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Abstract: The present study aims to develop an efficient numerical method for computing the
diffraction and radiation of water waves with horizontal long cylindrical structures, such as floating
breakwaters in the coastal region, etc. A higher-order scheme is used to discretize geometry of
the structure as well as the physical wave potentials. As the kernel of this method, Wehausen’s
free-surface Green function is calculated by a newly-developed Gauss–Kronrod adaptive quadrature
algorithm after elimination of its Cauchy-type singularities. To improve its computation efficiency, an
analytical solution is derived for a fast evaluation of the Green function that needs to be implemented
thousands of times. In addition, the OpenMP parallelization technique is applied to the formation
of the influence coefficient matrix, significantly reducing the running CPU time. Computations are
performed on wave-exciting forces and hydrodynamic coefficients for the long cylindrical structures,
either floating or submerged. Comparison with other numerical and analytical methods demonstrates
a good performance of the present method.

Keywords: long cylindrical structure; free-surface Green function; higher-order boundary element
method; multipole expansion; singularity elimination; Gauss–Kronrod; numerical quadrature;
OpenMP parallelization

1. Introduction

Cylindrical structures have been widely used in the rapidly-developing coastal and offshore
engineering industries in recent decades, in the form of such as floating breakwaters, oscillating water
columns (OWC) for power generation, etc. These devices are used to either passively avoid the large
wave kinematic energy from attacking harbors or actively convert the wave energy into other kinds
of energies. Cylindrical structures are important in the industries probably due to their simplicity
in geometry and the relatively lower fluid forces they may experience. Extensive efforts have been
made on investigation of such kind of important structures, theoretically [1–3], numerically [4–7], and
experimentally [8,9]. In the numerical approaches, boundary element method should be one of the
most popular tools for analysis [5–7]. However, the present work is very different from the classical
research in the following aspects: (1) since the governing equation used herein is the Laplace equation
instead of the Helmholtz equation, Wehausen’s free-surface Green function [10], constituted by several
simple arithmetic functions, can be employed instead of Haskind’s Green function [5,11] which may
require many evaluations of the modified Bessel functions; (2) since the free-surface Green function is
used as the kernel instead of the Rankine Green function, meshing of the geometry could be restricted
to only the body surface, such that there is no need to deal with the open boundaries, as has been
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accomplished by Zheng et al. [7]; (3) application of a three-node higher-order element rather than a
traditional constant or linear element guarantees the accuracy of geometrical/physical discretization;
and (4) thanks to the exponential integral functions, the free-surface Green function could be written in
a simpler form and then evaluated in a faster speed with a precise result. All of the above advantages
facilitate numerical investigations for hydrodynamic performances of such cylindrical structures.

These horizontal cylindrical structures are so long in its axis direction that the problem to be solved
could be considered in two-dimensional. In comparison to the three-dimensional wave-structure
interaction model within the framework of linear potential flow theory, the present simplified
two-dimensional model has many fewer unknowns on the body surface, since the surface integrations
have been substituted by line integrations. In our HOBEM (higher-order boundary element method)
model, for a typical frequency domain problem, about 10~50 elements (or, in other words, less than
100 nodes) are sufficient to represent an arbitrary cross-sectional shape. Therefore, generally about
102~104 evaluations of the Green function are needed for each incident wave period, compared to
those
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(106) evaluations in the three-dimensional cases (see [12]). Furthermore, by taking advantage
of the contemporary computational technologies, some special technique may be applied to parallelize
the algorithm on multi-processor machines.

Apart from the HOBEM discretization, efficient evaluation of the free-surface Green function
is another important issue in this work. Numerous studies have been performed in the field since
1980s. Noblesse and Newman have made the most important contributions for this issue [12–17].
They developed several popular methods, e.g., separating the local component from the far-field one
and then calculate them by tabulation algorithm, or making the singular functions slow-varying
by subtracting some component and then approximate the resulting functions by Chebyshev
approximation. These methods have been simplified in the present model since the problem to be
considered is two-dimensional and in infinite water depth, in which an extremely convenient analytical
solution can be found for the Green’s kernel in the boundary integral equation. The numerical results
in Section 3 show the validity and efficiency of the present method.

