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Abstract 

The aim of this dissertation is to investigate the physical and cognitive aspects 

of using low-cost eye-tracking devices for visual password authentication. By using 

eye tracking, users can select objects on a display by using their eye gaze. In total, 

seven experiments were performed, in which low-cost eye trackers were used. 

The physical aspects of eye-gaze-based input of objects for password 

authentication concern the measurement of the maximum and minimum viewing 

distances, highest and lowest viewing angles, and the ideal viewing angle of the user. 

In four experiments, measurements were performed in conditions both with and 

without glasses, at different viewing angles, under different lighting conditions. The 

results showed that even low-cost eye trackers worked in a stable manner in registering 

users' eyes at various viewing distances and viewing angles under different conditions 

of illuminance and luminance (Experiments 1 and 2). However, the results showed 

that the use of glasses indeed influenced user registration into low-cost eye-tracker 

interfaces (Experiment 3). Nevertheless, even with glasses, when the eye-tracking 

device and the display were set at a certain angle adjusted to the viewing height of the 

user, good and fast calibration and authentication could be achieved (Experiment 4). 

Low-cost eye-tracking devices thus can be considered for implementation into 

interactive-based interface systems that require eye-gaze-based authentication, such as 

visual password systems, under various lighting conditions in public spaces (e.g., 

personal computer use or Automatic Teller Machines – ATMs) or semi-public spaces 

(e.g., vehicles). 
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The cognitive aspects investigated in this dissertation related to the users’ 

abilities in selecting visual object sequences from a screen using eye-gaze-based input. 

In three experiments, the users needed to select a sequence of visual objects from the 

grid-based interface screen by using their eye gaze, to enter a single password. Three 

different types of visual objects were used: alphanumeric characters, patterns of dots, 

and visual icons. These objects are commonly used in recognition-based visual 

password systems. A variety of grid densities and formations were considered and 

made in 16 ways, in between 3×3 and 6×6 object keys (Experiment 5), to indicate the 

positions of the objects on the screen. The results showed that password authentication 

with eye-gaze-based input is best performed on horizontal grids with relatively few 

cells, in the alphanumeric format (Experiment 6). Furthermore, a dwell time of 500 ms 

per object was easiest to use for selecting a sequence of visual objects on a screen 

using eye-gaze-based input (Experiment 7). Generally, the results of the dissertation 

suggest that eye-gaze-based input can be a suitable option to support the different 

necessities of users in performing user-interaction tasks involving object selection 

from a display, e.g., password authentication tasks in public settings. 

 

Keywords: eye tracking, eye-gaze-based input, grid densities, grid formations, object 

selection, visual password 
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Chapter 1. Introduction 

In this dissertation, research is described in which the user's eye gaze is utilized 

as an input method for performing user-interaction tasks that involve object selection 

from a display, e.g., eye-gaze-based authentication. An eye-tracking device enables 

the user to select a sequence of visual objects, e.g., alphanumeric characters, patterns 

of dots, or visual icons, from various grid-based screen interfaces, by focusing the 

user’s eye gaze on the object. These visual objects were intended for three visual 

password formats. Alphanumeric characters, similar to those used in the eye-typing 

task for English words (e.g., see Majaranta, MacKenzie, Aula, & Räihä, 2003), were 

used in an alphanumeric password format. Sequences consisting of patterns of dots 

were designated for a pattern password format, whereas visual icons were used in a 

picture password format. These types of visual objects are commonly used in 

recognition-based password systems (Biddle, Chiasson, & van Oorschot, 2012), for 

example to manually unlock smartphones.  

Recognition-based visual password systems were often considered as easier to 

memorize (Renaud, 2005; Nelson & Vu, 2010), and that systems with a denser grid 

potentially allow more secure password formation (Thorpe & van Oorschot, 2004; 

Alam, 2016). Furthermore, it has been suggested that eye-gaze-based input could be 

suitable against password theft (“shoulder surfing”), especially in public spaces 

(Dunphy, Fitch, & Olivier, 2008). Eye-gaze-based input is also considered as an easy 

and natural means of human-computer interaction (Majaranta & Räihä, 2002), which 

only needs slight practice (Stampe & Reingold, 1995). Finally, an eye-tracking device 

allows the user to actively interact with systems in which the user can select an object 
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from a display only by looking (Duchowski, 2018). It has further been reported that 

eye-gaze-based input is regarded faster than other input devices, e.g., a mouse or 

stylus, if the target object on the display is large enough (Ware & Mikaelian, 1987; 

Sibert & Jacob, 2000). 

In eye-tracking research, however, some challenges still need to be faced, 

specifically in optimizing eye-tracking interfaces to the physical and cognitive abilities 

of users when selecting a specific object (e.g., a character/word, a menu item, or a 

password object) from a visual display. For example, in order to register the user's eyes 

into screen interfaces while standing, a suitable viewing distance and angle need to be 

established for every user. Furthermore, calibration for the same users with and 

without glasses standing in front of a display under different lighting conditions is also 

necessary to test the use of eye-tracking devices in real-life, practical situations. In 

today’s world, an increasing variety of (public or semi-public) devices with displays 

require a variety of passwords. Therefore, research is necessary with regard to the type 

of password formats, grid formations, and dwell time durations that are useful for 

selecting a sequence of visual objects as a password from a display using eye-gaze-

based input.  

1.1 The aim of this dissertation 

The aim of this dissertation is to investigate a number of physical and cognitive 

aspects of using low-cost eye-tracking devices for visual password authentication. The 

user used his/her eye gaze to select an object from a visual display. Seven experiments 
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were performed, with low-cost eye trackers (Tobii EyeX©, Eye Tribe©, and Tobii Eye 

Tracker 4C©). 

The physical aspects of eye-gaze-based input of objects for password 

authentication concern the measurement of the maximum and minimum viewing 

distances, highest and lowest viewing angles, and ideal viewing angle of the user. The 

measurements were performed in conditions both with and without glasses, at different 

viewing angles, under different lighting conditions. The first objective of this 

dissertation was to obtain viewing distances and viewing angles at which the 

participant’s eyes could be registered under three different lighting conditions. I also 

investigated whether lighting conditions had an influence on the maximum and 

minimum viewing distances and viewing angles. The second objective of this 

dissertation was to investigate the effect of wearing glasses on the calibration process 

into a low-cost eye-tracking device, and to investigate the ideal viewing angle of 

participants viewing from different heights, with and without glasses at different 

display angles. 

With regard to the cognitive aspects of visual password authentication, the user 

used his/her eye gaze to select a sequence of visual objects on a grid-based screen 

interface. The visual objects that were used consisted of alphanumeric characters, dots, 

and visual icons, from which a single visual password with a different number of 

objects needed to be selected. An interactive interface with multiple objects shown on 

the screen typically employs a grid to organize objects based on sequenced columns 

and rows. Therefore, the third objective of this dissertation was to investigate what 

grid densities potentially are suitable for authenticating a visual password with actual 



23 

 

eye tracking. Furthermore, the first step towards a safer password system is to employ 

eye tracking to investigate which types of password format and grid formation are 

suitable for password authentication using eye-gaze-based input. Finally, in order to 

avoid that the user potentially selects non-target objects among multiple objects on a 

screen unintentionally (Jacob, 1991; Velichkovsky, Rumyantsev, & Morozov, 2014), 

the fourth objective of this dissertation was to establish what dwell time duration is 

useful for selecting a variety of visual objects from a grid-based interface with eye-

gaze-based input. 

1.2 Contents of this dissertation 

In Chapter 2, more research background of eye-gaze-based input is described, 

e.g., an overview of eye tracking and its research, the basics of eye-gaze-based input, 

an overview of the interaction tasks with eye-gaze-based input, and grid-based 

interfaces for eye tracking. In Chapter 3, based on two experiments, the viewing 

distances and angles of two low-cost eye trackers under different lighting conditions 

are described. The eye-tracking devices used were the Tobii EyeX© and the Eye 

Tribe©. In Experiment 1, the boundaries of maximum and minimum viewing distances 

and the ranges of highest and lowest viewing angles of the Tobii EyeX© eye-tracking 

device were obtained. In Experiment 2, the boundaries of maximum and minimum 

viewing distances and the ranges of highest and lowest viewing angles were also 

obtained for the Eye Tribe© eye-tracking device. In both experiments, three different 

lighting conditions were used, in order to check whether lighting conditions had an 
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influence on users’ eyes registration at the maximum and minimum viewing distances 

and viewing angles. 

In Chapter 4, two experiments are described that investigated whether the use 

of glasses during registration to the Eye Tribe© eye-tracking device could influence 

the calibration quality and calibration time. In Experiment 3, the effect of wearing 

glasses on the calibration process into an eye tracker was investigated under three 

different lighting conditions. In Experiment 4, the ideal viewing angle of participants 

viewing from different heights (standing, sitting), with and without (replica) glasses at 

different display angles was investigated under two different lighting conditions. For 

this experiment, different display angles were used.  

One preliminary experiment (Experiment 5) is described in Chapter 5, the aim 

of which was to investigate what grid densities potentially are suitable for a follow-up 

experiment with actual eye tracking. In Chapter 6, an experiment is described 

(Experiment 6) which aimed to investigate what type of password format and grid 

formation would be suitable for password authentication using eye-gaze-based input. 

In order to perform password authentication, the participant was asked to identify and 

select a sequence of visual objects (e.g., alphanumeric characters, a pattern of dots, or 

visual icons) on 16 grid formations (ranging from 3×3 to 6×6 cells; columns × rows) 

by using eye-gaze-based input. An experiment on various dwell time durations for eye-

gaze-based object selection (Experiment 7) is described in Chapter 7. In Chapter 8, the 

general discussion and conclusions of this dissertation are described.  

Chapters 3 and 4 were intended to prepare and check whether the eye tracking 

devices used here were suitable for performing user-interaction tasks. Chapters 5 to 7 
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concerned the main topic of this dissertation, describing password authentication on a 

grid-based screen interface using eye-gaze-based input. For this dissertation, the 

procedures in all experiments described in Chapters 3-7 were approved by the Ethical 

Committee of the Faculty of Design, Kyushu University, Japan (131-3). 
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Chapter 2. Research background of eye-gaze-based input 

2.1 Eye Tracking 

The eye is one of the main human organs that can be used to learn and 

understand things in our environment. Some authors also said that the eye is the 

window to the soul through the brain (Ellis et al., 1998; Brigham et al., 2001). The 

actions of humans are mainly based on their understanding of the information obtained 

through the eye. Behaviorally, the user can collect relevant information and/or neglect 

inessential information (Chun & Wolfe, 2005). Thus, it can be assumed that knowing 

the user's eye gaze points may give insight into what exactly drew his/her attention, 

and even likely give a hint on how he/she perceived the things in the visual field. 

Eye tracking refers to the activity of recording and measuring eye movements 

to establish where the point of the user’ gaze would be, what he/she is staring at, and 

how long his/her eye gaze is in a certain place in the visual field. Eye tracking has 

become increasingly popular in human-machine interaction, potentially creating 

communication between humans and machines (Majaranta & Bulling, 2014). In one 

of the earliest applications, Fitts and his colleagues recorded aircraft pilots' eye 

movements with a motion-picture camera and analyzed the eye movements in every 

single frame (Fitts, Jones, & Milton, 1950). They concluded that the eye movements 

were different between flight instruments (e.g., air-speed indicator, altimeter, etc.), 

based on their measurements of the fixation frequency and required fixation duration. 

They also discovered that the more experienced pilots made shorter fixations. Ever 

since, eye-tracking technologies have been used in a broad range of application areas. 
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Eye tracking has been used as a usability research tool for researchers who would like 

to study and analyze human performances or behaviors. It also has been used as an 

eye-gaze-based input medium that can be operated in real-time (Jacob & Karn, 2003). 

2.2 Research on eye tracking 

As a usability research tool, eye tracking has been used to study human 

attention direction. The user's eye movements can give information as regards the 

direction of autistic children's attention and eye tracking can assess autistic children's 

intentions and performances while they use a device system. For example, a review 

study regarding autism by Boraston and Blakemore (2007) showed that the attention 

of autistic children was more focused at the mouth region of someone’s face than the 

eye region. Measuring infants’ gaze thus may help early detection of the risk of autism 

(Navab, Gillespie-Lynch, Johnson, Sigman, & Hutman, 2012). Other studies on eye 

tracking in pediatrics showed that when infants were looking at target pictures on a 

display to learn new words, infants with late speech development have different 

representations of new words than their peers (Ellis, Borovsky, Elman, & Evans, 

2015). Moreover, children’s attention based on first fixations was less occupied on 

target faces for 3-month-olds as compared to 6-month-olds and adults (Di Giorgio, 

Turati, Altoè, & Simion, 2012). Other studies have used eye tracking for the 

recognition of emotion in human faces (Shechner et al., 2013), or to investigate the 

gaze time of customers on nutrition labels of food (Graham & Jeffery, 2012). Finally, 

eye tracking has been used to identify the gaze duration of users when performing 

password enrollment with manual input (Mihajlov & Jerman-Blazic, 2018). All the 
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above studies indeed demonstrated that eye tracking is highly useful for analyzing the 

user's behavior or habits based on his/her attention direction. It can even help to 

identify problems related to cognitive functioning, which can help the user in daily 

life. 

One of the main functions of eye tracking is as an eye-gaze-based input 

medium to support users who perform interaction or communication with other 

devices (e.g., computers, smartphones, tablets, etc.), in real-time. At first, this 

technology was mainly intended for users with disability issues, who are only able to 

use their eyes in order to perform an action through a visual display. Eye tracking, for 

example, can help persons with Amyotrophic Lateral Sclerosis (ALS). As 

demonstrated by Hutchinson, White, Martin, Reichert, and Frey (1989), disabled users 

could operate system interfaces by gazing at proper menu options on the display 

without moving their heads. Following this, gaze-based interaction for selecting static 

objects, smooth-moving objects and menu options was developed for any user as a 

natural and simple means to control the system interface (Jacob, 1991). For example, 

a webpage system that incorporated eye tracking was developed as a language 

translator to users after reading pages for long fixations (Hyrskykari, Majaranta, 

Aaltonen, & Räihä, 2000). In recent years, eye gaze has been employed as an 

interactive interface for typing sentences (Majaranta, Ahola, & Špakov, 2009), 

communicating with a virtual character (Bee et al., 2010), and authenticating a visual 

password (Dunphy et al., 2008; De Luca, Denzel, & Hussmann, 2009; Forget, 

Chiasson, & Biddle, 2010). Many applications that incorporate eye-gaze-based input 

nowadays may support the activities of all users, disabled or not, in daily life. Taken 
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together, eye tracking is not only a highly robust tool for usability research but also is 

a very promising technology that facilitates interaction or communication between 

users and devices. 

2.3 Basics of eye-gaze-based input 

2.3.1 Characteristics of eye movements 

In general, eye movements are not stable over the visual field. To see an object 

accurately, the user needs to scan every object in the visual field with rapid eye 

movements, so-called saccades. It means that the eye gaze jumps quickly from an 

object to another object, and it typically lasts approximately 30-120 ms (Jacob, 1995). 

Because it is so rapid, as soon as a saccade is started, the eye movements cannot be 

interrupted. However, its track orientation can be changed. Naturally, a saccade is 

followed by fixation: a time duration that the user needs to hold his/her gaze steadily 

on an object. It should be relatively long, so that the user's brain can understand the 

features of the object. Typically, a fixation holds on for 200 to 600 ms after each 

saccade occurs. Therefore, regular eye movements consist of fixations on objects 

connected by rapid saccades between those objects.  

A user can look at a relatively narrow area of the visual field with high acuity 

during fixations. It is because the fovea in the retina of the eye gives accurate vision 

with one arc-min (1/6 of a degree) of visual angle. Thus, the user is not able to see an 

object in detail outside the fovea (the peripheral vision), but inside the fovea area (the 

narrow vision) the user can see an object accurately. The narrow vision induces the 

need to move the eyes rapidly around the visual field, while the peripheral vision gives 
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hints on where the next object can be seen in the visual field. Because of this, the 

direction of the user's eye gaze can be easily traced by using an eye tracking device 

(for more details on eye movements and visual perception, e.g., see Haber & 

Hershenson, 1973). 

2.3.2 Calibration of an eye-tracking device 

For every user, the eye-tracking device must be calibrated in order to specify 

the gaze point of a user's eye precisely at every spot where objects exist on the screen. 

Simply put, calibration is the process of tracking a user's eye movements for an 

accurate gaze point calculation. The eye-tracking software normally presents 9 points 

that are equally spaced on the screen, and the user is required to gaze at each point, 

one by one. During this process, several images of a user’s eyes can be collected and 

then analyzed. As an output, each image is mapped and converted into eye-gaze points 

(as x, y coordinates) on the screen (for more information about this see Majaranta & 

Bulling, 2014). By doing a successful calibration, the quality of eye tracking can 

become rather accurate - it is around 0.5 deg in visual angle, to see the area of about 

15 pixels on a 17-in display (a screen resolution of 1024 × 768 pixels) from a viewing 

distance of 70 cm. In practice, however, the registered eye-gaze point often drifts far 

off from the real eye-gaze point. This occurs likely as a result of head movements, 

changes in pupil size and in lighting, or the use of glasses. This can be solved by 

recalibrating the registered eye-gaze points using eye-tracking software. For example, 

Tobii eye-tracking systems utilize data of both eyes to prevent and minimize the 

drifting effects (for details, see Tobii, 2006) – this supports a user to avoid continuous 

recalibration. Furthermore, the system even still works with data from one eye in case 
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another eye is off track. It is necessary to note that the eye gaze registration and 

calibration may not be done if the user is sitting or standing too close to or too far from 

eye-tracking devices. Therefore, a suitable viewing distance and angle need to be 

established for every user. 

It is known that the use of glasses can reduce the accuracy and speed of user 

registration and calibration into eye-tracking devices (Nyström, Andersson, 

Holmqvist, & van de Weijer, 2013; Stawicki, Gembler, Rezeika, & Volosyak, 2017). 

This has been investigated (Funke et al., 2016) by comparing two low-cost eye trackers 

(Tobii EyeX© and Eye Tribe©) with a medium-cost (Smart Eye Aurora©) and two high-

cost eye trackers (Seeing Machines faceLAB© and Smart Eye Pro©). The performance 

evaluation of the devices showed that the percentage of viewers that could be 

calibrated with the Tobii EyeX© was just 50% when the users wore glasses. However, 

it is unclear whether the calibrations in this study were performed between users with 

prescription glasses and a group with normal eyesight, or among the same users with 

and without glasses. Comparison between two different user groups may not have 

provided valid information; it is conceivable that a group with prescription glasses has 

more difficulty performing calibration (tracking) tasks because their eyesight is worse 

than that of users who do not need glasses (Nyström et al., 2013). Moreover, in this 

study the calibration was obtained with users sitting in front of a display under a single 

room lighting condition (Funke et al., 2016). Hence, calibration for the same users with 

and without glasses standing in front of a display under different lighting conditions is 

also necessary to test the use of eye-tracking devices in real-life, practical situations. 
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2.3.3 Dwell-time-based object selection 

When using eye-tracking devices, the user can select an object from a display 

by focusing his/her eye gaze on the object, such as a letter, a menu item or a password 

object. Before selecting the object, the user is required to dwell his/her gaze on the 

object for a certain amount of time, a so-called “dwell time”, in order to trigger an 

action. For systems that only use eye-gaze-based input, dwell time is the most common 

and easy way to select a static object from a display (Sibert & Jacob, 2000). The use 

of dwell time makes other actions obsolete. Using dwell time, however, requires some 

practice by the user. On a display with multiple objects, the user must first reliably 

identify the target object, before performing an action on it (Land and Furneaux, 1997). 

Accordingly, when eye gaze is used to identify a target object, the user may 

unintentionally and inattentively dwell his/her gaze on the wrong object. As a result, 

this object may even become selected as the target object – a problem that is known as 

the Midas-Touch problem (Jacob, 1991; Velichkovsky et al., 2014). In order to 

counteract the Midas-Touch problem, developers of eye-gaze-based object selection 

interfaces typically use a fixed duration of dwell time. 

Previous studies have shown that various dwell time durations have been used 

that ranged from 300 to 1100 ms. In eye-typing systems, for example, eye-gaze-based 

input is used to select characters on an on-screen keyboard with a fixed duration of 

dwell time (e.g., see, Miniotas, Spakov, & Evreinov, 2003; Hansen, Johansen, Hansen, 

Itoh, & Mashino, 2003; Majaranta et al., 2003; Bee & André, 2008; Kurauchi, Feng, 

Joshi, Morimoto, & Betke, 2016; Spakov & Miniotas, 2004). Furthermore, in visual 

password systems, users are asked to select a sequence of characters and faces as a 
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password on a screen-lock interface by maintaining their eye gaze for a fixed dwell 

time (e.g., see, Maeder, Fookes, & Sridharan, 2005; Kumar, Garfinkel, Boneh, & 

Winograd, 2007; De Luca, Weiss, & Drewes, 2007; Dunphy et al., 2008). Other object 

selection techniques than dwell time have been described in detail by Majaranta 

(2009). To my knowledge, however, in the above-mentioned visual password systems 

dwell time was fixed at one single value without concern for user preferences. Besides 

that, comparative research on object dwell times has not yet been performed 

systematically. 

2.4 Interactive interfaces with eye-gaze-based input  

By using eye-gaze-based input, a user can perform interactions with interface 

systems, such as typing sentences. In the “Symbol-Creator” system, for example, a 

user was able to type sentences by gazing at a symbol key on an on-screen keyboard 

(Miniotas et al., 2003). In the Japanese version of the “GazeTalk” system, a user could 

select a Kana character by his/her gaze to type sentences (Hansen et al., 2003). In the 

same manner, eye-gaze-based input has also been utilized by some studies for typing 

English sentences (Majaranta et al., 2003; Bee & André, 2008; Kurauchi et al., 2016). 

Other than typing sentences, authenticating passwords with eye-gaze-based input have 

been carried out as well (Dunphy et al., 2008; De Luca et al., 2009; Forget et al., 2010). 

Since password authentication with eye-gaze-based input is the topic of this 

dissertation, I will explain past research in more detail below. 

