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Abstract

With recent improvements in observational technology and developments of the Internet, we can

obtain large amounts of data such as meteorological data, web data, and biological data. It is

an urgent task to develop technologies for extracting useful and valuable information from such

data that will drive decisions or future actions. The difficulty in dealing with the rapidly growing

data is not only because they are simply vast, but also because they are often “unstructured”

and “non-uniform”. Current Database technologies are developed on the theory of relational

algebra, and are able to handle structured data (i.e. relations) that can be represented as tables,

but have difficulty in handling such unstructured data.

To overcome the difficulty, we consider unstructured data as sequences of character sym-

bols, i.e. strings, and investigate foundational technologies for efficient processing of string

data, based on the theory of Combinatorics on Strings. The aims of this thesis are: (A) time-

and space-efficient string indexing structures and (B) development of efficient pattern discovery

algorithms, by exploiting combinatorial properties of strings.

(A) We focus on the well-known string indexing structures: Suffix Trees and DAWGs. We

present the first linear-time algorithm to construct DAWG for strings over an integer alpha-

bet. We next consider the pattern matching for short patterns and propose an index structure

named the truncated DAWG, which is obtained from DAWG by deleting some nodes and edges.

We show that the truncated DAWGs can be represented in small space. As an application of

the truncated DAWG, we show an algorithm for the length-constrained minimal absent words

problem. Then, we address the generic words problem: Given a collection D of strings, build

a data structure which takes as input a string p and a threshold d > 0 and enumerates all

superstrings of p occurring in at least d strings of D. Based on the suffix trees we propose an

O(n log |D|)-size data structure that solves the problem usingO(|p|+o · log log |D|) time where

o is the output size. The proposed data structure outperforms the previous work by Nishimoto,

et al. both in the query time and in the space requirement.
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(B) We address the problem of enumerating combinatorial objects occurring in a given

string. The combinatorial objects we consider are the gapped palindromes and the maximal

repetitions. We propose an efficient algorithm to enumerate the length-constrained gapped

palindromes in an online manner. Then, we consider enumerating the maximal repetition in

a string compressed by the run-length encoding (RLE). We show a new upper bound on the

number of maximal repetitions in a string in terms of the compressed input size. We also

present an algorithm for enumerating all maximal repetitions in a RLE compressed string that

runs in almost linear time with respect to the RLE-compressed size.
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Chapter 1

Introduction

With recent improvements in observational technology and developments of the Internet, we

can obtain large amounts of data every day, such as meteorological data, web data, biological

data, and so on. It is an urgent task to develop technologies for extracting useful and valuable

information from such data that will drive decisions or future actions. The difficulty in dealing

with the rapidly growing data is not only because they are simply vast, but also because they

are often “unstructured” and “non-uniform”. Current Database technologies are developed on

the theory of relational algebra, and are able to handle structured data (i.e. relations) that can be

represented as tables, but have difficulty in handling such unstructured data.

To overcome the difficulty, we consider unstructured data as sequences of character sym-

bols, i.e. strings, and aim to establish foundational technologies for efficient processing of string

data. The ordinary techniques in Data Structures and Algorithms are not sufficient for efficient

string processing: We need novel techniques specialized for manipulating strings based on the

theory of Combinatorics on Strings (or Words) [73] are required.

Let us consider the string pattern matching problem, one of the most important problems

in Computer Science, defined as follows: Given a pattern string and a text string, to find all

occurrences of the pattern in the text. The first linear-time solution to this problem is the Knuth-

Morris-Pratt (KMP) algorithm [43]. The linearity is guaranteed by Periodicity Lemma [29], a

well-known lemma on the periodicity and repetitions, one of the most important characteristic

features in strings. The Crochemore-Perrin algorithm [24] is also a linear time solution using

only constant space, whereas the KMP algorithm requires linear space in the pattern length. The

correctness is guaranteed by the Critical Factorization Theorem [55], an important theorem on

the periodicity and repetitions. From these facts, we believe that discovering new combinatorial

properties on strings leads to developments of simple and efficient string-processing algorithms.
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CHAPTER 1. INTRODUCTION

On the other hand, consider the same problem in the static text and dynamic pattern situa-

tion, a traditional keyword search in a non-changing database. An efficient solution is to build

a string indexing structure allowing a fast search, such as suffix trees [75], suffix arrays [61]

and directed acyclic word graphs (DAWGs) [12, 19]. String indexing structures are fundamen-

tal data structures useful for not only substring search but also for various string processing,

such as string pattern discovery, string data compression, and so on, and have been extensively

studied. Suffix trees and DAWGs are defined using the equivalence relations ≡L and ≡R, and

the equivalence relations are, respectively, defined based on the equality of the sets of begin-

ning positions and the sets of ending positions of substring occurrences. The time and space

complexities of suffix trees and DAWGs are guaranteed by the combinatorial properties on the

equivalence relations.

The aims of this thesis are: (A) time- and space-efficient construction of string indexing

structures and (B) development of efficient pattern discovery algorithms, by exploiting the com-

binatorial properties on strings.

1.1 Our Problems and Our Contributions

In this section, we state the problems we consider in this thesis and explain motivations and our

results for the problems.

1.1.1 (A) Time- and space-efficient construction of indexing structures

As mentioned above, indexing structures are used for various problems. We proposed a faster

construction algorithm and more space-saving indexes for some string sets.

(A-1) Constructing full text index DAWG in linear time for integer alphabet

Time complexities for constructing string index data structures depend on the underlying alpha-

bet. For a given string y of length n over an ordered alphabet of size σ, the suffix tree [62],

the suffix array [61], the DAWG, and the compact DAWGs (CDAWGs) [13] of y can all be con-

structed in O(n log σ) time. These immediately lead to O(n)-time construction algorithms for

a constant alphabet of constant size.

We are particularly interested in the computation of string index data structures for in-

put strings of length n over an integer alphabet of polynomial size in n. For this situation,

2



CHAPTER 1. INTRODUCTION

O(n log σ)-time construction algorithms for ordered alphabet take O(n log n) time for integer

alphabet. Farach-Colton et al. [28] proposed the first O(n)-time suffix tree construction algo-

rithm for integer alphabets. Since the out-edges of every node of the suffix tree constructed

by McCreight’s [62] and Farach-Colton et al.’s algorithms are lexicographically sorted, and

since sorting is an obvious lower-bound for constructing edge-sorted suffix trees, the above-

mentioned suffix-tree construction algorithms are optimal for ordered and integer alphabets,

respectively. Since the suffix array of y can be easily obtained in O(n) time from the edge-

sorted suffix tree of y, suffix arrays can also be constructed in optimal time. In addition, since

the edge-sorted suffix tree of y can easily be constructed in O(n) time from the edge-sorted

CDAWG of y, and since the edge-sorted CDAWG of y can be constructed in O(n) time from

the edge-sorted DAWG of y [13], sorting is also a lower-bound for constructing edge-sorted

DAWGs and edge-sorted CDAWGs. Using the technique of Narisawa et al. [66], edge-sorted

CDAWGs can be constructed in optimal O(n) time for integer alphabets. On the other hand,

the only known algorithm to construct DAWGs was Blumer et al.’sO(n log σ)-time online algo-

rithm [12] for ordered alphabets of size σ, which results inO(n log n)-time DAWG construction

for integer alphabets.

We close the gap between the upper and lower bounds for DAWG construction, by propos-

ing the first O(n)-time algorithm to construct edge-sorted DAWGs for integer alphabets. Our

algorithm also computes the suffix links, and can thus be applied to various kinds of string

processing problems. Our algorithm builds DAWG(y) for a given string y by transforming the

suffix tree of y to DAWG(y). In other words, our algorithm simulates the minimization of the

suffix trie of y to DAWG(y) using only O(n) time and space.

A simple modification to our O(n)-time DAWG construction algorithm also leads us to

the first O(n)-time algorithm to construct affix trees for integer alphabets. We remark that the

previous best known affix-tree construction algorithm of Maaß [57] requires O(n log n) time

for integer alphabets.

(A-2) Efficient indexing data structure for short patterns

Na et al. [65] proposed k-truncated suffix trees which are the pruned version of suffix trees that

require less space than the suffix trees in practice. This can perform the same operation as a

suffix tree for a pattern with a length less than or equal to k.

The DAWG of a string y, denoted by DAWG(y), is an edge-labeled directed acyclic graph

obtained by merging isomorphic subtrees of the suffix trie of y. It is known that each node in

3



CHAPTER 1. INTRODUCTION

DAWG(y) represents substrings of y that have the same set of ending positions. On the other

hand, DAWG(y) also can be seen as the smallest automaton recognizing all suffixes of y. We

can make the smallest automaton recognizing all substrings of length k or less, by minimizing

the trie of the substrings of y whose length is less than or equal to k. However, it is difficult to

construct such automaton efficiently and sometimes its size does not become small, for example,

the size is Θ(kn) when all characters in y are different from one another.

We propose a new data structure named the k-truncated DAWG, obtained from DAWG by

removing some nodes and edges. The k-truncated DAWG of y, denoted by k-TDAWG(y), is a

subgraph of DAWG(y) where a node in DAWG(y) is also a node in k-TDAWG(y) if and only

if the length of the shortest string represented by the node in DAWG(y) is k or less. We show

that the k-TDAWG(y) can be stored in O(min{n, kγ}) space, where n is the length of y and γ

is the size of one of the smallest k-attractors of y [42]. We also present an online algorithm that

constructs k-TDAWG(y) inO(n log σ) time andO(min{n, kγ}) space, where σ is the alphabet

size. We modify the online DAWG construction algorithm by Blumer et al. [12] by adding node

and edge deletion operations to the algorithm and show that these deletion operations can be

performed safely while maintaining O(min{n, kγ}) working space.

For a string y, it is known that the suffix links of the DAWG(y) coincide with the edges

of the suffix tree of yR [25], where yR is the reverse string of y. We show that this property

also holds between the truncated DAWG of y and the truncated suffix tree of yR. Moreover, the

truncated DAWG of y contains secondary edges, which are not present in the truncated suffix

tree of yR.

As an application of k-TDAWG(y), we present an algorithm to compute the set MAW k(y)

of all minimal absent words of y whose length is smaller than or equal to k by using k-TDAWG(y).

A string x is said to be a minimal absent word of y if x does not occur in y and all proper

substrings of x occur in y. Minimal absent words have some applications such as to build phy-

logeny [14] and pattern matching [20]. Let MAW (y) be the set of minimal absent words of

y. Fujishige et al. [32] proposed an algorithm to compute MAW (y) by using DAWG(y) in

O(n+ |MAW (y)|) time. This problem cannot be solved using the suffix tree of y and its suffix

links in the same time and space complexity. In this chapter, we show that MAW k(y) = {x |
x ∈ MAW (y), |x| ≤ k} can be computed by using k-truncated DAWG in O(min{n, kγ} +

|MAW k(y)|) time. Similar to MAW (y), MAW k(y) cannot be computed using the truncated

suffix tree of y with its suffix links in the same time and space complexity.

Last, we check the size of k-truncated DAWGs compared to the size of DAWGs and LZ77

4



CHAPTER 1. INTRODUCTION

factorization by experiments. We also compare the construction time of DAWGs and truncated

DAWGs, and the time to compute MAW k by using them.

(A-3) Frequent pattern mining for a string set

Frequent substring patterns are often referred to as generic words. The generic words mining

problem (or the frequent substring pattern mining problem) has a wide variety of applications,

e.g., Computational Biology, Text mining, and Text Classification [51, 11, 36]. One interest-

ing variant of the generic words mining problem is the right maximal generic words problem,

formulated by Kucherov et al. [51]. In this variant, a pattern p is given as additional input,

which limits the outputs to the right extensions of p. Moreover, the outputs are limited to

the maximal ones. Formally, the problem is to preprocess D so that, for any pattern p and

any threshold d, all right extensions of p that are d-right maximal can be computed efficiently,

where a string w is said to be d-right maximal if x occurs in at least d documents but xa occurs

in less than d documents for any character a. They presented in [51] an O(n)-size data structure

which answers queries in O(|p| + r) time, where n is the total length of strings in D and r

is the number of outputs. Later, Biswas et al. [11] developed a succinct data structure of size

n log |Σ| + o(n log |Σ|) + O(n) bits of space, which answers queries in O(|p| + log log n + r)

time.

As a generalization, Nishimoto et al. [67] defined the left-right-maximal generic word prob-

lem. In this problem, all superstrings of p that are d-left-right maximal should be answered,

where a string w is said to be d-left-right maximal if x has a document frequency ≥ d but xa

and ax respectively have a document frequency < d for any character a.

One naive solution to this problem is to compute the sets Md of d-left-right maximal strings

for 1 ≤ d ≤ m, where m is the number of documents in D and then apply the optimal algo-

rithm of Muthukrishnan [64] for the document listing problem, regarding Md as input document

collection. The query time is O(|p|+ o) time, where o is the number of outputs. The space re-

quirement is O(n2 logm) since the Muthukrishnan algorithm uses the (generalized) suffix tree

of input document collection and the size of suffix tree for Md can be shown to be O(n2/d) for

every d = 1, . . . ,m. The O(n2 logm) space requirement is, however, impractical when dealing

with a large-scale document collection.

In [67] Nishomoto et al. presented anO(n log n)-space data structure which answers queries

in O(|p|+ r log n+ o log2 n) time, where r is the number of d-right-maximal strings that sub-

sume p as a prefix. The factor O(r log n) is for computing the d-right-maximal right extensions

5



CHAPTER 1. INTRODUCTION

of p, which are required for computing d-left-right-maximal extensions of p in their method.

We address the left-right-maximal generic word problem and propose an O(n logm)-space

data structure with query timeO(|p|+o log logm). The data structure outperforms the previous

work by Nishimoto et al. [67] both in the query time and in the space requirement.

Our method uses the suffix trees of Md for d = 1, . . . ,m. For a string set S = {w1, . . . , w`},
Usually, “the suffix tree of S” means the suffix tree of {w1$1, . . . , w`$`} with ` distinct end-

markers $1, . . . , $`, or the suffix tree of S$ = {w1$, . . . , w`$} with a single endmarker $. In

both cases, the size of the suffix tree is proportional to the total length of the strings in S. The

total size of suffix trees of Md$ for d = 1, . . . ,m is O(nm), where n is the total length of D.

Our idea in reducing the space requirement is to replace the suffix tree of Md$ with the suffix

tree of Md. Removing the endmarker successfully reduces the O(nm) total size of the suffix

trees to O(n logm), with a small sacrifice of query time.

1.1.2 (B) Efficient pattern discovery

String indexing data structures such as suffix trees and DAWGs can be applied in various prob-

lems on strings according to their properties.

(B-1) Computing gapped palindromes

A palindrome is a string of form xaxR, where x is a string called the left arm, a is either

the empty string or a single character, and xR is the reversed string of x called the right arm.

Finding palindromic substrings in a given string w is a classical problem on string processing.

The earliest work on this problem dates back to at least 1970’s when Manacher [60] proposed

an online algorithm to find all prefix palindromes in w in O(n) time, where n is the length

of w. Later, Apostolico et al. [3] pointed out that Manacher’s algorithm can be used to find all

maximal palindromes inw inO(n) time, where a maximal palindrome is a substring palindrome

w[i..j] = w[i..j]R of w whose arms cannot be further extended based on the same center i+j
2

.

A natural generalization of palindromes is gapped palindromes of form xyxR, where y

is a string of length at least 2 called a gap1. Finding gapped palindromes has applications

in bioinformatics, e.g.; RNA secondary structures called hairpins can be regarded as a kind of

gapped palindrome xyxR, where x represents the complement of x (x is obtained by exchanging

A with U and exchanging C with G in x). The most basic type of gapped palindromes is g-gapped
1If y is a single character, then xyxR is a palindrome of odd length. Thus we here assume y is of length at least

2.
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CHAPTER 1. INTRODUCTION

palindromes, where g ≥ 2 is a pre-defined fixed length of the gaps. For three parameters gmin,

gmax, and A such that 2 ≤ gmin ≤ gmax and A ≥ 1, Kolpakov and Kucherov [45] introduced

length-constrained gapped palindromes (LCGPs) which has arms of length at least A and gaps

of length in range [gmin, gmax]. This is a natural generalization of g-gapped palindromes with

gmin = gmax = g and A = 1. Kolpakov and Kucherov [45] proposed an O(n log σ + L)-time

offline algorithm to find all maximal LCGPs, where L is the number of outputs.

We consider the problems of finding LCGPs in a string in an online manner. Namely, our

input is a growing string to which new characters can be appended, and each character of the

string arrives one by one, from left to right. Let n be the length of the final string w. We propose

an online algorithm to compute all maximal LCGPs in w in O(n( gmax−gmin

A
+ log σ) + occ) time

and O(n) space, where occ is the number of the outputs.

To our knowledge, there was no algorithm to compute gapped palindromes online until we

proposed this algorithm.

(B-2) Computing maximal repetitions in run length encoded strings

Periodicity and repetitions in strings are one of the most important characteristic features in

strings. They have been one of the first objects of study in the field of combinatorics on

words [73] and have many theoretical, as well as practical applications, e.g., in bioinformat-

ics [44].

Maximal repetitions are periodically maximal substrings of a string where the smallest pe-

riod is at most half the length of the substring, i.e., there are at least two consecutive occurrences

of the same substring. An O(n log n) time algorithm for computing all of the maximal repeti-

tions contained in a string of length n, was shown by Main and Lorentz [59], which is optimal

for general unordered alphabets, i.e., when only equality comparisons between the letters are

allowed. Kolpakov and Kucherov [46] further showed that the number of maximal repetitions

is actually O(n), and gave a linear time algorithm for ordered constant size alphabets (and es-

sentially for integer alphabets), to compute all of them. The algorithm was a modification of the

algorithm by Main [58], which in turn relies on the Lempel-Ziv 77 (LZ77) factorization [77]

of the string, which can be computed in linear time for ordered constant size or integer alpha-

bets [21], but requires Ω(n log σ) time for general ordered alphabets [47], where σ is the size

of the alphabet. Recently, a new characterization of maximal repetitions using Lyndon words

was proposed by Bannai et al. [6, 7], which lead to a very simple proof to what was known as

the “runs” conjecture, i.e., that the number of maximal repetitions in a given string of length n

7



CHAPTER 1. INTRODUCTION

is less than n [7]. The characterization also lead to a new linear time algorithm for computing

maximal repetitions on ordered constant size and integer alphabets, which does not require the

LZ77 factorization, but only on a linear number of longest common extension queries. Fur-

thermore, based on this algorithm, the running time for computing all maximal repetitions for

general ordered alphabets were subsequently improved to O(n log2/3 n) by Kosolobov [48],

O(n log log n) by Gawrychowski et al. [35], and O(nα(n)) by Crochemore et al. [22], where α

denotes the inverse Ackermann function.

We consider the problem of computing all maximal repetitions contained in a string when

given the run-length encoding (RLE) of the string, which is a well known compressed repre-

sentation where each maximal substring of the same character is encoded as a pair consisting

of the letter and the length of the substring. For example, the run-length encoding of the string

aaaabbbaaacc is (a, 4)(b, 3)(a, 3)(c, 2). The main contributions of the chapter are:

1. an upper bound m + k − 1 on the number of maximal repetitions contained in a string,

where m is the size of its run-length encoding and k is the number of run-length factors

whose exponent is at least 2, and

2. an O(mA(m)) time and O(m) space algorithm to compute all maximal repetitions in a

string.

Our algorithm is at least as efficient as the non-RLE algorithms for the general ordered alpha-

bets. Furthermore, when the input string is compressible via RLE, our algorithm can be faster

and more space-efficient compared to the non-RLE algorithms. Although our algorithm mimics

those for non-RLE strings and is conceptually simple, its correctness is based on new non-trivial

observations on the occurrence of specific Lyndon words in run-length encoded strings.

1.2 Organization

The rest of this thesis is organized as follows. In Chapter 2 we give some notations and defini-

tions of several indexing structures. In Chapters 3, 4 and 5, we consider (A) time- and space-

efficient construction of string indexing structures: We present the first O(n)-time algorithm

to construct edge-sorted DAWGs for integer alphabets in Chapter 3. We show a new string

indexing structure named the truncated DAWGs, with an application to the length constrained

minimal absent words problem in Chapter 4. We then propose a faster and space-saving index-

ing structure for the left-right maximal generic words problem in Chapter 5. In Chapters 6 and

8



CHAPTER 1. INTRODUCTION

7, we also consider (B) developing efficient pattern discovery algorithms: We present an online

algorithm for enumerating all length-constrained gapped palindromes in an online manner in

Chapter 6, and an almost linear time algorithm that enumerates all maximal repetitions in a run

length encoded string in Chapter 7.
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Chapter 2

Preliminaries

In this chapter, we give notations to be used in this thesis.

2.1 Strings

Let Σ be an alphabet, that is, a nonempty, finite set of characters. A string over Σ is a finite

sequence of characters from Σ. Let Σ∗ denote the set of strings over Σ. The length of a string

w is the number of characters in w and denoted by |w|. Throughout this thesis, we assume the

alphabet that Σ is an ordered alphabet. We assume that σ = |Σ| is a constant or polynomial of

input string length n depending on the contexts of problems. The string of length 0 is called

the empty string and denoted by ε. Let Σ+ = Σ∗ \ {ε}. For any integer k ≥ 0 and string

x ∈ Σ∗, x0 = ε, and xk = xk−1x. The i-th character of a string w is denoted by w[i] for

1 ≤ i ≤ |w|. Strings x, y, and, z are, respectively, said to be a prefix, substring, and suffix of

string w = xyz. A prefix x, a substring y and a suffix z of w are respectively called a proper

prefix, proper substring and proper suffix of w, if x 6= w, y 6= w and z 6= w. A string x is

called a border of w, if it is a proper suffix as well as a prefix of w. The substring of a string w

that begins at position i and ends at position j is denoted by w[i..j] for 1 ≤ i ≤ j ≤ |w|. That

is, w[i..j] = w[i] · · ·w[j]. For convenience, let w[i..j] = ε for i > j. We use w[..j] and w[i..]

as abbreviations of w[1..j] and w[i..|w|]. Let Pre(w), Sub(w) and Suf (w) denote the sets of

prefixes, substrings, and suffixes of a string w, respectively. For any integer k ≥ 0 and string

x ∈ Σ∗, x0 = ε, and xk = xk−1x. For any string x ∈ Σ∗, we define BegPos(x) = {i | i ∈
[1, |y|−|x|+1], y[i..i+ |x|−1] = x}, EndPos(x) = {i | i ∈ [|x|, |y|], y[i−|x|+1..i] = x}, i.e.,

the set of beginning and end positions of occurrences of x in y. For any strings u, v, we write

u ≡L v (resp. u ≡R v) when BegPos(u) = BegPos(v) (resp. EndPos(u) = EndPos(v)). For

10
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any string x ∈ Σ∗, the equivalence classes with respect to ≡L and ≡R that x belongs to, are

respectively denoted by [x]L and [x]R. Also,−→x and←−x respectively denote the longest elements

of [x]L and [x]R.

