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Abstract

This paper surveys the most important developments in measuring dependence of multivariate

financial time series. It reviews the Asymmetric Dynamic Conditional Correlation model

specifications and inference methods, the copula approach and tail dependence coefficients derived

from it. We have a discussion about some statistical tests for the existence of asymmetric

dependence, and more important, the non-universality of asymmetries in dependence. We highlight

the importance of studying asymmetric dependence in risk management.

JEL Classification: C13, C16, C32, C51, G15.

Keywords: A-DCC models, dynamic correlation, Copula, Tail dependence coefficient, Asymmetric

dependence.

１ Introduction

Measuring the relationship of two or more financial series plays a key role for risk management,

portfolio selection and asset pricing, which have received a lot of attention of researchers in the past.

The main challenge lies in constructing and analyzing models that embody time-varying and

asymmetric relationships between variables, especially the latter. As shown in Hong et al. (2007),

Jiang et al. (2016) etc., the correlations between portfolio returns are higher during bear market

periods than bull market periods. This asymmetry is important because the benefits of

diversification will decline dramatically when portfolios become highly dependent and prices decline

all together in a downside period. Yet some literature (eg., Rodriguez (2005), Chiristoffersen, Errunza

et al. (2012)) do not find empirical evidence that such asymmetric dependency exist. Therefore,

there are two essential questions: does the asymmetries exist in dependence and how should the

asymmetries in dependence be measured? In this paper, we focus on the most important

developments in measuring dependence for multivariate financial data particularly the methodologies
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that take asymmetry into account.

One option is to take the covariance and correlation matrices as a measure for representing the

relationship among assets. A Sequence of multivariate volatility models have been proposed, for

instance, the BEKK model by Engel and Kroner (1995), the Constant Conditional Correlation (CCC)

model of Bollerslev (1990) and so on. Worth mentioning, the CCC model gives a multivariate time

series model specification with time varying conditional variances and covariances, but constant

conditional correlations. As the correlation coefficients should be considered dynamic over the

sample period, in light of the CCC model, Engel (2002) and Tse and Tsui (2002) both develop the

Dynamic Conditional Correlation (DCC) model which is capable to provide dynamic conditional

correlations among assets. More development on this model has focused on the study of

asymmetries and regime switching.

The traditional DCC model specifications indicate symmetric time-varying correlations, however,

the comovements of assets may not be adequately captured by a symmetric correlation coefficients.

Ang and Chen (2002) point out that correlations between US stocks and the aggregate US market are

much greater for downside moves than for upside moves. Hong et al. (2007) argue that correlations

between portfolio returns and market returns are much higher when both returns are below some

criteria, but relatively lower when both returns are above some criteria. Cappiello, Engle, and

Sheppard (2006) extend the DCC model into an Asymmetric DCC (A-DCC) model which permitting

conditional asymmetries in correlation dynamics, and find that conditional correlation of equity and

bond returns show evidence of asymmetry, and equities show a stronger response than bonds to joint

bad news1).

To develop the multivariate volatility models, besides taking account of the asymmetries in

conditional correlations, a regime switching approach is also quite plausible. Ledoit et al. (2003) find

that the level of correlation for international stock markets depends on the phase of the business cycle.

Kirishnan (2009) argues that the correlations of returns varied substantially over time and investors

would pay a premium for securities that perform well in regimes in which the correlation is high. All

these findings suggest a state-dependent time-varying correlation for multivariate financial

applications. Pelletier (2006) designed the Regime Switching DCC (RS-DCC) model to capture the

presence of smooth and abrupt changes in the time-varying correlations. Lee (2010) has extend the

model into an Independent Switching DCC (IS-DCC) model and provides a general framework to

model multi-state regime switching dynamic correlation for financial assets. Pan et al. (2014) have

proposed the regime switching asymmetric DCC (RS-ADCC) model by taking account of both of

regime switching and asymmetry in cor- relations. Bauwens and Otranto (2016) proposed the class
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１) The joint bad news is defined as both shocks to returns being negative. Conversely, if both shocks are positive, we

call it joint good news.



of Volatility DCC (VDCC) model in the sense that permitting the model including the dependence of

the correlations on the market volatility. Bauwens and Otranto (2019) also design a new

parameterizations of the DCC model which provide a specific dynamics for each correlation.

