′′

t
SX(x)dx = SX(t).

The same fashion goes for equation (36).

Remark .0.3. The ideas to construct our proposed estimators actually came
from lemma .0.2. We intentionally constructed the estimators of SX(t) and SX(t)
using the relationships stated at equation (34) and equation (35), respectively.
We refer to this lemma as the change-of-variable properties.

Lemma .0.4. Let a(t) =
∫∞
t g′(y)SY (y)dy and

â(t) =
∫ ∞
t

g′(y)ŜY (y)dy = 1
n

n∑
i=1

∫ ∞
t

g′(y)V
(
y − Yi
h

)
dy (37)

be the naive kernel estimator of a(t). If B ⊂ R is an interval where both â(t)
and a(t) are bounded, then supt∈B |â(t)− a(t)| →a.s. 0.

Proof. Since â(t) and a(t) are both bounded, non-increasing, and continuous on
B, then for any ε > 0, we can find k number of points on A such that

−∞ ≤ inf A = t1 < t2 < ... < tk = supA ≤ ∞,

and a(tj) − a(tj+1) ≤ ε/2, j = 1, 2, ..., k − 1. For any t ∈ B, it is clear that
there exists j such that tj ≤ t < tj+1. For that particular j, we have

â(tj) ≥ â(t) ≥ â(tj+1) and a(tj) ≥ a(t) ≥ a(tj+1),

which result in

â(tj+1)− a(tj+1)− ε

2 ≤ â(t)− a(t) ≤ â(tj)− a(tj) + ε

2 .

Therefore,

sup
t∈B
|â(t)− a(t)| ≤ sup

j
|â(tj)− a(tj)|+ ε.

Now, because â(t) is a naive kernel estimator, it is clear that for fix t0, â(t0)
converges almost surely to a(t0). Thus, we get |â(t0) − a(t0)| →a.s. 0. Hence,
for any ε > 0, almost surely supt∈B |â(t) − a(t)| ≤ ε when n → ∞, which
concludes the proof.
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Proof of theorem 5.1.1
Utilizing the usual reasoning of i.i.d. random variables and the transforma-
tion property of expectation, and with the fact

V1,h(x, y) = 1
h

∫ y

−∞
K
(
x− z
h

)
dz,

we have

E[S̃X,1(t)] = E[V1,h(g−1(t), g−1(X1))]

=
∫ ∞
−∞

V1,h(g−1(t), y)fY (y)dy

= 1
h

∫ ∞
−∞

K

(
g−1(t)− y

h

)
SY (y)dy

=
∫ ∞
−∞

SY (g−1(t)− hu)K(u)du

=
∫ ∞
−∞

[
SY (g−1(t)) + hufY (g−1(t))− h2

2 u
2f ′Y (g−1(t)) + o(h2)

]
K(u)du

= SX(t)− h2

2 b1(t)
∫ ∞
−∞

u2K(u)du+ o(h2),

and we have Bias[S̃X,1(t)]. For the variance of S̃X,1(t), we first calculate

E[V 2
1,h(g−1(t), g−1(X1))] =

∫ ∞
−∞

V 2
1,h(g−1(t), y)fY (y)dy

= 2
h

∫ ∞
−∞

V1,h(g−1(t), y)K
(
g−1(t)− y

h

)
SY (y)dy

= 2
∫ ∞
−∞

[SY (g−1(t)) + hufY (g−1(t)) + o(h)]V (u)K(u)du

= SX(t)− hg′(g−1(t))fX(t)
∫ ∞
−∞

V (u)W (u)du+ o(h).

Hence, the variance is

V ar[S̃X,1(t)] = 1
n

[E{V 2
1,h(g−1(t), g−1(X1))} − E2{V1,h(g−1(t), g−1(t))}]

= 1
n
SX(t)FX(t)− h

n
g′(g−1(t))fX(t)

∫ ∞
−∞

V (y)W (y)dy + o

(
h

n

)
.

For the calculation of Bias[S̃X,1(t)], recall that

V1,h(g−1(t), y) =
∫ ω′′

t
V1,h(g−1(z), y)dz,
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and by assuming we can change the order of the integral signs, we get

E[S̃X,1(t)] =
∫ ∞
−∞

∫ ω′′

t
V1,h(g−1(z), y)dzfY (y)dy

=
∫ ω′′

t
E[V1,h(g−1(z), Y )]dz

= SX(t)− h2

2

∫ ω′′

t
b1(z)dz

∫ ∞
−∞

y2K(y)dy + o(h2).