For any set S of strings where no two strings are of the same length, let long(S) =

arg max{|x| | x ∈ S} and short(S) = arg min{|x| | x ∈ S}.

2.2 Suffix trees and DAWGs

Suffix trees [75] and directed acyclic word graphs (DAWGs) [12] are fundamental text data

structures. Both of these data structures are based on suffix tries. The suffix trie for string y,

denoted STrie(y), is a trie representing Sub(y), formally defined as follows.

Definition 1. STrie(y) for string y is an edge-labeled rooted tree (VT ,ET ) such that

VT = {x | x ∈ Sub(y)}

ET = {(x, b, xb) | x, xb ∈ VT , b ∈ Σ}.

The second element b of each edge (x, b, xb) is the label of the edge. We also define the set LT

of labeled “reversed” edges called the suffix links of STrie(y) by

LT = {(ax, a, x) | x, ax ∈ Sub(y), a ∈ Σ}.

As can be seen in the above definition, each node v of STrie(y) can be identified with

the substring of y that is represented by v. Assuming that string y terminates with a unique

character that appears nowhere else in y, for each suffix y[i..|y|] ∈ Suf (y) there is a unique leaf

`i in STrie(y) such that the suffix y[i..|y|] is spelled out by the path from the root to `i.

It is well known that STrie(y) requires O(n2) space. One idea to reduce its space to O(n)

is to contract each path consisting only of non-branching edges into a single edge labeled with

a non-empty string. Two types of definitions can be made depending on whether or not to leave

non branching nodes representing a suffix of the input string. In this theses, a tree that leaves

such non-branching nodes is called a suffix tree, and a tree that does not leave nodes is called

an Ukkonen tree. Following conventions from [13, 41], suffix tree STree(y) and Ukkonen tree

UTree(y) are defined as follows.

11
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Definition 2. STree(y) for string y is an edge-labeled rooted tree (VS ,ES ) such that

VS = {−→x | x ∈ Sub(y)}

ES = {(x, β, xβ) | x, xβ ∈ VS , β ∈ Σ+, b = β[1],
−→
xb = xβ}.

The second element β of each edge (x, β, xβ) is the label of the edge. We also define the set LS

of labeled “reversed” edges called the suffix links of STree(y) by

LS = {(ax, a, x) | x, ax ∈ VS , a ∈ Σ},

and denote the tree (VS ,LS ) of the suffix links by SLT (y).

Definition 3. UTree(y) for string y is an edge-labeled rooted tree (VU ,EU ) such that

VU = {−→x | x ∈ Sub(y), ∃a, b ∈ Σ, a 6= b, xa, xb ∈ Sub(y)}

EU = {(x, β, xβ) | x, xβ ∈ VU , β ∈ Σ+, 1 ≤ ∀i ≤ |β|, xβ /∈ VU}.

The second element β of each edge (x, β, xβ) is the label of the edge. We also define the set LS

of labeled “reversed” edges called the suffix links of UTree(y) by

LU = {(ax, a, x) | x, ax ∈ VU , a ∈ Σ},

and denote the tree (VU ,LU ) of the suffix links by SLTU (y).

By representing each edge label β with a pair of integers (i, j) such that y[i..j] = β,

STree(y) and UTree(y) can be represented with O(n) space. Observe that each internal node

of UTree(y) is a branching internal node in STrie(y) and STree(y$) = UTree(y$) where $ is

a character that does not appears in y. Note that for any x ∈ Sub(y) the leaves in the subtree

rooted at −→x correspond to BegPos(x).

An alternative way to reduce the size of STrie(y) to O(n) is to regard STrie(y) as a partial

DFA which recognizes Suf (y), and to minimize it. This leads to the directed acyclic word graph

DAWG(y) of string y. Following conventions from [13, 41], DAWG(y) is defined as follows.

Definition 4. DAWG(y) of string y is an edge-labeled DAG (VD ,ED) such that

VD = {[x]R | x ∈ Sub(y)}

ED = {([x]R, b, [xb]R) | x, xb ∈ Sub(y), b ∈ Σ}.

12
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Figure 2.1: STrie(y), STree(y), and DAWG(y) for string y = abaa$. The solid arcs represent
edges, and the broken arcs represent suffix links.

We also define the set LD of labeled “reversed” edges called the suffix links of DAWG(y) by

LD = {([ax]R, a, [x]R) | x, ax ∈ Sub(y), a ∈ Σ, [ax]R 6= [x]R}.

See Figure 2.1 for examples of STrie(y), STree(y), and DAWG(y).

Theorem 1 ([12]). For any string y of length n > 2, the number of nodes in DAWG(y) is at

most 2n− 1 and the number of edges in DAWG(y) is at most 3n− 4.

Minimization of STrie(y) to DAWG(y) can be done by merging isomorphic subtrees of

STrie(y) which are rooted at nodes connected by a chain of suffix links of STrie(y). Since

the substrings represented by these merged nodes end at the same positions in y, each node of

DAWG(y) forms an equivalence class [x]R. We will make an extensive use of this property in

our O(n)-time construction algorithm for DAWG(y) over an integer alphabet.

2.3 Computation Model

Our model of computation is the word RAM: We shall assume that the computer word size is

at least dlog2 ne, and hence, standard operations on values representing lengths and positions

of strings can be manipulated in constant time. Space complexities will be determined by the

number of computer words (not bits).
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Chapter 3

Linear-time Computation of DAWGs and
Affix Trees for Integer Alphabets

Text indexes are fundamental data structures that allow for efficient processing of string data,

and have been extensively studied. Although there are several alternative data structures which

can be used as an index, such as suffix trees [75] and suffix arrays [61], in this chapter, we

focus on directed acyclic word graphs (DAWGs) proposed by Blumer et al. [12]. Intuitively, the

DAWG of string y, denoted DAWG(y), is an edge-labeled DAG obtained by merging isomor-

phic subtrees of the trie representing all suffixes of string y, called the suffix trie of y. Hence,

DAWG(y) can be seen as an automaton recognizing all suffixes of y. Let n be the length of

the input string y. Despite the fact that the number of nodes and edges of the suffix trie can be

as large as O(n2), Blumer et al. [12] proved that, surprisingly, DAWG(y) has at most 2n − 1

nodes and 3n − 4 edges for n > 2. Crochemore [19] showed that DAWG(y) is the smallest

(partial) automaton recognizing all suffixes of y, namely, the sub-tree merging operation which

transforms the suffix trie to DAWG(y) indeed minimizes the automaton.

Since DAWG(y) is a DAG, in general, more than one string can be represented by its node.

It is known that every string represented by the same node of DAWG(y) has the same set of

ending positions in the string y. Due to this property, if z is the longest string represented by

a node v of DAWG(y), then any other string represented by the node v is a proper suffix of

z. Hence, the suffix link of each node of DAWG(y) is well-defined; if ax is the shortest string

represented by node v where a is a single character and x is a string, then the suffix link of ax

points to the node of DAWG(y) that represents string x.

One of the most intriguing properties of DAWGs is that the suffix links of DAWG(y) for

any string y forms the suffix tree [75] of the reversed string of y. Hence, DAWG(y) augmented

14
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Table 3.1: Space requirements and construction times for text indexing structures for input
strings of length n over an alphabet of size σ.

space (in words) construction time
ordered alphabet integer alphabet constant alphabet

suffix tries O(n2) O(n2) O(n2) O(n2)
suffix trees O(n) O(n log σ) [62] O(n) [28] O(n) [75]
suffix arrays O(n) O(n log σ) [62]+[61] O(n) [28]+[61] O(n) [75]+[61]
DAWGs O(n) O(n log σ) [12] O(n) [this work] O(n) [12]
CDAWGs O(n) O(n log σ) [13] O(n) [66] O(n) [13]
affix trees O(n) O(n log σ) [57] O(n) [this work] O(n) [57]

with suffix links can be seen as a bidirectional text indexing data structure. This line of research

was followed by other types of bidirectional text indexing data structures such as symmetric

compact DAWGs (SCDAWGs) [13] and affix trees [69, 57]. DAWGs with suffix links also have

applications to other kinds of string processing problems which are not always easily solvable

by using suffix trees or arrays, such as: finding minimal absent words for a given string [23, 70],

finding α-gapped repeats that occur in a given string [71], finding maximal-exponent repeats in

a given overlap-free string [4], computing the Lempel-Ziv 77 factorization [77] of a given string

in an online manner and with compact space [76].

Time complexities for constructing text indexing data structures depend on the underlying

alphabet. See Table 3.1. For a given string y of length n over an ordered alphabet of size σ, the

suffix tree [62], the suffix array [61], the DAWG, and the compact DAWGs (CDAWGs) [13] of

y can all be constructed in O(n log σ) time. These immediately lead to O(n)-time construction

algorithms for a constant alphabet.

In this chapter, we are particularly interested in input strings of length n over an integer

alphabet of polynomial size in n. Farach-Colton et al. [28] proposed the first O(n)-time suffix

tree construction algorithm for integer alphabets. Since the out-edges of every node of the suffix

tree constructed by McCreight’s [62] and Farach-Colton et al.’s algorithms are lexicographically

sorted, and since sorting is an obvious lower-bound for constructing edge-sorted suffix trees,

the above-mentioned suffix-tree construction algorithms are optimal for ordered and integer

alphabets, respectively. Since the suffix array of y can be easily obtained in O(n) time from the

edge-sorted suffix tree of y, suffix arrays can also be constructed in optimal time. In addition,

since the edge-sorted suffix tree of y can easily be constructed in O(n) time from the edge-

sorted CDAWG of y, and since the edge-sorted CDAWG of y can be constructed in O(n)

time from the edge-sorted DAWG of y [13], sorting is also a lower-bound for constructing
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edge-sorted DAWGs and edge-sorted CDAWGs. Using the technique of Narisawa et al. [66],

edge-sorted CDAWGs can be constructed in optimal O(n) time for integer alphabets. On the

other hand, the only known algorithm to construct DAWGs was Blumer et al.’s O(n log σ)-time

online algorithm [12] for ordered alphabets of size σ, which results in O(n log n)-time DAWG

construction for integer alphabets.

In this chapter, we close the gap between the upper and lower bounds for DAWG construc-

tion, by proposing the first O(n)-time algorithm to construct edge-sorted DAWGs for integer

alphabets. Our algorithm also computes the suffix links, and can thus be applied to various

kinds of string processing problems. Our algorithm builds DAWG(y) for a given string y by

transforming the suffix tree of y to DAWG(y). In other words, our algorithm simulates the

minimization of the suffix trie of y to DAWG(y) using only O(n) time and space.

A simple modification to our O(n)-time DAWG construction algorithm also leads us to

the first O(n)-time algorithm to construct affix trees for integer alphabets. We remark that the

previous best known affix-tree construction algorithm of Maaß [57] requires O(n log n) time

for integer alphabets.

3.1 Notations

In this chapter, we assume that the input string y of length n is over the integer alphabet

{1, . . . , nC} for some constant C, and that the last character of y is a unique character denoted

by $ that does not occur elsewhere in y.

3.2 Constructing DAWGs in O(n) Time for Integer Alphabet

In this section, we present an optimal O(n)-time algorithm to construct DAWG(y) with suffix

links LD for a given string y of length n over an integer alphabet. Our algorithm constructs

DAWG(y) with suffix links LD from STree(y) with suffix links LS . The following result is

known.

Theorem 2 ([28]). Given a string y of length n over an integer alphabet, edge-sorted STree(y)

with suffix links LS can be computed in O(n) time.

Let L and R be, respectively, the sets of longest elements of all equivalence classes on y

w.r.t. ≡L and ≡R, namely, L = {−→x | x ∈ Sub(y)} and R = {←−x | x ∈ Sub(y)}. Let
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Figure 3.1: An example of STree ′(y) with string y = aabcabcab$.

STree ′(y) = (V ′S ,E
′
S ) be the edge-labeled rooted tree obtained by adding extra nodes for strings

inR to STree(y), namely,

V ′S = {x | x ∈ L ∪R},

E ′S = {(x, β, xβ) | x, xβ ∈ V ′S , β ∈ Σ+,

1 ≤ ∀i < |β|, x · β[1..i] /∈ V ′S}.

Notice that the size of STree ′(y) is O(n), since |L ∪R| ≤ |VS |+ |VD | = O(n), where VS and

VD are respectively the sets of nodes of STree(y) and DAWG(y).

A node x ∈ V ′S of STree ′(y) is called black iff x ∈ R. See Figure 3.1 for an example of

STree ′(y).

Lemma 1. For any x ∈ Sub(y), if x is represented by a black node in STree ′(y), then every

prefix of x is also represented by a black node in STree ′(y).

Proof. Since x is a black node, x =←−x . Assume on the contrary that there is a proper prefix z of

x such that z is not represented by a black node. Let zu = x with u ∈ Σ+. Since z ≡R
←−z , we

have x = zu ≡R
←−z u. On the other hand, since z is not black, we have |←−z | > |z|. However, this

contradicts that x is the longest member←−x of [x]R. Thus, every prefix of x is also represented

by a black node.
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Lemma 2. For any string y, let BT (y) be the trie consisting only of the black nodes of

STree ′(y). Then, every leaf ` of BT (y) is a node of the original suffix tree STree(y).

Proof. Assume on the contrary that some leaf ` of BT (y) corresponds to an internal node of

STree ′(y) that has exactly one child. Since any substring in L is represented by a node of the

original suffix tree STree(y), we have ` ∈ R. Since ` =
←−
` , ` is the longest substring of y

which has ending positions EndPos(`) in y. This implies one of the following situations: (1)

occurrences of ` in y are immediately preceded by at least two distinct characters a 6= b, (2) `

occurs as a prefix of y and all the other occurrences of ` in y are immediately preceded by a

unique character a, or (3) ` occurs exactly once in y as its prefix. Let u be the only child of ` in

STree ′(y), and let `z = u, where z ∈ Σ+. By the definition of `, u is not black. On the other

hand, in any of the situations (1)-(3), u = `z is the longest substring of y which has ending

positions EndPos(u) in y. Hence we have u =←−u and u must be black, a contradiction. Thus,

every leaf ` of BT (y) is a node of the original suffix tree STree(y).

Lemma 3 ([66]). For any node x ∈ VS of the original suffix tree STree(y), its corresponding

node in STree ′(y) is black iff (1) x is a leaf of the suffix link tree SLT (y), or (2) x is an internal

node of SLT (y) and for any character a ∈ Σ such that ax ∈ VS , |BegPos(ax)| 6= |BegPos(x)|.

Using Lemma 2 and Lemma 3, we can compute all leaves of BT (y) in O(n) time by a

standard traversal on the suffix link tree SLT (y). Then, we can compute all internal black

nodes of BT (y) in O(n) time using Lemma 1. Now, by Theorem 2, the next lemma holds:

Lemma 4. Given a string y of length n over an integer alphabet, edge-sorted STree ′(y) can be

constructed in O(n) time.

We construct DAWG(y) with suffix links LD from STree ′(y), as follows. First, we construct

a DAG D, which is initially equivalent to the trie BT (y) consisting only of the black nodes of

STree ′(y). Our algorithm adds edges and suffix links to D, so that the DAG D will finally

become DAWG(y). In so doing, we traverse STree ′(y) in post-order. For each black node

x of STree ′(y) visited in the post-order traversal, which is either an internal node or a leaf

of the original suffix tree STree(y), we perform the following: Let p(x) be the parent of x

in the original suffix tree STree(y). It follows from Lemma 1 that every prefix x′ of x with

|p(x)| ≤ |x′| ≤ |x| is represented by a black node. For each black node x′ in the path from p(x)

to x in the DAG D, we compute the in-coming edges to x′ and the suffix link of x′.
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Figure 3.2: (Left): Illustration for a part of STree ′(y), where the branching nodes are those
that exist also in the original suffix tree STree(y). Suppose we have just visited node x = s0
(marked by a star) in the post-order traversal on STree ′(y). Here, s0, . . . , s9 are connected by
a chain of the suffix links starting from s0, and s9 is the first black node after s0 in the chain.
In the corresponding DAG D, we will add in-coming edges to the black nodes in the path from
p(x) to x, and will add suffix links from these black nodes in the path. The sequence s0, . . . , sm
of nodes in STree ′(y) is partitioned into blocks, such that that the parents of the nodes in the
same block belong to the same equivalence class w.r.t. ≡R. (Right): The in-coming edges and
the suffix links have been added to the nodes in the path from p(x) to x = s0.

Let s0, . . . , sm be the sequence of nodes connected by a chain of suffix links starting from

s0 = x, such that |BegPos(si)| = |BegPos(s0)| for all 0 ≤ i ≤ m − 1 and |BegPos(sm)| >
|BegPos(s0)| (see the left diagram of Figure 3.2). In other words, sm is the first black node

after s0 in the chain of suffix links (this is true by Lemma 3). Since |si| = |si−1| + 1 for every

1 ≤ i ≤ m − 1, EndPos(si) = EndPos(s0). Thus, s0, . . . , sm−1 form a single equivalence

class w.r.t. ≡R and are represented by the same node as x = s0 in the DAWG.

For any 0 ≤ i ≤ m−1, let d(si) = |si|−|p(si)|. Observe that the sequence d(s0), . . . , d(sm)

is monotonically non-increasing. We partition the sequence s0, . . . , sm of nodes into blocks so

that the parents of all nodes in the same block belong to the same equivalence class w.r.t. ≡R.

Let r be the number of such blocks, and for each 0 ≤ k ≤ r − 1, let Bk = sik , . . . , sik+1−1

be the kth such block. Note that for each block Bk, p(sik) is the only black node among the

parents p(sik), . . . , p(sik+1−1) of the nodes in Bk, since it is the longest one in its equivalence

class [p(sik)]R. Also, every node in the same block has the same value for function d. Thus,

for each block Bk, we add a new edge (p(sik), bk, qk) to the DAG D, where qk is the (black)

ancestor of x such that |qk| = |x| − d(sik) + 1, and bk is the first character of the label of the

edge from p(sik) to sik in STree ′(y). Notice that this new edge added to D corresponds to the

edges between the nodes in the block Bk and their parents in STree ′(y). We also add a suffix
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link (p(qk), a, p(sik)) to D, where a = sik−1[1]. See also the right diagram of Figure 3.2.

For each 2 ≤ k ≤ r − 1, let Pk be the path from qk−1 to gk, where gk = p(p(qk)) for

2 ≤ k ≤ r−2 and gr−1 = x = s0. Each Pk is a sub-path of the path from p(s0) to s0, and every

node in Pk has not been given their suffix link yet. For each node v in Pk, we add the suffix link

from v to the ancestor u of sik such that |sik | − |u| = |s0| − |v|. See also the right diagram of

Figure 3.2.

Repeating the above procedure for all black nodes of STree ′(y) that are either internal

nodes or leaves of the original suffix tree STree(y) in post order, the DAG D finally becomes

DAWG(y) with suffix links LD . We remark however that the edges of DAWG(y) might not

be sorted, since the edges that exist in STree ′(y) were firstly inserted to the DAG D. Still, we

can easily sort all the edges of DAWG(y) in O(n) total time after they are constructed: First,

extract all edges of DAWG(y) by a standard traversal on DAWG(y), which takes O(n) time.

Next, radix sort them by their labels, which takes O(n) time because we assumed an integer

alphabet of polynomial size in n. Finally, re-insert the edges to their respective nodes in the

sorted order.

Theorem 3. Given a string y of length n over an integer alphabet, we can compute edge-sorted

DAWG(y) with suffix links LD in O(n) time and space.

Proof. The correctness can easily be seen if one recalls that minimizing STrie(y) based on its

suffix links produces DAWG(y). The proposed algorithm simulates this minimization using

only the subset of the nodes of STrie(y) that exist in STree ′(y). The out-edges of each node of

DAWG(y) are sorted in lexicographical order as previously described.

We analyze the time complexity of our algorithm. We can compute STree ′(y) in O(n) time

by Lemma 4. The initial trie for D can easily be computed in O(n) time from STree ′(y). Let

x be any node visited in the post-order traversal on STree ′(y) that is either an internal node or

a leaf of the original suffix tree STree(y). The cost of adding the new in-coming edges to the

black nodes in the path from p(x) to x = s0 is linear in the number of nodes in the sequence

s0, . . . , sm connected by the chain of suffix links starting from s0 = x. Since s0 and sm are the

only black nodes in the sequence, it follows from Lemma 3 that the chain of suffix links from s0

to sm is a non-branching path of the suffix link tree SLT (y). This implies that the suffix links

in this chain are used only for node x during the post-order traversal of STree ′(y). Since the

number of edges in SLT (y) is O(n), the amortized cost of adding each edge to D is constant.

Also, the total cost to sort all edges is O(n), as was previously explained. Now let us consider
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the cost of adding the suffix links from the nodes in each sub-path Pk. For each node v in Pk,

the destination node v can be found in constant time by simply climbing up the path from sik in

the chain of suffix links. Overall, the total time cost to transform the trie for D to DAWG(y) is

O(n).

The working space is clearly O(n).

Figure 3.3 shows an example of DAWG construction by our algorithm.

In some applications such as bidirectional pattern searches, it is preferable that the in-

coming suffix links at each node of DAWG(y) are also sorted in lexicographical order, but

our algorithm described above does not sort the suffix links. However, we can sort the suffix

links in O(n) time by the same technique applied to the edges of DAWG(y).

3.3 Constructing Affix Trees inO(n) Time for Integer Alpha-
bet

Let y be the input string of length n over an integer alphabet. Recall the sets L = {−→x | x ∈
Sub(y)} and R = {←−x | x ∈ Sub(y)} introduced in Section 3.2. For any set S ⊆ Σ∗ × Σ∗ of

ordered pairs of strings, let S[1] = {x1 | (x1, x2) ∈ S for some x2 ∈ Σ∗} and S[2] = {x2 |
(x1, x2) ∈ S for some x1 ∈ Σ∗}. For any string x, let xR denote the reversed string of x.