Along with the availability of high frequency financial data in recent decades, the multivariate

volatility models have also been extended to incorporate intraday returns, such as Bollerslev et al.

(2020) and Dhaene and Wu (2020).

On the other hand, besides these multivariate volatility models, copula is another popular way to

model the inter dependence among variables. Pearson correlation coefficient, as a traditional means

of correlation analysis, is widely used in practice due to its simplicity of calculation. However,

Pearson correlation coefficient is a linear correlation coefficient requires that the relationship between

variables is linear and the variance is finite, which is often not satisfied in practical applications.

Many data in the financial markets exhibit fat-tailed characteristics, so using linear correlation

coefficients to portray correlations for those data is problematic. In order to overcome the

shortcomings of traditional statistical analysis of correlations, Copula theory, first proposed by Sklar

(1973), has shown great superiority and is widely adopted in the financial sector.

Firstly, the copula function does not restrict the choice of marginal distributions and can be used to

construct flexible multivariate distributions. Secondly, the marginal distributions of random

variables and the correlation structure between them can be studied separately when building the

model. Their dependence structure is described by a copula function. In addition, if a nonlinear

monotonic incremental transformation of the variables is performed, the values of the linear

correlation coefficients will change, but the dependence measures derived by the copula function do

not change. Thus, the copula has a wide range of applications and practicality. The copula has also

been taken into consideration of conditional copula by Patton (2009) and cooperating with the DCC-

family models.

There are ample methodologies to measuring the correlation and dependence between financial

time series. We intend to introduce the main models and statistics of measuring the associations

among financial time series, in order to discuss: Does asymmetry in dependency widespread? What

will be the factor that influence the existence of asymmetry in correlation dynamics? And are the

differences in dependence statistically significant? The rest parts of this survey are generated as

follows. In Section 2, we review the specification of DCC model and A-DCC model. In Section 3, we

introduce the definition and estimation of Copulas. In Section 4, we have the discussion about some

empirical evidence, potential factors that may influence the asymmetric phenomenon, tests for

asymmetric dependence between two variables, and what kind of role does correlation play in risk

management.
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２ The Dynamic Conditional Correlations

Understanding and measuring the relationship between movements in different assets play key

roles in designing a portfolio. As a constant coefficient cannot describe the relationship between

series completely, we consider the correlation dynamics. One essential and commonly applied class

of models is the dynamic conditional correlation (DCC) models. Notice that, the volatility (conditional

variance) of an individual asset series, is usually calculated by a univariate GARCH-type model, and

then with the standardized marginal innovations we fit the DCC model to obtain the conditional

correlation dynamics.

2.1 The Dynamic Conditional Correlation model

Consider a k-dimensional asset return series x with innovation term ϵ, given F, the information

available at time t−1. The conditional covariance matrix of ϵ is heterogeneous, and denoting it as

H. The covariance matrix can be decomposed as:

H=DRD， ⑴

where D=diag{h/
，…，h/

} is the diagonal matrix of the kmarginal volatilities at time t. R is the

correlation matrix, contains k(k−1)/2 elements. The time-varying correlation matrix R must be

inverted at every point in time, which may make the calculation much slower. In the meantime, it is

constrained to be positive definite.

The marginal volatility h/
 can be calculated by any uni-variate volatility model, such as the

GARCH model. Then for each series x，i={1，2，…，k}, we can get the marginal standardized

series by following equation:

η=ϵ/ h， ⑵

and the vector (η，…，η，…，η) follows an independently identically distribution which mean

equals 0 and variance equals 1. We denote η=(η，…，η)′ be the marginally standardized

innovation vector. Notice that the η and η may not be independent. Let Q be the conditional

covariance matrix of η. Engle (2002) has proposed one type of the DCC model to get a proper

estimation of Q and it is defined as

Q=(1−a−b)Q+aQ+bηη′. ⑶

It is actually the form of a DCC(1, 1) model. More generally, a DCC(m, n)model is specified as follows:

Q=1−∑



a−∑




bQ+∑




aQ+∑




bηη′， ⑷

R=(dia(Q))
/

Q(dia(Q))
/
， ⑸

where Q=E[ηη′], is the unconditional covariance matrix of η, a and b are non-negative real numbers
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satisfying 0<∑


a+∑


b<1. After the normalization we can finally obtain the correlation matrix

R. More specifically, the element of R is:

ρ=
q

 qq
. ⑹

The log-likelihood function is given by:

logL(θ，ϕ)=−
1

2
∑



(klog(2π)+logD 


+ϵ′D


 ϵ)+−

1

2
∑



(logR +ηR


 η−ηη′)， ⑺

where θ is the parameter set characterizes univariate volatility model, and ϕ is the parameter set of

DCC model. The first term in eq.⑺ is the sum of the likelihoods of each uni-variate volatility model.