It is easy to see b2(t) = −
∫ ω′′
t b1(z)dz, and then the formula of Bias[S̃X,1(t)]

is done.
Before calculating V ar[S̃X,1(t)], we must first note that

d
dyV1,h(x, y) = 1

h

∫ ∞
x

g′(z)K
(
z − y
h

)
dz

=
∫ ∞
x−y
h

g′(y + hz)K(z)dz

= g′(y)V
(
x− y
h

)
+ hg′′(y)

∫ ∞
x−y
h

zK(z)dz + ...

= g′(y)V
(
x− y
h

)
+ o(h)

and

V1,h(x, y) = h
∫ ∞
x−y
h

g′(y + hz)V (z)dz

= hg′(y)V
(
x− y
h

)
+ h2g′′(y)

∫ ∞
x−y
h

zV (z)dz + ...

= hg′(y)V
(
x− y
h

)
+ o(h).

Now, we get

E[V2
1,h(g−1(t), g−1(X1))]

= 2
∫ ∞
−∞

V1,h(g−1(t), y)V
(
g−1(t)− y

h

)
g′(y)SY (y)dy + o(h)

= 2
∫ ∞
−∞

[
g′(y)V 2

(
g−1(t)− y

h

)

+ 1
h
V1,h(g−1(t), y)K

(
g−1(t)− y

h

)]
a(y)dy + o(h).
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Conducting integration by parts once again for the first term, we have

2
∫ ∞
−∞

g′(y)V 2
(
g−1(t)− y

h

)
a(y)dy

= 4
h

∫ ∞
−∞

V

(
g−1(t)− y

h

)
K

(
g−1(t)− y

h

)
A(y)dy

= 4
∫ ∞
−∞

A(g−1(t)− hu)V (u)K(u)du

= 2S̄X(t)− 2hg′(g−1(t))SX(t)
∫ ∞
−∞

V (u)W (u)du+ o(h).

And the second term can be calculated with

2
h

∫ ∞
−∞

V1,h(g−1(t), y)K
(
g−1(t)− y

h

)
a(y)dy

= 2
∫ ∞
−∞

[
g′(y)V

(
g−1(t)− y

h

)
+ o(1)

]
K

(
g−1(t)− y

h

)
a(y)dy

= 2h
∫ ∞
−∞

g′(g−1(t)− hu)a(g−1(t)− hu)V(y)K(y)dy + o(h)

= 2h
∫ ∞
−∞

[g′(g−1(t)) + o(1)][a(g−1(t)) + o(1)]V(y)K(y)dy + o(h)

= 2hg′(g−1(t))SX(t)
∫ ∞
−∞

V (u)W (u)du+ o(h).

Thus, we get

E[V2
1,h(g−1(t), g−1(X1))] = 2S̄X(t) + o(h),

and this easily proves the V ar[S̃X,1(t)] formula.
Before going into the calculation of the covariance, we have to take a look

at

E[V1,h(g−1(t), g−1(X1))V1,h(g−1(t), g−1(X1))]

=
∫ ∞
−∞

[
g′(y)V

(
g−1(t)− y

h

)
V1,h(g−1(t), y)

+ 1
h
V1,h(g−1(t), y)K

(
g−1(t)− y

h

)]
SY (y)dy.
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Once again we need to calculate them separately. The first term is
∫ ∞
−∞

g′(y)V
(
g−1(t)− y

h

)
V1,h(g−1(t), y)SY (y)dy

=
∫ ∞
−∞

[
1
h2K

(
g−1(t)− y

h

)∫ y

−∞
K

(
g−1(t)− z

h

)
dz

+ 1
h
V

(
g−1(t)− y

h

)
K

(
g−1(t)− y

h

)]
a(y)dy

=
∫ ∞
−∞

a(g−1(t)− hu)
[
K(u)

∫ ∞
u

K(v)dv + V (u)K(u)
]

du

= SX(t)− hg′g−1(t))SX(t)
∫ ∞
−∞

V (u)W (u)du+ o(h),

while the second term is

1
h

∫ ∞
−∞

V1,h(g−1(t), y)K
(
g−1(t)− y

h

)
SY (y)dy

= h
∫ ∞
−∞

g′(g−1(t)− hu)SY (g−1(t)− hu)V(u)K(u)du+ o(h)

= h
∫ ∞
−∞

[g′(g−1(t)) + o(1)][SY (g−1(t)) + o(1)]V(u)K(u)du+ o(h)

= hg′(g−1(t))SX(t)
∫ ∞
−∞

V (u)W (u)du+ o(h),

then we have

E[V1,h(g−1(t), g−1(X1))V1,h(g−1(t), g−1(X1))] = SX(t) + o(h).