The affix tree [69] of string y, denoted ATree(y), is a bidirectional text indexing structure

defined as follows:

Definition 5. ATree(y) for string y is an edge-labeled DAG (VA,EA) = (VA,E
F
A ∪EB

A ) which

has two mutually distinct sets EF
A ,E

B
A of edges such that

VA = {(x, xR) | x ∈ L ∪R},

EF
A = {((x, xR), β, (xβ, βRxR)) | x, xβ ∈ VA[1],

β ∈ Σ+, 1 ≤ ∀i < |β|, x · β[1..i] /∈ VA[1]},

EB
A = {((x, xR), αR, (αx, xRαR)) | xR, xRαR ∈ VA[2],

α ∈ Σ+, 1 ≤ ∀i < |α|, xR · αR[1..i] /∈ VA[2]}.

EF
A is the set of forward edges labeled by substrings of y, while EB

A is the set of backward edges

labeled by substrings of yR.
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Figure 3.3: Snapshots during the construction of DAWG(y) for y = aabcabcab$. Step 0:
(Left): STree ′(y) with suffix links LS and (Right): the initial trie for D. We traverse STree ′(y)
in post order. Step 1: We arrived at black leaf node x1 = aabcabcab$ (indicated by a star). We
determine the in-coming edges and suffix links for the black nodes in the path from p(x1) = a

and x1 (indicated by thick black lines). To the right is the resulting DAG D for this step. Step
2: We arrived at black branching node x2 = abcab (indicated by a star). We determine the in-
coming edges and suffix links for the black nodes in the path from p(x2) = ab and x2 (indicated
by thick black lines). To the right is the resulting DAG D for this step. Step 3: We arrived at
black branching node x3 = ab (indicated by a star). We determine the in-coming edges and
suffix links for the black nodes in the path from p(x3) = a and x3 (indicated by thick black
lines). To the right is the resulting DAG D for this step. Step 4: We arrived at black branching
node x4 = a (indicated by a star). We determine the in-coming edges and suffix links for the
black nodes in the path from p(x4) = ε and x4 (indicated by thick black lines). To the right is the
resulting DAG D for this step. Since all branching and leaf black nodes have been processed,
the final DAG D is DAWG(y) with suffix links.
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Figure 3.4: An example of ATree(y) with string y = aabcabcab$. The solid arcs represent the
forward edges in EF

A , while the broken arcs represent the backward edges in EB
A . For simplicity,

the labels of backward edges are omitted.

Theorem 4. Given a string y of length n over an integer alphabet, we can compute edge-sorted

ATree(y) in O(n) time and space.

Proof. Clearly, there is a one-to-one correspondence between each node (x, xR) ∈ VA of

ATree(y) = (VA,E
F
A ∪ EB

A ) and each node x ∈ V ′S of STree ′(y) = (V ′S ,E
′
S ) of Section 3.2

(see also Figure 3.1 and Figure 3.4). Moreover, there is a one-to-one correspondence between

each forward edge (x, β, xβ) ∈ EF
A of ATree(y) and each edge (x, β, xβ) ∈ E ′S of STree ′(y).

Hence, what remains is to construct the backward edges in EB
A for ATree(y). A straightforward

modification to our DAWG construction algorithm of Section 3.2 can construct the backward

edges of ATree(y); instead of working on the DAG D, we directly add the suffix links to

the black nodes of STree ′(y) whose suffix links are not defined yet (namely, those that are

neither branching nodes nor leaves of the suffix link tree SLT (y)). Since the suffix links are

reversed edges, by reversing them we obtain the backward edges of ATree(y). The labels of

the backward edges can be easily computed in O(n) time by storing in each node the length of

the string it represents. Finally, we can sort the forward and backward edges in lexicographical

order in overall O(n) time, using the same idea as in Section 3.2.
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Chapter 4

Truncated DAWGs: Efficient Data
Structures for Processing Short Substrings

Text indexing structures are very important to perform string processing efficiently such as

pattern matching and longest common extension queries. Several indexing structures such as

suffix trees [75], suffix arrays [61] and directed acyclic word graphs (DAWGs) [12, 19] can

represent all suffixes of a string in linear space with respect to the length of the string. However,

it is not efficient to store all suffixes of the string in some applications, for example when

we only want to find short keywords in very long texts. Na et al. [65] proposed k-truncated

suffix trees which are the pruned version of suffix trees that require less space than the suffix

trees in practice. The k-truncated suffix tree of a string y is a compressed trie that represents

substrings of y whose length is less than or equal to k. They also show an application of

truncated suffix trees for LZ77 [77] that compresses using a sliding window of a fixed size [65].

Later, Tanimura et al. [72] showed that the k-truncated suffix tree of a string y can be represented

in O(min{n, kZ}) space, where n is the length of y and Z is the size of LZ77 factorization of

y.

In this chapter, we focus on directed acyclic word graphs (DAWGs) [12]. The DAWG of a

string y, denoted by DAWG(y), is an edge-labeled directed acyclic graph obtained by merging

isomorphic subtrees of the suffix trie of y. It is known that each node in DAWG(y) represents

substrings of y that have the same set of ending positions. On the other hand, DAWG(y) also

can be seen as the smallest automaton recognizing all suffixes of y. We can make the smallest

automaton recognizing all substrings of length k or less, by minimizing the truncated suffix trie

of y, which represents substrings of y whose length is less than or equal to k (see Figure 4.1).

However, it is difficult to construct such automaton and sometimes its size does not become
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small, for example, when all characters in y are different from one another (see Figure 4.2).

In this chapter, we propose a new data structure called k-truncated DAWG, which is the

DAWG with some of its nodes and edges deleted. The k-truncated DAWG of y, denoted

by k-TDAWG(y), is a subgraph of DAWG(y) where a node in DAWG(y) is also a node

in k-TDAWG(y) if and only if the length of the shortest string represented by the node in

DAWG(y) is k or less. We show that the k-TDAWG(y) can be stored in O(min{n, kγ})
space, where n is the length of y and γ is the size of one of the smallest k-attractors of

y [42]. We also present an online algorithm that constructs k-TDAWG(y) in O(n log σ) time

and O(min{n, kγ}) space, where σ is the alphabet size. We modify the online DAWG con-

struction algorithm by Blumer et al. [12]. by adding node and edge deletion operations to the

algorithm and show that these deletion operations can be performed safely while maintaining

O(min{n, kγ}) working space.

For a string y, it is known that the suffix links of the DAWG(y) coincide with the edges of

the suffix tree of yR [25], where yR is the reverse string of y. We show that this property also

holds between the k-truncated DAWG of y and the k-truncated suffix tree of yR. Thus we can

simulate the k-truncated suffix tree of yR on k-TDAWG(y) by using the reversed suffix links

of k-TDAWG(y) with label addition. Moreover, the truncated DAWG of y contains secondary

edges, which are not present in truncated suffix tree of yR.

As an application of k-TDAWG(y), we present an algorithm to compute the set MAW k(y)

of all minimal absent words of y whose length is smaller than or equal to k by using k-TDAWG(y).

A string x is said to be a minimal absent word of y if x does not occur in y and all proper

substrings of x occur in y. Minimal absent words have some applications such as to build phy-

logeny [14] and pattern matching [20]. Let MAW (y) be the set of minimal absent words of

y. Fujishige et al. [32] proposed an algorithm to compute MAW (y) by using DAWG(y) in

O(n+ |MAW (y)|) time. This problem cannot be solved using the suffix tree of y and its suffix

links in the same time and space complexity. In this chapter, we show that MAW k(y) = {x |
x ∈ MAW (y), |x| ≤ k} can be computed by using k-truncated DAWG in O(min{n, kγ} +

|MAW k(y)|) time. Similar to MAW (y), MAW k(y) cannot be computed using the truncated

suffix tree of y with its suffix links in the same time and space complexity.

We also consider k-truncated DAWGs for multiple strings. For a set of strings S, the k-

truncated DAWG of S, denoted by k-TDAWG(S), is a subgraph of the DAWG(S) (see [13]),

where a node in DAWG(S) is also a node in k-TDAWG(S) if and only if the length of the

shortest string represented by the node is k or less. We show that the size of k-TDAWG(S)
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Figure 4.1: The suffix trie of y = abbabab, the truncated suffix trie of y and the smallest
automaton which represents all substrings of y of length 3 or less.
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Figure 4.2: The smallest automaton which represents all substrings of y = abcdefg of length
3 or less.

is O(min{N, k(λ + m)}), where N is the total length of all patterns in S, m is the number

of patterns in S, and λ is the size of one of the smallest k-attractors of S. We also show that

k-TDAWG(S) can be constructed and used in the same manner as that for the k-truncated

DAWG of a single string.

Last, we check the size of k-truncated DAWGs compared to the size of DAWGs by exper-

iments. The experimental results show that the size of k-truncated DAWGs is much smaller

than DAWGs when k is small and the string is repetitive. Moreover, the construction time of

k-truncated DAWGs is also faster than that of DAWGs when the string is repetitive.

A preliminary version of this article was presented in [31]. In this chapter, we show a tighter

upper bound of the size of k-truncated DAWGs and define k-truncated DAWGs for multiple

strings.
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4.1 Definitions

4.1.1 LZ77 factorization

The Lempel-Ziv 77 factorization (LZ77 factorization) with self-references [77] of a string y is a

sequence f1f2 · · · fZ = y that satisfies the following conditions:

• f1 = y[1],

• fi = y[|f1 · · · fi−1|+ 1] if y[|f1 · · · fi−1|+ 1] does not occur in f1 · · · fi−1,

• otherwise, fi is the longest prefix of y[|f1 · · · fi−1|+1..|y|] such that fi begins at a position

inside y[1..|f1 · · · fi−1|].

In this Chapter, Z denotes the size of LZ77 factorization of y. For example, LZ77 factorization

of y = ababbbabbba is f1 = a, f2 = b, f3 = ab, f4 = bb, f5 = abbba and this factorization

size is 5.

4.1.2 String attractors

The string attractors and k-attractors [42] of a string y is the set of positions that is defined as

follow.

Definition 6 ([42]). A string attractor Γ of a string y is a set of γ positions of y such that any

substring y[i..j] has an occurrence y[i′..j′] = y[i..j] with τ ∈ [i′, j′] for some τ ∈ Γ.

Definition 7 ([42]). A k-attractor Γ of a string y is a set of γ positions of y such that any

substring y[i..j] with i ≤ j < i + k has an occurrence y[i′..j′] = y[i..j] with τ ∈ [i′, j′] for

some τ ∈ Γ. When k = n, a k-attractor is a string attractor of y.

The following lemma holds for the size of k-attractors and substrings.

Lemma 5. |Subk(y)| is in O(min{n, kγ}), where n is the size of y and γ is the size of one of

the smallest k-attractors of y.

Proof. From Lemma 1 in [68], the number of distinct substrings of y with length k is in O(kγ).

The number of suffixes of y with length less than k is k−1. Thus |Subk(y)| is inO(min{n, kγ}).
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4.1.3 Truncated suffix trees

Na et al. [65] proposed k-truncated suffix trees which can be obtained by pruning some branches

of suffix trees. The k-truncated suffix tree of y is a compressed trie that represents substrings

of y whose length is less or equal to k. Formally, the k-truncated suffix tree k-TSTree(y) for

string y is defined as follows.

Definition 8. The k-truncated suffix tree k-TSTree(y) for a string y is an edge-labeled rooted

tree (Vk-TS ,Ek-TS ) such that

Vk-TS = {[x]L | x ∈ Subk(y)}

Ek-TS = {([x]L, bβ, [xb]L) | [x]L, [xb]L ∈ Vk-TS , [x]L 6= [xb]L,
−→
xb[1..min{k, |

−→
xb|}] = xbβ}

Figure 4.3 shows an example of the k-truncated suffix tree. The truncated suffix trees is use-

ful for LZ77 that compresses using a sliding window of a fixed size [65]. Since basic operations

on suffix trees can be simulated against strings of length k or less on truncated suffix trees, trun-

cated suffix trees can be used as suffix trees for some algorithms such as data compression [65]

and pattern matching [72]. The following lemma holds for the size of k-TSTree(y).

Lemma 6 ([2]). The k-truncated suffix tree of y can be computed in O(n log σ) time and repre-

sented in O(|Subk(y)|) space.

From Lemma 5 and 6, the following lemma holds.

Lemma 7. The size of the k-truncated suffix tree of y is in O(min{n, kγ})

4.2 k-truncated DAWGs

In this section, we present a new data structure called truncated DAWGs, which is data structures

that can be obtained by deleting some nodes and edges of the DAWGs. We also show some

properties of truncated DAWGs. First, we define k-truncated DAWGs as follows.

Definition 9. The k-truncated directed acyclic word graph k-TDAWG(y) for a string y is a

directed graph (Vk-TD ,Ek-TD) such that

Vk-TD = {[x]R | x ∈ Subk(y)}

Ek-TD = {([x]R, b, [xb]R) | x, xb ∈ Subk(y), b ∈ Σ}.
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Figure 4.3: The suffix tree and 3-truncated suffix tree of y = abbabab.

For any node v ∈ Vk-TD of k-TDAWG(y) and character b ∈ Σ, we write δTD(v, b) = u if

(v, b, u) ∈ Ek-TD for some u ∈ Vk-TD , and δTD(v, b) = nil otherwise.

We also define the set Lk-TD of labeled “reversed” edges called the suffix links of k-TDAWG(y)

by

Lk-TD = {([ax]R, a, [x]R) | x, ax ∈ Sub(y), [ax]R ∈ Vk-TD , a ∈ Σ, [ax]R 6= [x]R}.

For any suffix link (u, a, v) ∈ Lk-TD of k-TDAWG(y), we write slTD(u) = v. There is

exactly one suffix link coming out from each node u ∈ Vk-TD\{[ε]R} of k-TDAWG(y), so the

character a is unique for each node u.

By the definition, clearly Vk-TD ⊆ VD ,Ek-TD ⊆ ED , and Lk-TD ⊆ LD hold. See Fig-

ure 4.4 for examples of DAWG(y) and 3-TDAWG(y). Because k-TDAWG(y) is a subgraph

of DAWG(y), the size of k-TDAWG(y) is smaller than or equal to the size of DAWG(y) (see

Figure 4.5). From the definition of truncated DAWGs, k-TDAWG(y) can simulate δD and slD

on strings of length k or less similar to DAWG(y).

a a ab b b

b
a

b

b

a

b

a

DAWG(y)

a ab b

b
a

b

b

a

3-TDAWG(y)

Figure 4.4: The DAWG and 3-truncated DAWG for y = abbabab. The solid arcs represent
edges and the broken arcs represent suffix links.

For a string y, it is known that the number of nodes of DAWG(y) coincides with the

number of nodes of STree(yR) [25]. From the definition, this property also holds between

k-TDAWG(y) and k-TSTree(yR).
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Figure 4.5: 3-TDAWG(y) = DAWG(y) of y = abcdefg.

Lemma 8. For any string y, k-TSTree(yR) and a tree (Vk-TD ,Lk-TD) composed of suffix links

and nodes of k-TDAWG(y) are isomorphic.

Proof. For convenience, let BegPosR(x) be the set of beginning positions of x in yR, s ≡RL t

if and only if BegPosR(s) = BegPosR(t) and [x]RL be equivalence classes with respect to ≡RL .

BegPosR(xR) can be defined as {n− i+ 1 | i ∈ EndPos(x)}. Since EndPos(s) = EndPos(t)

if and only if BegPosR(sR) = BegPosR(tR), s ≡R t if and only if sR ≡RL tR. Because [x]R

to [xR]RL mapping is a one-to-one correspondence, the nodes of k-TDAWG(y) and nodes of

k-TSTree(yR) also have one-to-one correspondence. Moreover, from definition of the truncated

suffix trees and the truncated DAWGs, the edges ([x]L, bβ, [xb]L) of k-TSTree(yR) and the

suffix links ([bxR]RL , b, [x
R]RL) of truncated DAWG have one-to-one correspondance. Therefore,

the tree composed of suffix links of k-truncated DAWG and suffix tree are isomorphic.

Theorem 5. Let MLk-TD be label-modified suffix links of k-TDAWG(y) which can be obtained

by modifying a label a of each suffix link ([ax]R, a, [x]R) of k-TDAWG(y) to αa, such that

α ∈ Σ∗ satisfies |αax| ≤ k and αax = ←−ax or |αax| > k and←−−αax = ←−ax and |αax| = k. Then

the tree (Vk-TD ,MLk-TD) is k-TSTree(yR).

By using the Lemma 8, we can show that the following theorem holds for the space com-

plexity of k-truncated DAWGs.

Theorem 6. Given a string y of length n, k-TDAWG(y) can be stored inO(min{n, kγ}) space,

where γ is the size of one of the smallest k-attractors of y.

Proof. First, we prove |Vk-TD | ∈ O(min{n, kγ}). From Lemma 8, the number of nodes of

k-TDAWG(y) is the same as the number of nodes of k-TSTree(yR). Since |Subk(yR)| =

|Subk(y)| ∈ O(min{n, kγ}) and the number of nodes of k-TSTree(yR) is O(|Subk(yR)|) by

Lemma 7, thus |Vk-TD | ∈ O(min{n, kγ}). Next, we prove |Ek-TD | ∈ O(min{n, kγ}). Let
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l(v) be arg minx{|x| | x ∈ v} for each node v ∈ Vk-TD . Consider a spanning tree T on the

k-TDAWG consisting of the shortest path from the root to each node, the number of edges

in T is obviously O(min {n, kγ}). Let E be the set of edges of k-TDAWG(y) not included

in T . For λ = ([x]R, b, [xb]R) ∈ E, consider a function f , f(λ) = short([x]R) · s, where

|short([x]R) · s| = k, s[1] = b and short([x]R) · s ∈ Sub(y). Since, f is injective function from

E to k-mers of y, |E| ∈ O(kγ). Moreover, Ek-TD ∈ O(n) because Ek-TD ⊂ ED . Therefore,

|Ek-TD | ∈ O(min{n, kγ}).

Theorem 7. For two strings x, y ∈ Σ∗, k-TSTree(x) = k-TSTree(y) and k-TDAWG(xR) =

k-TDAWG(yR) if Subk(x) = Subk(y).

Proof. From the definition of k-truncated suffix trees, k-TSTree(x) is the Patricia tree of

Subk(x), thus k-TSTree(x) = k-TSTree(y) if Subk(x) = Subk(y). Since the node set of

k-TSTree(x) coincides with k-TSTree(y), the node set of k-TDAWG(xR) matches its of

k-TDAWG(yR). From the definition of edge set of truncated DAWGs, k-TDAWG(xR) coin-

cides with k-TDAWG(yR).

4.3 Construction of Truncated DAWGs

In this section, we present an online construction algorithm of k-truncated DAWGs. As pre-

viously mentioned, since k-TDAWG(y) is a subgraph of DAWG(y), k-TDAWG(y) can be

constructed in O(n log σ) time and O(n) working space by traversing all edges and vertices of

DAWG(y) and deleting unnecessary ones. However, the working space of this procedure is

not optimal, because we need to construct DAWG(y). Therefore, we propose an optimal work-

ing space algorithm that can construct k-TDAWG(y) in O(n log σ) time and O(min{n, kγ})
working space. We modify the online DAWG construction algorithm by Blumer et al. [12] by

adding deletion operations to the algorithm.

The main idea of our algorithm is that the algorithm deletes unnecessary nodes and edges

while creating new nodes and edges similarly to DAWG(y) construction algorithm. In order to

show that k-TDAWG(y) can be constructed similarly to DAWG(y), first we show the following

lemma.

Lemma 9. Let v be a node of both DAWG(y[1..i]) and DAWG(y[1..i+ 1]). If v does not exist

in k-TDAWG(y[1..i]), v also does not exist in k-TDAWG(y[1..i+ 1]).
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Algorithm 1: An O(n log σ)-time construction algorithm of k-TDAWG(y)

Input: string y of length n.
Output: k-TDAWG(y) = (Vk-TD ,Ek-TD) and Lk-TD

1 V,E and L are empty;
2 make new node v;
3 V ← V ∪ {v};
4 for i = 1 to n do
5 u← v;
6 make a new node v;
7 V ← V ∪ {v};
8 while δTD(u, y[i]) = nil and slTD(u) 6= nil and |short(u)| < k do
9 E ← E ∪ {(u, y[i], v)};

10 u← slTD(u);

11 if (u, y[i], δTD(u, y[i])) is a secondary edge then
12 if |short(u)| = k then
13 E ← E\{(u, a, δTD(u, a)) | ∀a ∈ Σ};
14 split(u, y[i]);

15 if there is no in-degree edge of v then
16 V ← V \v;
17 v ← δTD(u, y[i]);

18 L← L ∪ {(v, δTD(u, y[i]))};
19 Output (V,E) and L;

Proof. Let, [x]iR be the equivalence class represented by v in DAWG(y[1..i]) and [x]i+1
R be the

equivalence class represented by v in DAWG(y[1..i+ 1]). Assume that v is not in

k-TDAWG(y[1..i]) and in k-TDAWG(y[1..i + 1]). From the assumption, there is a string w

such that w /∈ [x]iR, w ∈ [x]i+1
R , and |w| ≤ k. However, [x]i+1

R ⊆ [x]iR holds from the definition,

which is a contradiction.

By Lemma 9, we can safely delete nodes which are in k-TDAWG(y[1..i − 1]) but not in

k-TDAWG(y[1..i]) and do not need to consider the nodes that have been deleted when con-

structing k-TDAWG(y) in an online manner. Thus, we can construct k-TDAWG(y[1..i + 1])

from k-TDAWG(y[1..i]) online in a similar way to the DAWG construction algorithm in [12].

Algorithm 1 shows a pseudo-code of the proposed algorithm, provided that the function split

is shown in Algorithm 3. For strings s and t (|s| < |t|) which holds [s]i−1R = [t]i−1R and

[s · y[i]]iR 6= [t · y[i]]iR, the function split compute [sy[i]]iR and [ty[i]]iR by spliting the node

[s]i−1R = δD(u, y[i])． Figure 4.6 shows a snapshot during the construction of 3-TDAWG(y)

for y = abbabab.
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Algorithm 2: An O(n log σ)-time construction algorithm of DAWG(y)[12]
Input: string y of length n.
Output: DAWG(y) = (VD ,ED) and LD

1 V,E and L are empty;
2 make new node v;
3 V ← V ∪ {v};
4 for i = 1 to n do
5 u← v;
6 make a new node v;
7 V ← V ∪ {v};
8 while δD(u, y[i]) = nil and slD(u) 6= nil do
9 E ← E ∪ {(u, y[i], v)};

10 u← slD(u);

11 if (u, y[i], δD(u, y[i])) is a secondary edge then
12 split(u, y[i]);

13 L← L ∪ {(v, δD(u, y[i]))};
14 Output (V,E) and L;

Algorithm 1 satisfies the following theorem.