Typically, the user authenticates him-/herself into a system by something 

he/she is (biometrics) or by something he/she knows or recognizes (cognometrics). 
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Cognometrics concern human cognitive abilities, such as the ability to recognize a 

sequence of scenes, faces or visual objects. In the case of biometrics, the system 

captures digital information of a user’s physiology at the enrollment phase, which is 

then verified at the authentication phase. Still, biometric data, such as fingerprints or 

pupil recognition, might pose great dangers to the user – thieves may opt for heavy 

bodily harm. In the case of cognometrics, the user and the system share an agreed 

secret at the enrollment phase, and the system then determines whether the user being 

authenticated has the pre-agreed secret. If the user proves knowledge of the secret – 

known as a “password” – the system will authenticate him/her (Bishop, 2005). 

Over the past few years, it has been put forward that visual password systems 

mediated by manual input could be an alternative to text-based password systems 

(Biddle et al., 2012). These visual password systems typically can be formed by 

drawing a figure on a grid, by indicating marker points on an image, or by selecting a 

sequence of symbols, patterns, or pictures from a display (De Angeli, Coventry, 

Johnson, & Renaud, 2005). The last form is often named visual-based recognition, 

which can facilitate retention. Visual passwords based on recognition are considered 

more straightforward to memorize since humans have a vast memory for searching 

visual information (Renaud, 2005; Nelson & Vu, 2010). Furthermore, visual password 

systems that incorporated eye-gaze-based input have also been explored.  

Visual password authentication with eye-gaze-based input, or a combination of 

manual input and eye-gaze-based input, can be done in various ways depending on the 

type of system. For example, a password can be made by drawing strokes using eye 

tracking and a keyboard sequentially in a system named “EyePassShapes” (De Luca 
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et al., 2009). Next, the user can press the spacebar on a keyboard for a few seconds to 

record his/her gaze after selecting points on a sequence of images in the “Cued Gaze-

Points” system (Forget et al., 2010). As compared with manual input only, the 

combination of a keyboard and eye-gaze-based input is potentially safer against 

“shoulder-surfing” in public spaces, i.e., password stealing by a third party who 

observes from a certain distance and then copies a user’s manual input of digits or text. 

The use of eye-gaze-based input only (with eye tracking) has been tested in the 

recognition based password system “PassFaces” (Dunphy et al., 2008). The results 

suggest that this input would be a suitable and safe option for authentication, amongst 

others, on Automated Teller Machines (ATMs). However, this system only used a 

single password format. Furthermore, the above password systems have been tested 

only under a single room lighting condition for users sitting in front of a personal 

computer. So far, to my knowledge, comparative research about visual password 

formats has not yet been performed in a systematic way. 

2.5 Grid-based interface 

One of the easiest ways to organize objects on the screen interface is to apply 

a grid as a layout. A grid can hint to object position and identification which is also an 

important factor in password systems (Jermyn, Mayer, Monrose, Reiter, & Rubin, 

1999; Tao & Adams, 2008). The grid aids the aligning of objects based on sequenced 

columns and rows. Therefore, the user may easily find the target objects on a display 

when identifying familiar object positions. At first, the grid was used to set 

handwriting on paper and then on printed pages in publishing. Given that printed and 
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electronic pages have much in common, it should not come as a surprise that a grid is 

also used in designs of the interface of webpages and applications. For example, a grid 

is typically used for screen-lock interfaces of personal computers or smartphones. 

In visual password systems, besides the common 3×3 (+1) grid for digits, grids 

with higher densities (more object keys) and different formations have been considered 

and tested. For example, 3×4 and 4×4 grids (columns×rows) were used for the 

recognition-based system “Visual Identification Protocol” (De Angeli et al., 2005). A 

4×4 grid has been used for “ImagePass” (Mihajlov, Trpkova, & Arsenovski, 2013), 

and a 5×5 grid for “Draw a Secret (DAS)” (Jermyn et al., 1999) and “Déjà Vu” 

(Dhamija & Perrig, 2000). Four equal numbered grid densities of 5×5, 6×6, 7×7, and 

even 10×10 cells have been tested with DAS (Thorpe & van Oorschot, 2004) and 

“Signature-based User Identification System (SUIS)” (Alam, 2016). All these systems 

used manual input. 

The reason why the above-mentioned studies have explored the use of higher 

grid densities for password authentication is that a higher number of object keys 

(columns × rows) enables safer passwords. If a user has more object keys to choose 

from, he/she can form more complex passwords. In the systems “DAS” and “SUIS”, 

increasing the grid density increased the password space (Thorpe & van Oorschot, 

2004; Alam, 2016), which is an indicator of security strength as specified by the total 

number of possible passwords (2n, where n is the number of grid cells). Furthermore, 

in the case a user prefers relatively short passwords, a higher grid density lowers the 

chance that the correct sequence of object keys can be copied or discovered by third 

parties, for example, through shoulder-surfing. Research on the relation between grid 
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density and password complexity, however, has shown mixed results. Research with a 

system that used manual input has shown that the use of grid densities of more than 

4×4 cells had minimal influence overall on the complexity of passwords (Aviv, 

Budzitowski, & Kuber, 2015). Moreover, no systematic, comparative research about 

grid formations has been performed.  
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Chapter 3. The measurement of viewing distances and viewing 

angles for eye tracking under different lighting conditions 

3.1 General Purpose 

In order to investigate whether eye trackers can be used for visual password 

registration in public spaces, such as in settings with personal computers or ATMs, it 

is first necessary to establish whether low-cost eye-trackers perform efficiently under 

various lighting conditions. The following two experiments were conducted to 

measure the limits of viewing distances and viewing angles of low-cost eye trackers 

under different conditions of luminance and illuminance. The participant was asked to 

stand in front of a display at various distances and under various viewing angles, and 

he/she was instructed to register his/her eyes into the eye-tracker system. The eye-

tracking devices used in these two experiments were among the most cost-effective 

devices, that is, the Tobii EyeX© and the Eye Tribe©. 

3.2 Experiment 1. Measurements with the Tobii EyeX© 

3.2.1 Purpose 

The first purpose of Experiment 1 was to obtain the maximum and minimum 

viewing distance at which the participant’s eyes could be registered. The second 

purpose was to obtain the highest and lowest viewing angle at which the eye tracker 

worked at a viewing distance of 40 cm. Both viewing distance and viewing angle data 

were obtained under three different lighting conditions since illuminance (in a room) 

and luminance (on a display) vary 24 hours a day, especially if the weather changes. 
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The third purpose was to investigate whether lighting conditions had an influence on 

the maximum and minimum viewing distances and viewing angles. The eye-tracking 

device used in this experiment was the Tobii EyeX©. 

3.2.2 Method 

Participants 

Twenty-five participants (14 males and 11 females) were invited to participate 

in this experiment. Their ages ranged from 20 to 61 years (M = 27.7 years, SD ± 9.3 

years). Eight participants wore glasses, 4 participants wore contact lenses, and 13 

participants had uncorrected vision. The height of participants was between 151 and 

205 cm (M = 169.5 cm, SD ± 10.8 cm). Twenty participants were Asian (Japanese, 

Chinese, Indonesian), and 5 participants were Caucasian. The participants participated 

on a voluntary basis and provided written, informed consent as to their participation 

after the purpose and procedure of the experiment were explained to them (Appendix 

A). 

Apparatus 

A touch-screen display (Microsoft Surface 4, 12-in) was used and equipped 

with Tobii EyeX© software. The eye-tracking device was placed just below the display, 

at the height of 133 cm from the ground. The eye tracker and the display were fixed at 

a viewing angle of 90 degrees. Viewing distances and angles were measured in a room 

under three lighting conditions: ‘natural light’ from a window, ‘room light’, and ‘full 

light’. The ‘full light’ condition combined the ‘natural light’, the ‘room light’, and an 

additional light spot on the display to which the eye tracker was connected (Appendix 
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B). For these three conditions, illuminance was measured at the point where the 

participant was viewing the display by a lux meter (i1 Pro XRITE). Next to 

illuminance, the display’s luminance was measured under the three lighting conditions 

as well (TOPCON Luminance Meter BM-9). The display luminance was first 

measured for a dark display, and then for a bright display (with white paper placed on 

the display to get brightness levels from a white surface when the display was off), at 

seven different points in time during a day in between 9:00 a.m. and 19:00 p.m. The 

illuminance in the natural, room, and full light conditions was 6.32 ± 5.18 lux, 203.32 

± 9.57 lux, and 210.71 ± 8.63 lux on average, respectively. The display luminance in 

the natural, room and full light conditions for the dark display was 0.03 ± 0.02 cd/m2, 

1.08 ± 0.31 cd/m2, and 6.72 ± 1.35 cd/m2 on average, respectively. For the bright 

display it was 0.15 ± 0.09 cd/m2, 3.95 ± 0.30 cd/m2, and 28.11 ± 2.06 cd/m2 on average, 

respectively. 

Procedure 

After receiving informed consent, each participant was asked to stand in front 

of the display and instructed to focus on a fixation point (a yellow star) in the 

geometrical middle of the display. From a viewing distance of 40 cm, the participant 

was registered into the system, and his/her face photo was taken with his/her 

permission (Appendix C). The viewing distance was measured from the tip of the nose 

of the participant to the middle of the three near-infrared lights of the eye tracker 

(Figure 3.1).  

Following this, the participant was asked to slowly walk forward or backward 

while focusing on the fixation point in order to measure the minimum and maximum 
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viewing distance at which his/her eyes were registered (Figure. 3.2a). The Tobii 

EyeX© software indicates successful registration of the viewer’s eyes by means of two 

white dots on the display. Registration was considered unsuccessful when the dots 

disappeared from the screen, i.e., when the viewer was standing too close to or too far 

away from the display. 

 

Figure 3.1. Procedure of Experiment 1 and Experiment 2. Measurements of viewing distances 

and angles, as obtained from the tip of the participant’s nose to the middle of the three near-

infra-red lights of the eye tracker used in Experiment 1, or to the midpoint in between the two 

near-infra-red lights of the eye tracker used in Experiment 2. 

 

The lowest and highest viewing angle possible were also measured at which 

the viewer’s eyes were registered at a viewing distance of 40 cm (Figure. 3.2b). The 

participant was asked to move upward (by stretching his/her legs) until he/she reached 

the lowest viewing angle at which the eyes were still registered. Also for this 

measurement, the participant had to keep looking at the fixation point at the middle of 

the display at the viewing distance of 40 cm. The angle was measured from the tip of 

the participant’s nose to the near-infrared light in the middle of the eye tracker. The 
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same procedure was used to measure the highest viewing angle possible at a viewing 

distance of 40 cm. All four parameters (minimum viewing distance, maximum viewing 

distance, lowest viewing angle, and highest viewing angle) were assessed under the 

three lighting conditions. This took about 20 minutes for each participant. The 

procedure for Experiment 1 was approved by the Ethical Committee of the Faculty of 

Design, Kyushu University, Japan (131-3). 

 

Figure 3.2. Illustration of measurements performed in Experiment 1 and 2 (a. viewing distance, 

and b. viewing angle). 

 

3.2.3 Results of Experiment 1 

The results generally show that the Tobii EyeX© device could register the 

participant’s eyes at relatively the same viewing distances and angles under three 

lighting conditions. Figure 3.3 shows the maximum and minimum viewing distance at 

which the participant’s eyes (n = 25) could be registered under the three lighting 
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conditions. The average maximum viewing distance (black bars) in the natural light 

condition was 71.2 ± 4.6 cm. In the room light condition, it was 70.3 ± 5.5 cm, and in 

the full light condition, it was 69.4 ± 4.9 cm. The average minimum viewing distance 

(white bars) at which the participant’s eyes could be registered was 36.2 ± 1.7 cm in 

the natural light condition, 36.2 ± 1.6 cm in the room light condition, and 36.3 ± 1.3 

cm in the full light condition. 

 

Figure 3.3. Results of Experiment 1. The maximum and minimum viewing distances for which 

the participant’s eyes could be registered under the three lighting conditions. Error bars 

indicate ± 1 SD. 

 

Shapiro-Wilk tests for the data obtained at the minimum viewing distances 

showed that they were not normally distributed (df = 25, natural lighting: W = 0.87, p 

= 0.004; room lighting: W = 0.86, p = 0.002; full lighting: W = 0.90, p = 0.019). 

Statistical analyses were therefore performed using non-parametric Friedman tests. 

The minimum viewing distance data (df = 2, n = 25) showed no significant difference 

between lighting conditions (χ2 = 0.78, p = 0.679). A significant difference between 
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the maximum viewing distances under the three lighting conditions was also not found 

(χ2 = 2.36, p = 0.307). 

Figure 3.4 shows the lowest and highest viewing angle at which the 

participant’s eyes (n = 25) could be registered under the three lighting conditions. The 

average lowest viewing angle (white bars) in the natural light condition was 71.3 ± 2.6 

degrees. In the room light condition, it was 71.4 ± 2.8 degrees, and in the full light 

condition, it was 71.4 ± 3.5 degrees. The average highest viewing angle (black bars) at 

which the participant’s eyes could be registered was 100.7 ± 1.2 degrees in the natural 

light condition, 100.9 ± 1.3 degrees in the room light condition, and 101.3 ± 1.0 degrees 

in the full light condition. 

 

Figure 3.4. Results of Experiment 1. The lowest and highest viewing angles for which the 

participant’s eyes could be registered under the three lighting conditions. Error bars indicate ± 

1 SD. 
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Shapiro-Wilk tests for the highest viewing-angle data showed that the data 

obtained under room lighting were not normally distributed (df = 25, W = 0.90, p = 

0.020). Similarly, the lowest viewing-angle data obtained under full lighting were also 

not normally distributed (df = 25, W = 0.81, p < 0.001). Statistical analyses performed 

using Friedman tests (df = 2, n = 25) showed no significant difference between lighting 

conditions for the highest viewing-angle data (χ2 = 3.08, p = 0.214) and for the lowest 

viewing-angle data (χ2 = 0.06, p = 0.970). Details about the statistical analysis of the 

data obtained in Experiment 1 are in Appendix D. 

3.3 Experiment 2. Measurements with the Eye Tribe© 

3.3.1 Purpose 

In Experiment 2, the goal was to obtain the same parameters (the maximum 

and minimum viewing distance at which the user’s eyes were still registered, and the 

highest and lowest viewing angle) under three different lighting conditions using a 

different low-cost eye-tracking device, from Eye Tribe©. 

3.3.2 Method 

Participants 

Twenty-eight participants (18 males and 10 females) were invited to participate 

in this experiment. Their ages ranged from 22 to 42 years (M = 25.6 years, SD ± 4.6 

years). Ten participants wore glasses, 5 participants wore contact lenses, and 13 

participants had uncorrected vision. The height of the participants was between 153 

and 183 cm (M = 166.8 cm, SD ± 7.8 cm). All participants were Asian (Chinese, 
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Indonesian, Malaysian and Japanese). The participants participated on a voluntary 

basis and provided written, informed consent as to their participation after the purpose 

and procedure of the experiment was explained to them (Appendix A). 

Apparatus 

The Eye Tribe© software was installed on a touch-screen display (Microsoft 

Surface 4, 12-in). Viewing distances and angles were measured in a room under three 

lighting conditions with the same settings as used during Experiment 1 (Appendix E). 

Illuminance and luminance were measured in the same way and with the same 

equipment as in Experiment 1. The average of the illuminance in the natural, room and 

full light conditions was 6.68 ± 5.63 lux, 202.82 ± 10.19 lux, and 211.86 ± 10.11 lux, 

respectively. The average of the display luminance in the natural, room and full light 

conditions for the dark display was 0.03 ± 0.02 cd/m2, 0.97 ± 0.32 cd/m2, and 6.53 ± 

1.44 cd/m2, respectively, and for the bright display it was 0.14 ± 0.09 cd/m2, 3.88 ± 

0.29 cd/m2, and 27.46 ± 1.80 cd/m2, respectively. 

Procedure 

All procedures in Experiment 2 were the same as in Experiment 1, except for 

the procedure to measure the calibration quality. In the default procedure used in the 

Eye Tribe© software, the participant was asked to follow the movement of a circle by 

using his/her eye gaze in order to measure the calibration quality at which his/her eyes 

were registered. The Eye Tribe© software indicates acceptable results when the result 

is one of the following: 'Perfect', 'Good' or 'Moderate'. Calibration was not acceptable 

when the result was 'Poor' or ‘Redo’. The calibration measurement was repeated when 
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the result was not acceptable, with a maximum of three repetitions for each participant. 

The limit of three repetitions was set in order to avoid eye fatigue. The Eye Tribe© has 

two near-infra-red lights. The procedure for Experiment 2 was approved by the Ethical 

Committee of the Faculty of Design, Kyushu University, Japan (131-3). 

3.3.3 Results of Experiment 2 

The results show that, for the maximum viewing distance, the Eye Tribe© eye-

tracking device could register the participant’s eyes at the larger distance under the full 

lighting condition than under the room lighting condition. Also, for the lowest viewing 

angle, participants’ eyes could be registered at a lower angle under the room lighting 

condition than under the full lighting condition. Figure 3.5 shows the maximum and 

minimum viewing distance at which the participant’s eyes (n = 28) could be registered 

under the three lighting conditions. The average maximum viewing distance (black 

bars) in the natural light condition was 77.9 ± 5.1 cm. In the room light condition, it 

was 76.9 ± 5.1 cm, and in the full light condition, it was 77.9 ± 4.8 cm. The average 

minimum viewing distance (white bars) at which the participant’s eyes could be 

registered was 28.9 ± 1.6 cm in the natural light condition, 29.0 ± 1.7 cm in the room 

light condition, and 29.3 ± 1.7 cm in the full light condition. 

Shapiro-Wilk tests for the data obtained at the minimum viewing distances 

showed that data obtained in the full light condition were not normally distributed (df 

= 28, W = 0.92, p = 0.026). Statistical analyses were therefore performed using non-

parametric Friedman tests. The minimum viewing distance data (df = 2, n = 28) showed 

no significant difference between lighting conditions (χ2 = 2.58, p = 0.275). The 
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Friedman test for the maximum viewing distances under the three lighting conditions, 

however, showed a significant difference (χ2 = 9.41, p = 0.009). 

 

Figure 3.5. Results of Experiment 2. The maximum and minimum viewing distances for which 

the participant’s eyes could be registered under the three lighting conditions. Error bars 

indicate ± 1 SD. 

 

Paired comparisons were performed with Wilcoxon signed-rank tests to see 

which pair(s) showed a significant difference. Because of multiple comparisons, the 

alpha level was Bonferroni-adjusted to 0.05/3 = 0.017. The maximum viewing 

distance obtained under the natural lighting condition neither differed from that 

obtained under the room lighting condition (Z = -1.92, p = 0.055), nor from that 

obtained under the full lighting condition (Z = -0.38, p = 0.706). The maximum 

viewing distance under the full lighting condition, however, was significantly larger 

than that measured under the room lighting condition (Z = -2.82, p = 0.005). 

Figure 3.6 shows the highest and lowest viewing angle at which the 

participant’s eyes (n = 28) could be registered under the three lighting conditions. The 
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average lowest viewing angle (white bars) in the natural light condition was 81.7 ± 1.3 

degrees. In the room light condition, it was 81.3 ± 1.6 degrees, and in the full light 

condition, it was 81.9 ± 1.6 degrees. The average highest viewing angle (black bars) at 

which the participant’s eyes could be registered was 113.9 ± 3.4 degrees in the natural 

light condition, 113.7 ± 3.2 degrees in the room light condition, and 113.4 ± 4.2 degrees 

in the full light condition. 

 

Figure 3.6. Results of Experiment 2. The lowest and highest viewing angles for which the 

participant’s eyes could be registered under the three lighting conditions. Error bars indicate ± 

1 SD. 

 

Shapiro-Wilk tests showed that the highest viewing angle data measured under 

the natural lighting condition were not normally distributed (df = 28, W = 0.91, p = 

0.025). The Friedman test (df = 2, n = 28) showed that there were no significant 
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differences between the highest viewing angles obtained under the three lighting 

conditions (χ2 = 0.49, p = 0.782). The Friedman test for the lowest viewing angles, 

however, showed significance (χ2 = 9.14, p = 0.010). Paired comparisons performed 

with Wilcoxon signed-rank tests and a Bonferroni-adjusted alpha level (0.05/3 = 

0.017), taking multiple comparisons into account, showed that the lowest viewing 

angle obtained under the natural lighting conditions did not differ from that obtained 

under the room lighting (Z = -1.66, p = 0.096) and the full lighting conditions (Z = -

0.79, p = 0.428). The lowest viewing angle under full lighting, however, was 

significantly higher than the lowest viewing angle under room lighting (Z = -2.82, p = 

0.005). Details about the statistical analysis of the data obtained in Experiment 2 are 

in Appendix F. 

3.4 Discussion 

The first objective of Experiments 1 and 2 was to obtain maximum and 

minimum viewing distances at which the participant’s eyes could be registered. The 

average maximum viewing distance and the average minimum viewing distance 

obtained with the Tobii EyeX© (Experiment 1; Figure 3.3) and the Eye Tribe© 

(Experiment 2; Figure 3.5) are relatively different. Experiment 1 showed that the 

participant’s eyes (n=25) could be registered under three lighting conditions at the 

average maximum viewing distance of 70.3 cm and the average minimum viewing 

distance of 36.2 cm. Experiment 2 showed that participants (n=28) could register their 

eyes under three lighting conditions at the average maximum viewing distance of 77.5 

cm and the average minimum viewing distance of 29.0 cm. The results showed that 
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Experiment 2 with the Eye Tribe© allows larger and closer viewing distances than as 

found in Experiment 1 with the Tobii EyeX©. 