When we maximize the first term, we can get the maximum likelihood estimator of θ, which is the

parameter set in the individual model. Then we can move on to the next stage, maximizing the

second term in eq.⑺ to obtain the correlation coefficients ϕ.

Practically, to estimate DCC models, univariate GARCH models are typically used to obtain the

standardized marginal series {u} and the parameter set θ. In general, the procedure to build DCC

models contains 3 steps as follows:

１. Obtain estimates of the condition mean and residual series via a VAR(p) model.

２. Estimate the volatility series via a univariate volatility model (eg. GARCH family models).

Then calculate the marginal standardized innovation series.

３. By the standardized innovation series obtained in Step 2, fit a DCC model.

2.2 The Asymmetric Dynamic Conditional Correlation model

The conditional correlations of DCC models are symmetrically distributed respect to shocks, which

may not be able to detect the asymmetries and does not allow for asset-specific news and smoothing

parameters. Cappiello et.al (2006) proposed the Asymmetric Dynamic Conditional Correlation (A-

DCC) model, which allows for asymmetries in correlations.

2.2.1 Model Specification

Based on the DCC specification of dynamic correlation, Cappiello et.al (2006) insert a leverage term

into eq.⑷ in order to model the asymmetric correlation, and the structure of an A-DCC model is given

by:

Q=1−∑



a−∑




bQ−τN+τ(nn′)+∑




aQ+∑




b(ηη′)， ⑻

where Q and u are exactly same as in the DCC case. n=I◦η, the ◦ denotes the Hadamard

product, and I is a k×1 indicator function, which takes value 1 when η<0, and 0 otherwise.

N=E[nn′] is the unconditional covariance matrix of n.

Consider the elements n and n in n, when we have joint bad news, the indicators of both n and
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n are 1. Thus, this specification implies a higher correlation when there is a joint bad news. In

order to ensure the positive definiteness of Q, we have the restrictions that∑


a+∑


b+τ<1, and

a, b, and τ are all non-negative.

The A-DCC model is also estimated via maximum likelihood as eq.⑺, with τ in the parameter set ϕ,

assuming conditional multivariate normality. Although the conditional distribution is often

misspecified, the quasi-maximum likelihood estimator exists, which is consistent and asymptotically

normal (Engle and Sheppard (2001)).

Cappiello et al. (2006) also provide a more general form of the correlation model called the

Asymmetric Generalized Dynamic Conditional Correlation (AG-DCC) model, which we demonstrate

in Appendix A.

2.2.2 The news impact surface

To better illustrate the asymmetry in the dynamic correlations, we can create the news impact

surface for A-DCC introduced by Cappiello et al (2006) to indicate that respect to a specific shock, how

much the correlation will change.

The news impact surface shows the relation between shocks and correlation for asset i and j , and it

is given by:

f (η，η)=
c+(aa+τIIηη+bbρ

 [c+a
 η


 +b

 ][c+a
 η


 +b

 ]
for η，η<0， ⑼

f (η，η)=
c+aaηη+bbρ

 [c+a
 η


 +b

 ][c+(a
 +τI)η


 +b

 ]
for η>0，η<0， ⑽

f (η，η)=
c+aaηη+bbρ

 [c+(a
 +τI)η


 +b

 ][c+a
 η


 +b

 ]
for η<0，η>0， ⑾

f (η，η)=
c+aaηη+bbρ

 [c+a
 η


 +b

 ][c+a
 η


 +b

 ]
for η，η>0， ⑿

where η and η are the standardized shocks on asset i and j respectively. By figures of news impact

surface, we can easily check that in each quadrant, the relationship between the joint shock and the

correlation, and the slope of the surface will distinguish the asymmetry.

Noteworthiness, Gjika and Horvath (2013) give the news impact surface of the asymmetric

correlation of the pair BUX(stock index of Hungary)-WIG(stock index of Poland) as the Figure 1.