Hence, the covariance is

Cov[S̃X,1(t), S̃X,1(t)]

= 1
n

[E{V1,h(g−1(t), g−1(X1))V1,h(g−1(t), g−1(X1))}

−E{V1,h(g−1(t), g−1(X1))}{V1,h(g−1(t), g−1(X1))}]

= 1
n

[SX(t)− SX(t)SX(t) + o(h)]

1
n
SX(t)FX(t) + o

(
h

n

)
.
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Proof of theorem 5.1.3
The usual reasoning of i.i.d. random variables and the transformation prop-
erty of expectation result in

E[S̃X,2(t)] =
∫ ∞
−∞

V

(
g−1(t)− y

h

)
fY (y)dy

=
∫ ∞
−∞

K

(
g−1(t)− y

h

)
SY (y)dy

=
∫ ∞
−∞

SY (g−1(t)− hu)K(u)du

= SX(t)− h2

2 b1(t)
∫ ∞
−∞

u2K(u)du+ o(h2),

and this gives us the Bias[S̃X,2(t)]. For the variance of S̃X,2(t), first we
calculate

E[V 2
2,h(g−1(t), g−1(X1))] = 2

h

∫ ∞
−∞

V

(
g−1(t)− y

h

)
K

(
g−1(t)− y

h

)
SY (y)dy

= 2
∫ ∞
−∞

SY (g−1(t)− hu)V (u)K(u)du

= SX(t)− hg′(g−1(t))fX(t)
∫ ∞
−∞

V (u)W (u)du+ o(h).

The resulting variance is

V ar[S̃X,2(t)] = 1
n
SX(t)FX(t)− h

n
g′(g−1(t))fX(t)

∫ ∞
−∞

V (y)W (y)dy + o

(
h

n

)
.

Next for Bias[S̃X,2(t)], utilizing similar reasoning as before, we get

E[S̃X,2(t)] =
∫ ∞
−∞

V2,h(g−1(t), y)fY (y)dy

=
∫ ∞
−∞

g′(y)V
(
g−1(t)− y

h

)
SY (y)dy

= 1
h

∫ ∞
−∞

K

(
g−1(t)− y

h

)
a(y)dy

=
∫ ∞
−∞

a(g−1(t)− hu)K(u)du

= SX(t) + h2

2 b3(t)
∫ ∞
−∞

u2K(u)du+ o(h2),
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and this proves the bias part. For the variance, we need

E[V2
2,h(g−1(t), g−1(X1))] = 2

∫ ∞
−∞

g′(y)V2,h(g−1(t), y)V
(
g−1(t)− y

h

)
SY (y)dy

= 2
∫ ∞
−∞

[
g′(y)V 2

(
g−1(t)− y

h

)

+ 1
h
V2,h(g−1(t), y)K

(
g−1(t)− y

h

)]
a(y)dy.

Once again using the integration by parts for the first term, we have

2
∫ ∞
−∞

g′(y)V 2
(
g−1(t)− y

h

)
a(y)dy

= 4
h

∫ ∞
−∞

V

(
g−1(t)− y

h

)
K

(
g−1(t)− y

h

)
A(y)dy

= 4
∫ ∞
−∞

A(g−1(t)− hu)V (u)K(u)du

= 2S̄X(t)− 2hg′(g−1(t))SX(t)
∫ ∞
−∞

V (u)W (u)du+ o(h).

The second term can be calculated in a similar way, which is

2
h

∫ ∞
−∞

V2,h(g−1(t), y)K
(
g−1(t)− y

h

)
a(y)dy

= 2h
∫ ∞
−∞

a(g−1(t)− hu)
∫ ∞
u

g′(g−1(t)− hv)V (v)dvK(u)du

= 2h
∫ ∞
−∞

[a(g−1(t)) + o(1)]
∫ ∞
u

[g′(g−1(t)) + o(1)]V (v)dvK(u)du

= 2hg′(g−1(t))SX(t)
∫ ∞
−∞

V (u)W (u)du+ o(h).