The second objective of Experiments 1 and 2 was to obtain the highest and 

lowest viewing angle at which eye-tracker devices worked at a viewing distance of 40 

cm. There are obvious differences between the average lowest viewing angle and the 

average highest viewing angle obtained with the Tobii EyeX© (Experiment 1; Figure 

3.4) and the Eye Tribe© (Experiment 2; Figure 3.6). This is most likely caused by the 

eyes’ position on the Eye Tribe© device as used in Experiment 2, which was slightly 

above the middle of the display. When the participants were standing in front of the 

display and looked at the fixation point at a viewing angle of 90 degrees during the 

measurements, the Eye Tribe© system placed the participant's eye slightly upwards 

from the midline of the display. From a viewing distance of 40 cm, the Tobii EyeX© 

could register participants’ eyes at the average lowest viewing angle of 71.4 degrees 

and the average highest viewing angle of 101.0 degrees (Experiment 1). The Eye 

Tribe© could register participants’ eyes at the average lowest viewing angle of 81.6 

degrees and the average highest viewing angle of 113.7 degrees (Experiment 2). In 

general, the highest viewing angle for the Eye Tribe© was wider than for the Tobii 

EyeX©, while the lowest viewing angle for the Eye Tribe© was narrower than that for 

the Tobii EyeX©. 

The third objective of Experiments 1 and 2 was to investigate whether lighting 

conditions had an influence on the maximum and minimum viewing distances and 

viewing angles. Experiment 1, in which the Tobii X© eye-tracking device was used, 

showed that the maximum and minimum viewing distance and highest and lowest 
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viewing angle were not influenced by lighting conditions. No significant differences 

were found between the three lighting conditions for the maximum and minimum 

viewing distance and highest and lowest viewing angle. In other words, the limit of 

viewing distances and viewing angles of the Tobii X© eye-tracking device was 

relatively equal under different lighting conditions. 

However, measurements with the Eye Tribe© in Experiment 2 were different. 

Experiment 2 showed that the maximum viewing distance under room lighting was 

smaller than that under full lighting. The average difference was small - only 1 cm, but 

nevertheless significant. Also when measuring with Eye Tribe©, the lowest viewing 

angle was significantly higher when viewing under full light as compared to viewing 

under room light. Here too the average difference was small, just 0.6 degrees. It needs 

to be mentioned, though, that when measuring with the Eye Tribe© there were ‘poor’ 

calibration results, especially for participants who wore glasses. In Experiment 2, ten 

participants wore glasses. The poor calibration was obtained for 6 participants in 

natural light, 5 participants in room light, and 7 participants in full light. Research has 

shown that the calibration quality for eye-tracking devices was indeed poorer for 

participants with glasses as compared to those without glasses (Funke et al., 2016). 

Because of this, the effect of wearing glasses on calibration accuracy for low-cost eye 

tracking devices is investigated in Chapter 3. In conclusion, the results of Experiments 

1 and 2 show that maximum and minimum viewing distances and angles can be stable 

under different lighting conditions at least for the Tobii X© eye-tracking device. For 

the Eye Tribe© device, however, small significant differences were found in some 

cases and the use of glasses may affect calibration quality.  
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Chapter 4.  The use of glasses during registration into a low-cost eye 

tracking device under different lighting conditions 

4.1 General Purpose 

One of the issues that emerged from the findings in Chapter 3 was that there 

were some ‘poor’ calibration results, especially for participants who wore glasses 

when measuring with the Eye Tribe© eye-tracking device.  In order for a participant to 

register onto an eye-tracking device, a calibration needs to be performed so that the 

eye-tracking software can generate a model to accurately estimate the viewer’s gaze 

(Janthanasub & Meesad, 2015). Calibration is the process by which the characteristics 

of a viewer’s eyes are assessed as the base for an accurate gaze point calculation (see 

Chapter 2 for details on eye-tracking calibration). The general purpose of the following 

Experiment 3 is to investigate the effect of wearing glasses on the calibration process 

into a low-cost eye-tracking device (Eye Tribe©). The purpose of Experiment 4 is to 

investigate the ideal viewing angle of participants viewing from different heights 

(standing, sitting), with and without (replica) glasses at different display angles. In 

Experiment 3, the participant was asked to perform the calibration by following the 

movement of the circle on the display both with and without glasses under the three 

different lighting conditions. In Experiment 4, two different lighting conditions were 

used. The participants performed calibration with various display angles to obtain good 

accuracy and to mimic the viewing position for the use of an eye tracker in public 

spaces from different viewing angles of users. The full light condition was not used in 
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Experiment 4 since the reflection of the light spot appeared on the display at certain 

angles. 

4.2 Experiment 3. The effect of wearing glasses on the calibration 

quality and calibration time 

4.2.1 Purpose 

In this experiment, the goal was to systematically test the influence of the use 

of glasses on the calibration quality and time for a low-cost eye-tracking device (Eye 

Tribe©) under three different lighting conditions. For participants with glasses, it is 

reported that the calibration quality of eye-tracking devices was indeed poorer (Funke 

et al., 2016). However, it is unclear whether the calibrations in this study were 

performed between users with prescription glasses and a group with normal eyesight, 

or among the same users with and without glasses. Moreover, in this study the 

calibration was obtained with users sitting in front of a display under a single room 

lighting condition (Funke et al., 2016). It is also understandable that a group with 

prescription glasses has more difficulty performing calibration (tracking) tasks 

because their eyesight is worse than that of users who do not need glasses (Nyström et 

al., 2013). In Experiment 3, therefore, the same participants with prescription glasses 

were asked to perform the calibration both with and without glasses, if they were able 

to do so, while the same participants with uncorrected vision were also asked to 

perform the calibration without glasses and with non-prescription, clear replica 

glasses. The measurements were conducted under three different lighting conditions, 

at a viewing distance of 40 cm. 
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4.2.2 Method 

Participants 

Sixteen participants (9 males and 7 females) were invited to participate in this 

experiment. Their ages ranged from 22 to 34 years (M = 25.4 years, SD ± 3.2 years). 

Five participants had uncorrected vision, 4 participants wore contact lenses, and 7 

participants wore glasses with an average thickness of 1.6 mm, SD ± 1.3 mm. The 

height of the participants was in between 157 and 182 cm (M = 168.2 cm, SD ± 6.9 

cm). All participants were Asian (Chinese, Indonesian, Malaysian and Japanese). The 

participants participated on a voluntary basis and provided written, informed consent 

as to their participation after the purpose and procedure of the experiment was 

explained to them (Appendix G). 

Apparatus 

A touch-screen display (Microsoft Surface 4, 12-in) was equipped with the Eye 

Tribe© software. The calibration qualities were measured at a viewing distance of 40 

cm under three lighting conditions: ‘natural light’ from a window, ‘room light’, and 

‘full light’. The ‘full light’ condition combined the ‘natural light’, the ‘room light’, and 

an additional light spot on the display to which the eye tracker was connected 

(Appendix E). For these three conditions, illuminance was measured at the point where 

the participant was viewing the display by a lux meter (i1 Pro XRITE). Next to 

illuminance, the display’s luminance was measured under the three lighting conditions 

as well (TOPCON Luminance Meter BM-9). The display luminance was first 

measured for a dark display, and then for a bright display (with white paper placed on 
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the display to get brightness levels from a white surface when the display was off), at 

seven different points in time during a day in between 9:00 a.m. and 19:00 p.m. The 

illuminance in the natural, room and full light conditions was 10.91 ± 6.59 lux, 199.40 

± 9.96 lux, and 209.29 ± 9.22 lux on average, respectively. The display luminance in 

the natural, room and full light conditions for the dark display was 0.03 ± 0.02 cd/m2, 

0.86 ± 0.25 cd/m2, and 6.15 ± 1.50 cd/m2 on average, respectively. For the bright 

display it was 0.21 ± 0.13 cd/m2, 4.13 ± 0.36 cd/m2, and 30.90 ± 3.12 cd/m2 on average, 

respectively. The participants without glasses were asked to wear replica glasses, and 

the participants with glasses wore their own. The replica glasses were non-

prescription, round, and clear glasses with an average thickness of 1.2 mm, SD ± 0.2 

mm (Appendix H). Since the low-cost Eye Tribe© software could not record the 

calibration time, each calibration process was measured with a stopwatch. 

Procedure 

Written informed consent was obtained from each participant. After a face 

photo was taken (Appendix H), each participant was asked to follow the movement of 

a circle by using his/her eye-gaze in order to measure the calibration quality at a 

viewing distance of 40 cm (Appendix I). For each participant, the calibration quality 

was obtained based on the scaling values indicated by the Eye Tribe© software. The 

scaling value was 4 for ‘Perfect’, 3 for ‘Good’, 2 for ‘Moderate’, and 1 for ‘Poor’ 

including ‘Redo’ or ‘Uncalibrated’. 

First, the calibration qualities were measured for the participants who wore 

glasses. Depending on their eyesight, if they could see the calibration circle on the 

display without glasses, the participants were asked to follow the movement of the 



57 

 

circle on the display both with and without glasses under the three different lighting 

conditions. If they could not see the circle without their prescription glasses, the 

participants were asked to follow the circle only with their glasses. Second, the 

calibration qualities were also measured for the participants who did not wear glasses, 

including participants who wore contact lenses. Each participant was asked to follow 

the movement of a circle on the display by using his/her eye gaze with and without 

(replica) glasses under the three different lighting conditions. Each participant 

performed calibration at a viewing angle of 90 degrees without a head-and-chin rest. 

Calibrations were obtained with counterbalance in the order of measurement 

with or without glasses. Thus half of the group with the non-prescription glasses 

performed the circle-following task first with replica glasses and then without. The 

other half performed the task first without and then with replica glasses. The order was 

also counterbalanced for the participants in the prescription-glasses group who were 

able to follow the circle without glasses. The time for each calibration under each 

lighting condition was measured, and the calibration was repeated when the result was 

‘Poor’, with a maximum of three repetitions for each participant under each lighting 

condition. The measurements took about 40 minutes for each participant. The 

procedure for Experiment 3 and the following Experiment 4 was approved by the 

Ethical Committee of the Faculty of Design, Kyushu University, Japan (131-3). 

4.2.3 Results of Experiment 3 

The results show that the calibration quality was significantly poorer and 

calibration time was significantly longer for participants with glasses in the room and 

full lighting conditions than the same participants without glasses. Figure 4.1 shows 
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the calibration quality for participants (n = 16) with glasses and without glasses under 

the three lighting conditions. The calibration quality scaling based on the indication by 

the Eye Tribe© software was 4 for ‘Perfect’, 3 for ‘Good’, 2 for ‘Moderate’, and 1 for 

‘Poor’ including ‘Redo’ or ‘Uncalibrated’. The average calibration quality for 

participants with glasses (white bars) in the natural light condition was 2.06 ± 1.06. In 

the room light condition, it was 1.63 ± 1.03, and in the full light condition, it was 1.75 

± 1.13. The average calibration quality for participants without glasses (gray bars) was 

2.88 ± 1.15 in the natural light condition, 2.50 ± 1.21 in the room light condition, and 

2.88 ± 1.15 in the full light condition.  

 

Figure 4.1. Results of Experiment 3. Eye-tracking calibration quality obtained with 

participants wearing prescription glasses or replica glasses (white bars) and the same 

participants without glasses (gray bars) under the three lighting conditions. Error bars indicate 

± 1 SD. Asterisks indicate a significant difference between conditions (p < 0.05). 
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Shapiro-Wilk tests for calibration quality data obtained with participants who 

wore prescription glasses or replica glasses, and for calibration quality data gained 

with the participants who did not wear glasses showed that they were not normally 

distributed (p < 0.05) in three lighting conditions. Statistical analyses were therefore 

performed using a non-parametric Friedman test. The calibration quality data for the 

participants who wore glasses with repeated measures (df = 2, n = 16) showed no 

significant difference between lighting conditions (χ2 = 5.83, p = 0.054), although 

this bordered on significance. A significant difference in the calibration quality for the 

participants without glasses under three lighting conditions (χ2 = 0.91, p = 0.636) was 

also not found. 

Paired comparisons were performed within each lighting condition for 

participants with and without glasses using Wilcoxon signed-rank tests in order to find 

out whether the use of glasses influenced calibration quality between groups 

(Appendix J). The calibration quality data showed no significant difference for the 

same participants with glasses and without glasses under natural lighting condition (Z 

= -1.94, p = 0.052), although this difference bordered on significance. However, the 

calibration quality was significantly poorer for the participants with glasses in the room 

lighting condition (Z = -2.17, p = 0.030) and in the full lighting condition (Z = -2.47, 

p = 0.013) than for the same participants without glasses. 

Figure 4.2 shows the calibration time for participants (n = 16) with glasses and 

without glasses under the three lighting conditions. The average calibration time for 

participants with glasses (white bars) in the natural light condition was 17.64 ± 2.48 

sec. In the room light condition, it was 18.75 ± 3.26 sec, and in the full light condition, 
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it was 19.52 ± 4.36 sec. The average time of calibration for participants without glasses 

(gray bars) was 16.38 ± 1.45 sec in the natural light condition, 16.75 ± 2.66 sec in the 

room light condition, and 16.01 ± 1.46 sec in the full light condition. 

 

Figure 4.2. Results of Experiment 3. Eye-tracking calibration time for participants wearing 

prescription glasses or replica glasses (white bars) and the same participants without glasses 

(gray bars) under the three lighting conditions. Error bars indicate ± 1 SD. Asterisks indicate 

a significant difference between conditions (p < 0.01). 

 

Shapiro-Wilk tests for the calibration-time data from participants who wore 

prescription glasses or replica glasses showed that the data were not normally 

distributed (p < 0.05) in three lighting conditions. For the calibration-time data from 

the participants without glasses showed that the data were not normally distributed (p 

< 0.05) in room and full lighting conditions. Friedman tests (df = 2, n = 16) showed 
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that for the participants who wore glasses there were no significant differences in 

calibration time under the three lighting conditions (χ 2 = 5.38, p = 0.068). A 

significant difference between the calibration times for the participants who did not 

wear glasses under three lighting conditions (χ2 = 2.42, p = 0.298) was also not found 

(Appendix J). 

To assess whether the use of glasses influenced the time to calibrate the eye-

tracking device, paired comparisons were performed within each lighting condition for 

participants with and without glasses using Wilcoxon signed-rank tests (Appendix J). 

The calibration time data showed no significant difference between participants with 

glasses and without glasses under natural lighting (Z = -1.70, p = 0.088). However, the 

calibration time was significant longer for participants with glasses under room 

lighting (Z =-2.99, p = 0.003), and under full lighting (Z = -3.26, p = 0.001) than for 

the same participants without glasses. 

4.3 Experiment 4. The ideal viewing angle of participants viewing from 

different heights, with and without glasses at different display angles 

4.3.1 Purpose 

Experiment 3 indicated that the calibration quality of the Eye Tribe© eye-

tracking device was poorer and calibration time was longer for participants who wore 

glasses as compared to the same participants without glasses under the three different 

lighting conditions. It can be assumed that the result was not attributable to poor 

eyesight in the group with corrected vision; the participants with prescription glasses 

should have had difficulty performing the calibration task without their glasses, while 
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the participants without glasses (or with contact lenses) should have had no increased 

difficulty performing the calibration with replica glasses. One obvious problem with 

the use of (replica) glasses is the reflection or glare from (room) light on the glasses, 

making calibration difficult. However, some participants noticed another problem 

when viewing at 90 degrees with glasses. Tracking the calibration circle was especially 

difficult when the circle was on top of the display, because when viewing the display 

from a fixed viewing position, their eyes were occasionally occluded by the thick 

frame of the glasses. In Experiments 1 to 3, the participants used the eye-tracker device 

at a fixed viewing angle of 90 degrees. 

In order to obtain good accuracy of the Eye Tribe© device, and in order to better 

mimic the viewing position for the use of an eye tracker in public spaces by users 

viewing from different angles, the purpose of Experiment 4 was to perform the 

calibration without a fixed viewing position. In Experiment 4, the participant was 

either asked to stand at a natural viewing position in front of the eye tracking device – 

as if he/she was using an ATM machine, while some participants were also asked to 

sit in front of the eye tracker. The Eye Tribe© is a low-speed system (sampling rate: 

30 or 60 Hz), so free head movement does not affect the calibration quality (Ooms, 

Lapon, Dupont, & Popelka, 2015). The angle of the display and the eye tracker were 

systematically varied, and the ideal angle was investigated for participants of different 

viewing heights for registration into the system. Furthermore, these measurements 

were performed for participants with and without (replica) glasses at the different 

display angles under two different lighting conditions. In public settings, lighting will 

vary depending on weather conditions and artificial lighting. In order to avoid the 
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reflection of the light spot appearing on the display at certain angles in the full light 

condition, only the natural light and the room light conditions were used in Experiment 

4. The measurements were conducted with counterbalance between the with/without 

glasses conditions and the two lighting conditions. 

4.3.2 Method 

Participants 

Thirty participants (16 males and 14 females) were invited to participate in this 

experiment. Their ages ranged from 21 to 47 years (M = 27.6 years, SD ± 6.8 years). 

Twelve participants had uncorrected vision, 7 participants wore contact lenses, and 11 

participants wore glasses with an average thickness of 2.1 mm, SD ± 0.6 mm. The 

height of the participants was between 145 and 181 cm (M = 167.7 cm, SD ± 9.5 cm). 

Because I also wanted to obtain data from persons viewing from high positions (>185 

cm) and from persons viewing from low positions (<140 cm), i.e., when sitting, some 

participants’ viewing heights were manipulated.  

To obtain data for persons viewing from below 140 cm, two participants were 

asked to sit on a chair (with a height of 46 cm from seat to floor). While they sat on 

the chair, their height from the top of their head to the floor were measured. To obtain 

data from persons taller than 185 cm, and thus viewing from a relatively high position, 

three participants with a height of 170 cm, 178 cm, and 181 cm, respectively, were 

asked to stand on an elevation at the height of 26 cm from the floor. Twenty-four 

participants were Asian (Japanese, Chinese, Indonesian), 1 participant was Caucasian, 

and 5 participants were Hispanic/Latinos. After the procedures were explained to the 
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participants, they signed an informed consent form (Appendix K). Each participant 

was paid for their participation. 

Apparatus 

The Eye Tribe© software was installed on a touch-screen display (Microsoft 

Surface 4, 12-in). The eye tracker was placed below the display, and together they 

were fixed on a tripod at the height of 133 cm from the ground. The tripod was used 

to facilitate the angle adjustment of the eye tracker and display. The different angles 

of the eye tracker and the display screen were measured under two lighting conditions: 

natural lighting and room lighting, as used in Experiment 3 (Appendix L). The full 

lighting condition was not used in this experiment because sometimes there was a 

reflection of spot light on the display when the display angles were changed. Each 

calibration process was timed with a stopwatch. Illuminance and luminance were 

measured at every display angle under two different lighting conditions in the same 

way and with the same equipment as in Experiment 3 (Table 4.1). 

 

Table 4.1. Calibration of Experiment 4. The average of the luminance and illuminance on 

Experiment 4 in the two lighting conditions. 

Illuminace (lux) 

Display angles 60 45 30 15 0 -15 

Natural light 14.19 ± 7.46 13.60 ± 8.00 13.93 ± 7.57 12.47 ± 4.29 11.83 ± 3.89 15.74 ± 7.78 

Room light 
223.37 ± 

18.52 

224.10 ± 

19.43 

224.56 ± 

14.67 

216.41 ± 

14.21 

206.67 ± 

7.82 

209.73 ± 

11.26 
  

Luminance (cd/m2) in the natural light 

Display angles 60 45 30 15 0 -15 

Dark display 0.34 ± 0.29 0.37 ± 0.33 0.44 ± 0.39 0.46 ± 0.39 0.30 ± 0.27 0.16 ± 0.18 

Bright display 2.83 ± 2.44 2.42 ± 2.01 2.33 ± 1.98 1.78 ± 1.51 1.69 ± 1.43 1.02 ± 0.95 
  

Luminance (cd/m2) in the room light 

Display angles 60 45 30 15 0 -15 

Dark display 0.38 ± 0.31 0.42 ± 0.41 0.46 ± 0.37 0.57 ± 0.48 0.37 ± 0.29 0.24 ± 0.22 

Bright display 3.39 ± 2.56 2.70 ± 2.07 2.58 ± 2.03 2.13 ± 1.61 1.61 ± 1.28 0.99 ± 0.88 
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Procedure 

After written informed consent was obtained and a face photo (Appendix M) 

was taken at a viewing distance of 40 cm, the participant was asked to follow the 

instructions. First, the participant was asked to stand in the middle in front of the screen 

without crossing a floor mark set at a viewing distance of 40 cm. While standing, the 

participant was asked to relax and to take a natural viewing position. Each participant 

was asked to maintain this natural viewing position during calibration, as if he/she was 

using an ATM machine. Two participants were instructed to sit and to maintain a 

natural viewing position throughout the calibration. All participants were instructed to 

make no head movements even when the angle of the display was changed. Second, 

the participant was asked to perform calibration under different display and eye tracker 

angles, in order to assess their ideal viewing angle. The following 9 display angles 

were used: 60, 45, 30, 15, 0, -15, -30, -45, and -60 degrees (Figure 4.3). 

 

Figure 4.3. The angles of the display and eye tracker used in Experiment 4. Participants were 

asked to maintain a natural viewing position while they tried to register into the eye-tracking 

system under various display and eye-tracker angles in random order. 
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Third, with regard to the participants’ eyesight (with or without glasses), the 

same procedure as in Experiment 3 were performed. Thus, the calibration quality was 

obtained by asking each participant to follow the movement of a circle with his/her 

eye-gaze. For each participant, the calibration quality was obtained based on scaling 

values, that is, 4 for ‘Perfect’, 3 for ‘Good’, 2 for ‘Moderate’, and 1 for ‘Poor’ 

including ‘Redo’ or ‘Uncalibrated’. First, the calibration qualities were measured for 

the participants who wore glasses. Depending on their eyesight, if they could see the 

calibration circle on the display without glasses, the participants were asked to follow 

the movement of the circle on the display both with and without glasses under the three 

different lighting conditions. If they could not see the circle without their prescription 

glasses, the participants were asked to follow the circle only with their glasses. Second, 

the calibration qualities were also measured for the participants who did not wear 

glasses, including participants who wore contact lenses. Each participant was asked to 

follow the movement of a circle on the display by using his/her eye gaze with and 

without (replica) glasses under the three different lighting conditions. 