Theorem 8. Given a string y of length n over an ordered alphabet and a natural number k,

Algorithm 1 computes k-TDAWG(y) in O(n log σ) time and O(min{n, kγ}) working space in

an online manner, where γ is the size of one of the smallest string attractors of y.

Proof. Algorithm 1 shows the construction algorithm of k-TDAWG(y) and Algorithm 2 shows

the construction algorithm of DAWG(y). The differences between these algorithms are oper-

ations of deleting nodes and edges in lines 12–13 and lines 15–17 of Algorithm 1. First, we

show the correctness of our algorithm. By the definition of truncated DAWGs, it is clear that

truncated DAWGs moves in the same manner as DAWGs for u ∈ Vk-TD . For each step, because

algorithm runs on the nodes u which corresponded to y[i − k..i − 1] and connected nodes by

suffix links, any nodes v such that |short(v)| > k is never visited (see Lemma 9). Therefore

the nodes and edges which corresponded only to strings whose length is greater than k can be

deleted immediately. Thus we can construct truncated DAWGs in an online manner by adding

delete operation of nodes and edges in each step.

Next, we prove the working space in O(min{n, kγ}). The nodes and edges are deleted only

in lines 13 and 16. These deleted nodes and edges are made in line 6 or line 14, their size is

obviously not over the size of k-truncated DAWG of y[1..i−1]. Thus working space complexity

is O(kγ).
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Figure 4.6: Snapshots during the construction of 3-TDAWG(y) for y = abbabab on Algo-
rithm 1.

4.4 Applications of Truncated DAWGs for Minimal Absent
Words

In this section, we show an algorithm to compute all minimal absent words of length k or less

of a given string by using k-truncated DAWGs. For two strings x and y, x is an absent word

of y iff x /∈ Sub(y). An absent word x of y is a minimal absent word (MAW) of y if and

only if Sub(x) \ {x} ⊂ Sub(y). In other words, x = avb, where a, b ∈ Σ and v ∈ Σ∗, is
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Algorithm 3: A pseudo-code of the function split(u, c)

1 procedure split(u, c)
2 w ← δ(u, c);
3 make new node s;
4 V ← V ∪ {s};
5 for each character a such that δ(w, a) 6= nil do
6 E ← E ∪ {(s, a, δ(w, a))};
7 for each node t such that δ(t, a) = w and |long(t)| ≤ |long(u)| do
8 E ← E ∪ {(t, a, s)}\{(t, a, w)};
9 L← L ∪ {(s, sl(w))};

10 L← L\{(w, sl(w))};
11 L← L ∪ {(w, s)};

Algorithm 4: AnO(min{n, kγ}+|MAW k(y)|)-time algorithm for computing MAW k(y)

Input: k-truncated DAWG k-TDAWG(y) of y.
Output: All minimal absent words of length up to k for y

1 MAW k ← ∅;
2 for each non-source node u of k-TDAWG(y) do
3 for each character b such that δTD(slTD(u), b) 6= nil do
4 if δTD(u, b) = nil ∧ |long(slTD(u))| ≤ k − 2 then
5 x← long(slTD(u));
6 MAW k ← MAW k ∪ {axb}; // (u, a, slTD(u))∈Lk-TD

7 Output MAW k;

a MAW of y iff x 6∈ Sub(y), av ∈ Sub(y), and vb ∈ Sub(y). The set of all MAWs of y is

denoted by MAW (y). For example, given Σ = {a, b, c} and y = abaac, then MAW (y) =

{aaa, aab, bab, bac, bb, bc, ca, cb, cc}.
Given a string y, the following lemma holds for the number of MAWs of y.

Lemma 10 ([63]). For any string y ∈ Σ∗, σ ≤ |MAW (y)| ≤ (σy − 1)(|y| − 1) + σ, where

σ = |Σ| and σy is the number of distinct characters occurring in y. This bound is tight.

MAWs can be computed from DAWGs with suffix links in linear time.

Lemma 11 ([32]). Given a DAWG of string y of length n, MAW (y) can be computed in O(n+

|MAW (y)|) time with O(n) working space.

Let MAW k(y) denote the MAWs of y which length k or less. For example, given Σ =

{a, b, c} and y = abaac, then MAW 2(y) = {bb, bc, ca, cb, cc}. Now we show that MAW k(y)
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Figure 4.7: Computing minimal absent words from a truncated DAWG.

can be computed from k-TDAWG(y) including its suffix links. Algorithm 4 shows an algorithm

for computing MAW k(y).

Theorem 9. Given a k-truncated DAWG of string y of length n, Algorithm 4 computes MAW k(y)

in O(min{n, kγ} + |MAW k(y)|) time and O(min{n, kγ}) working space, where γ is the size

of one of the smallest k-attractor of y.

Proof. First, we show the correctness of our algorithm. For any node u of k-TDAWG(y) where

short(u) is less than k, EndPos(slD(u)) ⊃ EndPos(u) holds because any string in slD(u) is

a suffix of the strings in u. Thus, if there is an out-edge of u labeled c, there is an out-edge of

slD(u) labeled c.

Hence, to compute x = avb, where a, b ∈ Σ and v ∈ Σ∗, such that x 6∈ Sub(y), av ∈
Sub(y), and vb ∈ Sub(y) we need to to find every character b such that there is an out-edge

of v = slD(u) labeled b but there is no out-edge of u labeled b. The for loop of Line 3 of

Algorithm 4 tests all such characters and only those. Hence, Algorithm 4 computes MAW k(y)

correctly.

Figure 4.7 shows k-TDAWG(y). The string ax occurs in y, ax��≡Ex and [x]R has out-going

edges labeled a, b, and c. So xa, xb, and xc occur in y. On the other hand, [ax]R has out-going

edges labeled a and c, but does not b, i.e. axa and axc occur in y and axb does not. Because ax

and xb occur in y and axb does not, axb is a minimal absent word of y.

Second, we analyze the time complexity of our algorithm. As mentioned above, the minimal

absent words of length 1 for y can be found in O(n + σ) time and O(1) working space. By

Lemma 10, the σ-term is dominated by the output size |MAW k(y)|. Next, we consider the cost

of finding minimal absent words x of length at least 2 and at most k by Algorithm 4.

Let b be any character such that there is an out-edge e of v = slTD(u) labeled b. There are

two cases: (1) If there is no out-edge of u labeled b, then we output a MAW, so we can charge the
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cost to check it to the output size. (2) If there is an out-edge e′ of u labeled b, then we can charge

the cost to check e to e′. Since each node u has exactly one suffix link going out from it, each

out-edge of u is charged only once in Case (2). Moreover, if the out-edges of every node u and

those of slTD(u) are sorted, we can compute their difference for every node u in k-TDAWG(y)

in overall O(min{n, kγ}) time. Overall, Algorithm 4 runs in O(min{n, kγ} + |MAW k(y)|)
time. The space requirement is clearly O(min{n, kγ}).

4.5 Truncated DAWGs of Multiple Strings

In this section, we consider truncated DAWG for multiple string. We redefine some notations

so they can be used for string sets. Let S = {y1, y2, . . . , ym} be a set of strings over Σ. Let

Subk(S) =
⋃m

1=1 Subk(yi). For any string set S = {y1, y2, . . . , ym}, we define the set of

beginning positions BegPos(x) = {(i, l) | l ∈ [1,m], i ∈ [1, |yl|−|x|+1], yl[i..i+ |x|−1] = x}
and end positions EndPos(x) = {(i, l) | l ∈ [1,m], i ∈ [|x|, |yl|], yl[i − |x| + 1..i] = x} of

occurrences of x in S. For any strings s, t, we write s ≡L t (resp. s ≡R t) iff BegPos(s) =

BegPos(t) (resp. EndPos(s) = EndPos(t)). For any string x ∈ Σ∗, the equivalence classes

with respect to ≡L and ≡R that x belongs to, are respectively denoted by [x]L and [x]R. Also,
−→x and←−x respectively denote the longest elements of [x]L and [x]R.

We define the k-truncated DAWG for a set of strings as follows.

Definition 10. The k-truncated directed acyclic word graph k-TDAWG(S) for a set S of

strings is a directed graph (Vk-TD ,Ek-TD) such that

Vk-TD = {[x]R | x ∈ Subk(S)}

Ek-TD = {([x]R, b, [xb]R) | x, xb ∈ Subk(S), b ∈ Σ}.

Figure 4.8 shows an example of DAWGs and truncated DAWGs of multiple string.

In order to analyze the size of k-truncated DAWG for multiple strings, we introduce a gen-

eralized version of k-attractors.

Definition 11. A k-attractor Λ of a string set S = {y1, . . . , ym} is a set of λ pairs of l ∈ [1,m]

and positions τ of yl, such that any substring yl[i..j] with i ≤ j < i + k of yl ∈ S has an

occurrence yl′ [i′..j′] = yl[i..j] with τ ∈ [i′, j′] for some (l′, τ) ∈ Λ.

By using the size k-attractors, we show the size of Subk(S) as follows.

37



CHAPTER 4. TRUNCATED DAWGS: EFFICIENT DATA STRUCTURES FOR PROCESSING SHORT
SUBSTRINGS

a a ab b b b

b ba b a a a a

a bab bb

a a

a

a
b

a

b

a

DAWG(S)

a ab b

a b

bb

a

a
b

a

a

3-TDAWG(S)

Figure 4.8: The DAWG and 3-truncated DAWG of S = {abbabab, babaabb, aabbabaaa}.

Lemma 12. |Subk(S)| is in O(min{N, k(λ + m)}), where N is the total length of all strings

in S and λ is the size of one of the smallest k-attractors of S.

Proof. By the same technique as proof of Lemma 1 in [68], the number of distinct substrings

of S with length k is in O(kλ). The number of distinct suffixes of y ∈ S whose length is less

than k is at most (k − 1)m. Therefore, |Subk(S)| is in O(min{N, k(λ+m)}).

From the definition of k-truncated DAWGs, an upper bound of the size of k-TDAWG(S) is

shown in the following theorem.

Theorem 10. The size of k-truncated DAWG k-TDAWG(S) of a set S = {y1, y2, . . . , ym} is

O(min{N, k(λ+m)).

Next, we consider how to construct k-TDAWG(S).

Lemma 13. Let S and S ′ be sets of strings such that S ′ = S ∪ {y}. Let v be a node of both

DAWG(S) and DAWG(S ′). If v does not not exist in k-TDAWG(S), v also does not exist in

k-TDAWG(S ′).

Proof. Let, [x]SR be the equivalence class represented by v in DAWG(S) and [x]S
′

R be the

equivalence class represented by v in DAWG(S ′). Assume that v is not in k-TDAWG(S) and

in k-TDAWG(S ′). From the assumption, there is a string w such that w /∈ [x]SR, w ∈ [x]S
′

R , and

|w| ≤ k. However, [x]S
′

R ⊆ [x]SR holds from the definition, which is a contradiction.

By Lemma 13, we can construct k-TDAWG(S) by running Algorithm 1 on all strings in S.

Therefore, we get the following theorem on constructing k-TDAWG(S).
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Table 4.1: Construction time of DAWGs and truncated DAWGs on artificial and real data in
milliseconds

data DAWG 5-TDAWG 10-TDAWG 20-TDAWG
fib17 (n = 1597) 0.158 0.100 0.083 0.068
(ab)1000 0.199 0.112 0.110 0.092
(abc)2000/3 0.214 0.113 0.113 0.107
dna.50MB 65.630 10.032 58.196 66.439

Theorem 11. Given a set of strings S of size m over an ordered alphabet and a natural number

k, we can construct k-TDAWG(S) in O(N log σ) time and O(min{N, k(λ + m)}) working

space in an online manner, where λ is the size of one of the smallest k-attractors of S and N is

the total length of all strings in S.

4.6 Experiments

In these experiments, we evaluate the practical performance of truncated DAWGs. First, we

compare the number of nodes of DAWG and the number of nodes of truncated DAWG on

random strings. Figure 4.9 shows the experimental results on randomly generated strings with

the generation rate of each character P (a) = P (b) = 1/2. We construct DAWGs and k-

truncated DAWGs for k = 5, 10, 20. We can confirm that the size of k-truncated DAWGs is less

than or equal to the size of DAWGs. When k = 5, 10, we can see that the size of k-truncated

DAWG is much smaller than DAWGs.

Figure 4.10 shows the experimental results on randomly generated strings with the genera-

tion rate of each character P (a) = 3/4 and P (b) = 1/4. The generated strings are expected

to be more repetitive. We construct DAWGs and k-truncated DAWGs for k = 5, 10, 20. If

we compare Figure 4.9 and Figure 4.10, we can see that the size of k-truncated DAWGs for

repetitive string are smaller than the size of k-truncated DAWGs for non-repetitive string.

Last, we compare the construction time of DAWGs and truncated DAWGs on artificial and

real data. We use Fibonacci strings (fib17), (ab)1000, and (abc)2000/3 for artificial data, and

dna.50MB from Pizza&Chili Corpus [1] for real data. As we can see from Table 4.1, truncated

DAWGs are constructed faster than DAWGs, especially 5-TDAWG on dna.50MB data. We can

conclude that using truncated DAWGs is effective when we want to process short substrings on

very big string data.
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Figure 4.9: Comparison of the number of nodes of DAWGs and k-truncated DAWGs on random
strings P (a) = 1/2, P (b) = 1/2.
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Figure 4.10: Comparison of the number of nodes of DAWGs and k-truncated DAWGs on repet-
itive random strings P (a) = 3/4, P (b) = 1/4.
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4.7 Conclusion and Discussion

In this chapter, we proposed a new data structure called truncated DAWG. We show that the

k-truncated DAWG of y, denoted by k-TDAWG(y), is a subgraph of DAWG(y), and can be

stored in O(min{n, kγ}) space. We also presented an O(n log σ) time and O(min{n, kγ})
space algorithm for constructing k-TDAWG(y), where n is the length of y, σ is the alpha-

bet size, and γ is the size of one of the smallest k-attractors of y. As an application of

k-TDAWG(y), we presented an O(min{n, kγ}+ |MAW k(y)|) time algorithm to compute the

set MAW k(y) of all minimal absent words of y whose size is smaller than or equal to k by using

k-TDAWG(y).

In addition, we also presented k-truncated DAWGs for multiple strings. For a set of strings

S, We showed that the size of k-TDAWG(S) is O(min{N, k(λ + m)}), where N is the total

length of all patterns in S, m is the number of patterns in S, and λ is the size of one of the

smallest k-attractors of S. We also showed that k-TDAWG(S) can be constructed and used in

the same manner as that for the k-truncated DAWG of a single string.

Last, the experimental results show that the size of k-truncated DAWGs are much smaller

than the size of DAWGs when k is small and when the input string is repetitive. Moreover,

the experimental results show that k-truncated DAWGs can be constructed faster than DAWGs

practically. We can conclude that MAW k can be computed faster and in smaller memory by

using k-truncated DAWGs.

Our future work is to find a way to construct truncated DAWGs in a faster time and smaller

space by using compressed strings such as LZ77 factorization. We are also interested in trun-

cated version of compressed directed acyclic word graphs [12] (CDAWGs). Since CDAWGs

use less space than suffix trees and DAWGs, truncated CDAWGs are expected to use less mem-

ory than truncated suffix trees and truncated DAWGs.
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Chapter 5

An Improved Data Structure for Left-right
Maximal Generic Words Problem

String Data Mining is an important research area which has received special attention. One

of the fundamental tasks in this area is the frequent pattern mining, the aim of which is to

find patterns occurring in at least d documents in D for a given collection D of documents

and a given threshold d, where the patterns are drawn from a fixed hypothesis space. The

task is useful not only in extracting patterns which characterize the documents in D, but also

in enumerating candidates for the most classificatory pattern that separates two given sets of

strings. The hypothesis space varies depending upon users’ particular interest or purpose, and

is ranging from the substring patterns to the VLDC patterns. Frequent substring patterns are

often referred to as generic words. The generic words mining problem (or the frequent substring

pattern mining problem) has a wide variety of applications, e.g., Computational Biology, Text

mining, and Text Classification [51, 11, 36].

One interesting variant of the generic words mining problem is the right maximal generic

words problem, formulated by Kucherov et al. [51]. In this variant, a pattern p is given as

additional input, which limits the outputs to the right extensions of p. Moreover, the outputs are

limited to the maximal ones. Formally, the problem is to preprocess D so that, for any pattern

p and for any threshold d, all right extensions of p that are d-right maximal can be computed

efficiently, where a string w is said to be d-right maximal if x occurs in at least d documents but

xa occurs in less than d documents for any character a. They presented in [51] an O(n)-size

data structure which answers queries in O(|p|+ r) time, where n is the total length of strings in

D and r is the number of outputs. Later, Biswas et al. [11] developed a succinct data structure of

size n log |Σ|+o(n log |Σ|)+O(n) bits of space, which answers queries inO(|p|+log log n+r)
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time.

As a generalization, Nishimoto et al. [67] defined the left-right-maximal generic word prob-

lem. In this problem, all superstrings of p that are d-left-right maximal should be answered,

where a string w is said to be d-left-right maximal if x has a document frequency ≥ d but xa

and ax respectively have a document frequency < d for any character a.

One naive solution to this problem is to compute the sets Md of d-left-right maximal strings

for 1 ≤ d ≤ m, where m is the number of documents in D and then apply the optimal algo-

rithm of Muthukrishnan [64] for the document listing problem, regarding Md as input document

collection. The query time is O(|p|+ o) time, where o is the number of outputs. The space re-

quirement is O(n2 logm) since the Muthukrishnan algorithm uses the (generalized) suffix tree

of input document collection and the size of suffix tree for Md can be shown to be O(n2/d) for

every d = 1, . . . ,m. The O(n2 logm) space requirement is, however, impractical when dealing

with a large-scale document collection.

In [67] Nishomoto et al. presented anO(n log n)-space data structure which answers queries

in O(|p|+ r log n+ o log2 n) time, where r is the number of d-right-maximal strings that sub-

sume p as a prefix. The factor O(r log n) is for computing the d-right-maximal right extensions

of p, which are required for computing d-left-right-maximal extensions of p in their method.

In this chapter, we address the left-right-maximal generic word problem and propose an

O(n logm)-space data structure with query time O(|p| + o log logm). The data structure out-

performs the previous work by Nishimoto et al. [67] both in the query time and in the space

requirement.

Our method uses the suffix trees of Md for d = 1, . . . ,m. For a string set S = {w1, . . . , w`},
Usually, “the suffix tree of S” means the suffix tree of {w1$1, . . . , w`$`} with ` distinct end-

markers $1, . . . , $`, or the suffix tree of S$ = {w1$, . . . , w`$} with a single endmarker $. In

both cases, the size of suffix tree is proportional to the total length of the strings in S. The total

size of suffix trees of Md$ for d = 1, . . . ,m is O(nm), where n is the total length of D. Our

idea in reducing the space requirement is to replace the suffix tree of Md$ with the suffix tree of

Md. Removing the endmarker successfully reduces the O(nm) total size of the suffix trees to

O(n logm), with a small sacrifice of query time.
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5.1 Notations for Generic Words and Tools

Let Pre(S) =
⋃
w∈S Pre(w), Sub(S) =

⋃
w∈S Sub(w) and Suf (S) =

⋃
w∈S Suf (w) for any

set S of strings. The reversal of a string w, denoted by wR, is defined to be w[|w|] . . . w[1]. Let

SR = {wR | w ∈ S} for any set S of strings.

The longest repeating suffix of a string x is the longest suffix of x that occurs elsewhere in

x. Let LRS (x) denote the length of the longest repeating suffix of x. We note that any suffix of

x longer than LRS (x) occurs only once in x.

5.1.1 d-left-right maximality of strings

Let D be a set of documents (strings). The document frequency of a string x in D, denoted by

df D(x), is defined to be the number of documents in D that contain x as a substring. We write

df (x) instead of df D(x) when D is clear from the context.

A string x is said to be d-left maximal w.r.t. D if df (x) ≥ d and df (ax) < d for all a ∈ Σ,

and said to be d-right maximal w.r.t. D if df (x) ≥ d and df (xa) < d for all a ∈ Σ. A string x

is said to be d-left-right maximal w.r.t. D if it is d-left maximal and d-right maximal w.r.t. D.

Let Md denote the sets of d-left-right maximal strings w.r.t. D.

Example 1. For D = {aaabaabaaa, aaabaabbba, aabababbaa, abaababbba}, the sets of d-

left-right maximal strings for d = 1, 2, 3, 4 are as follows: M1 = D, M2 = {aaabaab, aabab,
abaaba, ababb, abbba}, M3 = {aaba, abaab, abb, bba} and M4 = {aaba, baa}.

Lemma 14 ([51]). For any set D of strings with total length n, the number of d-right maximal

strings w.r.t. D is O(n/d).

Lemma 15. For any string y the following statements hold.

1. Let z be the shortest string such that yz ∈ Suf (Md). If xyz ∈ Md for some string x, then

xy is d-left maximal.

2. Let x be the shortest string such that xy ∈ Pre(Md). If xyz ∈ Md for some string z, then

yz is d-right maximal.

Proof. It suffices to give proof only for the first statement. Suppose to the contrary that xy

is not d-left maximal. Then, df (xy) ≥ df (xyz) ≥ d, and there exists some α ∈ Σ+ such

that αxy is d-left maximal. Since xyz is d-maximal, df (αxyz) < d. Furthermore, since
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df (αxy) ≥ d, there exists a prefix z′ of z such that αxyz′ is d-maximal and |z′| < |z|. This

implies yz′ ∈ Suf (Md) and contradicts that z is the shortest such string. Therefore, xy must be

d-left maximal.

5.1.2 Suffix trees for a string set

Let S = {w1, . . . , w`} be a set of nonempty strings with total length n. The suffix tree [75]

of S, denoted by STree(S), is a path-compressed trie which represents all suffixes of S. More

formally, STree(S) is an edge-labeled rooted tree such that (1) Every internal node is branching;

(2) The out-going edges of every internal node begin with mutually distinct characters; (3) Each

edge is labeled by a non-empty substring of S; (4) For each suffix s of S, there is a unique path

from the root which spells out s and the path possibly ends on an edge.

It follows from the definition of STree(S) that the numbers of nodes and edges in STree(S)

are O(n), respectively. By representing every edge label x by a triple (i, j, k) of integers such

that x = wk[i..j], STree(S) can be represented in O(n) space. The size of suffix tree STree(S)

is defined to be the number of nodes and is denoted by |STree(S)|.
A node v of STree(S) is said to represent a string x if the path from the root to v spells out

x. For a substring x of S, the locus of x in STree(S) is defined to be the highest node v that

represents a right extension of x. A string x is said to be explicit in STree(S) if there exists a

node v of STree(S) that represents x and implicit otherwise.