From the upper panel of Figure 1, we can clearly observe that for a joint negative shock, the

correlation varies more than a joint positive shock.

３ The Copulas

Asset returns might not be normally distributed, and the marginal distribution (the distribution of a
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single return series) would have a heavy tail. Thus the probability of two asset returns exhibiting

movements in the same direction may be much higher than it would be with a bivariate Gaussian.

When two series are not Gaussian, correlation may not be the best way of capturing the relationship

between them. Copula offers a more radical and flexible way of modelling dependence structure

between variables with no restriction on marginal distributions.

3.1 What is copula?

A k-dimensional copula is a joint distribution function on [0, 1]

with standard uniform marginal

distributions. Denoting an element in [0, 1]

by u=(u，…，u)′, which u follows a standard

uniform distribution. As the copula is a distribution function, its range of values is [0, 1]. Thus a k-

dimensional copula C(u)=C(u，…，u), is actually a mapping from [0, 1]

to [0, 1].

The importance of copulas in multivariate analysis is established by the Sklar Theorem (1973),

which shows that all multivariate distribution functions contain copulas and copulas can be used in

conjunction with univariate distribution function to construct multivariate distribution function.

Theorem. Sklar Theorem

Let (X，…，X)′ be a random vector with marginal distributions F(x)，…，F(x). Then there
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exists a copula C such that

F (x，…，x)=C(F(x)，…，F(x))， ⒀

where F (･) is the joint distribution function. If the marginal distributions are continuous, then C is

uniquely determined. Conversely, with a copula C, and marginal distributions F，…，F, the

function in eq.(13) is the joint distribution function with these margins.

A proof of the Sklar theorem can be found in Nelsen (1999) or McNeil et al. (2005).

One subtle properties of copula is that, any monotonic incremental transformation of the variables,

no matter it is linear or nonlinear, the dependence measures derived by copula keep the same. We

demonstrate this unchanged property of copula as following proposition, and give the detailed proof of

it.

Proposition. (Invariance of the copula under monotonic transformations)

Let (X，…，X)′ be a random vector with continuous marginal distributions F(x)，…，F(x) and

copula C. Denoting the transformation functions of variables asT(X)，…，T(X). As long asT(X),

i=1，…，k, are continuous and monotonically increasing functions, (T(X)，…，T(X))′ also has

copula C.

Proof. Let F(x) be the marginal distribution function of T(X). As T

 (･) is also strictly increasing,

then

u=F(y)=P(T(X)≤y)=P(X≤T 
 (y))=F(T


 (Y )).

So we have

y=F 
 (u)

and

F
 (u)=T 

 (y)，thus T(F

 (u))=y.

Above all, we have

T(F

 (u))=F 

 (u) for 0≤u≤1.

By Sklar Theorem,

C(u，…，u)=P[F(X)≤u，…，F(X)≤u]

=P[X≤F
 (u)，…，X≤F

 (u)]

=P[T(X)≤T(F

 (u))，…，T(X)≤T(F


 (u))] ⒁

=P[T(X)≤F 
 (u)，…，T(X)≤F 

 (u)]

=P[F(T(X))≤u，…，F(T(X))≤u].

Consequently, this C is also the Copula of ((T(X))，…，T(X))′. A similar proof can be found in

Tsay (2014).

□

In population terms, the joint probability that observations at the same time from X is less than the

u-quantile, F

 (u)

2), is
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Pr (X≤F
 (u)，…，X≤F

 (u))=F (F
 (u)，…，F

 (u)). ⒂

where the F
 are the quantile functions of the marginal series, and 0≤u，…，u≤1. Such

probabilities are given by the copula C(u，…，u), and it can be written as

C(u)=C(u，…，u)=F (F
 (u)，…，F

 (u)). ⒃

Then we are able to obtain the joint distribution function with known marginal distributions with eq.

⒃.

There are several kinds of copulas which can model different dependent structures among multiple

series. In next section, resulting from the fact that we often observe heavy tails in financial returns

data, and the t copula can better capture the phenomenon of dependent extreme values (see for

example, Literatures such as Mashal Zeevi (2002) and Breymann et al. (2003)), we concentrate on the t

copula to explain its definition and how does it work with multivariate volatility modeling3). Rest

copulas are introduced in Appendix B.

3.2 The definition of t copula

The t copula (see, for example, Embrechts, McNeil Straumann (2001) or Fang (2002)) can be thought

of as representing the dependence structure implicit in a multivariate t distribution.