The participant performed the calibration both with and without glasses under 

the 9 display angles, under the two different lighting conditions. I did not measure the 

calibration time when the eyes of the participants did not appear on the calibration 

display, indicating that the eye tracker could not detect the participant’s eyes (invalid 

tracking). Each participant performed the calibration with randomized display angles 

and without a head-and-chin rest. The order of wearing glasses and lighting conditions 

was counterbalanced among participants. The measurement was not repeated when the 
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calibration result was ‘Poor’, ‘Redo’ or ‘Uncalibrated’. The measurements took about 

60 minutes for each participant. 

4.3.3 Results of Experiment 4 

The data show that 16 participants could register into the eye-tracking device 

at two display angles, and 14 participants could register at one display angle. The 

display angles depended on the participant’s viewing height. From here on, the display 

angles will be called the “first angle” (n = 30) and “second angle” (n = 16). A Pearson's 

correlation analysis was performed to determine the relationship between the viewing 

height of the participants and the angles of the eye tracker and the display that allowed 

registration (Appendix N). There was a significant correlation between the viewing 

height of the participants and the first angle of the display they could register 

themselves with (r = 0.94, n = 30, p < 0.001), as well as a significant correlation 

between the viewing height of the participants and the second angle of the display they 

could register with (r = 0.97, n = 16, p < 0.001). 

Figure 4.4 shows the box plot of the data, showing a linear relation between 

the angles of the display and the height of the participants under which they could 

register themselves into the eye-tracking system. Roughly summarized over the data 

of both angles combined, the participants with a height of 200-220 cm could register 

into the eye-tracking device at a display angle of 60 or 45 degrees. The participants of 

180-200 cm could register at 45 or 30 degrees, while participants of 160-180 cm could 

register at display angles of 30 and 15 degrees, and those of 140-160 cm could register 

at display angles of 15 and 0 degrees. The participants who were sitting and viewing 

from below 140 cm could register at 0 and -15 degrees. The results convincingly show 
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that in order to use eye trackers in a public setting, e.g., for ATM machines, users need 

to be able to adjust the display angle according to their height. Especially people 

viewing from below 140 cm, such as wheel-chair users, require a very different angle 

than people standing up. 

 

Figure 4.4. Results of Experiment 4. The gray boxes and white boxes show the first and second 

angles, respectively, of the eye tracker and the display under which participants could register 

into the eye-tracking device. The angles are plotted against the participant’s (viewing) heights. 

Error bars indicate ± 1 SD. 

 

Similar to the results of Experiment 3, the quality of the registration into the 

eye-tracking device is better without glasses than with glasses as shown in Figure 4.5. 

The calibration quality for participants with glasses (white bars) at the first angle was 

2.80 ± 1.35 under natural lighting, and 2.93 ± 1.26 under room lighting. At the second 

angle, it was 2.63 ± 1.26 and 2.88 ± 1.41 for natural and room lighting, respectively. 

The calibration quality for the same participants without glasses (gray bars) at both 
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angles was higher; at the first angle it was 3.30 ± 1.03 under natural lighting and 3.04 

± 1.20 under room lighting. At the second angle, it was 3.20 ± 0.98 under natural 

lighting and 3.44 ± 1.03 under room lighting.  

 

Figure 4.5. Results of Experiment 4. Eye-tracking calibration quality obtained at the first and 

second angle with participants wearing prescription glasses or replica glasses (white bars) and 

the same participants without glasses (gray bars) obtained under two lighting conditions. Error 

bars indicate ± 1 SD. Asterisks indicate a significant difference between conditions (p < 0.05). 

 

Paired comparisons were performed to determine whether the use of glasses 

influenced calibration quality within each lighting condition for participants with and 

without glasses using Wilcoxon signed-rank tests. Three participants with prescription 

glasses were not able to perform the calibration without glasses at their first angle. 

Their data were excluded from the tests (Appendix N). The difference in the first-angle 

calibration quality between participants with and without glasses under natural lighting 

(Z = -1.92, p = 0.056) and room lighting (Z = -0.32, p = 0.975) was not significant, 

although the difference under natural lighting bordered on significance. Similarly, the 

second-angle calibration quality was not significantly different between participants 
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with glasses and without glasses under room lighting (Z = -1.71, p = 0.088). However, 

calibration quality at the second angle was significantly higher under natural lighting 

(Z = -2.12, p = 0.034). 

Figure 4.6 shows that the registration time was also shorter overall without 

glasses. The calibration time needed by participants without glasses (gray bars) at the 

first angle (natural lighting: 15.16 ± 0.53 sec; room lighting: 15.27 ± 1.21 sec) and at 

the second angle (natural lighting: 15.43 ± 1.57 sec; room lighting: 15.19 ± 1.00 sec) 

was shorter than the calibration time needed by the same participants with glasses 

(white bars) at the first angle (natural lighting: 15.85 ± 1.60 sec; room lighting: 15.98 

± 2.36 sec) and at the second angle (natural lighting: 15.97 ± 1.70 sec; room lighting: 

15.60 ± 1.37 sec).  

 

Figure 4.6. Results of Experiment 4. Eye-tracking calibration time obtained at the first and 

second angle for participants wearing prescription glasses or replica glasses (white bars) and 

the same participants without glasses (gray bars) obtained under two lighting conditions. Error 

bars indicate ± 1 SD. Asterisks indicate a significant difference between conditions (p < 0.05). 
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Paired comparisons were also performed using Wilcoxon signed-rank tests to 

determine whether the use of glasses influenced calibration time within each lighting 

condition for participants with and without glasses (Appendix N). A significant 

difference was found for the first-angle data (Z = -2.42, p = 0.015) and the second-

angle data (Z = -2.44, p = 0.015) between participants with glasses and without glasses 

under natural lighting. No significant difference at the first angle (Z = -1.83, p = 0.068) 

and at the second angle (Z = -0.68, p = 0.495) was found under room lighting. 

4.4 Discussion 

Experiment 3 aimed to systematically examine the influence of the use of 

glasses on the calibration quality and time for the Eye Tribe© eye-tracking device 

under three different lighting conditions. The results of Experiment 3 showed that the 

calibration quality of participants who wore prescription glasses or replica glasses was 

‘Moderate’ (average 2.06 on a scale of 4) under natural lighting. The calibration under 

natural lighting with the same participants without glasses, though, was closer to 

‘Good’ (average 2.88 on a scale of 4). In the room lighting and the full lighting 

conditions, the calibration quality for participants with glasses was similarly 

'Moderate' (room lighting: 1.63; full lighting: 1.75), and almost ‘Good’ without glasses 

(room lighting: 2.50; full lighting: 2.88). Experiment 3 also showed that the calibration 

time required by participants was about 1-3 seconds longer on average when they wore 

(replica or prescription) glasses than when they did not. The negative effect of glasses 

on the calibration quality and time as found here could be due to the presence of light 
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reflection and glare, or due to the fact that when tracking an object high in the visual 

field, the participants’ eyes were occluded by the frame of the glasses.  

The first goal of Experiment 4 was to investigate the ideal viewing angle of 

participants viewing from different heights (standing, sitting) for registration of users' 

eyes. The results of Experiment 4 showed a significant correlation between the height 

of the participants and the angles of the eye tracker and the display under which they 

could register themselves. In short, if the participant was tall or viewing from a high 

position looking down on the display, the display should be angled upwards in a more 

horizontal position for registration to occur. By contrast, people sitting down on chairs 

or in wheelchairs would benefit from a vertical display position or a downward angle. 

From this result, it is clear that users are able to correctly register their eyes when 

display angles are according to their viewing position (standing or sitting). 

The second goal of Experiment 4 was to perform calibration for participants 

with and without (replica) glasses at the different display angles under two different 

lighting conditions. Overall, the results of the calibration quality and the calibration 

time obtained in Experiment 4 were better than in Experiment 3. Although no statistics 

were performed due to differences in group sizes, the average quality for participants 

with glasses under natural and room lighting in Experiment 3, from a 90-degrees 

viewing angle, was 2.06 and 1.63, respectively. In Experiment 4 the average quality 

markedly improved: 2.80 and 2.93 at the first angle, respectively, and 2.63 and 2.88 at 

the second angle, respectively. The calibration time obtained for participants with 

glasses in Experiment 4 under natural and room lighting (at the first angle 15.85 sec 

and 15.98 sec, and at the second angle 15.97 sec and 15.60 sec, respectively) was also 
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faster than that obtained in Experiment 3 (17.64 sec and 18.75 sec, respectively). For 

achieving good and fast calibration, therefore, the eye-tracking device and the display 

need to be set at a certain angle. Nevertheless, more research on the efficiency of the 

low-cost eye-tracker with regard to the thickness of the prescription glasses still needs 

to be done and checked in the future. 

It is known that eye-tracking devices allow the user to select a specific object 

from the screen interface only by gazing on it. An interactive interface with multiple 

objects shown on the screen typically employs a grid to organize objects based on 

sequenced columns and rows. For example, a grid is typically used for screen-lock 

interfaces of personal computers or smartphones. In visual password systems, grids 

with higher densities (more object keys) and different formations have been considered 

and tested (for more information about grid, see Chapter 2). The use of higher grid 

densities potentially enables complex passwords, since higher grids have a higher 

number of object keys. Research on the relation between grid density and password 

complexity, however, has shown mixed results. It was reported that the use of grid 

densities of more than 4×4 cells had minimal influence overall on the complexity of 

passwords (Aviv et al., 2015). In contrast, increasing the grid density increased 

password complexity (Thorpe & van Oorschot, 2004; Alam, 2016). In these studies, 

the grids were tested with manual input. Moreover, no systematic, comparative 

research about grid formations has been performed. Therefore, it is necessary to 

investigate what type of grid densities and formations is suitable to use with low-cost 

eye trackers. This matter is further investigated in Chapter 5.  
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Chapter 5.  A preliminary experiment on grid densities for visual 

password formats 

5.1 Experiment 5. Suitable grid densities for use with a low-cost eye-

tracker 

5.1.1 Purpose 

In order to select objects on a display with eye tracking, often some kinds of 

grid densities and formations are used. Depending on the size and the number of 

objects, the grid density and formation changes. In earlier research grid densities and 

formations of 3×3 to 10 × 10 cells have been used in interactive tasks with manual 

input (see Chapter 2). However, the use of grid formations in previous studies just 

focused on increasing the password complexity with denser grids. In addition, 

comparative research about grid formations has not yet been performed systematically. 

The goal of Experiment 5 was to identify which grid densities potentially are suitable 

for use with a low-cost eye-tracking device. To achieve this purpose, it is important to 

obtain judgments related to how easy to use and how safe the user thinks each grid 

density would be, when authenticating a password.  

In Experiment 5, sixteen different grid formations were used in between 2×2 

to 7×7 cells (see Figure 5.1). For convenience, the participant was asked to sit in front 

of a computer and to create an ideal visual password by selecting objects on the display 

using manual input with a mouse. The ideal visual password was an imaginary 

password that consisted of four to eight objects (alphanumeric characters, dots, or 
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visual icons). Another reason why the participant was sit down is that the actual eye 

tracking had not yet been used for making a password in this experiment. Following 

this, the participant had to give assessments for three visual password formats on grid 

densities, in relation to how easily and safely he/she thought each grid density could 

be used for making a visual password in a real situation with eye tracking. The range 

of possible grid densities was meant for a follow-up experiment with actual eye 

tracking (see Experiment 6, Chapter 6). A 7–point rating scale was used to obtain 

participant judgments. 

5.1.2 Method 

Participants 

Twenty-seven participants (11 males and 16 females) with normal or corrected-

to-normal vision participated in this experiment on a voluntary basis. They were 21-

47 years of age (M = 27.0 years, SD = ± 6.5 years). Twenty-four participants were 

Asian (Japanese, Chinese, Malaysian, and Indonesian), 2 participants were Caucasian, 

and 1 participant was Latino/Hispanic. All participants gave informed consent as to 

their participation after the purpose and procedure of the experiment was explained to 

them (Appendix O). 

Apparatus 

The interface for the grids was presented on a monitor (Lenovo ThinkVision, 

20-in, refresh rate of 60 Hz) with a resolution of 1600×1200 pixels. The monitor was 

placed on the desk with a height of 70 cm from the floor and at a viewing distance of 

approximately 62 cm where the participant was sat. The interface for the questions 
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about the grid was presented on a Laptop (Lenovo Z40, 15-in) with a resolution of 

1366×768 pixels and a refresh rate of 60 Hz. This laptop was placed below the monitor 

(Appendix P). The interface was programmed in Visual Studio C# (2015), and the data 

gathered from the participants were saved in a MySQL database. The experiment was 

performed under a room lighting condition at an illuminance of 106.42 ± 11.36 lux, as 

measured using a TOPCON Illuminance Spectro Meter IM-1000 at the location where 

the participant was seated.  Stimulus luminance on the monitor was measured using a 

TOPCON Luminance Meter BM-9. The luminance and illuminance values used here 

were similar to those used with the same experimental set-up as used in Experiments 

1 to 4 (Chapters 3 and 4). The measurements were performed ten minutes before the 

start of the experiment. 

Stimuli 

For three visual password formats, sixteen different grid densities were made 

with 2×2 to 7×7 cells (columns × rows, see Figure 5.1). The first format was an 

alphanumeric visual password format. For the alphanumeric format, numbers, letters, 

and special characters were presented on each grid. One cell of a grid was always 

reserved for a ‘Clr’ (Clear) key. This key could be used by the participant to clear 

his/her input. In the case of a grid density of four cells, i.e., a 2×2 grid, the digits 1, 2, 

3, and ‘Clr’ were presented starting from the top left to the bottom right cell. If the grid 

density exceeded ten cells, letters (in alphabetical order) and special characters were 

added to the numbers. For example, on a 7×7 grid with 49 cells, the numbers 0 to 9, 

the letters A to Z, and the special characters -, +, *, /, =, :, ;, ?, !, (, \, ), along with ‘Clr’ 

were presented starting from the top left to the bottom right cell. The alphanumeric 
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characters in the grid cells were black with a luminance of 0.73 ± 0.21 cd/m2, on a 

white background (8.45 ± 0.65 cd/m2). 

The second format was a pattern format. The pattern format consisted of dots, 

which could be selected by the participant to create a visual pattern as a password. The 

dots were black (0.80 ± 0.26 cd/m2) and white (8.12 ± 0.92 cd/m2). That is, a white dot 

with a radius of 47 pixels was placed in the middle of a black dot with a radius of 128 

pixels, and both dots were presented together as a key. 

 

Figure 5.1. Sixteen different grid densities for three visual password formats were used in 

Experiment 5. 

 

The third format was a picture format, which consisted of visual icons in a fixed 

order on a grid, with the number of icons depending on the grid density. Similar to the 

alphanumeric format, a ‘Clr’ key with the same function occupied one cell of a grid in 

this format. The visual objects were a single picture in gray with a luminance of 3.10 

± 1.04 cd/m2, against a white background (8.29 ± 0.94 cd/m2). Fruits, animals, and 

familiar objects are examples of visual objects used in this experiment and the two 

following experiments, Experiments 6 and 7 (Appendix Q). 

Each key of a password (i.e., alphanumeric character, dot, or visual icon) was 

put in a grid cell with a size of 128×128 pixels, which was 3.29 degrees in visual angle 
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and every pixel within a key was 0.027 degrees in visual angle. A stimulus pane was 

made with a size of 1600×1200 pixels for each grid density set against a gray 

background (3.64 ± 0.09 cd/m2) for each of the three visual password formats. A text 

box was displayed on the upper part of the pane (1600×125 pixels), while a grid was 

displayed for a given password format on the main part of the pane, with a size of 

1600×1075 pixels (see Figure 5.2). When the participant selected a key (an 

alphanumeric character, a dot, or a visual icon), an asterisk would be displayed on the 

text box above the grid, and a chime sound would be played (1538 ms; Appendix R), 

to indicate that the participant had made a selection. 

 

Figure 5.2. Example of stimuli used in Experiment 5. The three visual password formats [a. 

The alphanumeric format with a grid of 5×6 cells (columns × rows), b. The pattern format with 

a grid of 5×6 cells (columns × rows), and c. The picture format with a grid of 5×6 cells 

(columns × rows)] were presented in each of the 16 different grids depicted in Figure 5.1. 
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Procedure 

The participant was asked to sit in front of a desk on which the laptop and 

monitor were placed. The participant was asked to make an “ideal” password for each 

grid density on three visual password formats. Each grid was displayed on the monitor 

in a random order when the participant made a password. He/she was instructed never 

to create a real password used in his/her daily life. Furthermore, although each 

participant was using a mouse to make passwords, he/she was asked to imagine using 

the eye-tracking system during the experiment. The participant was instructed that the 

password should be an imagined password, with a minimum length of four and a 

maximum length of eight objects. For each format, the imagined password was created 

by clicking objects on the monitor using a mouse. For the alphanumeric format, the 

participant had to select a sequence of characters such as numbers, letters or special 

characters, as his/her password. For the pattern format, he/she had to draw an assembly 

of dots as a password, while for the picture format, the participant had to select 

icons/images as his/her password. 

After making a password, the participant was asked whether he/she thought 

that a particular grid density would be easy to use for making a visual password, on a 

scale between 1 (not easy) and 7 (very easy). Next, the participant was instructed to 

evaluate the potential safety of the grid for visual password input with eye tracking, 

between 1 (not safe) and 7 (very safe). The participant was not given any instructions 

as regards the meaning of “easy to use” or “potential safety” of the visual password 

format and grid. These evaluations were performed with a program on the laptop. Each 

evaluation for each grid was saved in a database. 
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In order to get used to the program interface, the participant was asked to run 

a practice program before starting the actual experiment. In the practice program, the 

participant had to practice making a password twice for each format, on a grid 

randomly chosen from the 16 grids. After that, the participant made the evaluations. 

After practice, the participant performed the experiment with counterbalance in the 

order of the three visual password formats. That is, nine participants first made 

passwords in the alphanumeric format, then in the pattern format, and finally in the 

picture format, for each of the grids. Another nine participants started with the pattern 

format, followed by the picture format, and ending with the alphanumeric format. The 

remaining nine participants started with the picture format and ended with the pattern 

format. The experiment for all formats took about 60 minutes for each participant. The 

procedure was approved by the Ethical Committee of the Faculty of Design, Kyushu 

University, Japan (131-3). 

5.2 Results of Experiment 5 

For every visual password format, with each increase in the number of grid 

cells, a grid was evaluated difficult to use but it was considered potentially safety for 

password formation in an imagined situation using eye tracking. Figure 5.3 shows the 

participant judgments (n = 27) on whether a grid was potentially easy to use for three 

visual password formats. As the number of grid cells increased, the participants judged 

the grid as increasingly less easy to use for the alphanumeric format [white circles, 

ranging from the 2×2 grid (6.30 ± 0.54), to the 7×7 grid (3.52 ± 0.84)]. Participants 
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also assessed the grid progressively not easy to use for the pattern format (gray circles) 

and the picture format (black circles) when the number of cells in the grids increased. 

 

Figure 5.3. Results of Experiment 5. The participant judgments (n = 27) on whether a grid was 

potentially easy to use for three visual password formats. The circles show the average grid 

evaluations for alphanumeric passwords (white), pattern passwords (gray), and picture 

passwords (black). The lines show the linear (short dashes) and logarithmic (long dashes) 

functions for the relation between the judgment and the grid density for the three visual 

password formats. Error bars indicate ± 95% confidence intervals around the means. 

 

In order to examine the the correlation between the “easy” judgment and grid 

density, a regression analysis with a linear (5.1) and a logarithmic (5.2) function was 

performed. 

𝑦 =  𝑎 + 𝑏𝑥                (5.1) 

𝑦 =  𝑎 +  𝑏𝑙𝑛(𝑥)                        (5.2) 

where x is the number of grid cells (from 4 to 49 cells), x must be greater than zero for 

Equation 5.2, y is the participant judgment (from 1 to 7), a is the y-intercept, and b 

indicates the slope value. The linear (y = 6.087 - 0.068x) and logarithmic (y = 8.168 - 
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1.257ln(x)) regression equations with r2 values of 0.851 and 0.850, respectively, show 

that the average “easy” judgment significantly decreased (p < 0.001) with each 

increase in the number of grid cells (Appendix S). Both the linear and the logarithmic 

function fitted the data about equally well. 

Table 5.1 shows the 95% confidence intervals (CIs) around the means (n = 27) 

of the “easy” judgment for three visual password formats. In order to get an indication 

of which grid density would be useful for each format, the interval ranges were 

compared with the midpoint of the rating scale, i.e., “4”. For the alphanumeric format, 

the means and the 95% CIs for the 2×2, 2×3, 3×2, 3×3, 3×4, 4×3, 4×4, 4×5, and 5×5 

grids exceeded the scale midpoint, suggesting that these grid densities tended to be 

easy to use with this format. For the pattern and picture formats, the means and the 

95% CIs for the 2×2, 2×3, 3×2, 3×3, 3×4, 4×3, and 4×4 grids were greater than the 

scale midpoint (“4”), suggesting that these grid densities were thought to be easy to 

use with both of these password formats. 

 

Table 5.1. Results of Experiment 5. The means and the 95% confidence intervals of the easy 

judgment for each grid density for three visual password formats. 