2. Mathematical Theory and Algorithms

2.1. Governing Equation and Boundary Conditions

The problem is to consider interactions between linear water waves and a long prismatic rigid
structure in arbitrary cross-sectional shape, either floating or submerged in water of infinite depth,
as shown in Figure 1. The right-handed Cartesian coordinate system (x, z) is defined, with its origin
located at the undisturbed free surface level and the z-axis taken vertically upward. The fluid domain
is denoted by Ω, whose boundaries S consists of a free surface boundary SF, an up-side open boundary
SU, a lee-side open boundary SL, and a wetted surface boundary SB on the structure.
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The fluid is assumed to be inviscid and incompressible, and the motion is assumed irrotational.
For the linear small amplitude wave harmonic in time with an angular frequency ω, the velocity
potential can be expressed by:

Φ (x, z, t) = Re
[
φ (x, z, t) e−iωt

]
, (1)

where φ is a time-independent complex velocity potential, which can be further decomposed into:

φ = φ0 + φ4 − iω
3

∑
j=1

χjφj, (2)

where the three components denote incident potential, diffraction potential, and radiation potential,
respectively; χj represents displacement of the body motion in each mode (sway, heave, or roll), and φj
stands for the corresponding radiation potential to each motion mode.

The incoming wave of amplitude A and frequency ω, propagating in the positive x direction in
the water of infinite water depth, can be described by the following incident velocity potential:

φ0 = − igA
ω

eKz+iKx, (3)

where K is the infinite depth wave number defined by K = ω2/g. The four induced wave potentials
φj (j = 1~4) must satisfy the Laplace equation:

∇2φj = 0, (4)

and be subjected to various boundary conditions in the fluid domain, including the free surface
condition on SF:

∂φj

∂z
− Kφj = 0, (5)

the bottom boundary condition as z→∞:

∇φj → 0 , (6)

the boundary condition on the surface SB of the structure:

∂φj

∂n
=

{
− ∂φ0

∂n , (j = 4)
nj, (j = 1, 2, 3)

, (7)

and the radiation condition in the far field boundaries SU and SL:

lim
x→±∞

(
∂φj

∂x
± iKφj

)
= 0, (8)

where n is the normal direction of the body geometry, with its three components n1 = nx, n2 = nz,
n3 = (z − zc)nx − (x − xc)nz, where nx and nz are the x and z components of the unit inward normal,
respectively, and (xc, zc) is the rotation center. The subscripts j = 1, 2, 3 denote the direction of sway,
heave, and roll for radiation, respectively, and j = 4 stands for the diffraction.
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2.2. Numerical Techniques

According to Green’s second theorem, by employing Wehausen’s free-surface Green function as
the kernel, a boundary integral equation can be obtained as:

αφj (x0) =
∫
SB

[
∂G (x; x0)

∂n
φj (x)− G (x; x0)

∂φj (x)
∂n

]
dS, (9)

where α is the solid angle. The free-surface Green function is defined to be:

G (x; x0) = ln
r
r1
− 2

∮ ∞

0

eµ(z+ζ)

µ− K
cosµ (x− ξ) dµ, (10)

where the path of the contour integral passes below the poles at µ = K; coordinate of the source point
is x0 = (ξ, ζ); r is the distance between field point and source point, and r1 is the distance between field
point and the image of source point with respect to the free surface.

On the other aspect, if Rankine Green function were employed as the kernel, the boundary integral
equation would be:

αφj (x0) =
∫

SF+SB+SU+SL

[
∂G (x; x0)

∂n
φj (x)− G (x; x0)

∂φj (x)
∂n

]
dS, (11)

where the kernel would be simply expressed by:

G (x; x0) = lnr. (12)

In this paper, we denote the method based on Equations (9) and (10) as FSG_BEM, and the method
based on Equations (11) and (12) as RKG_BEM. The former is applied as the present numerical method,
while the latter is used as a comparison for computational efficiency.