In this chapter, we properly use the suffix trees of the following three types to suit its use.

1. STree(S) where S = {w1$1, . . . , w`$`} and $1, . . . , $` are mutually distinct endmarkers

not in Σ.

2. STree(S$) where $ is an endmarker not in Σ.

3. STree(S) without endmarker.

The above suffix trees are all capable of determining whether x ∈ Sub(S) for any x ∈ Σ+.

STree(S) cannot distinguish the elements of Suf (S) from those of Sub(S) whereas STree(S$)

and STree(S) can determine whether x ∈ Suf (S) for any x ∈ Sub(S). In addition, STree(S)

can determine the set of indices k such that x ∈ Suf (wk). It is easy to see that:

Lemma 16. |STree(S)| ≥ |STree(S$)| ≥ |STree(S)| for any set S of strings.
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5.1.3 Tools

Let x be a fixed string over A = {1, . . . , σ}. The Rank query rankx(a, i) returns the number

of occurrences of a ∈ A in the prefix x[..i] of x, and the Select query selectx(a, j) returns the

position of j-th occurrence of a ∈ A in x.

Lemma 17 ([38]). There is an O(|x|) space data structure that answers Rank/Select queries in

O(log log σ) time.

Let T be an ordered tree with n nodes and with function val that maps the nodes to the

integers. The find-less-than (FLT) query on tree T is, given a threshold τ and a node v of T , to

enumerate the descendants u of v with val(u) < τ .

Lemma 18. We can build from T an O(n) space data structure in O(n) time that answers FLT

queries in O(out) time, where out is the number of outputs.

Proof. Let v1, . . . , vn be the nodes T in the preorder. Let B be an array such that B[i] = val(vi)

for all i ∈ [1..n]. Then, the problem of FLT queries on tree can be reduced to the problem of

FLT queries on array B defined as follows:

Given a threshold τ and a subinterval [i..j] of [1..n], enumerate the indices k in

[i..j] such that val(B[k]) < τ .

FLT queries on array B of size n can be answered in linear time proportional to the number of

outputs, by repeated use of the Range Minimum Query (see [64]).

5.2 Main Result and Algorithm Outline

5.2.1 Main result

Our problem is formulated as follows.

Problem 1.

To-preprocess: A subset D = {w1, . . . , wm} of Σ+.

Query: A string p ∈ Σ+ and an integer d ∈ [1..m].

Answer: The strings in Σ∗pΣ∗ ∩Md.
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One naive solution to the problem would be to apply the optimal algorithm of Muthukrish-

nan et al. [64] for the document listing problem regardingMd as input document collection. This

solution requires space proportional to the total size of suffix trees STree(Md) for d = 1, . . .m.

The following lemmas hold for the size of the suffix trees.

Lemma 19. The suffix trees STree(Md$) and STree(Md) are of sizeO(n) for any d = 1, . . . ,m,

and the suffix tree STree(Md) is of size O(n2/d) for any d = 1, . . . ,m.

Proof. First, we show that STree(Md$) has O(n) leaves. Let v be any leaf of STree(Md$),

and let x$ be the string represented by v. There is a string α such that αx ∈ Md. Assume, for

a contradiction, that x is implicit in STree(D). Then, there uniquely exists a character a such

that every occurrence of x in the strings of D is followed by a. This contradicts αx ∈ Md.

Hence x is explicit in STree(D). The number of leaves of STree(Md$) is not greater than the

number of nodes of STree(D), which is O(n). By Lemma 16, STree(Md$) and STree(Md)

are of size O(n). Next, we prove that STree(Md) has O(n2/d) leaves. Let v be any leaf of

STree(Md), and let x$i be the string represented by v. As the previous discussion, x is explicit

in STree(D). There are |Md| endmarkers $j in Md, and by Lemma 14 we have |Md| = O(n/d).

Hence the number of leaves of STree(Md) is not greater thanO(n/d) times the number of nodes

of STree(D), which is O(n2/d).

Lemma 20. For any natural number d and m with 1 ≤ k ≤ m, there exists string set D such

that the total length of strings in Md is ω(n/d).

Proof. (σ, k)-de Bruijn sequence is a minimum length string on the alphabet set whose size is

σ which contains all k-mers exactly once and of length is σk + k − 1 [26]. A set of (σ, k)-de

Bruijn sequences is called orthogonal if no two of them contain the same (k + 1)-mer. Lin et

al. showed that for any k > 0, there exists an orthogonal set of (σ, k)-de Bruijn sequences with

size at least bσ/2c[53]. For given m, d, consider the following string set D. Let D be the union

of the orthogonal set of (2d, k)-de Bruijn sequences of size d with d ≥ 2 and m−d strings with

length 1. Then n = m((2d)k + k− 1 +m− d) and n/d = (2d)k + k− 1 +m− d. Since Md is

the set of all k-mers, the total length of strings in Md is k(2d)k. Because k ∈ Θ(logd(n/d)) and

d� n, the total length of strings in Md is in ω(n/d).

Example 2 is the example of Lemma 20.
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Example 2. When m = 5, d = 2, k = 2, then D = {a, a, a, aabbccddbdadcacba,
aaddccbbabdbcdaca}, M2 = {aa, ab, ac, ad, ba, bb, bc, bd, ca, cb, cc, cd, da, db, dc, dd}.

The naive solution answers queries in O(|p| + o) time using O(n2 logm) space, where o is

the number of outputs. The O(n2 logm) space requirement is, however, impractical for dealing

with a large-scale document set.

Our solution reduces theO(n2 logm) space requirement toO(n logm) with a little sacrifice

in query response time.

Theorem 12. There exists an O(n logm) space data structure for Problem 1 which answers

queries in O(|p|+ o log logm) time, where o is the number of outputs.

5.2.2 Algorithm outline

Our task is, given a string p ∈ Σ+, to enumerate the strings αpβ in Md with α, β ∈ Σ∗. One

solution would be to enumerate the strings αp in Pre(Md) with α ∈ Σ∗, and then, for each αp

enumerate the strings αpβ in Md with β ∈ Σ∗. The resulting enumeration, however, contains

duplicates if there is some string in Md containing pmore than once. Consider the string abaaba

which contains p = ab twice in Example 3. The strings ab (α = ε) and abaab (α = aba) appear

in the enumeration of αp, and therefore the string abaaba appears twice in the enumeration of

αpβ.

Example 3. Let D = {aaabaabaaa, aaabaabbba, aabababbaa, abaababbba}, d = 2 and

p = ab. Then M2 is {aaabaab, aabab, abaaba, ababb, abbba} and the answer is {aaabaab,
aabab, abaaba, ababb, abbba}. (1) Σ∗p∩Pre(Md) = {aaab, aaabaab, aab, aabab, ab, abaab,
abab}. (2) Their d-left-right-maximal extensions are {aaabaab}, {aaabaab}, {aabab}, {aabab},
{abaaba, ababb, abbba}, {abaaba}, {ababb}, respectively. (3) The union of these string sets

is {aaabaab, aabab, abaaba, ababb, abbba}, which coincides with the answer.

In order to avoid such duplicates in enumeration, we put a restriction on the enumeration

of the strings αp ∈ Pre(Md). That is, we enumerate the strings αp ∈ Pre(Md) satisfying the

condition that αp contains p just once, which can be replaced with LRS (αp) < |p|. The outline

of our algorithm is as follows:

Step 1. Enumerate the strings αp such that α ∈ Σ∗, αp ∈ Pre(Md) and LRS (αp) < |p|.
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Step 2. For each string αp obtained in Step 1, enumerate the strings αpβ such that β ∈ Σ∗ and

αpβ ∈ Md.

Example 4. Let D = {aaabaabaaa, aaabaabbba, aabababbaa, abaababbba}, d = 2 and

p = ab. Then M2 is {aaabaab, aabab, abaaba, ababb, abbba} and the answer is {aaabaab,
aabab, abaaba, ababb, abbba}. (1) Σ∗p∩Pre(Md) = {aaab, aaabaab, aab, aabab, ab, abaab,
abab}. (2) Of the seven strings, the three strings aaab, aab, ab satisfy the condition LRS (x) <

|p|. Their d-right extensions are {aaabaab}, {aabab}, {abaaba, ababb, abbba}, respectively.

These sets are mutually disjoint. (3) The union of the disjoint sets is {aaabaab, aabab, abaaba,
ababb, abbba}, which coincides with the answer (see Figure 5.1).

!"!"# #$%$&%& '()aaab*(aaabaab*(aab*(aabab*(ab*(abaab*(abab+

&% ')aaabaab*(aabab*(abaaba*(ababb*(abbba+*(! '(ab

!"!!" # &% ')aaabaab*(aabab*(abaaba*(ababb*(abbba+

)aaabaab+*()aabab+*()abaaba*(ababb*(abbba+

,-./0(120134-53

63-53

Figure 5.1: Illustration of Example 4.

5.3 Simplified Solution

For the sake of simplicity in presentation, we here present a simplified version of our algorithm

using an O(nm) space data structure which answers queries in O(|p| + o) time, where o is the

number of outputs. How to improve the data structure will be described in the next section.

Basically, we represent substrings of Md as their loci in STree(Md). We note that although

the strings αp in Step 1 may be represented as implicit nodes of STree(Md), using their loci

does not affect the result of Step 2. The algorithm outline can then be rewritten as follows.

Step 1. Enumerate the loci v of αp in STree(Md) such that α ∈ Σ∗, αp ∈ Pre(Md) and

LRS (αp) < |p|.

Step 2. For each locus v obtained in Step 1, enumerate the loci of xβ in STree(Md) such that

β ∈ Σ∗ and xβ ∈ Md, where x is the string represented by v in STree(Md).
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5.3.1 Implementation of Step 1

We use the suffix trees STree(Md
R$) for d = 1, . . . ,m. We note that there is a natural one-to-

one correspondence between the strings x in Pre(Md) and the leaves of STree(Md
R$) repre-

senting xR$. We also note that for any p ∈ Σ+, the strings in Pre(Md) ∩ Σ∗p correspond to the

leaves of the subtree rooted at the locus v of pR in STree(Md
R$). Of the leaves representing

xR$, we have to select those satisfying LRS (x) < |p|.
In the running example, the leaves of the subtree rooted at the locus of pR = ba in STree(M2

R$)

represent the strings ba$, baa$, baaa$, baaba$, baabaaaa$, baba$, babaa$. Of the seven

strings of the form xR$, the three strings ba$, baa$, baaa$ satisfy the condition LRS(x) < |p|.
Define the function val from the nodes of STree(Md

R$) to the integers by: For any node u

of STree(Md
R$), let val(u) = LRS (x) if u is a leaf of STree(Md

R$), and∞ otherwise, where

x is the string such that u represents xR. By applying the FLT query technique, mentioned in

Section 5.1.3, to the tree STree(Md
R$) with val , we can compute the leaves of STree(Md

R$)

representing (αp)R$ such that α ∈ Σ∗, αp ∈ Pre(Md) and LRS (αp) < |p|. From such a

leaf, we can obtain the locus of αp in STree(Md) in constant time by keeping pointers from the

nodes u of STree(Md
R$) to the loci of x in STree(Md), where x is the string such that xR is

represented by u in STree(Md
R$).
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5.3.2 Implementation of Step 2

We note that the locus of any string in Md is a leaf of STree(Md). The outputs of Step 2 are

thus the leaves u of the subtree rooted at v representing strings in Md. Define the function val

from the nodes of STree(Md) to the integers by: For any node u of STree(Md), let val(u) = 0

if u is a leaf and represents some string in Md, and 1 otherwise. We again apply the FLT query

technique to the tree STree(Md) with val , to enumerate the loci of xβ appropriately.

5.3.3 Query time and space requirement

In Step 1, computing the locus of pR in STree(Md
R$) takes O(|p|) time. Each execution of the

FLT query takes constant time in Steps 1 and 2. Thus the query time is O(|p| + o), where o is

the number of outputs. For d = 1, . . . ,m, the suffix trees STree(Md) and STree(Md
R$), and

the relevant data structures for the FLT queries require O(n) space. The total space of our data

structure is O(nm).

5.4 Space Efficient Implementation of Step 1

As seen in Section 5.3.3, the use of the suffix trees STree(Md
R$) for d = 1, . . . ,m in Step 1

causes the O(nm) space requirement. Our idea to reduce the space requirement is to substitute

STree(Md
R) for STree(Md

R$). The following lemma gives an upper bound on the total size of

suffix trees STree(Md
R).

Lemma 21. The suffix trees STree(Md) for d = 1, . . . ,m are, respectively, of size O(n/d), and

their total size is O(n logm).

Proof. It suffices to show that STree(Md) has O(n/d) leaves. Let v be any leaf of STree(Md),

and let x be the string represented by v. Assume, for a contradiction, that x is not d-right

maximal. Then, there exists a string β ∈ Σ+ such that αxβ ∈ Md for some α ∈ Σ∗. Thus xβ is

a suffix of Md, which contradicts that v is a leaf of STree(Md). Therefore x is d-right maximal.

The number of leaves of STree(Md) is not greater than the number of d-right maximal strings,

which is O(n/d) by Lemma 14.

The difficulty in using not STree(Md
R$) but STree(Md

R) is that the string (αp)R is possibly

implicit in STree(Md
R) whereas the string (αp)R$ is necessarily explicit and represented by a

leaf in STree(Md
R$). We partition Step 1 into two parts:
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Step 1A. Enumerate the loci of αp in STree(Md) such that α ∈ Σ∗, αp ∈ Pre(Md), LRS (αp) <

|p| and (αp)R is explicit in STree(Md
R).

Step 1B. Enumerate the loci of αp in STree(Md) such that α ∈ Σ∗, αp ∈ Pre(Md), LRS (αp) <

|p| and (αp)R is implicit in STree(Md
R).

Step 1A can be done in O(|p| + o) time with O(n logm) space in almost the same way as

Section 5.3.1. Below we describe how to implement Step 1B.

5.4.1 Implementation of Step 1B

Lemma 22. For any string x in Pre(Md), xR is explicit in STree(DR$).

Proof. Let β ∈ Σ∗ be a string such that xβ ∈ Md. Since the string (xβ)R is d-left-right maximal,

it is explicit in STree(DR$) and therefore its suffix xR is also explicit in STree(DR$).

We thus use STree(DR$) to represent strings in Pre(Md).

Let q1 and q2 be the strings represented by the loci of pR in STree(DR$) and in STree(Md
R),

respectively. The p-critical path of STree(DR$) is the path from u1 to u2 such that u1 and u2

are the nodes of STree(DR$) representing q1 and q2, respectively. A string x and the node

representing xR in STree(DR$) are said to be p-satisfying if x is a left extension of p such that

x ∈ Pre(Md), LRS (x) < |p| and xR is implicit in STree(Md
R). An edge e of STree(Md

R)

and the path corresponding to e in STree(DR$) are said to be p-admissible if e is in the subtree

rooted at the node representing q2 and at least one implicit node is present on e which represents

the reversal xR of a p-satisfying string x.

Every p-satisfying node of STree(DR$) is present on: (i) the p-critical path of STree(DR$)

or (ii) a p-admissible path of STree(Md
R). Thus, the enumeration of the loci of αp in STree(Md)

can be performed as follows.

(1) Enumerate the p-admissible paths of STree(DR$).

(2) For each p-admissible path of STree(DR) and for the p-critical path of STree(DR), enu-

merate the p-satisfying nodes on it.

(3) For each p-satisfying node of STree(DR$) representing xR, compute the locus of x in

STree(Md).
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Example 5. Suppose that D = {aaabaabaaa, aaabaabbba, aabababbaa, abaababbba}, d =

2 and p = abab. Then, q1 = baba and q2 = babaaa (see Figure 5.4). We want to compute

baba in Step 1B.

a b!

! a

! a

a b! b

a

a

b

a

a

!

a

! a

!

a b

a

a

!

a

a

b

a

b

a

a

!

!

!

!

a b

a

! a

a

!

a

a

b

b

a

a

!

b

a

b

a

b

a

a

!

a

b

a

a

a

!

b

a

a

b

a

!

a b

b

a a!

! a b

! a

! a

a

!

b

a

a

b

a

!

b

a

a

!

a

b

a

a

a

!

a

b

a

!

b

a

a

!

b

a

a

b

a

a

a

!

b

a

a

b

a

!

b

a

!

STree(DR$)

a

a

a

a b

b

a

a

b

b

a

bb

a

a

b

a

a

a

ba a

a

a

b

a

a

a

a

b

a

b

a

STree(M2
R)

Figure 5.4: STree(DR$) and STree(M2
R) for D =

{aaabaabaaa, aaabaabbba, aabababbaa, abaababbba}.

In (1), we shall enumerate all p-admissible edges of STree(Md
R). With each edge (s, t) of

STree(Md
R), we associate the value LRS (zR) such that x and y are the strings represented by

s and t, respectively, and z = y[..i] where i is the smallest integer in [|x| + 1, |y| − 1] with

z ∈ Suf (Md
R) (i.e. zR ∈ Pre(Md)). We associate ∞ with it, if no such i exists. Then, we

can enumerate all p-admissible edges of STree(Md
R), by applying the FLT query technique to

STree(Md
R), with regarding the value associated with the incoming edge (s, t) of a node t as

the value of t. Computing the loci of pR in STree(Md
R$) and STree(DR$) takes O(|p|) time.

Execution of the FLT query takes constant time.

In (2), we proceed to examine nodes representing xR on the path until we encounter a node

representing xR with LRS (x) ≥ |p|, by repeatedly querying with the data structure stated in the

following lemma.

Lemma 23. There exists an O(n logm) size data structure which, given a node of STree(DR$)

representing string yR, returns in O(log logm) time the locus of (xy)R in STree(DR$) such

that x is the shortest string with xy ∈ Pre(Md), and nil if no such x exists.

In (3), for each p-satisfying node of STree(DR$) representing xR, compute the locus of x

in STree(Md) by using the data structure stated in the following lemma.

Lemma 24. The locus of a string x in STree(Md) can be computed in O(log logm) time from

the locus of xR in STree(DR$) using an O(n logm) space data structure.
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The suffix tree STree(DR$) takesO(n) space. For d = 1, . . . ,m, the suffix trees STree(Md)

and STree(Md
R$), and the relevant data structures for the FLT queries require O(n) space. The

total computation time of Step 1B isO(|p|+o log logm) and the total space of our data structure

is O(n logm).

5.4.2 Proofs of Lemmas 23 and 24

To complete the proof of Theorem 12, we give proofs of Lemmas 23 and 24. For the sake of

convenience, we first prove Lemma 24.

Proof of Lemma 24

From the locus of xR in STree(DR$) we can obtain the locus of x in STree(D$) in constant time

by using direct links from the nodes of STree(DR$) to the corresponding nodes of STree(D$).

Thus we describe how to compute from the locus of x in STree(D$) the locus of x in STree(Md)

in O(log logm) time using O(n logm) space.

A node v of STree(D$) representing string z is called a d-node if z is explicit in STree(Md).

The locus of x in STree(Md) then corresponds to the earliest d-node preceded by the locus of x

in the pre-order traversal of STree(D$).

Example 6. Suppose that D = {aaabaabaaa, aaabaabbba, aabababbaa, abaababbba}, d =

2 and x = aab. Then the earliest 2-node preceded by the locus of x is the node representing

aaba (see Figure 5.5). The locus of x in STree(M2) represents the same string aaba.
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Figure 5.5: Illustration of STree(D$), where the double lined circles represent the 2-nodes.

For any node s of STree(D$), let L(s) be the sequence of non-negative integers d arranged

in the increasing order such that d = 0 or s is a d-node. Let A be the sequence obtained by

54



CHAPTER 5. AN IMPROVED DATA STRUCTURE FOR LEFT-RIGHT MAXIMAL GENERIC WORDS
PROBLEM

concatenating L(s) according to the pre-order of nodes s of STree(D$). Let u and v be the loci

of x in STree(D$) and STree(Md), respectively. Then v corresponds to the leftmost occurrence

of d in A[i + 1..] such that i is the position of j-th occurrence of 0 where j is the rank of u

in the pre-order traversal of STree(D$). Thus v can be computed from u as follows. For the

rightmost leaf lu of the subtree rooted at u, v = nil if rankA(d, selectA(0,PreOrd(u))) >

selectA(0,PreOrd(lu)), and otherwise, v corresponds to A[rankA(d, selectA(0,PreOrd(u)))],

where PreOrd(s) denotes the rank of a node s in the pre-order traversal of STree(D$).

The numbers of 0’s and d’s in the array A are O(n) and O(n/d), respectively, and hence we

have |A| = O(n logm). By Lemma 17, we can compute the locus of x in STree(Md) from the

locus of x in STree(DR$) in O(log logm) time using O(n logm) space.

Proof of Lemma 23

By Lemma 15, xyz ∈ Md implies that yz is d-right maximal. For each d-right maximal string

β, let len(β) denote the length of the shortest string α with αβ ∈ Md. Then the desired string

xy can be obtained from the d-right maximal extension yz of y that minimizes len(yz).

From the locus of yR in STree(DR$), the locus of (xy)R in STree(DR$) can be computed

in three steps (see Figure 5.6).

Step 1: From the locus of yR in STree(DR$), find the locus of y in STree(Md).

Step 2: From the locus of y in STree(Md), find the locus of (xyz)R in STree(DR$) such that x

is one of the shortest strings x satisfying xyz ∈ Md for some string z.

Step 3: From the locus of (xyz)R, find the locus of (xy)R in STree(DR$).

!"!#$"

#$%&'(

#$%&)
#$%&'*

+,-./',0'%&

+,-./',0'!'%"&

!"!(&1"

+,-./',0'%

+,-./',0'!'%)"&

Figure 5.6: Computing the locus of (xy)R from the locus of yR in STree(DR$).
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Step 1 requires O(log logm) time by using the O(n logm)-size data structure stated in

Lemma 24.

For Step 2, we define two functions len and link on the set of nodes of STree(Md) as

follows: For any node u of STree(Md), let β be the string represented by u. If there is some

string α such that αβ ∈ Pre(Md), choose α as short as possible, and let len(u) = |α| and

let link(u) be the locus of α in STree(DR$). If there is no such α, let len(u) = ∞ and

link(u) = nil .

Suppose that v is the descendant of the locus of y in STree(Md) that minimizes len(v). Then

len(v) = |x| and link(v) is the locus of (xyz)R in STree(DR$) since yz is d-right maximal.