Grid Density (columns × rows) 
Alphanumeric format 

(M, 95% CIs) 

Pattern format 

(M, 95% CIs) 

Picture format 

(M, 95% CIs) 

2×2 6.30 [5.76,6.83] 6.44 [5.96,6.93] 5.78 [5.19,6.36] 

2×3 5.78 [5.11,6.45] 6.22 [5.85,6.59] 5.33 [4.74,5.92] 

3×2 6.11 [5.71,6.51] 6.00 [5.40,6.60] 5.15 [4.48,5.81] 

3×3 5.81 [5.32,6.31] 5.78 [5.36,6.19] 4.93 [4.37,5.48] 

3×4 5.59 [5.04,6.14] 5.33 [4.86,5.81] 4.70 [4.14,5.27] 

4×3 5.52 [4.87,6.17] 5.30 [4.89,5.70] 4.96 [4.39,5.54] 

4×4 5.26 [4.75,5.77] 5.07 [4.66,5.48] 4.78 [4.17,5.38] 

4×5 4.63 [4.09,5.17] 4.44 [3.96,4.93] 4.30 [3.58,5.01] 

5×4 4.56 [4.00,5.11] 4.41 [3.87,4.95] 4.33 [3.75,4.91] 

5×5 4.67 [4.10,5.24] 4.11 [3.57,4.65] 4.11 [3.44,4.78] 

5×6 4.52 [3.94,5.09] 3.44 [2.85,4.04] 4.07 [3.37,4.78] 

6×5 4.30 [3.65,4.94] 3.33 [2.60,4.07] 3.85 [3.25,4.45] 
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6×6 4.56 [3.90,5.21] 3.11 [2.44,3.78] 3.52 [2.79,4.25] 

6×7 3.78 [3.06,4.49] 2.89 [2.26,3.52] 3.26 [2.55,3.97] 

7×6 3.41 [2.65,4.16] 2.59 [1.96,3.23] 3.30 [2.57,4.02] 

7×7 3.52 [2.68,4.36] 2.78 [2.15,3.40] 3.11 [2.36,3.86] 

 

Figure 5.4. shows the participant judgments (n = 27) on whether a grid was 

potentially safe to use for three visual password formats. As the number of grid cells 

increased, the participants thought that in an imagined situation using eye tracking, 

making an alphanumeric visual password would become safer [white circles, ranging 

from the 2×2 grid (1.26 ± 0.27), to the 7×7 grid (6.44 ± 0.37)]. When the grid became 

denser, participants also thought the grid increasingly safer to use in an imagined 

situation in which eye tracking would be used to make the pattern password (gray 

circles) and the picture password (black circles).  

 

Figure 5.4. Results of Experiment 5. The participant judgments (n = 27) on whether a grid was 

potentially safe to use for three visual password formats. The circles show the average grid 

evaluations for alphanumeric passwords (white), pattern passwords (gray), and picture 

passwords (black). The lines show the linear (short dashes) and logarithmic (long dashes) 

functions for the relation between the judgment and the grid density for the three visual 

password formats. Error bars indicate ± 95% confidence intervals around the means. 
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A regression analysis with a linear (5.1) and a logarithmic (5.2) function was 

performed to examine the correlation between the “safe” judgment and grid density. 

The linear (y = 0.102 + 2.304x) and logarithmic (y = -1.389 + 2.083ln(x)) regression 

equations with r2 values of 0.772 and 0.947, respectively, show that the average “safe” 

judgment significantly increased (p < 0.001) with each increase in the number of grid 

cells (Appendix S). Here, the fit of the logarithmic function was better than that of the 

linear function. 

Table 5.2 shows the 95% CIs around the means (n = 27) of the “safe” judgment 

for three visual password formats. A comparison was performed between interval 

ranges with the midpoint of the rating scale, i.e., “4”, to get an indication of which grid 

density would be useful for each format. For the pattern format, the means and the 

95% CIs for the 3×4, 4×4, 4×5, 5×4, 5×5, 5×6, 6×5, 6×6, 6×7, 7×6, and 7×7 grids 

exceeded the scale midpoint, suggesting that these grid densities were considered 

potentially safe for this format. For the alphanumeric and picture formats, the means 

and the 95% CIs for the 4×5, 5×4, 5×5, 5×6, 6×5, 6×6, 6×7, 7×6, and 7×7, grids were 

higher than the scale midpoint, showing that these grid densities were judged as 

potentially safe for both these password formats. 

 

Table 5.2. Results of Experiment 5. The means and the 95% confidence intervals of the safe 

judgment for each grid density for three visual password formats. 

Grid Density (columns × rows) 
Alphanumeric format 

(M, 95% CIs) 

Pattern format 

(M, 95% CIs) 

Picture format 

(M, 95% CIs) 

2×2 1.26 [1.00,1.52] 1.33 [1.06,1.60] 1.33 [1.11,1.55] 

2×3 1.70 [1.24,2.17] 2.19 [1.67,2.70] 2.04 [1.61,2.47] 

3×2 1.67 [1.20,2.13] 2.30 [1.71,2.89] 2.04 [1.57,2.51] 

3×3 2.59 [2.04,3.14] 3.63 [3.06,4.20] 3.19 [2.65,3.72] 

3×4 3.78 [3.20,4.35] 4.67 [4.20,5.13] 4.33 [3.78,4.88] 

4×3 3.78 [3.17,4.38] 4.37 [3.84,4.90] 4.07 [3.58,4.56] 
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4×4 4.37 [3.81,4.93] 5.11 [4.62,5.61] 4.48 [3.93,5.03] 

4×5 5.15 [4.73,5.57] 5.37 [4.94,5.81] 5.11 [4.62,5.61] 

5×4 5.11 [4.67,5.55] 5.52 [5.07,5.96] 5.26 [4.85,5.66] 

5×5 5.11 [4.64,5.58] 5.70 [5.30,6.11] 5.48 [5.01,5.95] 

5×6 5.41 [4.97,5.85] 6.00 [5.56,6.44] 5.56 [5.09,6.03] 

6×5 5.56 [5.10,6.01] 5.70 [5.20,6.20] 5.67 [5.18,6.16] 

6×6 6.04 [5.67,6.41] 6.15 [5.67,6.62] 5.85 [5.34,6.36] 

6×7 6.26 [5.94,6.58] 6.41 [6.11,6.70] 5.81 [5.27,6.36] 

7×6 6.41 [6.13,6.68] 6.30 [5.89,6.70] 5.96 [5.52,6.41] 

7×7 6.44 [6.08,6.81] 6.22 [5.69,6.75] 6.15 [5.69,6.61] 

 

5.3 Discussion 

The objective of Experiment 5 was to identify which grid densities potentially 

are suitable for use with a low-cost eye-tracking device. Sixteen different grid 

densities, in between 2×2 and 7×7 cells, were evaluated for use with three visual 

password formats. The participants (n=27) were asked to make an imaginary password 

on the screen using a mouse, and imagine they were using eye tracking to make the 

password. Furthermore, the participants were also required to assess the 16 grid 

densities about whether they are easy to use and potentially safe for making a visual 

password in an imagined situation using eye tracking. 

The results of Experiment 5 generally showed that when grids became denser, 

participants thought that a grid was more difficult to use but potentially safer for 

password formation in an imagined situation using eye tracking. As shown in Figure 

5.3, both the linear or logarithmic functions were suitable to estimate the “easy” 

judgment for any number of grid cells between 4 and 49. If the number of grid cells 

was 24 cells - by using Equations 5.1 and 5.2, respectively - the linear and logarithmic 

functions predict that, on average, the “easy” judgment is 4.46 and 4.42 points, 

respectively. The results from both functions were relatively similar. In the same 
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manner, however, the logarithmic function was more precise than the linear function 

to estimate the “safe” judgment relative to the number of grid cells (Figure 5.4).  

Furthermore, the participants also think that some grid densities are not 

particularly suitable for visual password formation using eye tracking. As regards 

safety judgments, the 95% CIs around judgment means of grid densities with either 

two rows or columns (2×2, 2×3, and 3×2) did not exceed the scale midpoint (“4”) in 

any of the three visual password formats. Grids with two rows or columns, or both, are 

thus regarded as relatively unsafe for visual password formation with eye tracking. 

The results for “easy to use” judgments were less clear-cut. However, since the 95% 

CIs around judgment means of grid densities with either seven rows or columns (6×7, 

7×6, and 7×7) did not firmly exceed the scale midpoint (“4”) in two of the three visual 

password formats (the pattern format and the picture format), these grids can be 

considered as relatively difficult to use. From this, it results that grid densities ranging 

from 3×3 to 6×6 are considered suitable for visual password formation using actual 

eye tracking (Experiment 6).  

Experiment 5, however, has several limitations. First, with regard to the grid 

evaluations, there was no information given to the participants on the meaning of “easy 

to use” or “potential safety” of the grid densities. Second, it is not known how much 

time was required to create a password, and actual eye tracking was not used. 

Therefore, more research needs to be done to investigate whether a particular grid 

formation and password format are easy to use by measuring the time and success rate 

of visual password authentication using eye tracking. An indication of the subjective 
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feeling of safety may be the password length. These matters are further investigated in 

Chapter 6 (Experiment 6). 
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Chapter 6.  What kind of grid formations and password formats are 

useful for password authentication with eye-gaze-based input? 

6.1 Experiment 6. An investigation of visual password formats and grid 

formations with a low-cost eye tracker 

6.1.1 Purpose 

Research on password systems suggests that recognition-based visual 

password systems are often considered as easier to memorize, and that systems with a 

denser grid potentially allow more secure password formation. Furthermore, it has 

been suggested that eye-gaze-based input could be suitable against password theft 

(“shoulder surfing”), especially in public spaces. (For more details on past research 

related to visual password authentication with eye-gaze-based input, see Chapter 2.) 

However, previous studies have shown that the user still had to press a keyboard to 

trigger gaze input, and only a single password format was used. Next, most password 

systems have been tested only for users sitting in front of a personal computer. Finally, 

comparative research about visual password formats has not yet been performed in a 

systematic way. 

Experiment 6, therefore, aimed to investigate what type of password format 

and grid formation is suitable for password authentication using eye-gaze-based input. 

Three recognition-based password formats were used (Figure 6.1). The formats were 

an alphanumeric format, a pattern format, and a picture format, in which the participant 

was asked to identify and select a sequence of characters, dots, or icons, respectively, 
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on the screen by using eye-gaze-based input. The formats were used with 16 grids 

ranging from 3×3 to 6×6 cells (columns × rows; see Figure 6.3 in the Stimuli section).  

 

Figure 6.1. Examples of the three recognition-based password formats used in Experiment 6, 

on a 5×5 grid. 

 

For each format, the participant was asked to perform authentication tasks with 

a 4-object or 6-object password. Participants performed password registration (Task 

1), password confirmation (Task 2), and password login (Task 4). This sequence of 

tasks is generally performed in any password system and mimics a real situation of 

password generation. For each of the 16 grid formations, the participant was also asked 

to judge how easily he/she could perform password input and could recognize a 

password when authenticating (Task 3, which was performed before password login, 

Task 4). The participants’ task-completion time, their success rate, as well as 

preference data based on a 7-point rating scale were obtained, in order to test which 

password format(s) and grid formation(s) would be suitable for eye-gaze-based input. 

6.1.2 Method 

Participants 

Seventeen participants (8 males, 9 females) with normal or corrected-to-normal 

vision participated. They were 21-44 years of age (M = 27.1 years, SD = ± 5.9 years). 



90 

 

The participant’s height was in between 157 and 182 cm (M = 167.8 cm, SD = ± 6.7 

cm). Fourteen participants were Asian (Japanese, Chinese, and Indonesian), 1 

participant was Caucasian, and 2 participants were Latino/Hispanic. The participants 

were paid for their participation. Data from two participants were not used for 

statistical analyses. One participant had difficulty employing the eye-tracking system, 

while the other had difficulty recalling and recognizing the passwords. After each 

participant had received an explanation and instructions about the experiment, he/she 

was asked to provide written informed consent (Appendix T) as to his/her 

participation. 

Apparatus 

A monitor (Hewlett-Packard LP2065, 20-in, refresh rate 60 Hz) with a 

resolution of 1600×1200 pixels was used to present the experiment interface (Figure 

6.2a). An eye-tracker device (Tobii EyeX©) was mounted on the lower edge of the 

monitor, at a height of 133 cm from the ground. The angle of the monitor and the eye-

tracker were set at two viewing angles of 105 (90+15) and 120 (90+30) degrees. These 

angles were ideal for participants with a height in between 151-190 cm to register their 

eye gaze on the eye-tracking system (see Experiment 4, Chapter 4). In order to perform 

password authentication, the participant was standing in the middle in front of the 

monitor at a viewing distance of approximately 49 cm, as indicated by a floor mark. 

This viewing distance is close to the border of the operating distance of the eye-tracker 

device (for details, see Tobii Eye Tracking Support, 2017), and eye registration was 

unsuccessful when the participant was standing too close or too far away from the 

display (see Experiments 1 and 2, Chapter 3). The reason the participant performed 
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the task while standing was to simulate a situation in which he/she would use eye 

tracking to register on an ATM-machine with a password. 

 

Figure 6.2. Impression of the experiment set-up of Experiment 6. a. The participant was 

standing in front of the monitor which showed the experiment interface. b. The experimenter 

controlled the order of password format, grid, and password length for the participant using 

another monitor. 

 

Besides the monitor for the experiment interface, another monitor (Lenovo 

ThinkVision, 20-in, refresh rate 60 Hz) was used by the experimenter to control the 

order of password format, grid, and password length (Figure 6.2b). Both monitors were 

mounted on a monitor stand, opposite from each other. All experiment interfaces were 

programmed in Visual Studio C# (2015), and the data gathered from the participants 
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were saved in a MySQL database. The experiment was performed under a room 

lighting condition at an illuminance of 122.35 ± 4.28 lux, as measured using a 

TOPCON Illuminance Spectro Meter IM-1000 at the location where the participant 

was standing. The display’s luminance was measured using a TOPCON Luminance 

Meter BM-9. The measurements were performed ten minutes before the start of the 

experiment. 

Stimuli 

Sixteen different grid formations were made, ranging from 3×3 to 6×6 cells 

(columns-by-rows, Figure 6.3). Three password formats depicted in Figure 6.1 were 

used. The first format was an alphanumeric password format (Figure 6.1a). For this 

format, alphanumeric characters, i.e., numbers and letters, were presented on a grid. In 

the case of a grid density of nine cells, i.e., a 3×3 grid, the digits 1, 2, 3, 4, 5, 6, 7, 8, 

and 9 were presented starting from the top left to the bottom right cell. If the grid 

density exceeded ten cells, letters (in alphabetical order) were added to the numbers. 

For example, on a 6×6 grid with 36 cells, the numbers 0 to 9, and the letters A to Z 

were presented starting from the top left to the bottom right cell. The alphanumeric 

characters in the grid cells were black with a luminance of 0.14 ± 0.01 cd/m2, on a 

white background (2.42 ± 0.09 cd/m2). 

The second format was a pattern format (Figure 6.1b). The pattern format 

consisted of dots, which could be selected by the participant to create a shape or a 

pattern as a password. The dots were black (0.14 ± 0.01 cd/m2) and white (2.40 ± 0.08 

cd/m2). A white dot with a radius of 47 pixels was placed in the middle of a black dot 

with a radius of 128 pixels, and both dots were presented together as a key. The third 
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format was a picture format (Figure 6.1c), which consisted of icons in a fixed order on 

a grid, with the number of icons depending on the grid density (Appendix Q). The 

icons were in gray-scale with a luminance range of 0.83 to 0.99 cd/m2, against a white 

background (2.42 ± 0.11 cd/m2). Each object key (i.e., alphanumeric character, dot, or 

icon) of a password was put in the middle of a grid cell with a size of 128×128 pixels, 

which was 4.16 degrees × 4.47 degrees in visual angle, and every pixel within an object 

key was 0.028 degrees × 0.030 degrees in visual angle. 

 

Figure 6.3. A schematic impression of the 16 different grid formations used in Experiment 6. 

Grid formations of 3×3 to 6×6 cells (columns × rows) were used. Note that the object keys 

(i.e., alphanumeric characters, dots, or icons) had the same size regardless of the number of 

grid cells. 

 

The participant had four tasks (see Procedure section below), for which two 

screen interfaces were made with a size of 1600×1200 pixels set against a gray 

background (0.90 ± 0.03 cd/m2) to perform password authentication (Appendix U). In 

Tasks 1, 2, and 4, the participant used his/her eye gaze to enter a password. For Tasks 

1 and 2, the upper part of the screen (1600×125 pixels) consisted of two text boxes, a 

“Save” key, a “Confirm” key, and a “Clr” key. The “Save” key could be used by the 

participant to save a password. When gazing at the “Confirm” key, the participant 

could confirm password input, while the “Clr” was used to clear his/her registered or 
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confirmed input. The main part of the screen (1600×1075 pixels) displayed the 

password formats and grids. For Task 4, the upper screen of the task interface 

(1600×125 pixels) displayed a text box, a “Login” key, and a “Clr” key. The “Login” 

key could be used by the participant to authenticate his/her password into the system, 

while the “Clr” was used to clear this. Also in Task 4, the password formats and grids 

were displayed on the main part of the screen (1600×1075 pixels). When the 

participant selected an object key on the grid on the main part of the screen, an asterisk 

would be displayed on the text box at the upper part of the screen, and a chime sound 

would be played (1538 ms; Appendix R) to indicate that a selection was made. All 

(object) keys on the upper or main part of the screens could be triggered by eye gaze 

with a dwell time of 500 ms. 

Procedure 

The participant was asked to stand in the middle in front of the monitor without 

crossing a floor mark. While standing, he/she was asked to relax, take a natural viewing 

position, and make no excessive head movements during the experiment. Following 

this, the participant was shown a password on the screen, randomly generated for each 

of the three password formats, consisting either of 4 or 6 objects. He/she was then 

asked to memorize the password within a minute for a 4-object password and within 

two minutes for a 6-object password (Appendix V). After memorizing, the participant 

was instructed to perform the four tasks as described below. 

Task 1: Password registration 

The participant was instructed to register the memorized password on the 

screen interface by using his/her eye gaze. The participant could select the appropriate 
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object keys displayed on a grid that was randomly selected from the 16 different grid 

formations. The password consisted either of alphanumeric characters (alphanumeric 

format), dots (pattern format), or icons (picture format). After registration, the 

participant was instructed to select a “Save” key.  

Task 2: Password confirmation  

After saving the password, on the same screen, the participant was asked to 

confirm the password by re-selecting the same object keys on the same grid. Following 

this, the participant was instructed to select a “Confirm” key. In case the confirmation 

was incorrect, for example, due to incorrect memorization or incorrect selection of 

object keys, he/she could retry the confirmation up to five attempts. If the participant 

failed to confirm the password on the fifth attempt, he/she was instructed to register 

again (Task 1) using a different password for the same password format and grid. 

Task 3: Grid evaluation 

After confirming a password, the participant was asked to judge whether he/she 

considered the grid that was used in Task 1 and 2 as easy to use for password 

registration and confirmation. This judgment was made on a scale between 1 (not easy) 

and 7 (very easy). Next, the participant was instructed to evaluate whether the 

password (4 or 6 objects) was easy to remember. This was also done on a rating scale 

between 1 (not easy) and 7 (very easy). Since this task did not require eye-gaze-based 

input, the participant used a mouse to make the rating-scale judgments on the screen. 

The meaning of “easy to use” was defined as how fast (estimated time needed) and 

successful (the number of attempts) the participant was in registering and confirming 
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the password. “Easy to remember” was described as how much effort the participant 

thought to be necessary to memorize and recall a password. 

Task 4: Password login  

In this task, the participant was asked to log in into the system with the 

password that he/she had registered and confirmed before. If the participant noticed an 

error during login, he/she could retry to enter the password up to five attempts. If the 

login failed at the fifth attempt, the participant was instructed to register again (Task 

1), starting by memorizing a different password for the same password format and 

grid. After the participant had finished all tasks for each grid formation for the three 

formats, he/she was asked to fill in a final questionnaire about his/her experience in 

daily life with passwords in general (Appendix W). The participant was explicitly 

instructed not to reveal any password or password formation strategy that he/she used 

in daily life. 

The experiment was performed with counterbalance in the order of the three 

password formats. That is, five participants first performed the tasks in the 

alphanumeric format, then in the pattern format, and finally in the picture format, for 

each of the 16 grids. Another five participants started with the pattern format, followed 

by the picture format, and ended with the alphanumeric format. The remaining five 

participants started with the picture format and ended with the pattern format. For each 

format, the order of password length (4 or 6 objects) was varied as well. The time 

needed and the number of attempts needed by the participant to perform Tasks 1, 2, 

and 4 were recorded by means of the computer program. During the experiment, the 
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participant was not informed about this in order to ensure his/her natural attitude 

towards the tasks.  

Before the start of the experiment, each participant needed to register his/her 

eyes and perform calibration with Tobii EyeX© software at one of the viewing angles. 

In order to get familiar with all tasks, a practice program was performed in which the 

participant practiced Tasks 1, 2, and 4 with a 4-object or a 6-object password, twice 

for each password format, on a grid randomly chosen from the 16 grids. In between 

Tasks 2 and 4, Task 3 was practiced as well. The experiment took about 6 hours, 

divided over 2-hour sessions for 3 days. The procedure was approved by the Ethical 

Committee of the Faculty of Design, Kyushu University, Japan (131-3). 

6.2 Results of Experiment 6 

In Tasks 1, 2, and 4, task-completion time and input success rate were obtained. 

In Task 3, preference data based on a rating scale for the password formats and grid 

formations were gathered. Data from 4320 trials (15 participants × 16 grids × 3 tasks 

× 3 password formats × 2 password lengths) were collected. In Tasks 1, 2 and 4, in 

which the participant entered the password using his/her eye gaze, 11% (458/4320) of 

the time measurements were disproportionally slow, i.e., they were outliers in a 

positive direction. Given the dwell time for eye tracking of 500 ms per object key, 

disproportionally fast times were not obtained. The Median Absolute Deviationn 

method (MADn) was used to remove outliers (Leys, Ley, Klein, Bernard, & Licata, 

2013). That is, data points that were 2.5 times the MADn above the median were 

removed recursively until no additional outliers were identified. 
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6.2.1 Task-completion time difference between password formats 

The time needed by participants (n = 15) to perform Tasks 1, 2, and 4 (see 

Procedure section) for 16 grids in three password formats was measured. From here 

on, this will be called “task-completion time”. Since the data were not normally 

distributed, as confirmed with a Shapiro-Wilk test, non-parametric Friedman tests 

were performed in order to see whether task-completion time for all 16 grid formations 

varied with the password format. If significant, pairwise comparisons using Wilcoxon 

signed-rank tests were performed to see which pair(s) of password formats showed a 

significant difference with the alpha level was Bonferroni-adjusted to 0.05/3 = 0.017. 

Figure 6.4 shows the differences in median task-completion time (s) between password 

formats with 4-object or 6-object passwords for all grids. 