The three-node isoparametric element is selected to discretize both the geometry of body surface
and the physical variables, the shape functions of which being expressed by:

h1 (η) =
1
2

η (η − 1), (13)

h2 (η) = 1− η2, (14)

h3 (η) =
1
2

η (η + 1), (15)

where η is the local coordinate (−1 ≤ η ≤ 1). Therefore, the velocity potential and its normal derivative
on the boundary surface can be expressed straightforwardly as:

[x, z] =
3

∑
k=1

hk (η)
[

xk, zk
]
, (16)

[
φ,

∂φ

∂n

]
=

3

∑
k=1

hk (η)

[
φk,
(

∂φ

∂n

)k
]

. (17)
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Applying the above discretization and the body surface condition Equations (5)–(8) leads to the
following discrete form of the boundary integral equation of Equation (9):

αφj (x0)−
NB
∑

i=1

1∫
−1

∂G(x;x0)
∂n

3
∑

k=1
hk (η)

(
φj
)k |J (η)| dη

=


NB
∑

i=1

1∫
−1

G (x; x0)
∂φ0(x)

∂n |J (η)| dη, (j = 4)

−
NB
∑

i=1

1∫
−1

G (x; x0) nj |J (η)| dη, (j = 1, 2, 3)

, (18)

where NB represents the number of total elements along the body surface, and J(η) the Jacobi matrix
for local-global coordinate transformation, the determinant value of which is calculated by:

|J (η)| =

√(
dx
dη

)2
+

(
dz
dη

)2
. (19)

By employing a collocation process for Equation (18) that the source point is arranged to be put
on each grid node on the immersed body surface mesh, a linear algebraic system could be obtained in
closed form:

[A]N×N
[
φj
]

N×N = [B]N×4,

where N is the total number of nodes. Solution of the above linear system is sensitive to the diagonal
terms of the left-hand side influence matrix [A] which, therefore, needs to be evaluated precisely with
caution. However, direct calculation of these diagonal terms is usually inaccurate and troublesome,
due to the high singularity of the Green function in the case when the field point and the source point
coincides with each other. Fortunately, this weakness can be avoided by considering a constant flux
across the fluid (φ = 1); thereafter we obtain:

Aii = −
N

∑
j=1,j 6=i

Aij, (i = 1, . . . , N). (20)

In calculation of each influence coefficient Aij (j 6= i), OpenMP parallelization technique is
employed to distribute the computation burden on multiple processors of a single computer.
The parallelization works well since calculation of the influence coefficient on one element is
independent from that on another element. After that, the Gauss elimination algorithm is used
to solve the linear system, which is extremely robust regardless of arbitrary shape of the structure.

Given solution for the linear system, we can get the wave exciting force, added mass and added
damping by directly integrating the corresponding hydrodynamic pressure over the immersed body
surface, respectively, i.e.:

f j = iρω
∫
SB

(φ0 + φ4) njdS, (21)

and:

aij +
ibij

ω
= ρ

∫
SB

φinjdS. (22)

2.3. Direct Calculation of Free-Surface Green’s Function

As pointed out in the introduction, accurate calculation of the free-surface Green function is of
great importance to the final solution of the problem. At a preliminary step, we may apply the function
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decomposition method which was proposed by Newman [17]. Equation (10) can be decomposed into
a simplified form:

G = ln
r
r1
− 2F1 (x, z)− 2πieK(z+ζ)cosK (x− ξ), (23)

where i denotes the imaginary unit. The singular part of Equation (23) is:

F1 (x, z) = PV
∫ ∞

0

eµ(z+ζ)

µ− K
cosµ (x− ξ) dµ, (24)

where PV denotes the Cauchy principle value of the integral. The principle task here is to evaluate the
real function F1(x, z) for all relevant values of input parameters (x, z) of possible physical interest [17].
Using the identity:

PV
∫ 2K

0

dµ

µ− K
= 0,

Equation (24) can be written [18] in a more convenient form from the view point of
numerical evaluation:

F1 (x, z) =
∫ 2K

0

f1 (µ)− f1 (K)
µ− K

dµ +
∫ ∞

2K

f1 (µ)

µ− K
dµ, (25)

where:
f1 (µ) = eµ(z+ζ)cosµ (x− ξ). (26)

In the neighborhood of µ = K, linear approximation may be applied such that:

f1 (µ)− f1 (K)
µ− K

= f ′1 (K) = eK(z+ζ) [(z + ζ) cosK (x− ξ)− (x− ξ) sinK (x− ξ)]. (27)

Hence, Equation (25) can be evaluated accurately by an adaptive Gauss–Kronrod-type quadrature
algorithm (see Appendix A).

Following a similar procedure, the derivatives of the Green function with respect to x and z can
be normalized as:

Gx = (x− ξ)

(
1
r2 −

1
r2

1

)
+ 2KF2 (x, z) + 2πiKeK(z+ζ)sinK (x− ξ), (28)

Gz =
(z− ζ)

r2 − (z + ζ)

r2
1
− 2KF3 (x, z)− 2πiKeK(z+ζ)cosK (x− ξ), (29)

where their singular parts are:

F2 (x, z) = PV
∫ ∞

0

µeµ(z+ζ)

µ− K
sinµ (x− ξ) dµ, (30)

F3 (x, z) = PV
∫ ∞

0

µeµ(z+ζ)

µ− K
cosµ (x− ξ) dµ. (31)

Equations (30) and (31) can be formulated as the same form as Equation (25), where:

f2 (µ) = µeµ(z+ζ)sinµ (x− ξ), (32)

f3 (µ) = µeµ(z+ζ)cosµ (x− ξ), (33)

f ′2 (K) = eK(z+ζ) [sinK (x− ξ) + K (z + ζ) sinK (x− ξ) + K (x− ξ) cosK (x− ξ)], (34)

f ′3 (K) = eK(z+ζ) [cosK (x− ξ) + K (z + ζ) cosK (x− ξ)− K (x− ξ) sinK (x− ξ)]. (35)



Computation 2016, 4, 36 7 of 20

2.4. Fast Evaluation by the Analytical Method

Although calculation of the free-surface Green function becomes applicable following the method
described in Section 2.3, a large amount of computation time would be consumed due to the direct
integration by the meticulous adaptive numerical quadrature method. The reason for that is the
effort of dealing with singularity in the denominator, as well as the oscillating inherence of the
integrand. A possible way for its improvement is to derive an alternative analytical expression which
can automatically remove the troublesome singularity, as described below.

Based on McIver [19], we can obtain the following representation for the principle value of the
singular integral without too much of difficulty:

PV
∫ ∞

0

eµ(z+ζ)+iµX

µ− K
dµ =


eK(z+ζ)+iKX (−πi + E1 (K (z + ζ) + iKX)) , X < 0, (z + ζ) ≤ 0
−eK(z+ζ)Ei (−K (z + ζ)) , X = 0, (z + ζ) ≤ 0
eK(z+ζ)+iKX (πi + E1 (K (z + ζ) + iKX)) , X > 0, (z + ζ) ≤ 0

, (36)

where the exponential integrals are defined as:

Ei(x) =
∫ x

−∞

et

t
dt, (x > 0), (37)

E1(Z) =
∫ ∞

Z

e−t

t
dt, (arg |Z| < π). (38)

Let Z = K (z + ζ) + iKX, the real part of Equation (10) can then be written as:

Re {G} = ln
r
r1
− 2


Re
{

eZ (−πi + E1 (Z))
}

, X < 0, (z + ζ) ≤ 0
Re
{
−eZEi (−Kz)