The locus of (xyz)R in STree(DR) can then be computed in constant time by storing the values

len(u) and link(u) into the nodes u of STree(Md) and applying the Range Minimum Query

technique.

In Step 3, the locus of (xy)R is obtained from the locus of (xyz)R in STree(DR$) by travers-

ing suffix links |x| times. The task can be done in constant time by using the O(n) space data

structure for the level ancestor query [10] on suffix link tree of STree(DR$).

Step 1 through Step 3 can be done in O(log logm) time using O(n logm) space.

5.5 Conclusion

In this chapter, we addressed the left-right maximal generic words problem and developed an

O(n logm) size data structure, which answers queries in O(|p| + o log logm) time, where o is

the size of outputs. Our method is better than the previous work by Nishimoto et al. [67] both in

the space requirement and in the query time. We achieved the O(n logm) space requirement by

substituting STree(Md) for STree(Md$), with the conjecture that the total size of STree(Md$)’s

for d = 1, . . . ,m are Θ(nm). To prove that the total size is Ω(nm) is left as future work.

56



Chapter 6

Finding Gapped Palindromes Online

A palindrome is a string of form xaxR, where x is a string called the left arm, a is either

the empty string or a single character, and xR is the reversed string of x called the right arm.

Finding palindromic substrings in a given string w is a classical problem on string processing.

The earliest work on this problem dates back to at least 1970’s when Manacher [60] proposed

an online algorithm to find all prefix palindromes in w in O(n) time, where n is the length

of w. Later, Apostolico et al. [3] pointed out that Manacher’s algorithm can be used to find all

maximal palindromes inw inO(n) time, where a maximal palindrome is a substring palindrome

w[i..j] = w[i..j]R of w whose arms cannot be further extended based on the same center i+j
2

.

A natural generalization of palindromes is gapped palindromes of form xyxR, where y

is a string of length at least 2 called a gap1. Finding gapped palindromes has applications

in bioinformatics, e.g.; RNA secondary structures called hairpins can be regarded as a kind of

gapped palindrome xyxR, where x represents the complement of x (x is obtained by exchanging

A with U and exchanging C with G in x). The most basic type of gapped palindromes is g-gapped

palindromes, where g ≥ 2 is a pre-defined fixed length of the gaps. For three parameters gmin,

gmax, and A such that 2 ≤ gmin ≤ gmax and A ≥ 1, Kolpakov and Kucherov [45] introduced

length-constrained gapped palindromes (LCGPs) which has arms of length at least A and gaps

of length in range [gmin, gmax]. This is a natural generalization of g-gapped palindromes with

gmin = gmax = g and A = 1.

In this chapter, we consider the problems of finding these gapped palindromes in a string

in an online manner. Namely, our input is a growing string to which new characters can be

appended, and each character of the string arrives one by one, from left to right. Let n be the

1If y is a single character, then xyxR is a palindrome of odd length. Thus we here assume y is of length at least
2.
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length of the final string w. We propose:

(1) An online algorithm to compute all maximal g-gapped palindromes in w in O(n log σ)

time and O(n) space, where σ is the alphabet size. This algorithm can be modified to

output only distinct maximal g-gapped palindromes in an online manner, in the same

complexity.

(2) An online algorithm to compute all maximal LCGPs in w in O(n(M + log σ)) time and

O(n) space, where M = max{ gmax−gmin

A
, 1}.

Formal definitions of the maximality of these gapped palindromes will be given in Section 6.2

and Section 6.3, respectively.

We remark that using a slightly modified version of Solution (1), it is trivial to obtain an

O(n(gmax− gmin + log σ))-time solution for finding all maximal LCGPs, by simply testing gap

lengths gmin, gmin + 1, . . . , gmax separately. Hence, in the case where A is not a constant and

log σ is not a dominating term, then Solution (2) speeds up this trivial method by a factor of A.

On the other hand, in the case where A is a constant, then we show that there exists a string

of length n which contains Ω(nM) maximal LCGPs, meaning that we cannot hope significant

speed-up in the worst case.

Solution (2) is based on Solution (1) and is quite different from the offline solution by

Kolpakov and Kucherov [45]. To our knowledge, these are the first efficient online algorithms

that compute any kind of gapped palindromes.

Related work. A number of efficient offline algorithms for computing various kinds of gapped

palindromes have been proposed in the literature.

Let w be an input string w of length n over the integer alphabet. There exists a folklore

O(n)-time algorithm (see e.g. [39]) which finds all maximal g-gapped palindromes for a given

fixed gap length g; the Ukkonen tree [75, 28] of string wR#w$ and a constant-time LCA data

structure [9] over the Ukkonen tree are constructed during preprocessing, and then computing

each maximal g-gapped palindrome reduces to an outward longest common extension (LCE)

query, which can be answered by an LCA query on the tree. Our algorithm for computing all

maximal g-gapped palindromes can be regarded as an online version of this algorithm.

Kolpakov and Kucherov [45] proposed an O(n+ L)-time offline algorithm to find all max-

imal LCGPs, where L is the number of outputs. Their algorithm consists of the following two

steps: In the first step, it computes all (not necessarily outward maximal) LCGPs whose arms
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are of length exactly A. Let (i, j) be the pair of the ending position i and the beginning posi-

tion j of the left and right arms of each of the above LCGPs, respectively. In the second step,

for each LCGP computed above, the algorithm performs an outward LCE query from i and j,

using the same suffix-tree based data structure as for the maximal g-gapped palindromes above.

However, each time a new character is appended to the growing string, the LCE value from the

same pair of positions may increase, and it is impossible to know beforehand when the growth

of the LCE value for each pair of positions stops. Thus, it seems difficult to apply Kolpakov

and Kucherov’s solution to our online setting.

There exist efficient offline solutions for finding other kinds of gapped palindromes. Kol-

pakov and Kucherov [45] also proposed an O(n)-time2 offline algorithm to compute all max-

imal long-armed palindromes (those whose arms are longer than their gap) in a given string

w of length n. Kolpakov and Kucherov’s algorithm uses a variant of Lempel-Ziv factorization

called the reversed LZ factorization of strings. Let f1, . . . , fk be the reversed LZ factorization

of w. Then, for each pair fi of adjacent factors, their algorithm focuses on positions |fi|
2k

for

every 1 ≤ k ≤ d |fi|
2
e in fi. This implies that the length of each fi needs to be precomputed.

However, in the online setting, the length of the last factor that is a suffix of the current string

can extend each time a new character is appended. It is therefore unclear whether we can extend

their solution to the online scenario.

Gawrychowski et al. [33] considered a generalization of long-armed palindromes called

ν-gapped palindromes; For a parameter ν > 1, a gapped palindrome xyxR is said to be a ν-

gapped palindrome iff |xy| ≤ ν|y|. Gawrychowski et al. [33] proposed an O(νn)-time offline

algorithm which computes all maximal ν-gapped palindromes in an input string w of length

n. This algorithm requires a preprocessing of the input w for integer d ≥ 2 such that the

occurrences of a substring of length 2k (called a basic factor therein) in another substring of

length d2k can be computed efficiently. Thus, it seems difficult to apply their result to the

online setting. After, Gawrychowski et al. [34] proposed an optimal O(νn) time algorithm for

computing ν-gapped palindromes for integer alphabets.

2Originally, Kolpakov and Kucherov [45] stated their algorithm works in O(n+S) time, where S is the number
of outputs. It follows from a recent work by Gawrychowski et al. [33] that S = O(n).
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6.1 Notations and Tools

6.1.1 Gapped palindromes

A string p is said to be a gapped palindrome iff p = xyxR for some non-empty strings x, y with

|y| > 1. The intervals [1, |x|], [|y| + 1, |xy|], and [|xy| + 1, |xyx|] in p are called the left arm,

gap, and right arm of gapped palindrome p = xyxR. Note that in general the choice of arms

and gap are not unique for the same string p. For instance, if p = abccbba, then we can take

x = ab and y = ccb, or x = a and y = bccbb.

A gapped palindrome xyxR is said to be a length-constrained palindrome (LCGP) iff |x| ≥
A and gmin ≤ |y| ≤ gmax for some fixed integer parameters A ≥ 1 and 1 < gmin ≤ gmax. A

gapped palindrome xyxR is said to be a g-gapped palindrome iff |y| = g for some fixed integer

g > 1. Note that any g-gapped palindrome is a special case of a length-constrained palindrome

with gmin = gmax = g and A = 1.

An occurrence of a gapped palindrome p = xyxR in a string w is identified by a triple

(i, j, a) such that a denotes the length of each arm, and i, j denote the ending and beginning

positions of the left and right arms of p, respectively. Namely,w[i−a+1..i] = x,w[i+1..j−1] =

y, and w[j..j + a− 1] = xR. The center of an occurrence (i, j, a) of a gapped palindrome in w

is i+j
2

.

6.1.2 LCE queries

Given an ordered pair (i, j) of positions in a string w of length n, a reversed longest common

extension query RLCEw(i, j) returns LCE ((w[1..i])R, w[j..n]). Computing RLCEw(i, j) re-

duces to the lowest common ancestor (LCA) problem on UTree(w′), where w′ = wR#w and

# is a special delimiter which does not occur in w. Let vi,j be the LCA of the two leaves

which represent the suffixes w′[n − i + 1..2n + 1] and w′[n + j + 1..2n + 1]. Then, we

have that |str(vi,j)| = RLCEw(i, j). Using an LCA data structure (e.g. [9]), we can answer

RLCEw(i, j) query for any pair (i, j) of positions in O(1) time after an O(n)-time preprocess-

ing on UTree(w′).
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6.2 Online Algorithms to Compute All Maximal g-gapped
Palindromes

An occurrence (i, j, a) of a g-gapped palindrome xyxR in a string w is said to be maximal, if

the arms x, xR cannot be extended outward, i.e., if w[b− 1] 6= w[e+ 1], b = 1, or e = n, where

b = i− a+ 1 and e = j + a− 13.

Example 7. Consider string aabaacabbcaabb and let g = 3. This string has 3-gapped maxi-

mal palindromes (1, 5, 1) = a · aba · a, (6, 10, 4) = baac · ab b · caab, (7, 11, 1) = a · bbc · a,

and (9, 13, 2) = bb · caa · bb.

6.2.1 Computing all maximal g-gapped palindromes online

In this subsection, we propose online algorithms to compute all maximal g-gapped palindromes

in a string w of length n, where g > 1 is a given fixed integer parameter (since g = 1 gives odd

palindromes, we set g > 1).

As was mentioned in the begging of Chapter 6, there exists an offline algorithm which

computes all g-gapped maximal palindromes in O(n) time and space for an input string w of

length n over an integer alphabet. However, in our scenario the input string w is given online,

and we wish to process each character from left to right. In the sequel, we will show our online

algorithm which can deal with this setting.

For each k = 1, . . . , n, our algorithm maintains the longest g-gapped suffix palindrome of

w[1..k] (if it exists). For each g-gapped palindrome to compute, we maintain two variables

i, j (i < j < k) that represent the ending position of the left arm and the beginning position of

the right arm of g-gapped palindrome, respectively. Assume (i, j, ai,j) is the longest g-gapped

suffix palindrome of w[1..k], where the gap of length g is w[i + 1..j − 1], j = i + g + 1 and

j + ai,j − 1 = k. In case there are no g-gapped suffix palindromes of w[1..k], then let ai,j = 0,

i = k − g and j = k + 1. Depending on the next character w[k + 1], we have two cases:

1. If w[i− ai,j] = w[k + 1], then there exists a longer g-gapped palindrome centered at i+j
2

.

We then naı̈vely extend the arm length by ai,j ← ai,j + 1, and proceed to the forthcoming

character by updating k ← k + 1.

3Since the gap length is fixed to g and since it simplifies the description of the algorithm, here we do not
consider inward maximality of the arms. However, it is easy to modify our algorithm so that it outputs all g-
gapped palindromes that are both outward and inward maximal with the same efficiency.
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2. If w[i − ai,j] 6= w[k + 1], then it appears that (i, j, ai,j) is the longest g-gapped maximal

palindrome ending at position k, and hence we output it. We then shift the gap to the right

by updating i← i+ 1 and j ← j + 1. There are two-sub cases.

(a) If j > k+1, then it appears that there is no g-gapped suffix palindrome ofw[1..k+1].

We therefore update k ← k + 1 and proceed to the forthcoming character, with the

current values of i and j.

(b) If j ≤ k+1, then we compute ai,j (we will later describe how to efficiently compute

it for updated i and j). There are two sub-cases:

i. If j+ai,j−1 = k+ 1, then (i, j, ai,j) is the longest g-gapped suffix palindrome

of w[1..k+1]. We proceed to the forthcoming character by updating k ← k+1.

ii. If j+ai,j−1 < k+1, then (i, j, ai,j) is the maximal g-gapped palindrome with

the gap beginning at position i + 1, and hence we output it. We then shift the

gap to the right by updating i← i+ 1 and j ← j + 1, and go to either Case 2a

or Case 2b depending on the value of j.

In order to efficiently compute ai,j of Case 2 above in our online scenario, we utilize the

following results:

Theorem 13 ([40]). There exists an O(n log σ)-time O(n)-space algorithm to maintain the

Ukkonen tree with suffix links for a bidirectionally growing string to which new characters can

be prepended and appended, where n is the length of the final string.

Theorem 14 ([18]). There exists a linear-space algorithm for a rooted tree that supports the

following operations and query in O(1) worst-case time: which supports the following opera-

tions and query in O(1) worst-case time: (1) Insert a new node; (2) Delete an existing node;

(3) LCA query for any pair of nodes in the current tree.

We are ready to show the main result of this section:

Theorem 15. For a growing string to which new characters are appended, we can compute all

maximal g-gapped palindromes in an online manner, in O(n log σ) time and O(n) space, where

n is the length of the final string.

Proof. The correctness immediately follows from the above arguments.
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Figure 6.1: UTree(w′k) with w[1..k] = abacabcabc and w′k = cbacbacaba#abacabcabc.
The label strings after # are omitted for simplicity.

The time complexity is shown as follows. In the sequel, we consider the amortized time cost

for each k = 1, . . . , n. For each k that falls into Case 1, it clearly takes O(1) time. For each k

that falls into Case 2b, we output several maximal g-gapped palindromes. It takes O(1) time to

output the longest maximal g-gapped palindrome. The key is how to compute the arm lengths

ai,j of shorter maximal g-gapped palindromes. For this sake we maintain UTree(w′k) where

w′k = (w[1..k])R#w[1..k], where # is a special delimiter which does not appear elsewhere in

w′k (see also Fig. 6.1 for an example).

Note that computing ai,j is equivalent to computing RLCEw[1..k](i, j), and thus is equivalent

to computing |str(vi,j)|, where vi,j is the LCA of the nodes of UTree(w′k) which represent the

suffixes w′k[k − i + 1..2k + 1] and w′k[k + j + 1..2k + 1] of w′k. Since # is unique in w′k, the

suffix w′k[k − i+ 1..2k + 1] is always represented by a leaf of UTree(w′k) and hence can easily

be accessed in O(1) time. However, notice that the other suffix w′k[k + j + 1..2k + 1] is not

represented by a node when the path that spells out w′k[k+ j + 1..2k+ 1] from the root ends on

an edge (this can happen when w′k[k + j + 1..2k + 1] = w[j..k] is a prefix of another suffix of

w[1..k]). Consider such a case, and let 〈uj, sj, tj〉 be the locus for the suffixw′k[k+j+1..2k+1].

Since uj is the nearest ancestor to the locus, we can use uj for the LCA query instead of the

locus for w′k[k + j + 1..2k + 1].

What remains is how to quickly find the loci for increasing j. For this we can use a similar

technique to Ukkonen’s online Ukkonen tree construction algorithm [74]: Assume that the locus

〈uj, sj, tj〉 for the suffix w′k[k+j+1..2k+1] = w[j..k] in UTree(w′k) is given. To find the locus

for 〈uj+1, sj+1, tj+1〉 for the next suffix w′k[k+ j + 2..2k+ 1] = w[j + 1..k], we first follow the

suffix link of uj and arrive at z = slink(uj). We then traverse the path from z which spells out
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w′k[sj+1..tj+1]. The last piece of this path gives the locus 〈uj+1, sj+1, tj+1〉 (see also Fig. 6.2).

Using a similar analysis to [74], the cost to find this locus is amortized toO(log σ). Since the

total number of outputs (maximal g-gapped palindromes) is linear in n, the amortized cost per

output is O(log σ). The cost to update UTree(w′k) to UTree(w′k+1) is amortized to O(log σ) by

Theorem 13. Each LCA query can be answered in O(1) time by Theorem 14. Hence, the total

time complexity is O(n log σ). The total space requirement is clearly O(n). This completes the

proof.

6.2.2 Computing all distinct maximal g-gapped palindromes online

uj 

<uj, sj, tj> 

z 

<uj+1, sj+1, tj+1> 

w[sj.. tj] 

Figure 6.2: Illustration
of how to find the locus
〈uj+1, sj+1, tj+1〉 of the next
suffix w′k[k + j + 2..2k + 1] =

w[j + 1..k] using the suffix
link of uj , where 〈uj, sj, tj〉 is
the locus of the previous suffix
w′k[k+j+1..2k+1] = w[j..k].
The cost for walking down
from node z to the locus for
〈uj+1, sj+1, tj+1〉 is O(log σ)

amortized.

Consider a g-gapped palindrome p = xyxR which has at

least two maximal occurrences in a string w. When consid-

ering “distinctness” of two maximal occurrences (i, j, a) and

(i′, j′, a) of p, we take into account the left and right neigh-

bouring characters for a technical reason. Namely, two max-

imal occurrences (i, j, a) and (i′, j′, a) of a g-gapped palin-

dromes are said to be distinct iff (1) w[b − 1] 6= w[b′ − 1] or

(2) w[e+ 1] 6= w[e′ + 1], where b = i− a+ 1, e = j + a− 1,

b′ = i′ − a+ 1, and e′ = j′ + a− 1.

Our online algorithm of Section 6.2.1 can be modified to

output all distinct maximal g-gapped palindromes in an online

manner.

For any string w, let lusuf (w) denote the longest suffix

of w which appears at least twice in w (we assume that the

empty string ε appears |w|+ 1 times in w so lusuf (w) always

exists). We make use of the following simple observation:

Observation 1. Let (i, j, a) be an occurrence of a maximal g-

gapped palindrome xyxR in a string w, and let c` = w[i− a]

and cr = w[j+ a]. Then, it is the first (i.e. left-most) maximal

occurrence of xyxR in w iff |c`xyxRcr| = j − i + 2a + 1 >

|lusuf (w[1..j + a− 1])|.

Theorem 16. For a growing string to which new characters are appended, we can compute

all distinct maximal g-gapped palindromes in an online manner, in O(n log σ) time and O(n)
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space, where n is the length of the final string.

Proof. On top of UTree(w′k) used in Theorem 15, we build another Ukkonen tree UTree(w[1..k])

for increasing k = 1, . . . , n using Ukkonen’s online algorithm [74]. For each k, Ukkonen’s al-

gorithm maintains an invariant called the active point which indicates the locus of lusuf (w[1..k]).

When we process the kth character w[k], we store |lusuf (w[1..h])| for all 1 ≤ h ≤ k. Let

(i, j, ai,j) be an occurrence of a maximal g-maximal found at the k-th stage of the algorithm

where we have processed w[1..k]. Then, we can determine in O(1) time whether or not it is the

first maximal occurrence of the g-gapped palindrome using Observation 1 (recall that the right

mismatched position j+ai,j never exceeds k and hence we know |lusuf (w[1..j+ai,j])|). Since

Ukkonen’s online algorithm works in O(n log σ) time and O(n) space, the theorem holds.

We note that a similar technique was used by Kosolobov et al. [49] in their online algorithm

to find all distinct palindromes (without gaps) in a given string.

6.3 Online Algorithms to Compute All Maximal LCGPs

An occurrence (i, j, a) of an LCGP in a string w of length n is said to be outward-maximal iff

w[i − a] 6= w[j + a], i − a + 1 = 1, or j + a − 1 = n, and it is said to be inward-maximal iff

w[i+1] 6= w[j−1]. It is said to be maximal iff it is both outward-maximal and inward-maximal4.

Example 8. Consider string aabaacabbcaabb and let gmin = 1, gmax = 4, and A = 2. All the

maximal LCGPs in this string are (2, 4, 2) = aa · b · aa, (4, 7, 2) = ba · ac · ab, (6, 10, 4) =

baac · abb · caab, and (9, 13, 2) = bb · caa · bb.

6.3.1 Computing all maximal LCGPs online

In this section, we present an online algorithm to compute all maximal LCGPs of a given string

w. This algorithm works in O(n(M + log σ)) time and O(n) space, where n = |w| and M =

max{ gmax−gmin

A
, 1}.

Let d = gmax−gmin

2
. For ease of explanation, we assume that d mod A = 0 and we will

describe our algorithm for this case. However, the algorithm can easily be extended to a general

case with d mod A 6= 0, retaining the same efficiency.

4Since the gap length varies in range [gmin, gmax], we here consider both outward and inward maximality of
the arms.
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i j 

w 
k 

gmin 

gmax 

ain aout aout ain 

A 

i − l·A j + l·A 

A A A A A 

Figure 6.3: Illustration for Lemma 25. Since any LCGP centered at i+j
2

with gap length in range
[gmin, gmax] contains a pair (i− l ·A, j+ l ·A) of sampled positions for some l, we can compute
it by two LCEs from the sampled positions.

For each k = 1, . . . , n in increasing order, we maintain a pair (i, j) of positions such that

j− i = gmin + 1 and the longest inward-maximal suffix LCGP of w[1..k] is centered at i+j
2

(if it

exists). If it does not exist, then let i = k−gmax and j = k−gmax+gmin+1. For 1 ≤ l ≤ d
A

, we

consider the positions i− l ·A and j + l ·A in w[1..k], called sampled positions. The following

simple lemma suggests how we can use these sampled positions for efficient computation of

LCGPs.

Lemma 25. Let (i′, j′, a′) be any maximal LCGP whose center is i+j
2

(i.e., i
′+j′

2
= i+j

2
). Then,

there exists l (1 ≤ l ≤ d
A

) such that j+l·A ∈ [j′, j′+a′−1] and i−l·A ∈ [i′−a′+1, i′]. Moreover,

for each such l, (i′, j′, a′) is the unique maximal LCGP satisfying the above conditions.