The statistical details (Table 6.1, Appendix X) regarding task-completion time 

are as follows. In Task 1 (password registration), task-completion time over grid 

density (df = 2, n = 16) differed between password formats for both the 4-object (χ2 

= 14.00, p = 0.001) and 6-object (χ2 = 16.63, p < 0.001) passwords. Follow-up 

pairwise comparisons revealed that the time to complete Task 1 with passwords in the 

alphanumeric format did not differ from task-completion time with passwords in the 

pattern format (4-object passwords: Z = -0.63, p = 0.532; 6-object passwords: Z = -

1.60, p = 0.109). Completion time in the picture format, however, took significantly 

longer than in the alphanumeric format (4-object passwords: Z = -3.31, p = 0.001; 6-

object passwords: Z = -3.46, p = 0.001) and the pattern format (4-object passwords: Z 

= -3.36, p = 0.001; 6-object passwords: Z = -3.05, p = 0.002). 
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Figure 6.4. Results of Experiment 6. Median task-completion time (s) for alphanumeric, 

pattern, and picture password formats with 4-object or 6-object keys for 16 grid formations in 

Task 1 (top), Task 2 (middle), and Task 4 (bottom). An asterisk shows a significant difference 

in task-completion time between password formats (p < 0.01). 
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For the data obtained in Task 2 (password confirmation), the Friedman test 

showed significant differences between password formats for both the 4-object (χ2 = 

6.13, p = 0.047) and 6-object (χ2 = 24.00, p < 0.001) passwords. Pairwise 

comparisons revealed that the completion time for passwords in the picture format did 

not differ from that for the pattern format (4-object passwords: Z = -0.16, p = 0.88; 6-

object passwords: Z = -0.47, p = 0.642) and for the alphanumeric format (4-object 

passwords: Z = -2.22, p = 0.026, which was not significant with Bonferroni correction 

on the alpha level). However, completion time for alphanumeric passwords was 

significantly shorter than that for pattern passwords (4-object passwords: Z = -2.69, p 

= 0.007; 6-object passwords: Z = -3.52, p < 0.001) and picture passwords (6-object 

passwords: Z = -3.52, p < 0.001). 

Completion time of Task 4 (password login) significantly differed between 

password formats for 4-object (χ2 = 6.50, p = 0.039) and 6-object (χ2 = 7.88, p = 

0.019) passwords. The pairwise comparisons showed that completion time for 

passwords in the pattern format neither differed from that in the alphanumeric format 

(4-objects passwords: Z = -1.86, p = 0.063; 6-objects passwords: Z = -0.52, p = 0.605) 

nor from completion time in the picture format (4-objects passwords: Z = -1.50, p = 

0.134; 6-objects passwords: Z = -2.22, p = 0.026, which was also not significant with 

Bonferroni correction on the alpha level). Completion time for picture passwords, 

however, was significantly longer than that for alphanumeric passwords (4-objects 

passwords: Z = -2.72, p = 0.007, 6-objects passwords: Z = -2.95, p = 0.003). 
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Table 6.1. Results of Experiment 6. Pairwise comparisons of task-completion time between 

password formats for 4-object and 6-object passwords in Task 1, Task 2, and Task 4. 

Password length Pairs of password formats 
Task 1 

  
Task 2 

  
Task 4 

Z Z Z 

4-object passwords 

AN > PA -0.63 

 

-2.69** 

 

-1.86 

AN > PI -3.31** -2.22 -2.72** 

PA > PI -3.36** -0.16 -1.50 

6-object passwords 

AN > PA -1.60 

 

 

-3.52*** 

 

-0.55 

AN > PI -3.46** -3.52*** -2.95** 

PA > PI -3.05** -0.47 -2.22 

AN: Alphanumeric format, PA: Pattern format, PI: Picture format 

Task 1: password registration, Task 2: password confirmation, Task 4: password login 

Z: Wilcoxon signed rank test value 

>: faster task-completion time 
** p < 0.01, *** p < 0.001 (after Bonferroni-correction) 

 

6.2.2 The relation between task-completion time and grid density 

In Tasks 1, 2 and 4, 16 data points for task-completion time were obtained for 

each of the three password formats. One data point was acquired for each square grid 

formation with a grid density of 9 (3×3), 16 (4×4), 25 (5×5), or 36 (6×6) cells. Two 

data points were obtained for the grids with an equal number of cells, yet each with a 

horizontal formation (more columns than rows) or a vertical formation (more rows 

than columns). Two data points were thus obtained for grids with 12 cells (3×4 and 

4×3), 15 cells (3×5 and 5×3), 18 cells (3×6 and 6×3), 20 cells (4×5 and 5×4), 24 cells 

(4×6 and 6×4), and 30 cells (5×6 and 6×5). As shown in Figure 6.4, there was a general 

trend that participants took more time to input passwords in all three password formats 

when the grid density became higher. Pearson's correlation analyses were performed 

over the median of these 16 data points to examine the relation between task-

completion time and grid density for 4-object and 6-object passwords in Tasks 1, 2, 
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and 4 (Appendix Y). The r-values are shown in Figure 6.5. First, in general, the 

participants needed more time to complete 6-object passwords than 4-object passwords 

for all three formats in all tasks. Second, the results indeed clearly showed that task-

completion time increased for denser grids, i.e., grids consisting of more object keys. 

 

Figure 6.5. Results of Experiment 6. Pearson’s correlation values between task-completion 

time and grid density. Task-completion time was obtained for eye-gaze-based input of 4-object 

and 6-object passwords in three password formats in Task 1, Task 2, and Task 4. The circles 

show Pearson r-values for the alphanumeric passwords (white), pattern passwords (gray), and 

picture passwords (black). All Pearson r-values higher than 0.50 (dashed line) show a 

significant positive correlation (p < 0.05) between task-completion time and grid density. 

 

The statistical details (Table 6.2a, Appendix Y) are as follows. In Task 1 

(password registration), for 4-object passwords, the median completion time ranged in 

between 5.58-11.96 seconds(s). Pearson’s correlation analyses showed that the 

participants significantly required more completion time with increasing grid density. 

For the alphanumeric format (r = 0.60, n = 15, p = 0.014) and the picture format (r = 

0.77, n = 15, p < 0.001) this correlation was significant. For the pattern format, the 
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correlation bordered on significance (r = 0.50, n = 15, p = 0.050). As the grid density 

increased, the participants also significantly needed more time for 6-object passwords, 

with a median completion time in between 8.55-16.44 s. For the alphanumeric format 

(r = 0.66, n = 15, p = 0.005), the pattern format (r = 0.66, n = 15, p = 0.005), and the 

picture format (r = 0.81, n = 15, p < 0.001) this correlation was significant. 

Similar to Task 1, the median completion time in Task 2 (password 

confirmation) increased when the number of grid cells increased. For 4-object 

passwords, it grew from 7.10 to 12.69 s. The correlation between task-completion time 

and grid density was significant for the picture format (r = 0.59, n = 15, p = 0.016), 

but not for the pattern format (r = 0.23, n = 15, p = 0.395) and the alphanumeric format 

(r = 0.48, n = 15, p = 0.061), although the correlation for the latter bordered on 

significance. The median task-completion time for 6-object passwords ranged in 

between 9.97-16.86 s. The correlation between task-completion time and grid density 

was significant for the alphanumeric format (r = 0.76, n = 15, p < 0.001), the pattern 

format (r = 0.74, n = 15, p < 0.001), and the picture format (r = 0.89, n = 15, p < 0.001).  

 Also in Task 4 (password login), there was a general tendency that participants 

needed more time to enter 4-object passwords when the number of grid cells increased 

(median completion time from 7.17-12.82 s). However, the correlations between task-

completion time and grid density for the alphanumeric format (r = 0.50, n = 15, p = 

0.054), the pattern format (r = 0.47, n = 15, p = 0.064), and the picture format (r = 

0.49, n = 15, p = 0.053) were not significant, yet all bordered on significance. For 6-

object passwords, the median task-completion time ranged from 10.00-15.77 s. There 

was a statistically significant correlation between task-completion time and grid 
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density for the alphanumeric format (r = 0.70, n = 15, p = 0.002) and the pattern format 

(r = 0.56, n = 15, p = 0.024), but not for the picture format (r = 0.07, n = 15, p = 0.798). 

6.2.3 The relation between task-success rate and grid density 

The password input success rate was measured based on whether the 

participant could perform Tasks 2 and 4 at the first attempt. For Tasks 2 and 4, data 

from 2880 trials in total were obtained (15 participants × 16 grids × 2 tasks × 3 

password formats × 2 password lengths). Most of the trials (91%, 2627/2880) were 

completed at the first attempt with 4-object or 6-object passwords for all grids and 

password formats. I examined the correlation between task-success rate and grid 

density for these data. The results showed a negative correlation: when the grid became 

denser, the number of participants who successfully entered the password with eye-

gaze-based input at the first attempt decreased (Appendix Z). Figure 6.6 shows the 

Pearson r-values for the relation between first-attempt-success rate and grid density in 

Tasks 2 and 4 for the 4-object and 6-object passwords performed for the three 

password formats. 

The statistical details (Table 6.2b, Appendix Z) are as follows. In Task 2, the 

first-attempt-success rate with 4-object passwords decreased when the number of grid 

cells increased for all three formats. Although there was no statistically significant 

correlation between first-attempt-success rate and grid density for the picture format 

(r = -0.40, n = 15, p = 0.123), for the alphanumeric format (r = -0.67, n = 15, p = 0.005) 

and the pattern format (r = -0.64, n = 15, p = 0.007) this negative correlation was 

significant. For 6-object passwords, the first-attempt-success rate also significantly 

decreased as grid density increased for the alphanumeric format (r = -0.69, n = 15, p 
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= 0.003), the pattern format (r = -0.76, n = 15, p = 0.001), and the picture format (r = 

-0.66, n = 15, p = 0.005). 

 

Figure 6.6. Results of Experiment 6. Pearson’s correlation values between successful password 

input at the first attempt and grid density. The first-attempt-success rate was obtained for eye-

gaze-based input of 4-object or 6-object passwords in three password formats in Task 2 and 

Task 4. The circles show Pearson r-values for alphanumeric passwords (white), pattern 

passwords (gray), and picture passwords (black). All Pearson r-values lower than -0.50 

(dashed line) show a significant negative correlation (p < 0.01). 

 

In Task 4, the first-attempt-success rate for 4-object passwords also 

significantly decreased when the number of grid cells increased in the picture format 

(r = -0.70, n = 15, p = 0.002), but not in the alphanumeric format (r = -0.22, n = 15, p 

= 0.420) and the pattern format (r = -0.33, n = 15, p = 0.219). For 6-object passwords, 

first-attempt-success rate showed no significant correlation with grid density for the 

alphanumeric format (r = -0.23, n = 15, p = 0.392) and the picture format (r = -0.40, n 

= 15, p = 0.125). There was a statistically significant negative correlation, however, 
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between first-attempt-success rate and grid density for the pattern format (r = -0.66, n 

= 15, p = 0.006). 

 

Table 6.2. Results of Experiment 6. (a) Correlations (Pearson r-values) between task-

completion time and grid density in Task 1, Task 2, and Task 4, and (b) correlations (Pearson 

r-values) between the first-attempt-success rate and grid density in Task 2, and Task 4, for 4-

object and 6-object passwords in three password formats. 

a. Pearson r-values between the task-completion time and grid density 

Task 

4-object passwords 

 

6-object passwords 

Alphanumeric 

Format 

Pattern 

Format 

Picture 

Format 

Alphanumeric 

Format 

Pattern 

Format 

Picture 

Format 

1 0.60* 0.50 0.77** 0.66** 0.66** 0.81*** 

2 0.48 0.23 0.59* 0.76 ** 0.74** 0.89*** 

4 0.50 0.47 0.49 0.70** 0.56* 0.07 
        

b. Pearson r-values between the first-attempt-success rate and grid density 

Task 

4-object passwords 

 

6-object passwords 

Alphanumeric 

Format 

Pattern 

Format 

Picture 

Format 

Alphanumeric 

Format 

Pattern 

Format 

Picture 

Format 

2 -0.67** -0.64** -0.40 -0.69** -0.76** -0.66** 

4 -0.22 -0.33 -0.70** -0.23 -0.66** -0.40 

Task 1: password registration, Task 2: password confirmation, Task 4: password login 

* p < 0.05, ** p < 0.01, *** p < 0.001 

 

6.2.4 Task-completion time difference between horizontal and vertical grid 

configurations 

In cases of grids with an equal number of cells (i.e., an equal number of object 

keys), I also checked whether the formation of the grid influenced the task-completion 

time. Leaving the square grids aside, I directly compared task-completion time for 

grids with more columns than rows (e.g., columns × rows = 4×3) against grids with 

more rows than columns (e.g., columns × rows = 3×4). For each task, six pairs of grid 
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formations were compared using data points with no outliers for each of the three 

password formats. I called grids with more columns than rows “horizontal” 

configurations, and grids with more rows than columns “vertical” configurations. 

Table 6.3 shows the differences in average task-completion time (s) between 

horizontal and vertical grid configurations for 4-object and 6-object passwords for the 

three password formats. 

For the alphanumeric format in Task 1 (password registration), the average 

task-completion time for 4-object passwords was nearly similar between horizontal 

and vertical configurations of 12, 15, 18, 20, 24, and 30 cells (object keys). For the 

pattern and the picture formats, the time was also nearly similar between horizontal 

and vertical configurations in between 12 - 30 object keys. No statistically significant 

difference between horizontal and vertical pairs was found for any of the three 

password formats. For 6-object passwords, however, pairwise comparisons revealed 

six significant differences. The first two concerned the alphanumeric format, where 

vertical configurations of 3×5 and 4×5 (columns × rows) grids required a longer 

completion time than horizontal configurations of 5×3 and 5×4 grids (Z = -2.20, p = 

0.028 and Z = -2.13, p = 0.033, respectively). The next two significant differences were 

found in the pattern format between vertical 3×6 and 5×6 grids and horizontal 6×3 and 

6×5 grids (Z = -2.76, p = 0.006 and Z = -2.73, p = 0.006, respectively). In the picture 

format, significant differences occurred in the same grid comparisons, i.e., between 

vertical 3×6 and 5×6 grids and horizontal 6×3 and 6×5 grids (Z = -2.55, p = 0.011 and 

Z = -2.27, p = 0.023, respectively). 
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Four significant differences between horizontal and vertical grid configurations 

with equal grid density were found in the completion time of Task 2 (password 

confirmation). First, the time to confirm a 4-object alphanumeric password was longer 

in the vertical 5×6 grid than in the horizontal 6×5 grid (Z = -2.73, p = 0.006). A 

significant difference also appeared in the task-completion time of the 6-object 

alphanumeric password (Z = -2.12, p = 0.034) between these grid configurations. In 

the pattern format, vertical configurations of 3×6 and 5×6 (columns × rows) grids 

required a longer task-completion time than horizontal configurations of 6×3 and 6×5 

(columns × rows) grids (Z = -2.48, p = 0.013 and Z = -2.38, p = 0.017, respectively). 

In Task 4 (password login), the eye-gaze-based input also required more time 

in vertical than in horizontal grid configurations, significantly in four cases. First, the 

time to complete a 4-object pattern password took longer in the vertical 3×6 grid than 

in the horizontal 6×3 grid (Z = -2.70, p = 0.007). A significant difference was also 

found between the vertical 4×5 and the horizontal 5×4 configuration for 4-object 

pattern passwords (Z = -2.76, p = 0.006). The third significant difference was between 

the vertical 5×6 and the horizontal 6×5 configuration for 4-object picture passwords 

(Z = -2.29, p = 0.022). The last significant difference concerned the alphanumeric 

format, for which completion time of a 6-object password differed between the vertical 

3×5 and the horizontal 5×3 configuration (Z = -2.67, p = 0.008).  
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Table 6.3. Results of Experiment 6. The differences in task-completion time (s) between 

horizontal and vertical grid configurations for 4-object and 6-object passwords in the three 

password formats in Task 1, Task 2, and Task 4. 

Task 
Password 

format 

#Grid 

cells 
Grid density 

(columns × rows) 

4-object password 6-object password 

N Mean (SD) Z N Mean (SD) Z 

1 

Alphanumeric 

12 
3×4 

12 
6.45 (1.01) 

-0.47 12 
9.02 (1.85) 

-0.47 
4×3 6.16 (0.82) 8.69 (1.27) 

15 
3×5 

13 
7.06 (0.89) 

-0.31 12 
9.47 (1.20) 

-2.20* 
5×3 7.07 (1.92) 8.47 (1.00) 

18 
3×6 

13 
7.28 (0.87) 

-0.18 12 
9.36 (1.02) 

-1.33 
6×3 7.44 (1.65) 8.95 (0.87) 

20 
4×5 

10 
6.35 (1.15) 

-0.36 11 
10.75 (2.03) 

-2.13* 
5×4 6.60 (1.44) 9.24 (0.44) 

24 
4×6 

13 
6.90 (0.83) 

-1.57 12 
10.62 (1.61) 

-0.71 
6×4 8.10 (2.01) 10.13 (1.31) 

30 
5×6 

12 
7.87 (1.26) 

-1.26 14 
11.11 (2.52) 

-0.03 
6×5 7.28 (1.77) 11.39 (3.43) 

         

Pattern 

12 
3×4 

13 
7.17 (1.36) 

-1.22 13 
9.58 (2.19) 

-0.59 
4×3 6.59 (1.40) 10.48 (2.80) 

15 
3×5 

15 
7.47 (1.92) 

-1.02 12 
9.91 (3.17) 

-0.47 
5×3 6.91 (1.44) 9.76 (1.85) 

18 
3×6 

13 
7.61 (2.86) 

-1.85 13 
12.07 (3.14) 

-2.76** 
6×3 6.16 (0.96) 9.00 (1.02) 

20 
4×5 

15 
8.06 (2.83) 

-0.80 14 
10.02 (2.64) 

-0.03 
5×4 7.43 (1.74) 9.82 (2.14) 

24 
4×6 

14 
8.89 (3.25 

-1.10 14 
11.78 (3.85) 

-1.29 
6×4 7.94 (1.82) 10.42 (2.54) 

30 
5×6 

14 
7.51 (2.45) 

-0.47 14 
17.80 (5.46) 

-2.73** 
6×5 8.02 (2.92) 11.01 (3.97) 

         

Picture 

12 
3×4 

12 
6.93 (1.46) 

-1.10 11 
9.69 (1.18) 

-0.27 
4×3 7.85 (1.46) 10.06 (1.21) 

15 
3×5 

13 
8.63 (1.98) 

-0.73 13 
11.40 (3.43) 

-0.25 
5×3 7.90 (1.94) 11.47 (2.74) 

18 
3×6 

11 
7.30 (1.65) 

-0.53 9 
12.72 (2.86) 

-2.55* 
6×3 7.37 (1.16) 10.12 (0.68) 

20 
4×5 

13 
8.31 (2.07) 

-0.59 12 
10.58 (1.92) 

-1.41 
5×4 7.91 (1.78) 11.98 (4.74) 

24 
4×6 

11 
8.37 (1.60) 

-0.27 12 
10.49 (2.12) 

-1.57 
6×4 8.58 (2.39) 11.03 (1.90) 

30 
5×6 

14 
9.16 (2.55) 

-0.47 13 
 14.77 (4.55) 

-2.27* 
6×5 9.03 (2.68) 12.19 (3.65) 
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2 

Alphanumeric 

12 
3×4 

10 
6.99 (1.02) 

-0.15 13 
11.21 (1.98) 

-1.64 
4×3 7.05 (1.43) 10.07 (1.43) 

15 
3×5 

14 
8.40 (1.55) 

-0.85 12 
10.95 (1.82) 

-1.18 
5×3 7.78 (1.86) 10.26 (2.30) 

18 
3×6 

12 
7.53 (1.03) 

-0.16 9 
10.92 (1.82) 

-0.77 
6×3 7.54 (1.14) 10.02 (1.56) 

20 
4×5 

10 
7.22 (1.43) 

-1.17 11 
10.63 (2.35) 

-0.27 
5×4 8.07 (1.77) 10.00 (1.52) 

24 
4×6 

9 
7.35 (1.12) 

-1.13 13 
11.56 (2.37) 

-0.04 
6×4 7.67 (0.74) 11.83 (2.58) 

30 
5×6 

15 
10.12 (3.91) 

-2.73** 12 
13.02 (3.43) 

-2.12* 
6×5 8.21 (1.92) 11.01 (2.76) 

         

Pattern 

12 
3×4 

14 
9.24 (2.80) 

-0.22 11 
11.08 (3.45) 

-0.62 
4×3 8.62 (2.52) 10.91 (2.21) 

15 
3×5 

13 
8.14 (2.07) 

-0.87 13 
11.47 (3.25) 

-1.22 
5×3 8.17 (1.85) 13.10 (3.23) 

18 
3×6 

12 
10.59 (5.15) 

-1.88 14 
15.37 (5.38) 

-2.48* 
6×3 7.88 (1.72) 12.31 (3.70) 

20 
4×5 

10 
7.20 (1.29) 

-1.07 10 
11.72 (4.10) 

-0.26 
5×4 7.62 (1.42) 12.43 (4.15) 

24 
4×6 

12 
9.29 (2.87) 

-0.86 13 
12.57 (3.84) 

-0.11 
6×4 8.45 (2.58) 12.52 (2.93) 

30 
5×6 

10 
8.68 (2.97) 

-0.76 8 
14.22 (3.48) 

-2.38* 
6×5 7.82 (1.86) 10.52 (2.76) 

         

Picture 

12 
3×4 

13 
8.05 (1.25) 

-1.29 15 
11.98 (3.16) 

-0.57 
4×3 9.07 (2.07) 12.39 (3.33) 

15 
3×5 

13 
8.04 (1.65) 

-0.38 11 
11.62 (2.72) 

-0.89 
5×3 8.46 (2.17) 11.24 (2.28) 

18 
3×6 

12 
8.08 (2.18) 

-1.73 14 
14.59 (5.05) 

-1.54 
6×3 6.84 (1.13) 12.46 (3.04) 

20 
4×5 

14 
8.26 (1.78) 

-0.22 12 
11.82 (1.79) 

-0.86 
5×4 8.48 (2.12) 11.18 (2.58) 

24 
4×6 

12 
9.78 (3.06) 