Let X=(X，…，X)′ be a k-dimensional multivariate Student-t random vector. The pdf of X is a

multivariate t distribution with v degrees of freedom, mean vector μ and positive-definite covariance

matrix ∑, denoted by X〜t (v, μ, ∑), which can be expressed as:

f (x)=

Γ
v+k

2 
Γ

v

2  (πv)

 ∑ 

1+
(x−μ)′∑


(x−μ)

v 





. ⒄

As we discuss in the Proposition, the copula remains unchanged under any monotonically

increasing transformations of a random vector. Consider the covariance matrix ∑ being the random

vector4), and denoting R as the correlation matrix implied by the covariance matrix ∑. We have

R=
∑

 Var (X)…Var (X)
.

The denominator is positive, thus we can regard R as a monotonic transformation of ∑. This

indicates that the copula of a t (v, μ, ∑) is identical to that of a t (v, 0, R) distribution. We take

F
 (u)=t

 (u) in eq.⒃, where t
 denotes the quantile function of a standard univariate t

distribution for ith variable. The unique copula is thus given by
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２) More specifically, considering a binary case, an observation from the first series X is less than the u-quantile

F
 (u), at the same time as the corresponding observation from the second series X is below the u-quantile F


 (u),

the joint probability of these happen is P(X≤F
 (u)，X≤F

 (u))=F (F
 (u)，F

 (u)).

３) Copulas have many other properties, see for example McNeil et al.(2005), Joe and Kurowicka(2010). Here we only

discuss the properties that are useful in multivariate volatility modeling.

４) More specifically, ∑=(∑，…，∑)′, where ∑  is the covariance between ith variable and others.



C
(u)=


 


…


 



Γ
v+k

2 
Γ

v

2  (πv)

R 

1+
v′Rx

v 





dx. ⒅

Simulation of the t copula is particularly easy: we generate a multivariate t-distributed random

vector X〜 t (v, 0, R) using eq.⒄ and then return a vector U=(t(X)，…，t(X))′, where t

denotes the distribution function of a standard univariate t with v degrees of freedom.

When we consider a binary case, the correlation R is a (2×2) matrix. The off-diagonal element is a

scalar, denoted by ρ. Figure 2 (source from Cherubini et al. (2016)) shows the scatter plots of four

bivariate t copulas (k=2) with a. ρ=0.5, v=3, b. ρ=0.9, v=3, c. ρ=0.5, v=30, d. ρ=0.9, v=30,

respectively. These plots are based on 1000 random draws from the corresponding t copulas. As

the correlation coefficient ρ goes closer to 1 (right panels), the scattered points are lying tighter, and as

the degree of freedom goes higher (bottom panels), the scattered points are more dispersed. Both

parameters ρ and v in the copula function are measures of tail dependence. We denote the

parameter set of copula function as ϕ (for t copula, ϕ=(ρ, v)), which includes the parameters of
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Fig. 2: Scattered points of t-copulas. a. ρ=0.5, v=3, b. ρ=0.9, v=3, c. ρ=0.5, v=30, d. ρ=0.9, v=30. (Source:

Cherubini et al. (2016))



multivariate dependence modeling.

For estimation purposes, it is useful to note that the density of the t copula may be easily calculated

from eq.⒃ and has the form

c(u)=
f(t


 (u)，…，t

 (u))




f(t

 (u))

，u∈(0，1)

， ⒆

where f is the joint density of a k-dimensional t (v, 0, R)-distributed random vector and f is the pdf

of the univariate standard t-distribution for ith series.

3.3 Estimation of the Copula

In this section, we discuss the estimation of Copulas with financial data. Broadly speaking the

estimation procedure is similar to DCC model estimation mentioned in previous sections. Firstly,

obtain the standardized marginal series via any univariate model for each series. Then we

transform the standardized margins η with the quantile function t
 for each series to fit the copula

function of eq.⒅ or eq.⒆. The estimation technique is the maximum likelihood, and the log likelihood

function of the copula model is given by

logL(θ，ϕ)=∑



logf(η；θ)+…+∑




logf(η；θ)

+∑



logc(F(η；θ))，…，F((η；θ)；ϕ).