Proof. The existence of l is clear from the fact that the arms of LCGPs must be at least A long

(see also Figure 6.3). By definition, the arms of two different maximal LCGPs with the same

center cannot overlap. Thus, for each l, there exists at most one LCGP whose left and right arms

contain sampled positions i− l · A and j + l · A, respectively. This completes the proof.

Let l (1 ≤ l ≤ d
A

) be the smallest integer such that i − l · A (resp. j + l · A) is contained

in the left arm (resp. the right arm) of the longest suffix inward-maximal LCGP of w[1..k] that

is centered at i+j
2

, and let al be the length of the arm of this LCGP. Also, let il, jl be the ending

position of the left arm and the beginning position of the right arm of this LCGP, respectively.

Note il+jl
2

= i+j
2

and jl + al − 1 = k. Depending on the next character w[k + 1], we have two

cases:

1. If w[il − al] = w[k + 1], then (il, jl, al + 1) is the longest suffix inward-maximal LCGP

of w[1..k + 1] centered at i+j
2

. Thus, we naı̈vely extend the arm length outward by al ←
al + 1, and proceed to the forthcoming character by updating k ← k + 1.
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2. If w[il − al] 6= w[k + 1], then it appears that (il, jl, al) is a maximal LCGP centered

at i+j
2

and ending at position k, and hence we output it. To compute other maximal

LCGPs centered at i+j
2

, we do the following: We update l ← l + 1, and consider a pair

(i − l · A, j + l · A) of the sampled positions and compute the outward LCE aoutl =

RLCEw[1..k+1](i− l · A, j + l · A) and the inward LCE ainl = RLCEw[1..k+1](j + l · A−
1, i− l ·A+1) from these sampled positions (see also Fig. 6.3). There are three sub-cases

depending on the LCE values:

(a) If aoutl + ainl < A or ainl > l · A, then there is no maximal LCGP with gap length in

range [gmin, gmax] that is centered at i+j
2

and contains the sampled positions i− l ·A
and j + l · A. We update l← l + 1, and go to one of the following sub-cases.

i. If l ≤ d
A

, then we compute the outward and inward LCEs from the pair of

sampled positions with l.

ii. If l > d
A

, then there is no suffix gapped palindrome of w[1..k] that is centered at
i+j
2

and has a gap length in range [gmin, gmax]. We therefore update i ← i + 1,

j ← j + 1, l← 1, k ← k + 1 and proceed to the forthcoming character.

(b) If aoutl + ainl ≥ A, ainl ≤ l ·A, and j + l ·A+ aoutl ≤ k, then (il, j′l, al) is a maximal

LCGP centered at i+j
2

where il = i− l ·A+ainl , j+ l ·A+aoutl , and al = aoutl +ainl .

We output it and update l ← l + 1 + ba
out
l

A
c (this is to skip the subsequent sampled

positions which are also contained in the same LCGP due to Lemma 25).

i. If l ≤ d
A

, then we compute the outward and inward LCEs from the pair of

sampled positions with l.

ii. If l > d
A

, then there is no inward-maximal suffix gapped palindrome of w[1..k]

that is centered at i+j
2

and has a gap length in range [gmin, gmax]. We therefore

update i← i+ 1, j ← j+ 1, l← 1, k ← k+ 1 and proceed to the forthcoming

character.

(c) If aoutl + ainl ≥ A, ainl ≤ l · A, and j + l · A + aoutl = k + 1, then (il, jl, al)

is an inward-maximal gapped suffix palindrome of w[1..k + 1] with gap length in

range [gmin, gmax]. Moreover, since we have processed l in increasing order, it is

guaranteed that (il, jl, al) is the longest such one. Hence, we proceed to the next

character by updating k ← k + 1.

67



CHAPTER 6. FINDING GAPPED PALINDROMES ONLINE

Theorem 17. For a growing string to which new characters are appended, we can compute all

LCGPs in an online manner, in O(n(M + log σ)) time and O(n) space, where n is the length

of the final string and M = max{ gmax−gmin

A
, 1}.

Proof. The correctness should be clear from the above arguments.

For each k = 1, . . . , n, we consider a fixed center i+j
2

and compute all LCGPs with this

center. We perform at most 2d
A

LCE queries for each k, as there are d
A

sampled positions for

each k. Since each LCE query can be answered in O(1) time as in the proof of Theorem 15, the

total time cost of the LCE queries for all k = 1, . . . , n is O( d
A
n) = O(Mn). We use additional

O(n log σ) time to maintain the Ukkonen tree augmented with the dynamic LCA data structure

for bidirectionally growing string w′k = (w[1..k])R#w[1..k]. Thus the total time complexity is

O(n(M + log σ)).

The total space requirement is dominated by the Ukkonen tree and the dynamic LCA data

structure, and hence is O(n).

6.3.2 Optimality of our algorithm

The following corollary is immediate from Theorem 17.

Corollary 1. For constant parameters gmin, gmax, A and a constant-size alphabet, we can com-

pute all maximal LCGPs in a string of length n in an online manner, in optimal O(n) time and

space.

We can show that even for non-constant gap constraints gmin and gmax, the running-time

of our algorithm is optimal in the worst case. For any string w, let Lw denote the number of

all maximal LCGPs in w w.r.t. given parameters gmin, gmax, and A. It immediately follows

from Lemma 25 that Lw is upper-bounded by the total number of sampled positions in w.

Hence Lw = O(Mn), where n = |w| and M = max{ gmax−gmin

A
, 1}. It is also true that there

is an instance w for which Lw = Ω(Mn) if A is a constant: For example, consider string

z = (abc)
n
3 . This string z contains maximal gapped palindromes of form a(bc(abc)p)a with

arm a, b(c(abc)pa)b with arm b, and c((abc)pab)c with arm c for all 0 ≤ p ≤ n
3
− 2. Thus,

for A = 1 and for any 2 ≤ gmin ≤ gmax, the string z contains Lz = Θ((gmax − gmin)n) =

Θ( gmax−gmin

A
n) = Θ(Mn) maximal LCGPs. Hence the running time O(M(n + log σ)) of our

algorithm is optimal in the worst case, for a constant-size alphabet.
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6.4 Conclusions

In this chapter, we presented an online algorithm which finds all maximal length-constrained

gapped palindromes (LCGPs) occurring in a string w of length n in in O(n( gmin−gmax

A
+ log σ))

time, for given parameters 2 ≤ gmin ≤ gmax and A ≥ 1 , where σ is the alphabet size. We also

showed that if A is a constant, then there exists a string which contains Ω((gmin− gmax)n) max-

imal LCGPs. This implies that for a constant-size alphabet the running time of our algorithm is

optimal in the worst case.

To our knowledge, the proposed methods are the first online algorithms to find any kind of

gapped palindromes in strings. Therefore, there remain many open problems. In particular, we

are interested in the following:

• Is there a string of length n which contains Ω( gmin−gmax

A
n) maximal LCGPs for non-

constant A?

• Can we reduce the n gmin−gmax

A
factor to Lw in the O(n( gmin−gmax

A
+ log σ))-time algorithm

for finding all maximal LCGPs, thereby obtaining an optimal algorithm?

• Can the maximal ν-gapped palindromes [33] of a given string be computed online effi-

ciently?
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Chapter 7

Almost Linear Time Computation of
Maximal Repetitions in Run Length
Encoded Strings

Periodicity and repetitions in strings are one of the most important characteristic features in

strings. They have been one of the first objects of study in the field of combinatorics on

words [73] and have many theoretical, as well as practical applications, e.g., in bioinformat-

ics [44].

Maximal repetitions are periodically maximal substrings of a string where the smallest pe-

riod is at most half the length of the substring, i.e., there are at least two consecutive occurrences

of the same substring. An O(n log n) time algorithm for computing all of the maximal repeti-

tions contained in a string of length n, was shown by Main and Lorentz [59], which is optimal

for general unordered alphabets, i.e., when only equality comparisons between the letters are

allowed. Kolpakov and Kucherov [46] further showed that the number of maximal repetitions

is actually O(n), and gave a linear time algorithm for ordered constant size alphabets (and es-

sentially for integer alphabets), to compute all of them. The algorithm was a modification of the

algorithm by Main [58], which in turn relies on the Lempel-Ziv 77 (LZ77) factorization [77]

of the string, which can be computed in linear time for ordered constant size or integer alpha-

bets [21], but requires Ω(n log σ) time for general ordered alphabets [47], where σ is the size

of the alphabet. Recently, a new characterization of maximal repetitions using Lyndon words

was proposed by Bannai et al. [6, 7], which lead to a very simple proof to what was known as

the “runs” conjecture, i.e., that the number of maximal repetitions in a given string of length n

is less than n [7]. The characterization also lead to a new linear time algorithm for computing
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maximal repetitions on ordered constant size and integer alphabets, which does not require the

LZ77 factorization, but only on a linear number of longest common extension queries. Fur-

thermore, based on this algorithm, the running time for computing all maximal repetitions for

general ordered alphabets were subsequently improved to O(n log2/3 n) by Kosolobov [48],

O(n log log n) by Gawrychowski et al. [35], and O(nA(n)) by Crochemore et al. [22], where

A denotes the inverse Ackermann function.

In this chapter, we consider the problem of computing all maximal repetitions contained

in a string when given the run-length encoding (RLE) of the string, which is a well known

compressed representation where each maximal substring of the same character is encoded as

a pair consisting of the letter and the length of the substring. For example, the run-length

encoding of the string aaaabbbaaacc is (a, 4)(b, 3)(a, 3)(c, 2). The main contributions of the

chapter are:

1. an upper bound m + k − 1 on the number of maximal repetitions contained in a string,

where m is the size of its run-length encoding and k is the number of run-length factors

whose exponent is at least 2, and

2. an O(mA(m)) time and O(m) space algorithm to compute all maximal repetitions in a

string.

Our algorithm is at least as efficient as the non-RLE algorithms for general ordered alphabets.

Furthermore, when the input string is compressible via RLE, our algorithm can be faster and

more space efficient compared to the non-RLE algorithms. Although our algorithm mimics

those for non-RLE strings and is conceptually simple, its correctness is based on new non-

trivial observations on the occurrence of specific Lyndon words in run-length encoded strings.

Efficient algorithms for string problems when the input is given in RLE has been considered

in various contexts, for example, edit distance [15], various Longest Common Subsequence

problems [54, 50], palindrome retrieval [16], computing Lempel Ziv factorization [76], etc. We

shall repeat below a claim made in [50] concerning the significance of RLE-based solutions:

“A common criticism against RLE based solutions is a claim that, although they

are theoretically interesting, since most strings “in the real world” are not com-

pressible by RLE, their applicability is limited and they are only useful in extreme

artificial cases. We believe that this is not entirely true. There can be cases where

RLE is a natural encoding of the data, for example, in music, a melody can be
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expressed as a string of pitches and their duration. Furthermore, in the data min-

ing community, there exist popular preprocessing schemes for analyzing various

types of time series data, which convert the time series to strings over a fairly small

alphabet as an approximation of the original data, after which various analyses

are conducted (e.g. SAX (Symbolic Aggregate approXimation) [52], clipped bit

representation [5], etc.). These conversions are likely to produce strings which are

compressible by RLE (and in fact, shown to be effective in [5]), indicating that RLE

based solutions may have a wider range of application than commonly perceived.”

7.1 Definitions and Notations

In this chapter, we assume a general ordered alphabet, where a total order≺ is defined on Σ, and

the order between two letters in the alphabet can be computed in constant time. A total order

≺ on the alphabet induces a total order on the set of strings called the lexicographic order, which

we also denote by≺, i.e., for any x, y ∈ Σ∗, x ≺ y ⇐⇒ x is a proper prefix of y, or, there exists 1 ≤
i ≤ min{|x|, |y|} s.t. x[1..i− 1] = y[1..i− 1] and x[i] ≺ y[i].

All previous linear time algorithms either assume a constant size ordered alphabet or an inte-

ger alphabet, i.e., Σ = {1, . . . , nC} for some constant C. We will later see that this assumption

does not help in our case.

7.1.1 Maximal repetitions

For any string w ∈ Σ∗, an integer 1 ≤ p < |w| is called a period of w if w[i] = w[i + p]

for all 1 ≤ i ≤ |w| − p. A string whose smallest period is at most half its length is called a

repetition. We are interested in occurrences of repetitions as a substring of a given string which

are periodically maximal. Specifically, a triplet r = (i, j, p) is called a maximal repetition of w,

if and only if all the following hold:

1. p is the smallest period of w[i..j] and |w[i..j]| ≥ 2p (repetition),

2. i = 1 or w[i− 1] 6= w[i− 1 + p] (left maximal), and

3. j = |w| or w[j + 1] 6= w[j + 1− p] (right maximal).

For any string w, we denote the set of maximal repetitions as MReps(w). Although maximal

repetitions are commonly referred to as “runs” in the literature, we use the term “maximal

72



CHAPTER 7. ALMOST LINEAR TIME COMPUTATION OF MAXIMAL REPETITIONS IN RUN LENGTH
ENCODED STRINGS

repetitions” so as not to confuse it with “run” in “run-length encoding”.

For example, the string w = abaababaabaab contains seven maximal repetitions, i.e.,

MReps(w) = {(3, 4, 1), (8, 9, 1), (11, 12, 1), (4, 8, 2), (1, 6, 3), (6, 13, 3), (1, 11, 5)}.

7.1.2 Run length encoding

Let N denote the set of positive integers. For any string w ∈ Σ∗, let ai ∈ Σ and ei ∈ N ,

for 1 ≤ i ≤ m, be such that w = ae11 · · · aemm and ai 6= ai+1 for all 1 ≤ i < m. The run-

length encoding RLE (w) of string w is a string over the alphabet Σ × N , and is defined as

RLE (w) = (a1, e1) · · · (am, em). For any 1 ≤ i ≤ m, each letter RLE (w)[i] = (ai, ei) and its

corresponding substring aeii in w is called a run-length factor, and ei is called its exponent.

The set of starting (resp. ending) positions of run-length factors of w is denoted by Sw (resp.

Ew), i.e., Sw = {1 +
∑i−1

k=1 ek : 1 ≤ i ≤ m} and Ew = {
∑i

k=1 ek : 1 ≤ i ≤ m}. We will also

write Sw[i] = 1 +
∑i−1

k=1 ek and Ew[i] =
∑i

k=1 ek for any 1 ≤ i ≤ m.

7.1.3 Lyndon words

A string w is a Lyndon word [56] with respect to lexicographic order ≺, if and only if w ≺
w[i..|w|] for any 1 < i ≤ |w|, i.e., w is lexicographically smaller than any of its proper suffixes

with respect to≺. It is easy to see that a Lyndon word w cannot have a non-empty border, since

a border would be a proper suffix of w that is lexicographically smaller than w, since it is also

a prefix of w. An equivalent definition for a Lyndon word, is a word which is lexicographically

smaller than any of its proper cyclic rotations.

For example, if a ≺ b, then, the string abaabb, baa, abab are not Lyndon words with

respect to ≺, while aabab is. The following is also well known.

Lemma 26 (Proposition 1.3 [27]). For any Lyndon words u and v, uv is a Lyndon word iff

u ≺ v.

7.1.4 Longest common extension

For any string w of length n, the longest common extension query is, given two positions 1 ≤
i, j ≤ n, to answer

LCEw(i, j) = max{k | w[i..i+ k − 1] = w[j..j + k − 1], i+ k − 1, j + k − 1 ≤ n}.
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We also define the longest common extension in the reverse direction, i.e.,

LCER
w(i, j) = max{k | w[i− k + 1..i] = w[j − k + 1..j], i− k + 1, j − k + 1 ≥ 1}.

Note that if there is a way to compute LCEw(i, j) given w, there is also a way to com-

pute LCER
w(i, j) by considering the reversed string wR = w[n] · · ·w[1], since LCER

w(i, j) =

LCEwR(n− i+ 1, n− j + 1).

7.2 The Maximum Number of Maximal Repetitions by RLE

The goal of this section is to prove the following Theorem.

Theorem 18. For any string w, let m be the size of its run-length encoding, and k the number

of run-length factors of w whose exponent is at least 2. Then, |MReps(w)| ≤ m+ k − 1.

The proof basically follows the idea of [7] for normal strings, but it is extended to deal with

RLE strings.

For any maximal repetition r = (i, j, p) of string w and any lexicographic order ≺, there

exists a substring of length p in w[i..j] that is a Lyndon word with respect to ≺. This is because

the set {w[i′..i′+p−1] | i+1 ≤ i′ ≤ i+p} contains all p cyclic rotations ofw[i+1..i+p] which

are all distinct, since p is the smallest period of w, and a lexicographically smallest rotation will

always exist. Any length p subinterval [`, ` + p − 1] of a maximal repetition r = (i, j, p) such

that w[`..`+ p− 1] is a Lyndon word with respect to ≺, is called an L-root of r with respect to

≺.

Theorem 18 is trivial when |Σ| = 1, so we can assume |Σ| ≥ 2, and thus, we are able

to consider two orderings denoted by ≺0 and ≺1, where ≺0=≺ and for any a, b ∈ Σ, a ≺0

b ⇐⇒ b ≺1 a. We also use ≺0 and ≺1 to denote the lexicographic orders on Σ∗ induced by

the respective total orders. As in [7], we choose, for each maximal repetition r = (i, j, p), a

specific lexicographic order denoted by≺r∈ {≺0,≺1} so that w[j+1] ≺r w[j+1−p]. We note

that either order can be chosen when j = n. The set Br is defined as the beginning positions of

L-roots of r with respect to this order, but excludes a position if it coincides with the beginning

position of the maximal repetition, i.e., for any maximal repetition r = (i, j, p),

Br = {` | [`..`+ p− 1] is an L-root of r w.r.t. ≺r , and ` 6= i}.
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Note that |Br| ≥ 1 since a maximal repetition always contains an L-root that does not start at

its beginning. One of the crucial results of [7] was the following lemma, which implies that the

number of maximal repetitions in a string w of length n is at most n− 1 since ∪r∈MReps(w)Br ⊆
[2..n] and thus |MReps(w)| ≤

∑
r∈MReps(w) |Br| ≤ n− 1.

Lemma 27 (Lemma 8 of [7]). For any distinct maximal repetitions r, r′ of w, Br ∩Br′ = ∅.

The following lemma is an important new observation for L-roots of maximal repetitions

with respect to their run-length encoding.

Lemma 28. For any maximal repetition r = (i, j, p) of string w with p ≥ 2, it holds that

Br ⊂ Sw, i.e., a position in Br must be the beginning of an RLE-factor.

Proof. Suppose to the contrary, that there is some ` ∈ Br that is not at the beginning of an RLE-

factor, i.e., ` 6∈ Sw, and let [`..` + p − 1] be the corresponding L-root of r. By the assumption,

w[`− 1] = w[`]. Furthermore, by the definition of Br, we have that i < ` and by the periodicity

of r, w[`−1] = w[`+p−1]. However, this implies thatw[`..`+p−1] has a border, contradicting

that it is a Lyndon word. The lemma holds, since 1 ∈ Sw but 1 6∈ Br.

Of course, a run-length factor can be a maximal repetition of period 1, and can be stated as

follows.

Lemma 29. For any string w, let RLE (w) = (a1, e1) · · · (am, em). For any 1 ≤ i ≤ m,

(Sw[i],Ew[i], 1) is a maximal repetition of period 1 if and only if ei ≥ 2.

We are now ready to prove Theorem 18.

Proof.[Proof of Theorem 18] Recall that k is the number of run-length factors of w whose

exponent is at least 2. Due to Lemma 29, the number of maximal repetitions with period 1 is

equal to k. Note that for any maximal repetition r of period 1, any position i ∈ Br satisfies

i 6∈ Sw. Let MRepsp≥2 (w) be the set of maximal repetitions such that the period is at least 2.

From |Br| ≥ 1 and Lemmas 27 and 28,

|MRepsp≥2 (w)| ≤
∑

r∈MRepsp≥2 (w)

|Br| ≤ m− 1 < m = |Sw|

holds. Thus, the total number of maximal repetitions is at most m+ k − 1.
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If we consider the 2 cases w.r.t. m, we can get better bounds for each of 2 cases. Corollary 2 is

the tight bound for smaller m. Corollary 3 is an improved bound for larger m.

Corollary 2. For any string w, let m be the size of its run-length encoding. If m ≤ 3,

|MReps(w)| ≤ m.

If m = 3, it is easy to see that |MRepsp≥2 (w)| = 0. Obviously, |MReps(w)| = k also

holds, where k is the number of run-length factors of w whose exponent is at least 2.

Corollary 3. For any string w, let m be the size of its run-length encoding, and k the number

of run-length factors of w whose exponent is at least 2. If m ≥ 4, |MReps(w)| ≤ m+ k − 3.

Proof. Since an L-root of r ∈ MRepsp≥2 (w) must contain at least two different characters,

the beginning position Sw[m] of the last run-length factor (am, em) cannot be in Br for any

r ∈ MRepsp≥2 (w). If Sw[m− 1] ∈ Br for some r ∈ MRepsp≥2 (w), this implies that [Sw[m−
1],Ew[m]] is an L-root of r. Thus, [Sw[m−2],Ew[m−1]] must also be an L-root with respect to

the lexicographically reversed order, and Sw[m− 2] /∈ Br. Since r ends at position |w|, we can

choose either Sw[m−1] or Sw[m−2] as an element of Br. This implies that either Sw[m−1] or

Sw[m − 2] is not in Br for any r ∈ MRepsp≥2 (w). Thus |MRepsp≥2 (w)| ≤ m − 3 also holds.

Since 1 and Sw[m] are not contained in Br, and since only one of Sw[m − 1] or Sw[m − 2] is

contained in some Br, we have that the maximum number of maximal repetitions in a string is

at most m+ k − 3.

7.3 Computing All Maximal Repetitions on RLE strings

In this section, we propose an algorithm to compute all maximal repetitions on RLE strings.

Our algorithm follows the new algorithm for normal strings proposed in [7], but is modified to

handle RLE strings. We first review the algorithm for non-RLE strings.

7.3.1 Overview of algorithm for non-RLE strings

The crucial observation made in [7] (which was also required for the proof of Lemma 27 in the

previous section) is the following:

Lemma 30 (Lemma 7 of [7]). For any maximal repetition r = (i, j, p) of string w, let [`, ` +

p − 1] be an L-root of r with respect to order ≺r. Then, w[`..` + p − 1] is the longest Lyndon

word that is a prefix of w[`..|w|].
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Based on this observation, the algorithm consists of two steps. Step 1: Compute all the

longest Lyndon words with respect to ≺0 and ≺1 that start at each position of the string (the

occurrences are candidates for L-roots). Step 2: For each such candidate λ = w[iλ..jλ], compute

`h = LCEw(iλ, jλ+1) and `g = LCER
w(iλ−1, jλ) to see how long the period pλ = |w[iλ..jλ]| =

jλ − iλ + 1 continues to the left and to the right. We see that [iλ, jλ] is indeed an L-root of the

maximal repetition r = (iλ − `g, jλ + `h, pλ) if and only if `g + `h ≥ pλ.