}
, X = 0, (z + ζ) ≤ 0

Re
{

eZ (πi + E1 (Z))
}

, X > 0, (z + ζ) ≤ 0
, (39)

while the imaginary part is obtained by applying the residue theorem, after which we find:

Im {G} = −2iπRe
(

eZ
)

. (40)

Based on the following identities of the exponential integral, i.e.,:

dE1 (Z)
dZ

= − e−Z

Z
, (41)

dEi (z)
dz

=
e−z

z
, (42)

It is possible to calculate derivatives of the Green function with respect to x and z, in which their
real parts are corresponding to:

Re {Gx} = (x− ξ)

(
1
r2 −

1
r2

1

)
− 2


Re
{

iKeZ (−πi + E1 (Z))− iK
Z

}
, X < 0, (z + ζ) ≤ 0

0, X = 0, (z + ζ) ≤ 0

Re
{

iKeZ (πi + E1 (Z))− iK
Z

}
, X > 0, (z + ζ) ≤ 0

, (43)

Re {Gz} =
(z− ζ)

r2 − (z + ζ)

r2
1
− 2


Re
{

KeZ (−πi + E1 (Z))− K
Z

}
, X < 0, (z + ζ) ≤ 0

Re
{
−KezEi (−Kz) + 1

KZ

}
, X = 0, (z + ζ) ≤ 0

Re
{

KeZ (πi + E1 (Z))− K
Z

}
, X > 0, (z + ζ) ≤ 0

, (44)
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respectively. Their imaginary parts are easily obtained by applying the residue theorem as:

Im {Gx} = 2iKπ Im
(

eZ
)

, (45)

Im {Gz} = −2iKπRe
(

eZ
)

. (46)

Through this method, we are able to calculate the free-surface Green function in a fast manner,
since Equations (39), (40), and (43)–(46) are all in analytical form, which just simply consists of the
exponential functions and the trigonometric functions.

In terms of the following two coordinates:

X = K (x− ξ) , Y = K |z + ζ|. (47)

The three singular functions in Equations (24), (30) and (31) can be expressed as F1(X, Y), F2(X, Y),
and F3(X, Y). Figures 2–4 show a comparison between plots of the three singular functions calculated
by the direct integration method and the analytical solution method. In general, the two methods get
almost same results which are hard to be distinguished from each other. It is obviously to see that
F1(X, Y) and F3(X, Y) are even functions in symmetric with respect to the Y axis, while F2(X, Y) is an
odd function which is anti-symmetric about the Y axis. Remarkable variations with a period of π in
parallel to the X axis can be observed in all the plots for the region of Y ∈ [0, 3]. It is also important to
see that the variation becomes slow-varying with the increase of Y in the region of Y ∈ [3, 9+].Computation 2016, 4, 36 9 of 21 
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Figure 2. Comparison of the singular function F1(X, Y) calculated by the two methods: (a) contour plot
by direct integration; (b) oblique view by direct integration; (c) contour plot by analytical solution; and
(d) oblique view by analytical solution.
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Figure 3. Comparison of the singular function F2(X, Y) calculated by the two methods. For captions of
the subplots please refer to Figure 2.Computation 2016, 4, 36 10 of 21 
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Figure 4. Comparison of the singular function F3(X, Y) calculated by the two methods. For captions of
the subplots please refer to Figure 2.
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3. Numerical Results and Discussion

Based on the direct calculation method and the analytical solution method described above,
values of the free-surface Green function and its derivatives are compared, as shown in Figures 5 and 6,
against variation of the physical horizontal distance |X − ξ| between the source and the field points.
Both the real part and the imaginary part are compared, showing that they coincide fairly well with
each other. It should be noted that calculation of the imaginary parts is relatively straightforward since
the real parts contain troublesome principal values of the singular integrals.Computation 2016, 4, 36 11 of 21 
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Figure 5. Comparison of two methods for calculating Wehausen’s Green function and its derivatives
(K = 1.2 m−1, ζ = −1.0 m, z = −1.0 m): (a) real part value of G; (b) imaginary part value of G; (c) real
part value of Gx; (d) imaginary part value of Gx; (e) real part value of Gz; and (f) imaginary part value
of Gz.
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Figure 6. Comparison of two methods for calculating Wehausen’s Green function and its derivatives
(K = 0.001 m−1, ζ = −0.1 m, z = −0.2 m). For captions of the subplots please refer to Figure 5.