Hence, we get

E[V2
2,h(g−1(t), g−1(X1))] = 2S̄X(t) + o(h),

proving the formula of V ar[S̃X,2(t)].
Before moving onto the calculation of the covariance, we have to take a

look at

E[V2,h(g−1(t), g−1(X1))V2,h(g−1(t), g−1(X1))]

=
∫ ∞
−∞

[
g′(y)V 2

(
g−1(t)− y

h

)
+ 1
h
V2,h(g−1(t), y)K

(
g−1(t)− y

h

)]
SY (y)dy.
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Once again we need to calculate them separately. The first term is
∫ ∞
−∞

g′(y)V 2
(
g−1(t)− y

h

)
SY (y)dy

= 2
h

∫ ∞
−∞

V

(
g−1(t)− y

h

)
K

(
g−1(t)− y

h

)
a(y)dy

= 2
∫ ∞
−∞

a(g−1(t)− hu)V (y)K(y)du

= SX(t)− hg′(g−1(t))SX(t)
∫ ∞
−∞

V (u)W (u)du+ o(h),

while the second term is

1
h

∫ ∞
−∞

V2,h(g−1(t), y)K
(
g−1(t)− y

h

)
SY (y)dy

= h
∫ ∞
−∞

SY (g−1(t)− hu)
∫ ∞
u

g′(g−1(t)− hv)V (v)dvK(u)du

= h
∫ ∞
−∞

[SY (g−1(t)) + o(1)][g′(g−1(t))V(u) + o(1)]K(u)du

= hg′(g−1(t))SX(t)
∫ ∞
−∞

V (u)W (u)du+ o(h),

and the result is

E[V2,h(g−1(t), g−1(X1))V2,h(g−1(t), g−1(X1))] = SX(t) + o(h).

Hence, the covariance is

Cov[S̃X,2(t), S̃X,2(t)] = 1
n
SX(t)FX(t) + o

(
h

n

)
.

Proof of theorem 5.2.1
As for a fixed t we have that S̃X,1(t) and S̃X,1(t) are consistent estimators for
SX(t) and SX(t), respectively, then

m̃X,1(t)−mX(t) = S̃X,1(t)− S̃X,1(t)mX(t)
SX(t)

[
1 + SX(t)− S̃X,1(t)

S̃X,1(t)

]

= S̃X,1(t)− S̃X,1(t)mX(t)
SX(t) [1 + op(1)].
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Thus, using theorem 5.1.1, we get

Bias[m̃X,1(t)] = 1
SX(t) [E{S̃X,1(t)} −mX(t)E{S̃X,1(t)}]

= h2

2SX(t) [b2(t) +mX(t)b1(t)]
∫ ∞
−∞

y2K(y)dy + o(h2).

The same argument easily proves the formula of Bias[m̃X,2(t)].
Using a similar method, for i = 1, 2, we have

V ar[m̃X,i(t)]
= V ar[m̃X,i(t)−mX(t)]

= V ar

[
S̃X,1(t)− S̃X,1(t)mX(t)

SX(t)

]

= 1
S2
X(t) [V ar{S̃X,i(t)}+m2

X(t)V ar{S̃X,i(t)}

−2mX(t)Cov{S̃X,i, S̃X,i(t)}]

= 1
n

b4(t)
S2
X(t) −

h

n

b5(t)
S2
X(t)

∫ ∞
−∞

V (y)W (y)dy + o

(
h

n

)
.

Proof of theorem 5.2.2
Because the proof of the case i = 1 is similar, we will only explain the case
of i = 2 in detail. First, for some δ > 0, using Hölder and cr inequalities

E[|V2,h(g−1(t), g−1(X1))− E{V2,h(g−1(t), g−1(X1))}|2+δ]
≤ 22+δE[|V2,h(g−1(t), g−1(X1))|2+δ].

But, since 0 ≤ V2,h(x, y) ≤ 1 for any x, y ∈ R, then

E[|V2,h(g−1(t), g−1(X1))− E{V2,h(g−1(t), g−1(X1))}|2+δ] ≤ 22+δ <∞,

and because V ar[V2,h(g−1(t), g−1(X1))] = O(1), we get

E[|V2,h(g−1(t), g−1(X1))− E{V2,h(g−1(t), g−1(X1))}|2+δ]
nδ/2[V ar{V2,h(g−1(t), g−1(X1))}]1+δ/2 → 0

when n→∞. Hence, by Loeve (1963), and with the fact S̃X,2(t)→p SX(t),
we can conclude that

S̃X,2(t)− SX(t)√
V ar[S̃X,2(t)]

→D N(0, 1).
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Next, with a similar reasoning as before, we have