Noticing that a Lyndon word can be created from any string by appending a unique smallest

letter to the front of the string, we can use the Lyndon tree of a Lyndon word for Step 1. Given a

Lyndon wordw of length n > 1, (u, v) is the standard factorization [17, 55] ofw, ifw = uv and

v is the longest proper suffix of w that is a Lyndon word, or equivalently, the lexicographically

smallest proper suffix of w. It is well known that for the standard factorization (u, v) of any

Lyndon word w, the factors u and v are also Lyndon words (e.g.[8]). The Lyndon tree of w is

the full binary tree defined by recursive standard factorization of w; w is the root of the Lyndon

tree of w, its left child is the root of the Lyndon tree of u, and its right child is the root of the

Lyndon tree of v. The longest Lyndon word that starts at each position can be obtained from the

Lyndon tree, due to the following lemma.

Lemma 31 (Lemma 22 of [7]). Let w be a Lyndon word with respect to ≺. w[i..j] corresponds

to a right node (or possibly the root) of the Lyndon tree with respect to ≺ if and only if w[i..j]

is the longest Lyndon word with respect to ≺ that starts from i.

The Lyndon tree of a normal string can be computed inO(nA(n)) time over general ordered

alphabet because of the following lemmas.

Lemma 32 (Observation 4 of [22]). The Lyndon tree of a string of length n can be constructed

by using O(n) non-crossing LCE queries.

Lemma 33 (Theorem 12 of [22]). In a string of length n, a sequence of q non-crossing LCE

queries can be answered in time O(q + nA(n)), where A denotes the inverse Ackermann func-

tion.

Here, a set of LCE queries is non-crossing if there are no two queries (i, j) and (i′, j′), such

that i < i′ < j < j′ or i′ < i < j′ < j. After computing the Lyndon tree, O(n) non-crossing

LCE queries are computed again for each right node in Step 2 as described above. Thus the

total time complexity for computing all maximal repetitions in non-RLE string is O(nA(n))

time over general ordered alphabet.
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We note that the LCE queries and thus all maximal repetitions can be computed in total

O(n) time for integer alphabets (using e.g. [30]).

7.3.2 Extending Lyndon structures for RLE

We now consider computing maximal repetitions on RLE strings. By Theorem 18, the number

of maximal repetitions in an RLE string isO(m), and from Lemmas 28 and 30, we can limit the

candidate L-roots of maximal repetitions with period at least 2, to the longest Lyndon words that

start at beginning positions of a run-length factor. We propose the RLE-Lyndon tree of a string

which can be represented in O(m) space and contains this information. In the RLE-Lyndon

tree, we treat each run-length factor like a character. The idea of the extension comes from the

following lemma.

Lemma 34. For any 1 ≤ i < j ≤ |w|, if w[i..j] is the longest Lyndon word with respect to ≺
that is a prefix of w[i..|w|], then j ∈ Ew, i.e., j is an end of an RLE-factor.

Proof. Suppose to the contrary, that there is some j /∈ Ew such that w[i..j] is the longest

Lyndon word with respect to ≺ that is a prefix of w[i..|w|]. Let RLE (w)[k] be the run-length

factor such that Sw[k] ≤ j < Ew[k]. Since w[i..j] is a Lyndon word of length at least 2 and

w[j] = ak = w[j + 1], w[i..j] ≺ w[j] = w[j + 1] holds. By Lemma 26, w[i..j + 1] is also a

Lyndon word. This contradicts that w[i..j] is the longest Lyndon word with respect to ≺ that is

a prefix of w[i..|w|].

From Lemmas 28 and 34, we have that for any maximal repetition r, each L-root of r that has

a starting position in Br, starts at the beginning position of some run-length factor and ends at

the ending position of some run-length factor. We note that RLE-Lyndon substring and RLE-

Lyndon factorization which will be defined in this section were introduced in [37] in a different

context.

Definition 12 (RLE-Lyndon substring). A string x is an RLE-Lyndon substring of w if x is a

Lyndon word that is a concatenation of consecutive run-length factors of w, or x is a run-length

factor.

Definition 13 (RLE-standard factorization). A pair of strings (u, v) is an RLE-standard factor-

ization of w if w = uv and v is the longest proper suffix of w that is an RLE-Lyndon substring.
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Definition 14 (RLE-Lyndon tree). The RLE-Lyndon tree of a Lyndon word w, denoted

LyndonTre2 (w), is an ordered full binary tree defined recursively as follows:

• if |RLE (w)| = 1, then LyndonTre2 (w) consists of a single node labeled by (a1, e1);

• if |RLE (w)| ≥ 2, then the root of LyndonTre2 (w), labeled by RLE (w), has left child

LyndonTre2 (u) and right child LyndonTre2 (v), where (u, v) is the RLE-standard fac-

torization of w.

a!a!a!b!b!a!a!b!b!a!a! b! a! b!b!a!a!b!b!a!a!b!b!b!b! a! a!

Figure 7.1: The RLE-Lyndon tree for the Lyndon word a3b2a2b2a2b2a3b2a2b2a2b3 with respect
to order a ≺ b. The double-headed arrow shows the L-roots that start at a position in Br,for all
4 maximal repetitions with period at least 2.

Figure 7.1 shows the RLE-Lyndon tree of a string a3b2a2b2a2b2a3b2a2b2a2b3. Though the

above structures are simply extended to RLE, it is interesting to note that these structures satisfy

similar properties of the original structures. The most important property of the RLE-Lyndon

tree in this chapter is stated in Lemma 35, which is an analogous to Lemma 31. The lemma can

be shown by similar arguments as in [7].

Lemma 35. Let w be a Lyndon word with respect to ≺. For any i ∈ Sw, w[i..j] corresponds to

a right node (or possibly the root) of LyndonTre2 (w) with respect to ≺ if and only if w[i..j] is

the longest Lyndon word with respect to ≺ that starts from i.

From the above lemma, we can detect all maximal repetitions in MRepsp≥2 (w) if we have

LyndonTre2 (w) (maximal repetitions with period 1 correspond to run-length factor or leaves

of LyndonTre2 (w)). In the example of Figure 7.1, for each maximal repetition r, the L-roots

that start at a position in Br are drawn by double-headed arrows. For example, the 2 L-roots
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[Sw[3]..Ew[4]] and [Sw[5]..Ew[6]] (corresponding to a Lyndon word aabb) with respect to the

same order ≺ as the Lyndon tree is represented by an internal node which is a right child. Also,

it can be observed that each L-root begins at the starting position of a run-length factor and ends

at the ending position of a run-length factor of w.

In Section 7.3.3, we show an algorithm to compute LyndonTre2 (w). For convenience, we

present the notion of RLE-Lyndon factorizations and show some properties of RLE-Lyndon

factorizations.

Definition 15 (RLE-Lyndon factorization). A sequence w1, . . . , ws is the RLE-Lyndon factor-

ization of w if each wi is an RLE-Lyndon substring, w1 � . . . � ws, and w = w1 · · ·ws.

The difference between the original Lyndon factorization [17] and the RLE-Lyndon factor-

ization arises for Lyndon factors which are a single letter in the original Lyndon factorization.

For a string w = bbbabbaabbaa, the original Lyndon factorization of w is b � b � b � abb

� aabb � a � a, the RLE-Lyndon factorization of w is b3 � abb � aabb � a2. Thus similar

argument about the longest Lyndon word on Lyndon factorizations holds, as below.

Lemma 36. Letw1, . . . , ws be the RLE-Lyndon factorization ofw. Then,w1 is either RLE (w)[1]

or the longest Lyndon word that is a prefix of w.

This implies that wi is either RLE (wi · · ·ws)[1] or the longest Lyndon word that is a prefix

of wi · · ·ws.

7.3.3 Algorithms

Finally, we show how to compute LyndonTre2 (w) in O(mA(m)) time and O(m) space. After

we compute LyndonTre2 (w), we can compute all maximal repetitions by using non-crossing

LCE queries. Note that the O(n) time and space solution for non-RLE strings over the integer

alphabet cannot be applied to RLE (w) to achieve an O(m) time and space solution, since the

alphabet for RLE (w) cannot be assumed to be an integer alphabet in terms of its length m (m

could be much smaller than n, while an exponent of a run-length factor could be as large as n).

However, the solution to non-crossing LCE queries for non-RLE strings over a general ordered

alphabet can be easily extended to LCE queries on an RLE string, since the algorithm is based

only on character comparisons.

Corollary 4. For any RLE string RLE (w) of size m, a sequence of q non-crossing LCE queries

on RLE (w) can be answered in time O(q +mA(m)).
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We use the above corollary in order to decide the lexicographic order between RLE sub-

strings in the construction of LyndonTre2 (w), and to compute maximal repetitions.

Lemma 37. LyndonTre2 (w) can be computed in O(mA(m)) time and O(m) space.

Proof. Firstly, we show our algorithm. The algorithm constructs LyndonTre2 (w) in bottom-

up and from right to left. The main idea is that the right factor of RLE-standard factorization

is the longest proper suffix which is an RLE-Lyndon substring. We will find such a suffix by

concatenating two RLE-Lyndon substrings based on Lemma 26. Since each leaf corresponds

to a single run-length factor (i.e., RLE-Lyndon substring), we know that the tree has m leaves.

A stack is maintained so that at the beginning of k-th step, the stack contains the sequence of

subtrees of LyndonTre2 (w) such that the corresponding sequence of RLE-Lyndon substrings

is the RLE-Lyndon factorization of the suffix w[Sw[m − k + 2]..|w|]. In the k-th step, the

algorithm pushes the leaf corresponding to RLE (w)[m− k+ 1] on the stack. Let (fb, fe) (resp.

(sb, se)) be pair of positions in RLE (w) such that the top (resp. second) subtree in the stack

corresponds to the RLE-Lyndon substring w[Sw[fb]..Ew[fe]] (resp. w[Sw[sb]..Ew[se]]). Note that

Ew[fe]+1 = Sw[sb] always holds. After pushing the new leaf, the algorithm does the following;

• If w[Sw[fb]..Ew[fe]] ≺ w[Sw[sb]..Ew[se]], pop the two elements and push the subtree

which is the concatenation of the two popped subtrees, and repeat the process.

• Otherwise, go to the next step.

We now prove that the above invariant condition of the stack holds before k + 1-th step.

We denote the RLE-Lyndon factorization of the suffix w[Sw[m − k + 2]..|w|] by W1, . . . ,Wj .

Because of the above operations, a factorization of the suffix w[Sw[m− k+ 1]..|w|] can be rep-

resented by W ′,Wi, . . . ,Wj for some 1 ≤ i ≤ j where W ′ = RLE (w)[m− k+ 1]W1 · · ·Wi−1

(for convenience, W0 = ε). By the assumption, Wi, . . . ,Wj is the RLE-Lyndon factorization

of the suffix Wi · · ·Wj . By the algorithm and Lemma 26, W ′ is an RLE-Lyndon substring

and W ′ � Wi holds. Thus W ′,Wi, . . . ,Wj is the RLE-Lyndon factorization of the suffix

w[Sw[m − k + 1]..|w|] since W ′ � Wi � . . . � Wj holds. Since w is a Lyndon word, when

all leaves are pushed on the stack and the number of elements in the stack is one, the algorithm

stops and the RLE-Lyndon tree is completely constructed.

We can determine the lexicographic order by using LCE queries. More precisely, for

each lexicographic comparison described above, we compute LCERLE(w)(fb, sb) = k. Then,

w[Sw[fb]..Ew[fe]] ≺ w[Sw[sb]..Ew[se]] if and only if sb + k − 1 < se and, either
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1. afb+k ≺ asb+k or, afb+k = asb+k and

2. efb+k < esb+k and afb+k+1 ≺ asb+k or

3. efb+k > esb+k and asb+k+1 ≺ afb+k.

Thus, in the algorithm, we call O(m) non-crossing LCE queries such that each query positions

is the beginning position of some run-length factor and we can compute LyndonTre2 (w) in

O(mA(m)) time.

To compute all maximal repetitions, we need to compute another O(m) sets of LCE queries

on w (or wR) for each candidate L-root. The query positions are starting positions of run-length

factors in w (or wR). It is easy to see that this can also be achieved in O(mA(m)) time by

Corollary 4 since if k = LCERLE(w)(i, j), then LCEw(Sw[i], Sw[j]) = Ew[i+ k− 1]− Sw[i] +

1 + e, where e = min{ei+k, ej+k} if ai+k = aj+k and 0 otherwise. It is also clear that the

algorithm requires O(m) space.

Therefore, the following theorem holds.

Theorem 19. Given a run-length encoding of a string w, all maximal repetitions in w can be

computed in O(mA(m)) time and O(m) space.

Corollary 5. For any string w, let RLE (w) = (a1, e1) · · · (am, em). If for all 1 ≤ i ≤ m, ai ∈
{1, . . . ,mC1}, and ei = O(mC2) for some constants C1 and C2, then all maximal repetitions in

w can be computed in O(m) time and O(m) space.

Proof. Under the assumption, any set of O(m) LCE queries on RLE (w) can be answered

in O(m) total time using the methods for integer alphabets (i.e., Σ = {1, . . . ,mC} for some

constant C), since aeii = O(mC1+C2).
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Conclusion

In this thesis, we studied compact string indexing and their applications to efficient pattern

discovery by using the combinatorial properties of strings.

In Chapter 3, we proposed the first O(n)-time algorithm to construct edge-sorted DAWGs

for integer alphabets. A simple modification also leads us to the first O(n)-time algorithm to

construct affix trees for integer alphabets. We remark that the previously best known DAWG

(resp. affix-tree) construction algorithm of Blumer et al. (resp. Maaß) requires O(n log n) time

for integer alphabets.

In Chapter 4, we proposed a new space saving data structure called the truncated DAWGs.

We show that the k-truncated DAWG of y, denoted by k-TDAWG(y), is a subgraph of DAWG(y),

and can be stored in O(min{n, kγ}) space where n is the length of y, σ is the alphabet size,

and γ is the size of one of the smallest k-attractors of y. We also presented an O(n log σ)

time and O(min{n, kγ}) space algorithm for constructing k-TDAWG(y). As an application

of k-TDAWG(y), we presented an O(min{n, kγ} + |MAW k(y)|) time algorithm to compute

the set MAW k(y) of all minimal absent words of y whose size is smaller than or equal to k by

using k-TDAWG(y).

In Chapter 5, we addressed the left-right maximal generic words problem and developed an

O(n logm) size data structure, which answers queries in O(|p| + o log logm) time, where o is

the size of outputs. Our method is better than the previous work by Nishimoto et al. both in the

space requirement and in the query time.

In Chapter 6, we presented an online algorithm which enumerates all length-constrained

gapped palindromes occurring in a string w of length n in O(n( gmin−gmax

A
+ log σ)) time, for

given parameters 2 ≤ gmin ≤ gmax and A ≥ 1. We also showed that if A is a constant, then

there exists a string which contains Ω((gmin− gmax)n) maximal LCGPs. This implies that for a
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constant-size alphabet the running time of our algorithm is optimal in the worst case.

In Chapter 7, we considered maximal repetitions on run length encoded strings. Firstly,

we presented a new upper bound of maximal repetition in string w 2m − 1 where m is the

size of run length encoded string of w. Secondly, we presented an algorithm to enumerate all

maximal repetitions in O(mA(m)) time, where A denotes the inverse Ackermann function.

Our algorithm is faster than or equal to Chrochemore et al.’s algorithm (for an uncompressed

string) even if including the time for computing the run length encoding of uncompressed input

string.

84



Bibliography

[1] Pizza&Chili Corpus. http://pizzachili.dcc.uchile.cl/texts/nlang/.

[2] Proceedings of the 2013 IEEE International Symposium on Information Theory, Istanbul,

Turkey, July 7-12, 2013. IEEE, 2013.

[3] A. Apostolico, D. Breslauer, and Z. Galil. Parallel detection of all palindromes in a string.

Theor. Comput. Sci., 141(1&2):163–173, 1995.

[4] G. Badkobeh, M. Crochemore, and C. Toopsuwan. Computing the maximal-exponent

repeats of an overlap-free string in linear time. In SPIRE 2012, pages 61–72, 2012.

[5] A. Bagnall, C. A. Ratanamahatana, E. Keogh, S. Lonardi, and G. Janacek. A bit level

representation for time series data mining with shape based similarity. Data Mining and

Knowledge Discovery, 13(1):11–40, 2006.

[6] H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda, and K. Tsuruta. A new charac-

terization of maximal repetitions by Lyndon trees. In P. Indyk, editor, Proceedings of the

Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San

Diego, CA, USA, January 4-6, 2015, pages 562–571. SIAM, 2015.

[7] H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda, and K. Tsuruta. The “runs” theo-

rem. SIAM Journal on Computing, 46(5):1501–1514, 2017.

[8] F. Bassino, J. Clément, and C. Nicaud. The standard factorization of Lyndon words: an

average point of view. Discrete Mathematics, 290(1):1–25, 2005.

[9] M. A. Bender and M. Farach-Colton. The LCA problem revisited. In G. H. Gonnet,

D. Panario, and A. Viola, editors, LATIN 2000: Theoretical Informatics, 4th Latin Amer-

ican Symposium, Punta del Este, Uruguay, April 10-14, 2000, Proceedings, volume 1776

of Lecture Notes in Computer Science, pages 88–94. Springer, 2000.

85



BIBLIOGRAPHY

[10] O. Berkman and U. Vishkin. Finding Level-Ancestors in Trees. J. Comput. Syst. Sci.,

48(2):214–230, 1994.

[11] S. Biswas, M. Patil, R. Shah, and S. V. Thankachan. Succinct indexes for reporting dis-

criminating and generic words. In E. S. de Moura and M. Crochemore, editors, String

Processing and Information Retrieval - 21st International Symposium, SPIRE 2014, Ouro

Preto, Brazil, October 20-22, 2014. Proceedings, volume 8799 of Lecture Notes in Com-

puter Science, pages 89–100. Springer, 2014.

[12] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. T. Chen, and J. I. Seiferas. The

smallest automaton recognizing the subwords of a text. Theoreoretical Computer Sceince,

40:31–55, 1985.

[13] A. Blumer, J. Blumer, D. Haussler, R. M. McConnell, and A. Ehrenfeucht. Complete

inverted files for efficient text retrieval and analysis. Journal of the ACM, 34(3):578–595,

1987.

[14] S. Chairungsee and M. Crochemore. Using minimal absent words to build phylogeny.

Theor. Comput. Sci., 450:109–116, 2012.

[15] K. Chen and K. Chao. A fully compressed algorithm for computing the edit distance of

run-length encoded strings. Algorithmica, 65(2):354–370, 2013.

[16] K. Chen, P. Hsu, and K. Chao. Efficient retrieval of approximate palindromes in a run-

length encoded string. Theor. Comput. Sci., 432:28–37, 2012.

[17] K. T. Chen, R. H. Fox, and R. C. Lyndon. Free differential calculus. iv. the quotient groups

of the lower central series. Annals of Mathematics, 68(1):81–95, 1958.

[18] R. Cole and R. Hariharan. Dynamic LCA queries on trees. SIAM J. Comput., 34(4):894–

923, 2005.

[19] M. Crochemore. Transducers and repetitions. Theor. Comput. Sci., 45(1):63–86, 1986.
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tion. In J. Holub and J. Zdárek, editors, Proceedings of the Prague Stringology Confer-

ence 2014, Prague, Czech Republic, September 1-3, 2014, pages 169–178. Department

of Theoretical Computer Science, Faculty of Information Technology, Czech Technical

University in Prague, 2014.

[38] A. Golynski, J. I. Munro, and S. S. Rao. Rank/select operations on large alphabets: a

tool for text indexing. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium

on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006, pages

368–373. ACM Press, 2006.

88



BIBLIOGRAPHY

[39] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press,

1997.

[40] S. Inenaga. Bidirectional construction of suffix trees. Nord. J. Comput., 10(1):52, 2003.

[41] S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda, S. Arikawa, G. Mauri, and G. Pavesi.

On-line construction of compact directed acyclic word graphs. Discrete Applied Mathe-

matics, 146(2):156–179, 2005.

[42] D. Kempa and N. Prezza. At the roots of dictionary compression: string attractors. In

I. Diakonikolas, D. Kempe, and M. Henzinger, editors, Proceedings of the 50th Annual

ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA,

June 25-29, 2018, pages 827–840. ACM, 2018.

[43] D. E. Knuth, J. H. M. Jr., and V. R. Pratt. Fast pattern matching in strings. SIAM J.

Comput., 6(2):323–350, 1977.

[44] R. Kolpakov, G. Bana, and G. Kucherov. mreps: Efficient and flexible detection of tandem

repeats in DNA. Nucleic acids research, 31(13):3672–3678, July 2003.

[45] R. Kolpakov and G. Kucherov. Searching for gapped palindromes. Theor. Comput. Sci.,

410(51):5365–5373, 2009.

[46] R. M. Kolpakov and G. Kucherov. Finding maximal repetitions in a word in linear time. In

40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October,

1999, New York, NY, USA, pages 596–604. IEEE Computer Society, 1999.

[47] D. Kosolobov. Lempel-ziv factorization may be harder than computing all runs. In E. W.

Mayr and N. Ollinger, editors, 32nd International Symposium on Theoretical Aspects of

Computer Science, STACS 2015, March 4-7, 2015, Garching, Germany, volume 30 of

LIPIcs, pages 582–593. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[48] D. Kosolobov. Computing runs on a general alphabet. Inf. Process. Lett., 116(3):241–244,

2016.

[49] D. Kosolobov, M. Rubinchik, and A. M. Shur. Finding distinct subpalindromes online. In

PSC 2013, pages 63–69, 2013.

89



BIBLIOGRAPHY

[50] K. Kuboi, Y. Fujishige, S. Inenaga, H. Bannai, and M. Takeda. Faster STR-IC-LCS com-

putation via RLE. In Combinatorial Pattern Matching, 28th Annual Symposium, CPM

2017, Warsaw, Poland, July 4-6, 2017, Proceedings, 2017. in press.

[51] G. Kucherov, Y. Nekrich, and T. A. Starikovskaya. Computing discriminating and generic

words. In L. Calderón-Benavides, C. N. González-Caro, E. Chávez, and N. Ziviani, edi-
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