Due to different nature of the free-surface Green function when the source point locates at the free
surface or not, we need to verify the results for both floating bodies and submerged bodies. In order
to compare with some existing analytical results, we select horizontal floating/submerged circular
cylinders for the benchmark examples. When the cylinder is submerged, its wet body surface should
be considered as a completely immersed circle; when it is floating with its centroid located on exactly
the mean water surface, whereas its wet body surface should be treated as a half circle. Their analytical
solutions are all obtained based on the so-called multipole expansion method, which were published
in [2,20] for a submerged circle in water of infinite depth, and in [1,21] for a half circle in water of
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infinite depth. The RKG_BEM is also implemented for comparison, in which all of the boundaries
should be taken into consideration; whereas for the FSG_BEM, only the body surface needs to be
meshed. The computations are implemented on a SONY laptop (Sony Corporation, Tokyo, Japan), with
an Intel(R) (Intel, Inc., Santa Clara, CA, USA) Core(TM) i7-2670QM CPU of 2.2 GHz, on 64-bit Windows
operating system. The OpenMP parallelization technique has been applied in the parallel mode.

Figure 7 shows modulus of complex exciting force, added mass and added damping of a
semi-immersed cylinder of radius a in comparison with those computed by the RKG_BEM and
the analytical multipole expansion method [20]. The corresponding meshes used by the two boundary
element methods are specified in Table 1. The computation takes 39.08 s for the RKG_BEM and 2.67 s
for the FSG_BEM, both in parallel mode. In Figure 7, the present method based on the analytically
evaluated free-surface Green function achieves good agreement with both of the other two methods.
Noted that, there are some odd points on the curve calculated by the FSG_BEM. This phenomenon
should be attributed to the so-called “irregular frequencies” [10,22]. The irregular frequencies are
given by the eigenvalues associated with the interior Dirichlet problem, within the fluid domain on
which the integral equation is applied. The discrete boundary integral equation is ill-conditioned and
not uniquely solvable at these frequencies.
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Figure 7. Comparison of hydrodynamic characteristics of a floating cylinder, in semi-immersed circle
of radius a: (a) sway exciting force; (b) heave exciting force; (c) sway added mass; (d) heave added
mass; (e) sway added damping; and (f) heave added damping.

Table 1. Mesh specifications for the case shown in Figure 4. LF, LU, LL and LB denote the length of the
boundaries as shown in Figure 1, respectively, and NF, NU, NL, and NB denote the number of elements
meshed on the boundaries, respectively.

Method LF LU LL LB NF NU NL NB

FSG_BEM / / / πa / / / 10
RKG_BEM 60a 20a 20a πa 240 90 90 30

Figure 8 shows modulus of complex exciting forces, added mass and added damping of a
submerged cylinder in comparison with those computed by the RKG_BEM and the analytical multipole
expansion method [21]. The computation takes 49.21 s for the RKG_BEM and 2.65 s for the FSG_BEM,
both in parallel mode. In the solution of multipole expansion method, we derive a new exact
formulation (see Appendix B) for the multipole expansion coefficient Amn which is troublesome
for calculation due to its high singularity in the integrand. In this case, the radius of the cylinder is a,
and the submergence (vertical distance from its centroid to the mean free surface) is f/a = 1.5. The
meshes used by the two boundary element methods are specified in Table 2. In Figure 8, similar to the
case of semi-circle, the present method based on the analytically evaluated free-surface Green function
highly agrees with both of the other two methods. In addition, there is no “irregular frequencies”
phenomenon, which proves the knowledge that for submerged bodies, the solution is always unique.