-0.16 11 
13.92 (5.17) 

-0.71 
6×4 9.75 (2.41) 11.64 (2.18) 

30 
5×6 

13 
8.35 (1.80) 

-1.22 14 
13.63 (3.86) 

-0.47 
6×5 9.51 (2.40) 13.43 (3.48) 

          

4 Alphanumeric 

12 
3×4 

14 
7.44 (1.45) 

-1.10 11 
10.58 (1.78) 

-1.07 
4×3 8.27 (1.81) 9.67 (1.59) 

15 
3×5 

10 
8.18 (1.35) 

-0.15 12 
12.50 (3.03) 

-2.67** 
5×3 8.91 (3.04) 9.92 (1.59) 

18 
3×6 

12 
8.74 (1.85) 

-0.70 12 
12.63 (3.84) 

-1.88 
6×3 8.34 (2.09) 10.57 (1.89) 

20 4×5 10 8.51 (3.24) -0.87 11 11.80 (3.49) -0.45 
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5×4 7.71 (1.61) 10.60 (1.84) 

24 
4×6 

11 
8.70 (2.78) 

-0.09 13 
11.71 (2.41) 

-0.8 
6×4 8.44 (1.36) 12.43 (3.70) 

30 
5×6 

9 
9.72 (2.70) 

-1.72 12 
12.00 (2.98) 

-0.24 
6×5 8.05 (1.51) 11.62 (2.51) 

         

Pattern 

12 
3×4 

15 
8.18 (2.27) 

-1.19 13 
12.54 (4.92) 

-0.87 
4×3 8.90 (3.17) 11.40 (2.98) 

15 
3×5 

13 
8.75 (2.04) 

-0.25 14 
11.84 (4.36) 

-0.35 
5×3 8.54 (2.15) 11.33 (2.20) 

18 
3×6 

10 
10.61(3.26) 

-2.70** 11 
12.16 (4.90) 

-0.36 
6×3 7.74 (1.66) 10.58 (2.01) 

20 
4×5 

11 
10.11(3.44) 

-2.76** 13 
13.51 (5.96) 

-0.66 
5×4 7.65 (2.01) 11.34 (2.55) 

24 
4×6 

10 
8.16 (1.55) 

-0.56 11 
11.82 (4.43) 

-1.25 
6×4 8.26 (1.64) 10.14 (2.27) 

30 
5×6 

14 
9.57 (3.42) 

-0.09 10 
13.40 (5.19) 

-0.56 
6×5 9.76 (3.54) 11.34 (2.63) 

         

Picture 

12 
3×4 

14 
9.37 (2.61) 

-0.79 13 
12.45 (3.10) 

-1.36 
4×3 10.10 (2.45) 11.44 (1.85) 

15 
3×5 

13 
8.35 (1.16) 

-0.66 11 
11.91 (3.02) 

-1.51 
5×3 8.84 (1.90) 12.74 (2.92) 

18 
3×6 

13 
10.12 (3.28) 

-0.31 12 
12.06 (2.06) 

-0.55 
6×3 9.95 (3.42) 12.80 (4.04) 

20 
4×5 

11 
9.51 (2.48) 

-0.98 12 
15.53 (4.81) 

-0.55 
5×4 8.42 (1.78) 15.43 (7.22) 

24 
4×6 

13 
9.64 (2.90) 

-1.36 11 
12.40 (3.13) 

-1.25 
6×4 10.96 (3.18) 11.10 (2.27) 

30 
5×6 

10 
11.95 (6.10) 

-2.29* 12 
13.15 (4.06) 

-0.78 
6×5 8.10 (1.49) 12.83 (2.41) 

N: number of participants, SD: Standard Deviation, Z: Wilcoxon signed rank test value, * = p < 0.05, ** = p < 0.01. 

 

6.2.5 Participant judgments 

In Task 3, participant judgments were obtained about the grid densities and 

formations (Appendix AA). The participants judged the usability of each grid based 

on how fast (time) and successful (first attempt) they could register and confirm a 

password with eye-gaze-based input. They were also asked to judge how well they 
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could recall and recognize a password on each grid density. The participants made 

judgments on a 7-point rating scale between 1 (not easy) and 7 (very easy). Regarding 

“easy-to-use” judgments, the participants judged the grid as increasingly less easy to 

use when the number of object keys increased, either with a 4-object or a 6-object 

password, for all three password formats. Pearson's correlation analyses showed a 

statistically significant correlation between the participant judgments and grid density, 

with r-values ranging from -0.81 to -0.96 (n = 15, p < 0.001). Regarding “easy-to-

remember” judgments, the participants judged the password as less easy to remember 

when the number of grid keys increased, for both 4-object and 6-object passwords in 

all three password formats. Pearson's correlation analyses showed a statistically 

significant correlation between the participant judgments and grid density, with r-

values ranging from -0.61 to -0.96 (n = 15, p < 0.02). 

6.3 Discussion 

In Experiment 6, participants were asked to memorize a 4-object and a 6-object 

password for three types of password formats and register (Task 1), confirm (Task 2), 

and log in (Task 4) the password on a grid by using eye-gaze-based input. The three 

recognition-based password formats were an alphanumeric format, a pattern format, 

and a picture format (Figure 1). Grid densities and formations were varied in 16 ways 

in between 3×3 and 6×6 object keys (Figure 2). Task-completion time and success rate 

data was obtained. Participants also provided preference data about the grid densities 

and formations (Task 3).  
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The first purpose of Experiment 6 was to investigate which type of password 

format is suitable for password authentication using eye-gaze-based input. Experiment 

6 showed that for 16 grids, password input with 4-object or 6-object keys required 

more time in the picture and pattern formats than in the alphanumeric format. In the 

majority of cases, task-completion time in the alphanumeric format was significantly 

faster (Figure 6.4). Participants are most likely more familiar with passwords 

consisting of numbers and letters in daily life, and memorization of alphanumeric 

passwords by “chunking” (grouping) may have enabled faster recall (Nelson & Vu, 

2010). In general, more frequently used items are easier to recall (Kinsbourne & 

George, 1974) and possibly in the present experiment the participants had not much 

time to adapt to using icons (picture format) or dots (pattern format). The preference 

for the alphanumeric format was also reflected in the questionnaire taken after the 

experiment (Appendix AB), which showed that 12 participants (80%) thought that the 

alphanumeric password format would be potentially suitable to use with eye-gaze-

based input. Only three participants (20%) thought that the picture format could be 

useful, while none considered the pattern format useful. 

The second purpose of Experiment 6 was to investigate what kind of grid 

formation is useful for password authentication using eye-gaze-based input. The 

results showed that the participants generally needed more time to complete password 

registration (Task 1), confirmation (Task 2), and login (Task 4) on denser grids with 

more object keys, either with a 4-object or a 6-object password, in the three password 

formats. The majority of the correlations (Pearson r-values) between task-completion 

time and grid density was significant (Figure 6.5). Previous research on eye 
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movements already had reported that participants needed less search time for sparse 

layouts than for dense layouts (Halverson & Hornof, 2004). It is thus likely that the 

participants needed more time to search the necessary object keys to form the password 

as the total number of key options increased.   

Another possible explanation for the fact that participants needed more time to 

make the password on a denser grid is the increased chance of incorrect object key 

selection with eye tracking. Although each object key had the same size regardless of 

grid density, incorrect key selection might have happened because the distance 

between object keys narrowed, causing the participant to sometimes unintendedly gaze 

on an incorrect object key, for example when the screen appeared for the first time. 

The participant rating scale judgments also showed that they considered a grid as 

significantly more difficult to use with eye-gaze-based input when the grid became 

denser. 

Another demerit of denser grids found here is that the number of successful 

password inputs at the first attempt, either for 4-object or 6-object passwords, 

decreased when the grid became denser. Over half of the correlations (Pearson r-

values) between first-attempt-success rate and grid density was significant (Figure 

6.6). As the number of grid keys increased, the participants thus tended to make more 

mistakes, i.e., they selected objects incorrectly and needed more attempts. One reason 

could be that they more often incorrectly gazed at the wrong object key due to the grid 

density, as described above. Another reason is that with increasing grid density, the 

passwords became more complex. The passwords used by the participants were 

randomly generated according to grid density. For example, a password on an 
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alphanumeric 3×3 grid consisted only of digits, while a password on an alphanumeric 

6×6 grid consisted of digits and letters. The combination of the latter might have been 

more difficult to remember. This result related to the participant judgments, which 

showed that passwords were judged as significantly less easy to recall and recognize 

when the grid became denser. Future research is necessary to clarify this issue further. 

The last finding related to grid formation is that the time needed to enter a 

password with eye-gaze-based input was often longer for grids with more rows than 

columns (vertical configurations) than for grids with more columns than rows 

(horizontal configurations), under equal grid density. Direct paired comparisons of 

task-completion time between horizontal and vertical formations with an equal number 

of grid keys revealed 14 significantly different pairs. In all 14 cases, task-completion 

time was significantly faster in horizontal grids than in vertical grids (Table 6.3). This 

strongly suggests that entering a password with eye-gaze-based input is faster on 

horizontal grids with more columns than rows. Vertical grids with more rows than 

columns are less efficient for eye-gaze-based input. Studies on the visual search of 

objects or words have reported similar results. When searching for visual objects on a 

screen, the direction of the participants' eye movements may occur more frequently 

horizontally than vertically (Duchowski, 2007). It has further been shown that fixation 

time in visual search of vertical word lists is longer than fixation time for horizontal 

word lists (Ojanpää, Näsänen, & Kojo, 2002). A horizontal search model was also 

preferred for searching a target word in a full-screen search field (Goonetilleke, Lau, 

& Shih, 2002). 
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In Experiment 6, as mentioned by some participants, some issues need to be 

remedied. One limitation is that the “Save”, “Clr”, and “Confirm” key at the upper part 

of the interface screen for Tasks 1 and 2 were relatively close together (Appendix U) 

and that some gaze time needed to be spent on selecting the correct key for these 

actions. Another issue that requires investigation is dwell time. Here, 500-ms dwell 

time is used to confirm gaze on a certain object key. It is worthwhile to investigate 

whether a shorter dwell time can be used since this would speed up the password input 

process with eye tracking. In Chapter 7 (Experiment 7), these issues are further fixed 

and investigated. 
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Chapter 7.  Usability of various dwell times for eye-gaze-based object 

selection with eye tracking 

7.1 Experiment 7. Object selection based on dwell time with a low-cost 

eye tracker 

7.1.1 Purpose 

One limitation of Experiment 6 was that only a single dwell time of 500 ms 

was used. Dwell time is the amount of time a user needs to focus his/her gaze at an 

object on a display before it is selected. However, the user still needs some practice to 

select an object using dwell time. For example, on a display with multiple objects, the 

user must first reliably identify the target object, before performing an action on it. 

Accordingly, when eye gaze is used to identify a target object, the user may 

unintentionally and inattentively dwell his/her gaze on the wrong object. As a result, 

this object may even become selected as the target object – a problem that is known as 

the Midas-Touch problem (for details on object selection based on dwell time, see 

Chapter 2). Therefore, interactive interfaces typically use a fixed duration of dwell 

time for eye-gaze-based object selection. Previous studies have shown that dwell time 

was fixed at one single value and was not based on user preferences. Furthermore, 

comparative research on dwell times for eye-gaze-based object selection has not yet 

been performed. 

The purpose of this experiment was to assess the usefulness of various dwell 

times for selecting three types of objects on a display with eye-gaze-based input. In 
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short, twelve participants were asked to memorize a sequence of 4 or 6 objects, and to 

use their eye gaze to enter the sequence onto a user interface with a dwell time of 250, 

500, 1000, and 2000 ms per object. The object selection task was performed on four 

grid formations, consisting of 3×4, 4×3, 4×5, and 5×4 cells (columns-by-rows, see 

Figure 6.2 in the Stimuli section). Three types of objects were used (Figure 7.1). The 

first type of objects were alphanumeric characters, similar to those used in the eye-

typing task in most previous research with a dwell time (e.g., Majaranta et al., 2003; 

Bee & André, 2008; Kurauchi et al., 2016). Sequences consisting of patterns of dots 

and visual icons were also employed. These types of visual objects are commonly used 

in recognition-based password systems (Biddle et al., 2012), for example to manually 

unlock smartphones. Besides object selection with eye-gaze-based input, the 

participants were also asked to evaluate, on a 7-point rating scale, how easily they 

could perform object selection with each of the four dwell times. The total time 

necessary to select the correct sequence of objects, the number of object selection 

corrections, and dwell time evaluations were recorded. 

 

Figure 7.1. Visual (password) objects used in Experiment 7. Examples of the three types of 

objects that needed to be selected with eye-gaze-based input in this study. A sequence of 4 or 

6 objects needed to be selected from four different grids, with four different dwell times. 
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7.1.2 Method 

Participants 

The participants were 12 students (5 males and 7 females) of Kyushu 

University, Japan, who had normal or corrected-to-normal vision. The age of the 

participants was in between 21 and 45 years (M = 28.1 years, SD = ± 7.4 years). Nine 

participants were Asian (Japanese, Chinese, or Indonesian), 1 participant was 

Caucasian, and 2 participants were Latino/Hispanic. The average height of the 

participants was 166.3 cm (SD = ± 6.7 cm). The participants were asked to provide 

written informed consent as to their participation, after they had received an 

explanation and instructions about the experiment (Appendix AC). The participants 

were paid for their participation. 

Apparatus 

Two monitors (20-in, refresh rate 60 Hz) with a resolution of 1600×1200 pixels 

were utilized in this experiment. The first monitor was a Hewlett-Packard LP2065, 

which was used to present the experiment interface. A Tobii Eye Tracker 4C© device 

was placed on the lower edge of the monitor, at a height of 133 cm from the ground. 

The monitor and the eye-tracking device were tilted upwards to two viewing angles of 

105 and 120 degrees. These angles were suitable for participants in between 151-190 

cm in height to register their eye gaze on a very similar eye-tracking system 

(Experiment 4, Chapter 4). The second monitor (Lenovo ThinkVision) was used by 

the experimenter as an interface to control the order of dwell time, grid, and the 

sequence of 4 or 6 objects that needed to be selected. Both monitors were mounted on 
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a monitor stand, opposite from each other. All experiment interfaces were programmed 

in Visual Studio C# (2015). Experimental results were saved in a MySQL database. 

The experiment was performed under room lighting at an illuminance of 124.14 ± 8.23 

lux, measured using a TOPCON Illuminance Spectro Meter IM-1000 at the 

participant’s viewing position. Visual object luminance (see below) was measured 

using a TOPCON Luminance Meter BM-9. 

Stimuli 

A sequence of 4 or 6 visual objects needed to be selected with eye-gaze-based 

input, from four different grid formations. These grids consisted of 3×4, 4×3, 4×5, and 

5×4 cells (columns-by-rows, Figure 7.2). The number of objects on the display was 

the same as the grid density, i.e., 12 objects in 3×4 and 4×3 grids, and 20 objects in 

4×5 and 5×4 grids. Three types of visual objects were used. The first type were 

alphanumeric characters consisting of numbers and letters (Figure 7.1a). They were 

presented in alphabetical order from the top left to the bottom right grid cell. For each 

cell, the numbers and letters were black with a luminance of 0.17 ± 0.01 cd/m2 on a 

white background (3.10 ± 0.17 cd/m2). 

 

Figure 7.2. The four different grid formations [3×4, 4×3, 4×5, and 5×4 cells (columns × rows)] 

used in Experiment 7. Note that regardless of the number of grid cells, the visual objects that 

needed to be selected with eye-gaze-based input (i.e., alphanumeric characters, dots, or icons) 

had the same size. 
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The second type of objects that needed to be selected were dots, which could 

be sequentially selected to create a shape or a pattern (Figure 7.1b). Dot patterns are 

often used as screen locks on smartphones. A single dot on the display was composed 

of a white circle  (3.12 ± 0.21 cd/m2) with a radius of 47 pixels, which was placed in 

the middle of a black circle  (0.18 ± 0.01 cd/m2) with a radius of 128 pixels. The third 

type of objects were visual icons (Figure 7.1c). The visual icons were placed in a fixed 

order on one of the four grids, in gray-scale with a luminance range of 0.07 to 1.18 

cd/m2, against a white background (3.07 ± 0.13 cd/m2). Typical examples of visual 

icons are depictions of fruits or animals (Appendix Q). For all three types, an object 

(i.e., alphanumeric character, dot, or icon) was centered in the middle of a grid cell 

with a size of 128×128 pixels, i.e., 4.16 degrees × 4.47 degrees in visual angle, and 

every pixel within an object was 0.028 degrees × 0.030 degrees in visual angle. 

To select a sequence of visual objects (see Procedure section below), a screen 

interface was made with a size of 1600×1200 pixels, set against a gray background 

(1.24 ± 0.05 cd/m2). In the middle of the upper part of the screen (1600×125 pixels) 

was a text box (800×100 pixels), and at the top right was a “Clr” key (128×100 pixels). 

The “Clr” key could be used by the participant to clear incorrectly selected objects one 

by one. The main part of the screen (1600×1075 pixels) displayed the grids and object 

types (Appendix AD). When the participant selected an object on the grid on the main 

part of the screen, an asterisk would appear in the text box at the upper part of the 

screen, and a chime sound would be played (1538 ms; Appendix R) to indicate that an 

object was selected. All objects on the upper or main part of the screen could be 

selected by eye gaze under each of the four dwell time durations. 
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Procedure 

When selecting objects with eye-gaze-based input, the participant was standing 

in the middle in front of the screen at a viewing distance of approximately 49 cm, as 

indicated by a floor mark. Practically, this viewing distance was close to the minimum 

operating distance of the eye-tracking device (Tobii Eye Tracking Support, 2017), as 

confirmed in Experiments 1 and 2, Chapter 3. The reason the participant performed 

the task while standing was to simulate a situation in which he/she would use eye 

tracking to enter an object sequence, such as a password, on an automated teller 

machine (ATM).  

The object selection task went as follows. First, the participant was shown a 4-

object or a 6-object sequence, randomly generated for each of the three object types, 

on a grid that was randomly selected from the four different grids. Thus, the objects 

that were presented on the screen consisted of a sequence of alphanumeric characters, 

dots, or visual icons (Appendix AE). The participant was then asked to memorize a 

sequence of 4 objects within a minute and a sequence of 6 objects within two minutes. 

The appropriate grid was displayed on the screen to assist the participant in 

memorizing the objects’ positions within the grid. 

After memorizing, the participant was instructed to enter the memorized 

sequence onto the screen interface by selecting the appropriate objects either with a 

dwell time of 250, 500, 1000, or 2000 ms. The participant was instructed to use a “Clr” 

key if he/she had selected an incorrect object. In case the object selection was incorrect, 

for example, due to the Midas-Touch problem or to selecting objects in the wrong 

order, the sequence could be attempted up to five times. If the participant failed to 
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enter the correct objects on the fifth attempt, he/she was instructed to try again using a 

different sequence for the same dwell time, object type and grid. 

After entering the correct objects, the participant was asked to evaluate whether 

he/she considered the dwell time as easy to use for object selection with eye-gaze-

based input. The evaluation was made on a scale between 1 (not easy) and 7 (very 

easy). The participant used a mouse to make the rating-scale judgments on the screen. 

The meaning of “easy to use” was defined as how fast (estimated time needed) and 

with how few corrections the participant thought he/she had entered the objects. 

Next to this subjective dwell time evaluation by the participant, objective 

measurements of the total object selection time (for 4 objects or 6 objects) were 

obtained by means of the computer program. The number of object selection 

corrections for each combination of object type and dwell time was calculated from 

240 overall attempts (12 participants × 4 grids × 5 attempts). In order to ensure a 

natural attitude towards the task, the participant was not informed about these time 

measurements before the experiment. 

The experiment was performed with counterbalance in the order of the four 

dwell time durations. That is, three participants first selected objects with the dwell 

time of 250 ms, then with the dwell time of 500, 1000 ms, and finally with the dwell 

time of 2000 ms, for each of the four grids. Next, three participants started with the 

dwell time of 500 ms, followed by the dwell time of 1000, 2000 ms, and ended with 

the dwell time of 250 ms. Another three participants started with 1000 ms, followed 

by 2000, 250 ms, and ended with the dwell time of 500 ms. The remaining three 

participants started with the dwell time of 2000 ms and ended with the dwell time of 
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1000 ms. In the same way, the order of object type was also counterbalanced within 

every four participants. The number of objects in a sequence (4 or 6) was varied as 

well, for each object type and dwell time. 

Before the start of the experiment, the participant needed to register his/her 

eyes and perform calibration with Tobii Eye Tracker 4C© software. In order to get used 

to the task, a practice program was prepared in which the participant practiced object 

selection for a given object type and sequence, on a grid randomly chosen from the 

four grids. The evaluation task was practiced as well. The experiment took about 1 

hour and 30 minutes. The procedure was approved by the Ethical Committee of the 

Faculty of Design, Kyushu University, Japan (131-3). 

7.2 Results of Experiment 7 

The total time necessary to select the correct sequence of 4 or 6 objects will be 

called ‘object selection time’ from hereon. For every participant, object selection time, 

the number of object selection corrections, and the dwell-time evaluation data obtained 

with the rating scale were recorded. 

7.2.1 Object selection time 

Object selection time for 4- or 6-object sequences was obtained in 576 trials in 

total (12 participants × 4 dwell time durations × 4 grids × 3 object types). The Median 

Absolute Deviationn method (MADn) was used to detect and remove outliers in the 

data. A removal criterion of 2.5 times the MADn above the median was used 

recursively until no additional outliers were identified (Leys et al., 2013). By using 

this method, 9 out of 576 trials (2%) were removed for 4-object sequences. No trials 
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were removed for 6-object sequences. Shapiro-Wilk tests showed that the object 

selection time data obtained under each of the four dwell time durations were not 

normally distributed (p < 0.05), either with 4-object or 6-object sequences. To compare 

object selection time between object types and between grid formations, non-

parametric Kruskal-Wallis tests were therefore performed for 4-object sequences, 

since the data were unpaired after outlier removal (9 trials). Data for 6-object 

sequences were subjected to non-parametric Friedman tests (Appendix AF). 

