

ŒUVRES

COMPLÈTES

DE NIELS HENRIK ABEL

TOME SECOND

物理 08 A 2.2

ŒUVRES

COMPLÈTES

DE NIELS HENRIK ABEL

NOUVELLE ÉDITION

PUBLIÉE AUX FRAIS DE L'ÉTAT NORVÉGIEN

PAR MM. L. SYLOW ET S. LIE

TOME SECOND

CONTENANT LES MÉMOIRES POSTHUMES D'ABEL

CHRISTIANIA Imprimerie de grøndahl & søn

M DCCC LXXXI

物理 08 A 2。2

.

TABLE DES MATIÈRES DU TOME SECOND.

		PAGES
· I.	Les fonctions transcendantes $\Sigma \frac{1}{a^2}$, $\Sigma \frac{1}{a^4}$, $\Sigma \frac{1}{a^4}$,, $\Sigma \frac{1}{a^6}$	
	exprimées par des intégrales définies	1.
П.	Sur l'intégrale définie $\int_{-0}^{1} x^{a-1} \left(1-x\right)^{c-1} \left(l - \frac{1}{x}\right)^{a-1} dx$.	7.
III.	Sommation de la série $y = q(0) + q(1)x + q(2)x^2 + q(3)x^3 + \dots + q(n)x^n$,	
	n étant un nombre entier positif fini ou infini, et $q(n)$ une fonction	Carl Anna
	algébrique rationnelle de n	14.
IV.	Sur l'équation différentielle $dy + (p + qy + ry^2) dx = 0$, où p , q et r	
	sont des fonctions de x seul.	19.
V.	Sur l'équation différentielle $(y+s) dy + (p+qy+ey^2) dx \equiv 0$.	26.
VI.	Détermination d'une fonction au moyen d'une équation qui ne con-	
	tient qu'une seule variable	36.
VII.	Propriétés remarquables de la fonction $y \equiv q x$ déterminée par l'équa-	
	tion $fy \cdot dy = dx \sqrt{(a-y)(a_1-y)(a_2-y) \cdot \cdot \cdot (a_m-y)} = 0$, fy etant	
	une fonction quelconque de y qui ne devient pas nulle ou infinie	
	lorsque $y \equiv a, a_1, a_2, \ldots a_m$	40,
VIII.	Sur une propriété remarquable d'une classe très étendue de fonctions	1 1 H
	transcendantes	43.
IX.	Extension de la théorie précédente	47.
Х.	Sur la comparaison des fonctions transcendantes	55.
XI.	Sur les fonctions génératrices et leurs déterminantes	67.
XII.	Sur quelques intégrales définies	82.
XIII.	Théorie des transcendantes elliptiques ,	. 87.

TABLE DES MATIÈRES. x2 x3

	Note sur la fonction $\psi_x = x + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \dots$	189.
XV.	Démonstration de quelques formules elliptiques	194.
	Sur les séries	197.
VII.	Mémoire sur les fonctions transcendantes de la forme $\int y dx$, où y .	
	est une fonction algébrique de x	206.
ΪΠ.	Sur la résolution algébrique des équations	.217.
IX.	Fragmens sur les fonctions elliptiques	244.
XX.	Extraits de quelques lettres à Holmboe.	254.
XI.	Extrait d'une lettre à Hansteen	
XП.	Extraits de quelques lettres à Crelle	
Ш.	Lettre à Legendre	271.
	Aperçu des manuscrits d'Abel conservés jusqu'à présent	
	Notes aux mémoires du tome I	
	Notes aux mémoires du tome II	
	Table pour faciliter la recherche des citations	

I.

LES FONCTIONS TRANSCENDANTES $\Sigma \frac{1}{a^2}$, $\Sigma \frac{1}{a^3}$, $\Sigma \frac{1}{a^4}$, ..., $\Sigma \frac{1}{a^n}$ EXPRIMÉES PAR DES INTÉGRALES DÉFINIES.

Si l'on différentie plusieurs fois de suite la fonction $\Sigma \frac{1}{a}$, on aura

 $\frac{d\Sigma\frac{1}{a}}{da} = \frac{\Sigma d\frac{1}{a}}{da} = -\Sigma\frac{1}{a^2},$ $\frac{d^2\Sigma \frac{1}{a}}{da^2} = \frac{\Sigma d^2 \left(\frac{1}{a}\right)}{da^2} = +2\Sigma \frac{1}{a^3},$ $\frac{d^3 \Sigma \frac{1}{a}}{da^3} = \frac{\Sigma d^3 \left(\frac{1}{a}\right)}{da^3} = -2.3 \Sigma \frac{1}{a^4},$ $\frac{d^n \Sigma \frac{1}{a}}{da^n} = \frac{\Sigma d^n \left(\frac{1}{a}\right)}{da^n} = \pm 2.3.4 \dots n.\Sigma \frac{1}{a^{n+1}},$

où le signe + a lieu, lorsque *n* est pair, et le signe -, lorsque *n* est impair.

On en conclut réciproquement

 $\Sigma \frac{1}{a^{2}} = -\frac{d\Sigma \frac{1}{a}}{da}, \ \Sigma \frac{1}{a^{3}} = +\frac{d^{2}\Sigma \frac{1}{a}}{2.da^{2}}, \ \Sigma \frac{1}{a^{4}} = -\frac{d^{3}\Sigma \frac{1}{a}}{2.3.da^{3}} + \text{etc.},$ Tome II.

X

XX