Table 2. Mesh specifications for the case shown in Figure 5. Refer to Table 1 for the notes of the symbols.

Method LF LU LL LB NF NU NL NB

FSG_BEM / / / 2πa / / / 10
RKG_BEM 60a 20a 20a 2πa 240 90 90 60

Figure 9 shows a comparison of computation time (unit: s) for 60 incident wave periods between
the BEMs (boundary element methods) based on the direct integration and the analytical solution of the
free-surface Green function, in either sequential mode or parallel mode. In Figure 9, a remarkable trend
of reduction in CPU time is shown by using the parallel mode, which tends to be more apparent with
increasing number of the total elements, in both Figure 9a,b. On the other hand, the analytical-based
Green function has saved a significant amount of computation time for the BEM analysis. Roughly
speaking, it has improved the computation speed for around 27~36 times in the sequential mode,
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and 12~60 times in the parallel mode, in comparison to the direct-integration Green function method,
depending on the number of total elements in the input mesh of geometry. The computation time is
further compared in Figure 10, for each calling of the subroutine, involving calculation for both the
value of Green’s function and its derivatives. It is evidently shown that the direct integration method
consumes much more time than the analytical solution method. In addition, the computation time
tends to increase proportionally as the increase of the point distance |x − ξ|, which is different from
that of the series expansion method as reported in the three-dimensional problem in [17,23–25].Computation 2016, 4, 36 15 of 21 
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Figure 8. Comparison of hydrodynamic characteristics of a submerged cylinder. For captions of the
subplots please refer to Figure 7.
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Figure 9. CPU time of the two boundary element methods based on different calculation schemes of
the free-surface Green function in sequential or parallel mode: (a) comparison for the direct integration
method; and (b) comparison for the analytical solution method.
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Figure 10. Computation time (µs) for each implementation of the Green’s kernel, by the two methods,
respectively, as a function of point distance |x − ξ|. The figure is obtained based on averaged CPU
time of 1 million evaluations of the two codes, respectively, for every input of the wave periodω.

Figure 11 demonstrates the convergence rate of the present FSG_BEM using analytical solution
Green function. It is shown that with the increase of number of elements, the numerical solution gets
close quickly to the exact solution [21], especially from 30 to 60 elements in the implemented case the
difference is almost negligible. This may suggest that, for such cross-sections in simple geometries,
only a few elements are sufficient to obtain a high accuracy.
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Figure 11. Convergence test of the present method to the exact solution [21] with respect to the number
of elements: (a) sway exciting force; (b) heave exciting force.
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To further demonstrate the proposed FSG_BEM, wave interactions with a horizontal rectangular
cylinder have been examined, for either floating or submerged cases. For simplicity, both of width and
length of the rectangular cross-section shape are taken as 2a, respectively. f /a is the submergence of its
centroid, as defined in the circular cylinder case. We examine four different submergences (particularly,
f /a = 0.0 stands for the floating cylinder), and the results are shown in Figure 12. From the results, it is
apparent that the floating cylinder is very different from those submerged in the water, especially in
the low frequency region. In general, the peak value of the forces and its corresponding peak frequency
tend to decrease as the submergence increases.Computation 2016, 4, 36 17 of 21 
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Figure 12. Variation of hydrodynamic characteristics of a floating rectangular cylinder (f /a = 0.0)
and submerged rectangular cylinder for different submergences (f /a = 2.0, f /a = 4.0 and f /a = 8.0).
S represents the cross-section area (note that S of a floating rectangular cylinder is half of a submerged
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4. Conclusions

In this paper, we presented a FSG_BEM, which applies a three-node higher-order scheme, and
an analytical algorithm of the free-surface Green function. Various numerical results show that the
present method deserves high accuracy, good convergence, and fast computation efficiency.
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RKG_BEM Rankine Green function based Boundary Element Method
FSG_BEM Free-surface Green function based Boundary Element Method
DrG_BEM Boundary Element Method based on direct integration of the free-surface Green function
AlG_BEM Boundary Element Method based on analytical solution of the free-surface Green function