⒇

This log-likelihood has to be maximized with respect to all parameters (θ，…，θ，ϕ), where θ=(θ，

…，θ) is the parameter set for margins and ϕ is the parameter set for the copula. However, this

maximization is very computationally intensive especially in the case of a high dimension.

To overcome this problem, Joe and Xu (1996) propose the estimation technique called Inference for

the Margins (IFM) which separate eq.⒇ into two parts: 1. the first k terms related to the margins and

their parameters; 2. the last term involving the copula density and its parameters. Thus to obtain

the IFM estimator contains two steps:

@maximize the first k terms of eq.⒇ to obtain the θ.

@then with θ maximize the last term related to the copula to obtain estimator ϕ.

Under some regularity conditions, the IFM estimator is asymptotically Gaussian (see Joe (1997)).

3.4 Tail Dependence Coefficients

For this section it suffices to consider a bivariate random vector (X, X) with continuous and

strictly increasing marginal distribution functions and unique copula C. As the Copula models the

dependence structure between two random variables, the tail dependence coefficients can be easily

derived from a Copula. Notice that, in this section, the tail dependence coefficients are including but

not limited to the t copula.
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The tail dependence coefficient provides an asymptotic measure of the tail dependence of the

bivariate distribution of (X, Y). Denote the upper tail dependence parameter as λ, then

λ=lim


P(Y>F
 (u)X>F

 (u))

=lim


1−P(X≤F
 (u))−P(Y≤F

 (u))+P(X≤F
 (u)，Y≤F

 (u))

1−P(X≤F
 (u))

， A

=lim


(1−2u+C(u，u))

1−u

which indicate the probability when X takes extreme large value and Y also abnormally large. If

λ≠0, X and Y are asymptotically dependent in the upper tail; if λ=0, X and Y are said to be

asymptotically independent in the upper tail.

In the similar way, the lower tail dependence parameter denoting as λ is defined as

λ=lim


P(Y≤F
 (u)X≤F

 (u))=lim


C(u，u)

u
. B

The derivation of the expression of λ can be found in Embrechts et al. (2001). And if λ≠0, X and Y

are asymptotically dependent in the lower tail; if λ=0,X and Y are asymptotically independent in the

lower tail.

As we discuss in Section 3.1, u is the probability that X less than the u-quantile (u=P(X≤F
 (u)),

where F is the distribution function of X). Once we have estimated the copula function C, by

artificially selecting the value of u5), it will be possible to obtain λ and λ via eq.A and eq.B.6)

By tail dependence coefficients, Nikoloulopoulos et al. (2012) studies daily log-return data for five

European market indexes (CAC40 France, DAX Germany, OSEAX Norway, SMI Switzerland and

FTSE England) through an upturn period (2003-2006) and a downturn period (2007-2009). Their

empirical results suggest that tail dependence exists and there is a slight tendency to have more tail

dependence in the lower tail than upper tail, but this might not be significant as it is not true for both

periods.

４ Discussions

4.1 Non-universality of asymmetric dependence in financial data

Through a copula approach, measuring the correlation coefficient, Rodriguez (2005) has found that,

during the major financial crises in Asian and Latin American of 1990s7), there are increased tail
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５) For example, for upper tail dependence we may select u∈{0.9, 0.95, 0.98, 0.99} ; and for lower tail dependence

u∈{0.1, 0.05, 0.02, 0.01}.

６) Notice that, the tail dependence exists for some of the families of copulas, while some families do not allow tail

dependence, for example, the Gaussian copula (Nikoloulopoulos et al. (2012)).

７) ERM attacks (1992), the Mexican devaluation (1994), the East Asian crisis (1997), the Russian default (1998), and the

devaluation of the Brazilian real (1999).



dependence and asymmetry in Asian markets, but tail independence and symmetry in Latin

American countries.

This kind of result is not unique. For instance, Chiristoffersen, Errunza et al. (2012) examine the

nonlinear dependence and asymmetries in international equity markets as well. By proposing

dynamic asymmetric copula model, they find that correlations increase dramatically in developed

markets but relatively less increase in emerging markets. Also for the tail dependence, the

increased level is far less in the emerging markets than in developed markets. Therefore, they

conclude that in the emerging markets, diversification still has significant benefits particularly during

the “downside” period.

