

物理 08 A

> 園書番號 800855 部 門 カード

ŒUVRES

COMPLÈTES

DE NIELS HENRIK ABEL

TOME SECOND

物理 08 A 2.2

ŒUVRES

COMPLÈTES

DE NIELS HENRIK ABEL

NOUVELLE ÉDITION

PUBLIÉE AUX FRAIS DE L'ÉTAT NORVÉGIEN

PAR MM. L. SYLOW ET S. LIE

TOME SECOND

CONTENANT LES MÉMOIRES POSTHUMES D'ABEL

CHRISTIANIA

IMPRIMERIE DE GRØNDAHL & SØN

M. DCCC LXXXI

物理 08 A 2.2

TABLE DES MATIÈRES DU TOME SECOND.

		PAGES
· I.	Les fonctions transcendantes $\Sigma \frac{1}{a^2}$, $\Sigma \frac{1}{a^3}$, $\Sigma \frac{1}{a^4}$, $\Sigma \frac{1}{a^n}$	
	exprimées par des intégrales définies	1.
П.	Sur l'intégrale définie $\int_0^1 x^{a-1} (1-x)^{c-1} \left(l \frac{1}{x}\right)^{a-1} dx$,	7.
III.	Sommation de la série $y = q(0) + q(1) x + q(2) x^2 + q(3) x^3 + \dots + q(n) x^n$,	
	n étant un nombre entier positif fini ou infini, et $q(n)$ une fonction	
	algébrique rationnelle de n	14.
IV.	Sur l'équation différentielle $dy + (p + qy + ry^2) dx = 0$; où p , q et r	
	sont des fonctions de x seul	19.
V.	Sur l'équation différentielle $(y+s) dy + (p+qy+ry^2) dx = 0$	26.
VI.	Détermination d'une fonction au moyen d'une équation qui ne con-	
	tient qu'une seule váriable	36.
VII.	Propriétés remarquables de la fonction $y = q x$ déterminée par l'équa-	
	tion $fy \cdot dy - dx \sqrt{(a-y)(a_1-y)(a_2-y)} \dots (a_m-y) = 0$, fy étant	
	une fonction quelconque de y qui ne devient pas nulle ou infinie	10
	lorsque $y \equiv a, a_1, a_2, \dots a_m$	40.
VIII.	Sur une propriété remarquable d'une classe très étendue de fonctions	
	transcendantes	43.
IX.	Extension de la théorie précédente	47.
X.	Sur la comparaison des fonctions transcendantes	55.
XI.	Sur les fonctions génératrices et leurs déterminantes	67.
XII.	Sur quelques intégrales définies	82.
XIII.	Théorie des transcendantes elliptiques	87.

TABLE DES MATIÈRES.

物理 08 A 2.2

		PAGES
XIV.	Note sur la fonction $\psi x = x + \frac{x^2}{2^2} + \frac{x^3}{3^2} + \dots + \frac{x^n}{n^2} + \dots$	189
	Démonstration de quelques formules elliptiques	
XVI.	Sur les séries	197
XVII.	Mémoire sur les fonctions transcendantes de la forme $\int y dx$, où y	
	est une fonction algébrique de x	206
XVIII.	Sur la résolution algébrique des équations	.217
XIX.	Fragmens sur les fonctions elliptiques	244
XX.	Extraits de quelques lettres à Holmboe.	254
XXI.	Extrait d'une lettre à Hansteen	263
XXII.	Extraits de quelques lettres à Crelle	
XXIII.	Lettre à Legendre	271.
	Aperçu des manuscrits d'Abel conservés jusqu'à présent	
	Notes aux mêmoires du tome I	290.
	Notes aux mémoires du tome II	
	Table pour faciliter la recherche des citations	

LES FONCTIONS TRANSCENDANTES $\Sigma \frac{1}{a^2}, \ \Sigma \frac{1}{a^3}, \ \Sigma \frac{1}{a^4}, \ldots \Sigma \frac{1}{a^n}$ EXPRIMÉES PAR DES INTÉGRALES DÉFINIES.

Si l'on différentie plusieurs fois de suite la fonction $\Sigma \frac{1}{a}$, on aura

$$\frac{d\Sigma_{\frac{1}{a}}^{\frac{1}{a}}}{da} = \frac{\Sigma d\frac{1}{a}}{da} = -\Sigma \frac{1}{a^{2}},$$

$$\frac{d^{2}\Sigma_{\frac{1}{a}}^{\frac{1}{a}}}{da^{2}} = \frac{\Sigma d^{2}(\frac{1}{a})}{da^{2}} = +2\Sigma \frac{1}{a^{3}},$$

$$\frac{d^{3}\Sigma_{\frac{1}{a}}^{\frac{1}{a}}}{da^{3}} = \frac{\Sigma d^{3}(\frac{1}{a})}{da^{3}} = -2.3\Sigma \frac{1}{a^{4}},$$

$$\frac{d^{n}\Sigma_{\frac{1}{a}}^{\frac{1}{a}}}{da^{n}} = \frac{\Sigma d^{n}(\frac{1}{a})}{da^{n}} = \pm 2.3.4 \dots n.\Sigma \frac{1}{a^{n+1}},$$

où le signe + a lieu, lorsque n est pair, et le signe -, lorsque n est

On en conclut réciproquement

On en conclut réciproquement
$$\Sigma \frac{1}{a^2} = -\frac{d\Sigma \frac{1}{a}}{da}, \ \Sigma \frac{1}{a^3} = +\frac{d^2\Sigma \frac{1}{a}}{2 \cdot da^2}, \ \Sigma \frac{1}{a^4} = -\frac{d^3\Sigma \frac{1}{a}}{2 \cdot 3 \cdot da^3} + \text{etc.},$$
 Tome II.