E[|V2,h(g−1(t), g−1(X1))− E{V2,h(g−1(t), g−1(X1))}|2+δ]
≤ 22+δE[|V2,h(g−1(t), g−1(X1))|2+δ],

which, by the same inequalities, results in

E[|V2,h(g−1(t), g−1(X1))− E{V2,h(g−1(t), g−1(X1))}|2+δ]

≤ 22+δE

∣∣∣∣∣
∫ g−1(X1)

−∞
g′(z)V

(
g−1(t)− z

h

)
dz
∣∣∣∣∣
2+δ


≤ 22+δE

∣∣∣∣∣
∫ g−1(X1)

−∞
g′(z)dz

∣∣∣∣∣
2+δ


≤ 22+δE(X2+δ
1 )

<∞.

Therefore, with the same argument, we get

S̃X,2(t)− SX(t)√
V ar[S̃X,2(t)]

→D N(0, 1).

At last, by Slutsky’s Theorem for rational function, the theorem is proven.

Remark .0.5. Since we only assume the existence of E(X3), then we should
choose δ ≤ 1 in this proof.

Proof of theorem 5.2.3
Nadaraya (1964) guarantees that supt∈R |ŜY (t)−SY (t)| →a.s. 0, which implies

sup
t∈Ω
|ŜY (g−1(t))− SY (g−1(t))| →a.s. 0.

However, because SY (g−1(t)) = SX(t), and it is clear that ŜY (g−1(t)) =
S̃X,1(t), then supt∈Ω |S̃X,1(t)− SX(t)| →a.s. 0 holds.

Next, since SX(t) ≥ 0 is bounded above with

sup
t∈Ω

SX(t) = lim
t→ω′+

SX(t) = E(X)− ω′,
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then a(g−1(t)) = SX(t) is bounded on Ω. Furthermore,

â(g−1(t)) = 1
n

n∑
i=1

∫ ∞
g−1(t)

g′(z)V
(
z − g−1(Xi)

h

)
dz

= 1
n

n∑
i=1

∫ ω′′

t
V

(
g−1(z)− g−1(Xi)

h

)
dz

= S̃X,1(t)
> 0

is also bounded above almost surely with
sup
t∈Ω

S̃X,1(t) = lim
t→ω′+

S̃X,1(t) = X̄ − ω′ +Op(h2).

Thus, lemma .0.4 implies supt∈Ω |â(g−1(t))−a(g−1(t))| →a.s. 0, which is equiv-
alent to supt∈Ω |S̃X,1(t) − SX(t)| →a.s. 0. As a conclusion, supt∈Ω |m̃X,1(t) −
mX(t)| →a.s. 0 holds. The proof for the case of i = 2 is similar.

Proof of theorem 5.2.4
Because, for i = 1, 2,

lim
t→ω′+

m̃X,i(t) = limt→ω′+ S̃X,i(t)
limt→ω′+ S̃X,i(t)

,

we only need to see the limit behaviour of each estimators of the survival
function and the cumulative survival function. First, we have

lim
t→ω′+

S̃X,1(t) = 1
nh

n∑
i=1

lim
t→ω′+

∫ ∞
g−1(t)

K

(
z − g−1(Xi)

h

)
dz

= 1
n

n∑
i=1

∫ ∞
−∞

K(u)du

= 1.
For limt→ω′+ S̃X,1(t), the use of the integration by subsitution and by parts
means

lim
t→ω′+

S̃X,1(t) = 1
n

n∑
i=1

lim
t→ω′+

∫ ∞
g−1(t)

g′(z)V
(
z − g−1(Xi)

h

)
dz

= −ω′ + 1
n

n∑
i=1

∫ ∞
−∞

g(g−1(Xi) + hu)K(u)du

= 1
n

n∑
i=1

∫ ∞
−∞

[g(g−1(Xi)) + hg′(g−1(Xi))u+Op(h2)]K(u)du− ω′

= X̄ − ω′ +Op(h2).
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On the other hand, the fact limx→−∞ V (x) = 1 results in

lim
t→ω′+

S̃X,2(t) = 1
n

n∑
i=1

lim
t→ω′+

V

(
g−1(t)− g−1(Xi)

h

)
= 1,

and

lim
t→ω′+

S̃X,2(t) = 1
n

n∑
i=1

∫ g−1(Xi)

−∞
g′(z) lim

t→ω′+
V

(
g−1(t)− z

h

)
dz

= 1
n

n∑
i=1

∫ g−1(Xi)

−∞
g′(z)dz

= X̄ − ω′.

Then, the theorem is proven.
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