Gjika and Horvath (2013), by measuring the correlation among Central Europe stock markets via A-

DCC model, they find that asymmetric volatility is common in these stock markets, whereas the

asymmetric correlations only be found in one pair (Hungary (BUX) and Poland (WIG)). The

relationship between conditional correlations and conditional variances (the volatilities) are examined

as well, and their results suggest that the conditional correlations are positively related to the

conditional variances, in another words, correlation between two markets goes higher at a turmoil

period.

On the other hand, some literature find asymmetries in the correlations. For instance, through an

A-DCC approach, Tamakoshi and Hamori (2014) examine the dynamic linkages among three major

European currencies (EUR, GBP, and CHF) exchange rates against USD for a sample period from

January 1999 to December 2010. Their empirical analysis finds evidence of an asymmetric response

in the correlation among the three exchange returns, and higher degree of interdependence during

periods of appreciation than depreciation. This finding is interesting and may be explained by two

reasons: 1. the increased economic and financial convergence lead to high dependency in correlations

before the financial crisis (2007); 2. the different vulnerability of the three European currencies after

the financial crisis.

Ji et al. (2019) analyse the dynamic dependence between WTI crude oil and the exchange rates of

USD/CNY via a time-varying copula model. Their empirical results indicate that the dependence is

significantly asymmetry in Chinese exchange rate market in response to rising and falling oil returns,

though the asymmetry for the oil returns and US dollar index is not significant. These results might

be attributed to the Chinese governmentʼs exchange rate control policy.

All these empirical results show that it seems the asymmetries in the correlations are not as

common as in volatilities. Some markets show the existence of asymmetry while some markets not.

Why the asymmetries in the correlations are not as widespread as asymmetries in volatilities? What

factors will influence the existence of asymmetric correlations?

Many recent studies work on these issues and Chung and Kim (2017) argue that the assets with

asymmetric correlation tend to cause portfolios to have negative skewness, even if every asset in the
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portfolio has positive skewness. And the asymmetric correlation is better measured with the

skewness of smaller portfolios but is not well captured with larger portfolios.

Based on all these research, in our opinion, the non-universal asymmetry in dependence might be

result from both following reasons: the measure we apply, and the features of the data.

The method we use to capture the asymmetric dependence may affect the result whether we can

detect asymmetries. We principally introduce the dynamic conditional correlations and the tail

dependence coefficients λ and λ via Copulas. Although in the A-DCC model specification, the value

of coefficient τ can be interpreted as the degree of asymmetry among marginal series, the significance

of τ can solely tell whether the model is correctly specified or not. Noteworthy, the news impact

surfaces illustrate the asymmetries in conditional correlations respect to the shocks on returns, and it

much depends on the specification of the model, as we may obtain a symmetric diagram through a

standard DCC model.

Numerous other measurements of asymmetric dependence have been proposed, such as exeedance

correlation measurements (Ang and Chen (2002)), local Gaussian correlation (Lacal and Tjostheim,

(2019)) and so on. Some of them capture the global dependence while some are especially for local

dependence structure.

More likely, the financial data itself may affect the result whether we can detect asymmetries.

The market-wide liquidity, volatility (here the volatility may refer to the realized volatility), investor

sentiment, price-earnings ratio, and etc., all may potentially influence the existence of asymmetry.

However, it still remains inconclusive and further studies are required.

4.2 Test of asymmetric dependence

Besides the most popular methodology we introduced in previous sections, several other

measurements for asymmetric dependence and statistical tests based on them have been proposed by

literature. To our knowledge, Ang and Chen (2002) firstly provide a novel test for the null hypothesis

of symmetric correlations with developed the so-called exceedance correlation measurement, which

explains the degree of correlationʼs asymmetry in the data. But their test is model dependent,

testing the joint hypothesis of both validity of a given model and symmetry, so that a rejection of null

may be solely due to a rejection of the model. Hong et al. (2007) provide a model-free test for

asymmetric correlations where stocks move more often with the market when the market goes down

than when it goes up. Jiang et al. (2018) propose a modified mutual information measure to capture

general asymmetric dependence between two random variables and a test based on this measure.

Tjostheim et al. (2013, 2019) develop a nonlinear local measure of dependence called local Gaussian

correlation and develop a test based on this measure of dependence as well.
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4.3 Risk Management

The Capital Asset Pricing Model (CAPM) and the Arbitrage Pricing Theory (APT) (Campbell, Lo,

and MacKinlay 1997) use correlation as a measure of dependence between different financial

instruments, which is essentially founded on an assumption of multivariate normally distributed

returns, in order to arrive at an optimal portfolio selection. Unfortunately, the multivariate normal

distribution is not usually suitable for construct a portfolio that gives minimum variance for a given

expected return.