Appendix A

Let [a, b] be the integration interval, f be a Riemann integrable function, the following
target integral:

I =
∫ b

a
f (x)dx (A1)

can be approximated by adding n + 1 Kronrod points to the n-point Gauss quadrature rule, so that the
function values produced by the lower-order rule can be re-used. This formula is called as Kronrod
extension of Gaussian rules [26], which has a maximum degree of exactness 3n + 1, i.e.,:

I =
n

∑
i=1

wi f (xi) +
n+1

∑
k=1

w∗k f (x∗k ) , f ∈ P3n+1, (A2)

where xi are the Gauss nodes and ωi the corresponding weights, x∗k and ω∗k denote the Kronrod nodes
and corresponding weights, respectively.

The difference between a Gauss quadrature rule and its Kronrod extension are often used as an
estimate of the approximation error suggested by Piessens et al. [27]:

ε = (200 |Gn [a, b]− K2n+1 [a, b]|)1.5, (A3)

where Gn represents the approximation of the initial Gaussian rule, and K2n + 1 the approximation of
its Kronrod extension.

Using the Gauss–Kronrod rule, an adaptive integral algorithm can be developed [28]:
Step 1. Firstly, use n-point Gauss rule and (2n + 1)-point Gauss–Kronrod rule to integrate f (x) on

the interval [a, b], respectively. Two approximations of the integral, i.e., Gn and K2n + 1, will be obtained,
as well as Equation (A3). If the error estimation is smaller than a prescribed tolerance Eps, the more
accurate approximation K2n + 1 is accepted as the final integral value; otherwise, go to Step 2.
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Step 2. Divide interval [a, b] into two equal parts, i.e., [a, m] and [m, b], where m = (a + b)/2, and
compute the two sub-integrals independently:

I =
∫ m

a
f (x)dx +

∫ b

m
f (x)dx. (A4)

Again, the two respective approximations Gi
n and Ki

2n+1, as well as the local error estimate εi will
be attained:

εi =
(

200
∣∣∣Gi

n [a, b]− Ki
2n+1 [a, b]

∣∣∣)1.5
, (A5)

where the superscript denotes the ith sub-interval. If εi is smaller than Eps, accept Ki
2n+1 as the

final integral value on ith sub-interval, and stop the circulation; if not, continue to subdivide the
sub-intervals and repeat Step 2.

Appendix B

In the multipole expansion method, Linton and McIver [20] gives an expression for wave
scattering potential of a submerged horizontal cylinder in series form:

φ =
∞

∑
n=1

an+1αnφn, (B1)

where:

φn =
e−inθ

rn +
∞

∑
m=0

Amnrme−imθ , (B2)

Amn =
(−1)m+n

m! (n− 1)!

∮ ∞

0

µ + K
µ− K

µm+n−1e2µζ dµ, (B3)

where a is the radius and ζ the submergence. Calculation of the multipole expansion coefficients Amn

is not a trivial task, since usually a direct integration method will be adopted which leads to some
substantial numerical errors. By the Newton’s binomial theorem and through integration by parts, we
derive the following series representations for its accurate calculation:

Amn = Re (Amn) + iIm (Amn), (B4)

where:

Re (Amn) =
(−1)m+n

m!(n−1)!

{(
− 1

2ζ

)m+n
(m + n− 1)!+ 2Ke2Kζ ·[

m+n−3
∑

i=0

(m+n−1)!
(m+n−1−i)i!

Kie−2Kζ

(−2ζ)m+n−1−i

(
1 +

m+n−2−i
∑

j=1

(2Kζ)j

j!

)
− (m+n−1)

2ζ Km+n−2e−2Kζ − Km+n−1Ei (−2Kζ)

]} , (B5)

and:

Im (Amn) =
(−1)m+n

m! (n− 1)!
2πKm+ne2Kζ (B6)

where m ≥ 0, n ≥ 1, m, n ∈ Z∗.
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