Asset returns are not normally distributed, and their comovements are not exactly captured by

correlation coefficients. Heavy tails are a feature of distributions of financial time series, and the

probability of two asset prices exhibiting big movements in the same direction may be much higher

than it would be with a bivariate Gaussian. These two observations suggest a relatively high

probability that two markets experience large falls at the same time. The implications for many

asset allocation strategies are quite serious. Furthermore, the magnitude of comovements when the

markets turn down and up may be different.

The study of asymmetric dependence is important for two reasons. First, hedging relies crucially

on the correlations between the assets hedged and the financial instruments used. The presence of

asymmetric correlations can cause problems in hedging effectiveness. Second, though standard

investment theory advises portfolio diversification, the value of this advice might be questionable if all

stocks tend to fall as the market falls.

One essential problem is that most existing tests which designed to detect the existence of

asymmetric dependence can hardly further facilitate future investment or risk management.

Because no matter the asymmetric correlations or the asymmetric dependence coefficient, they are

time-varying, and difficult to predict. It is unarguable that out-of-sample prediction of asymmetry in

correlations is important because it affects both returns and risks in the future. For example, Gupta

and Donleavy (2009) and Virbickaite et al. (2016) both showed that asymmetric correlations are vital in

out-of-sample asset allocation. Whether financial markets become more interdependent, or whether

the portfolios become more related to each other during a turmoil period, is a critical task of asset

allocation. We suggest that the risk management must be aware of those pitfalls and the

sophisticated measuring of dependence is needed to model the risks of the real world.

５ Conclusion

Asymmetric dependency in financial data have been investigated by many studies. The

multivariate volatility models (the DCC-family models) and the Copulas are two most common and

most essential methodology to detect the dependency among financial time series. We introduce

them in detail and give some empirical results derived from them.
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However, there still remains two major problems. First, by these methods, the empirical evidence

of asymmetric dependence is not widespread as expected. Researchers may have given explains for

a specific data that why it does not show the asymmetric phenomenon, but the generally conclusive

causes of asymmetric dependency are unclear. Second, the asymmetric correlations and the

dependent coefficients are time-varying and difficult to predict. The existing asymmetry

measurements can only tell the dependence structure in the past, thus cannot be directly applied for

future investment. The cause and predictability of asymmetric dependence in financial time series

may be the focal points of future research.

Ａ Asymmetric Generalized Dynamic Conditional Correlation (AG-DCC)models

The model specification of AG-DCC model is defined as:

Q=(Q−A′QA−B′QB−G′QG)+A′uuA+B′QB+G′u
 u′

 G，

whereA, B and G are k×kmatrices, u
 are the zero-threshold standardized error which are equal to

u when less than zero else zero otherwise. Q and Q are the unconditional covariance matrices of u

and u
 respectively. Resulting from the fact that this specification has high dimensionality,

restricted models have been used, including the scalar, diagonal and symmetric versions:

@DCC：G=[0], A= a , B= b

@A-DCC：G=  , A= a , B= b

@G-DCC：G=[0].

Ｂ Copula Families

Ｂ.1 The Frechet Family

Through a convex combination we can obtain the Frechet family copula. It has the representation

as:

C(u)=ϕ(u)+(1−ϕ)M(u)，u∈[0，1]


where ϕ∈[0，1].

Ｂ.2 The Archimedean Family

According to McNeil (2009), the copulas through a generator satisfying some suitable assumptions

are belong to this family. An Archimedean generator is any decreasing and continuous function

ψ：[0,∞)→[0, 1].

A d-dimensional copula C is called Archimedean if it satisfies that:

C(u)=ψ(ψ(u)+…+ψ(u))，

Gumbel Copula The generator ψ(t)=exp(−t /), for θ≥1, and the copula representation is:

C(u)=exp−∑



(−logu)


/

，ϕ≥1.
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Clayton Copula The generator ψ(t)=(max{1+ϕt，0})
/
, for ϕ∈

−1

d−1
, 0 ∩(0,∞), and the

copula representation is:

C(u)=max∑



u
 −(d−1)，0

/

，ϕ≥
−1

d−1
，ϕ≠0.
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