The results (Figure 7.3) showed that for both 4-object and 6-object sequences, 

object selection time – in case of correct object selection – did not significantly differ 

between object types under each of the four dwell time durations. For 4-object 

sequences, object selection time also did not differ significantly between grid 

formations under each dwell time duration. For 6-object sequences, however, object 

selection time significantly differed between grid formations for a dwell time of 500 

ms for alphanumeric characters (df = 3, χ2 = 13.40, p < 0.004), and for a dwell time 

of 2000 ms for visual icons (df = 3,χ2 = 9.90, p < 0.019). For example, when using a 

500-ms dwell time, participants needed a little more time to select alphanumeric 

objects on a 5×4 grid than on 4×3 and 3×4 grids, respectively (p = 0.015, p = 0.034). 

However, after Holm-Bonferroni correction for multiple comparisons based on ranks, 

these differences did not pass the significance level. Also for selecting icon objects 

with a dwell time of 2000 ms, differences were not significant after Holm-Bonferroni 

correction. Although robust significant differences have been found in a relatively 

large range of 3×3 until 6×6 grids (see Experiment 6, Chapter 6), object selection time 

in this experiment thus did not vary widely among the four grid formations. Given this, 
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object selection time was averaged over grid formations for each of the three object 

types for further statistical analysis. 

 

Figure 7.3. Results of Experiment 7. The relation between dwell time per object and the total 

selection time for 4- or 6-object sequences in milliseconds (ms) without object correction. Eye-

gaze-based selection time for 4-object (circles) and 6-object (squares) sequences of three types 

of objects was obtained with dwell time durations of 250, 500, 1000, and 2000 ms per object. 

The continuous lines show a linear function for 4-object and 6-object sequences through the 

four dwell time durations in the three object types. Error bars indicate ± 95% confidence 

intervals around the means. 

 

The results also showed that object selection time for 6-object sequences was 

systematically longer than for 4-object sequences without object correction, as 

indicated by the 95% confidence intervals. Furthermore, as expected, for all three types 

of visual objects, the resulting grand averages showed that 4-object and 6-object 

selection time linearly increased with dwell time, as shown in Figure 7.3. A regression 

analysis with a linear function (similar to Equation 5.1 as in Chapter 5) was performed 
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in order to examine the correlation between object selection time (4 and 6 objects) and 

dwell time duration. The reason why the linear function used here was to estimate 

object selection time for any duration among the four dwell times. In this case, x is the 

dwell time duration (from 250 to 2000 ms), and y is the object selection time. The 

regression equations for 4-object sequences (y = 3288 + 4.717x) and 6-object 

sequences (y = 5192 + 6.548x) show that the average object selection time respectively 

increased (r2 = 0.995; p < 0.001) with each increase in dwell time duration (Appendix 

AG). 

The time needed to search an object in the display under each dwell time 

duration can be expressed with the following equation: 

𝑆𝑇 =  
𝑂𝑇−(𝐷𝑇 × 𝑁𝑃𝑂)

𝑁𝑃𝑂
               (7.1) 

where ST is object search time (ms), OT represents object selection time (ms), DT is 

dwell time (250, 500, 1000, 2000 ms), and NPO indicates the number of objects in a 

sequence (4 or 6). 

Using Equation 7.1, the data show that the participants needed about 1000 ms 

to search a single target object on the display (see Table 7.1), regardless of object type 

and sequence length (4 or 6 objects). For 4-object alphanumeric, dot, and icon 

sequences, the average search time per object (ST) was 976, 952, and 1042 ms, 

respectively. For 6-object alphanumeric, dot, and icon sequences, the average object 

search time (ST) was 923, 965, and 965 ms, respectively. 
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Table 7.1. Results of Experiment 7. Object selection time (OT) and object search time (ST) 

for 4-object and 6-object sequences with eye-gaze-based-input. OT and ST were obtained for 

each of three visual object types, under dwell time durations of 250, 500, 1000, and 2000 ms 

per object. 

Number of 

objects in a 

sequence 

Object type 

Dwell Time (ms) Average 

object 

search 

time 

SD 250 500 1000 2000 

OT ST OT ST OT ST OT ST 

4 objects 

Alphanumeric 

characters 
4398 849 5749 937 7985 996 12481 1120 976 114 

(a pattern of) 

Dots 
4295 824 5386 846 7605 901 12946 1236 952 192 

Visual icons 4649 912 6012 1003 8217 1054 12795 1199 1042 120 

6 objects 

Alphanumeric 

characters 
6557 843 8180 863 12025 1004 17892 982 923 82 

(a pattern of) 

Dots 
6751 875 8198 866 12150 1024 18573 1095 965 113 

Visual icons 7036 923 8414 903 12212 1035 17990 998 965 63 

OT: object selection time (ms); ST: object search time (ms); SD: standard deviation (ms). 

 

7.2.2 Number of object selection corrections  

The number of object selection corrections for each dwell time duration and 

object type was obtained from 240 overall attempts (12 participants × 4 grids × 5 

attempts). Data showed that all participants had accomplished the object selection 

tasks before the fifth and final attempt. Table 7.2 shows that with a dwell time of 250 

ms, the number of object selection corrections was relatively high, especially for dot 

and icon objects. However, in all conditions the number of object selection corrections 

strongly decreased – often to zero – as dwell time duration increased. Because of the 

relatively low number of object selection corrections overall, further statistical 

analyses were not performed. 
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Table 7.2. Results of Experiment 7. The number and percentages of object selection 

corrections for 4-object and 6-object sequences in three object types, under dwell time 

durations of 250, 500, 1000, and 2000 ms.  

Number of objects 

in a sequence 
4 objects  6 objects 

Dwell Time (ms) 250 500 1000 2000  250 500 1000 2000 

Alphanumeric 

characters 
3 (1%) 0 (0%) 1 (0%) 0 (0%)  10 (4%) 0 (0%) 0 (0%) 0 (0%) 

(a pattern of) Dots 16 (7%) 0 (0%) 0 (0%) 1 (0%)  43 (18%) 9 (4%) 6 (3%) 4 (2%) 

Visual icons 14 (6%) 2 (1%) 0 (0%) 0 (0%)  25 (10%) 5 (2%) 0 (0%) 0 (0%) 

Note: Percentages (%) are based on 240 overall attempts (n=12 × 4 grids × 5 attempts). 

 

7.2.3 Dwell time evaluations 

The participants assessed the usability of each dwell time on a rating scale. 

Participants were instructed to base their evaluations on their subjective impression of 

how fast (estimated time needed) and with how few corrections they thought they had 

entered the object sequence. Evaluations were made on a 7-point rating scale between 

1 (not easy) and 7 (very easy). A dwell time of 250 ms was judged as less easy to use 

for dot and visual icon objects. As the dwell time duration increased, participants 

considered 500-ms dwell time as easier to use for all three object types. However, 

when the dwell time duration equal to or higher than 1000 ms, participants thought a 

dwell time generally not easy to use for object selection of two or three object types.  

In order to explore the obtained data further, some further analyses were 

performed. First, a regression analysis with a quadratic function (7.2) was performed 

to examine the relation between the “easy” ratings and dwell time duration and also to 

figure out the optimum dwell time for each object type. 
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𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐                         (7.2) 

where x is the dwell time duration (from 250 to 2000 ms), y is the rating for dwell time 

evaluation (from 1 to 7), a, and b are the coefficients of the equation with a ≠ 0, while 

c is a constant number. 

𝑦 = −0.000001182𝑥2 + 0.001𝑥 + 5.338                      (7.3) 

𝑦 = −0.000001745𝑥2 + 0.003𝑥 + 3.428                          (7.4) 

𝑦 = −0.000004529𝑥2 + 0.009𝑥 + 1.698                      (7.5) 

The regression equations 7.3 to 7.5, respectively, for alphanumeric, dot and 

icon objects, with r2 values of 0.828, 0.801, 0.862 (p > 0.05), respectively, suggest that 

the continuous curves did not fit very well to the “easy” rating data in all cases 

(Appendix AH). Furthermore, these equations also could not estimate the maximum 

points of the usability of the dwell time for each object type, especially around the 

500-ms dwell time, as shown in Figure 7.4. The reason could be that only four dwell 

times were investigated and the distance between dwell time durations was wide, 

particularly between 1000 and 2000 ms. Moreover, the data also showed that 

participants did not consider any duration is suitable for selecting various object types 

after 1000-ms dwell time.  
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Figure 7.4. Results of Experiment 7. Average evaluations of the usability of each dwell time 

duration (ms) for eye-gaze-based selection of three object types. The continuous curves show 

a quadratic function for each object type through the four dwell time durations – Equations 7.3 

to 7.5. Error bars indicate ± 95% confidence intervals around the means. 

 

Hence, the quadratic function (Equation 7.2) was used again in order to 

determine the maximum points for each object type by means of the first three dwell 

time durations, i.e., 250, 500, and 1000 ms. Based on the quadratic function, the 

maximum points for each object type through the first three dwell time durations were 

obtained by using the following equations: 

𝑦 = 0.000013𝑥2 + 0.01584𝑥 + 1.78                                   (7.6) 

𝑦 = −0.00001224𝑥2 + 0.01586𝑥 + 0.3                           (7.7) 

𝑦 = −0.000017093𝑥2 + 0.02514𝑥 + 2.0466                      (7.8) 
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The regression equations 7.6 to 7.8, respectively, for alphanumeric, dot, and icon 

objects with r2 = 1.00, respectively, were a better fit to the data than equations 7.3 to 

7.5, respectively, when one does not regard the 2000-ms dwell time data (Appendix 

AH). According to these equations, the optimum estimated dwell time for 

alphanumeric objects is 600 ms (Eq. 7.6), for dot objects it is 650 ms (Eq. 7.7), and for 

visual icons it is 725 ms (Eq. 7.8). 

 

Figure 7.5. Results of Experiment 7. The continuous curves show a quadratic function for each 

maximum point – Equations 7.6 to 7.8. The crosses show the estimated maximum points of 

dwell time usability ratings for each object type through the first three dwell time durations of 

250, 500, and 1000 ms. Error bars indicate ± 95% confidence intervals around the means. 

 

However, the quadratic function and the equations as shown in Figure 7.5 still 

were not the best-fitting to estimate the data trend between the “easy” ratings and dwell 

time duration for each object type, because the 2000-ms dwell time was not included. 

In order to fit the data better, it appears that a right-skewed parabolic function would 
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be a better candidate. Therefore, a more complex function likely can be used to show 

a continuous trend for right-skewed data points, e.g., the Linex loss function (Zieliński, 

2005). This function is usually used to draw asymmetric curves through data points in 

order to make predictions from the data – see Appendix AI, for brief information about 

this function. However, it is obvious from the data that the optimum dwell times 

estimated with this loss function will be rather similar to those shown in Figure 7.5. 

With regard to the statistical analysis, since the data were not normally 

distributed, as confirmed by Shapiro-Wilk tests (p < 0.05, for four dwell time durations 

in three object types), non-parametric Friedman tests were performed over the data. If 

significant, pairwise comparisons using Wilcoxon signed-rank tests with Holm-

Bonferroni-correction on the alpha-level based on ranks [0.05/(m-k+1), where m = 6 

indicates the number of pairs and k = 1, 2, …, m, indicates the level of ranks] were 

performed to see which pair(s) of dwell time evaluations were significantly different. 

Figure 7.4 shows the dwell time evaluations for each object type.  

The statistical details regarding the object dwell time evaluations (also see 

Table 7.3, Appendix AJ) are as follows. For alphanumeric characters, the Friedman 

test  (df = 3, n = 12) showed significantly different evaluations between dwell time 

durations (χ2 = 25.23, p < 0.001). Follow-up pairwise comparisons revealed five 

significantly different pairs. First, object selection with a dwell time of 500 ms was 

assessed as significantly easier than with a dwell time of 250, 1000, and 2000 ms (Z = 

-2.31, p = 0.021, Z = -3.10, p = 0.002, Z = -3.13, p = 0.002, respectively). Furthermore, 

object selection with dwell times of 250 and 1000 ms was considered significantly 
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easier than with a dwell time of 2000 ms (Z = -2.66, p = 0.008, Z = -3.09, p = 0.002, 

respectively). 

For dots, dwell time durations were also evaluated differently (χ2 = 18.47, p 

< 0.001). Pairwise comparisons revealed three significant differences. First, object 

selection with a dwell time of 500 ms was considered significantly easier than with a 

dwell time of 1000 ms (Z = -2.54, p = 0.011), and 2000 ms (Z = -2.97, p = 0.003). 

Second, object selection with a dwell time of 1000 ms was assessed as significantly 

easier than with a dwell time of 2000 ms (Z = -2.82, p = 0.005). No statistically 

significant differences were found between the evaluations of a 250-ms and a 1000-

ms dwell time (Z = -0.67, p = 0.503), a 500-ms dwell time (Z = -2.22, p = 0.027), and 

a 2000-ms dwell time (Z = -2.09, p = 0.036), although the latter two comparisons 

bordered on significance after Holm-Bonferroni correction on the alpha level (p = 

0.017 and p = 0.025, respectively).  

Also for selecting visual icons, the participant evaluations (df = 3, n = 12) 

significantly differed (χ 2 = 26.84, p < 0.001), with four significant pairwise 

comparisons. Object selection with a dwell time of 500 ms was considered 

significantly easier than with a dwell time of 250 ms (Z = -2.82, p = 0.005), and 2000 

ms (Z = -3.09, p = 0.002). A dwell time of 1000 ms was judged as significantly easier 

to use than a dwell time of 250 ms (Z = -2.95, p = 0.003), or 2000 ms (Z = -3.09, p = 

0.002). 
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Table 7.3. Results of Experiment 7. Pairwise comparisons of object dwell time usability for 

three object types. 

Alphanumeric characters  Dots  Visual icons 

Dwell time (ms) 

comparison 
Z-score  Dwell time (ms) 

comparison 
Z-score  Dwell time (ms) 

comparison 
Z-score 

250 - 1000 -0.63 

 

250 - 500 -2.22† 

 

250 - 2000 -1.27 

250 > 2000 -2.66** 250 - 1000 -0.67 500 > 250 -2.82** 

500 > 250 -2.31* 250 - 2000 -2.09† 500 - 1000 -0.75 

500 > 1000 -3.10** 500 > 1000 -2.54* 500 > 2000 -3.09** 

500 > 2000 -3.10** 500 > 2000 -2.97** 1000 > 250 -2.95** 

1000 > 2000 -3.09** 1000 > 2000 -2.82** 1000 > 2000 -3.09** 

Z-score: Wilcoxon signed rank test value;   >: significantly easier to use; 

* p < 0.05, ** p < 0.01 (after Holm-Bonferroni-correction); † p < 0.10 (bordered on significance).  

 

Besides differences in the usability of dwell time durations within a certain 

object type, differences in dwell time usability between object types were also 

examined with Friedman tests (Table 7.4, Appendix AK). For a dwell time of 250 ms, 

the participant evaluations (df = 2, n = 12) significantly differed (χ2 = 13.32, p = 

0.001). After Holm-Bonferroni correction on the alpha level based on ranks [0.05/(m-

k+1), where m = 3 indicates the number of pairs and k = 1, 2, …, m, indicates the level 

of ranks], pairwise comparisons with Wilcoxon signed-rank tests showed that 

alphanumeric object selection with a dwell time of 250 ms was considered 

significantly easier than visual icon selection (Z = -2.97, p = 0.003). For a 1000-ms 

dwell time the participant evaluations (df = 2, n = 12) also significantly differed (χ2 

= 13.28, p = 0.001). Visual icon selection with a 1000-ms dwell time was considered 

significantly easier than selecting an alphanumeric character (Z = -2.45, p = 0.014) or 

a dot (Z = -2.97, p = 0.003). 
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Table 7.4. Results of Experiment 7. Differences in usability evaluations of four object dwell 

time durations between object types. 

Dwell Time (ms) 

250  500  1000  2000 

Object type 

comparison 
Z-score  

Usability 

evaluations 

for this dwell 

time did not 

significantly 

differ 

between 

object types. 

 Object type 

comparison 
Z-score  

Usability 

evaluations 

for this dwell 

time did not 

significantly 

differ 

between 

object types. 

Alphanumeric 

character > Visual 

icon 

-2.97**   Visual icon > Dot -2.97**  

Alphanumeric 

character – Dot 
-1.85   

Visual icon > 

Alphanumeric 

character 

-2.45*  

Dot – Visual icon -0.50   
Dot – 

Alphanumeric 

character 

-0.92  

Z-score: Wilcoxon signed rank test value; 

>: significantly easier to use;  

* p < 0.05, ** p < 0.01 (after Holm-Bonferroni-correction). 

 

7.3 Discussion 

The objective of Experiment 7 was to investigate the usability of various dwell 

times for selecting a sequence of 4 or 6 objects on four different grids. In this 

experiment, object selection from a display with eye-gaze-based input was 

investigated with object dwell times of 250, 500, 1000, and 2000 ms. Three different 

object types were used. Twelve participants were asked to memorize a 4-object and 6-

object sequence, and to use their eye gaze to enter the sequence of objects onto a user 

interface. The selection time for each sequence and the number of object selection 

corrections were obtained and analyzed. Besides entering the sequence of objects onto 

the user interface, the participants were also required to evaluate the usability of the 

four dwell time durations. 

The results of Experiment 7 showed that, first, the number of object selection 

corrections decreased with every increase in dwell time duration (Table 7.2). Most 
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object selection corrections were made with the dwell time of 250 ms for each object 

type and sequence. This dwell time is close to the minimal border of the fixation range, 

which is 200-600 ms (Sibert & Jacob, 2000; Cantoni, Galdi, Nappi, Porta, & Riccio, 

2015). The fixation range is the time necessary to stabilize the eyes to fixate on 

something in the visual field. It is likely that the Midas-Touch problem occurred with 

the 250-ms dwell time (Jacob, 1991; Velichkovsky, Rumyantsev, & Morozov, 2014). 

With a relatively short dwell time, participants may have unintentionally selected 

objects while still scanning the display to identify potential target objects to form the 

correct sequence. These unwanted selections needed to be corrected, and hence the 

number of selection corrections was relatively high under a 250-ms dwell time per 

object. 

The data suggest, however, that the number of object selection corrections 

under the 250-ms dwell time varied strongly with object type. For alphanumeric 

objects, a dwell time of 250 ms was considered relatively easy to use (Table 7.4). 

Under this dwell time the participants made fewer corrections either with 4-object 

sequences (1%) or 6-object sequences (4%) as compared with the other two object 

types (Table 7.2). It is most probable that experience with alphanumeric passwords in 

daily life, e.g., to access systems through manual input, improved input performance 

as well as usability evaluations. Indeed, the number of object selection corrections and 

dwell time evaluations for dots and visual icons were different. For example, a dwell 

time of 1000 ms was considered relatively easy to use for selecting visual icon objects. 

Perhaps because the participants were not familiar with using visual icons, they needed 
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relatively more time to search them on the display – something which they could not 

do easily with the 250-ms dwell time due to the Midas-Touch problem. 

Second, object selection time, i.e., the total time needed by the participants to 

select a sequence of objects with eye-gaze-based input, varied depending on the 

number and type of objects to be selected. As one would expect, selecting 6 objects to 

enter a 6-object sequence overall took significantly more time than selecting 4 objects 

to enter a 4-object sequence. Furthermore, object selection time in case of correct 

object selections significantly increased with every increase in dwell time duration 

(Figure 7.3). This is in line with a previous study on object selection time using eye 

tracking (Penkar, Lutteroth, & Weber, 2012). However, although the object selection 

time increased when dwell time increased, the search time for various types of visual 

objects on a grid was stable at about 1000 ms per object (Table 7.1). As dwell time 

increased, the average object search time in a 4-object sequence ranged in between 

952 and 1042 ms per object. Similarly, the average object search time in a 6-object 

sequence ranged from 923 to 965 ms per object. It is important to note that this search 

time was established for every object type, thus regardless of whether participants were 

experienced with the type of objects or not. If indeed the search time for object 

selection on a display is approximately steady at about 1000 ms per object, the total 

eye-gaze-based input time for similar types of search tasks on a grid-based display will 

be rather easy to compute.  

The most salient finding in the participant evaluations was that a dwell time of 

500 ms was easiest to use for eye-gaze-based selection of all three visual object types 

(Figure 7.4). Although very few object selection corrections were necessary with a 
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dwell time of 1000 and 2000 ms, these longer dwell times may have caused fatigue 

when fixating. As noted by Majaranta, Aula, and Räihä, (2004) in their eye-typing 

research, indeed object selection with a dwell time of 2000 ms could cause discomfort 

to users. Some participants even mentioned after this experiment that they thought 

there was something wrong with the interface or the eye-tracking system when using 

the 2000-ms dwell time.  

Given the participant evaluations, the relatively low number of object selection 

corrections – in particular for alphanumeric sequences – and the relatively low object 

selection time for a complete sequence of objects, a dwell time of 500 ms is 

recommendable for eye-gaze-based object selection. However, fitting some 

mathematical functions through the data suggested that other dwell time durations 

between 250 and 1000 ms can be also possible to use for selecting various object types. 

Therefore, in the future, more research needs to be done to confirm this issue with a 

wider dwell time duration ranging from 200 ms to around 1000 ms. 
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Chapter 8.  General discussion and conclusions 

This dissertation investigated the physical aspects of using low-cost eye-

tracking devices for registration users’ eyes into a certain system that requires 

interactive interfaces. Furthermore, with the same low-cost eye trackers, this 

dissertation also investigated the cognitive aspects of users’ abilities for selecting a 

sequence of visual objects on a grid-based interface screen with eye-gaze-based input. 

To achieve this, a series of experiments has been conducted in this dissertation.  

The findings obtained related to the physical aspects of using low-cost eye-

tracking devices (the Tobii EyeX© and Eye Tribe©) in Chapters 3 and 4 of this 

dissertation were the following. In Chapter 3, Experiments 1 and 2 were described to 

obtain maximum and minimum viewing distances and the highest and lowest viewing 

angle under three lighting conditions at which the participants’ eyes could be registered 

into low-cost eye-tracker interfaces. The participants were asked to stand in front of a 

display and the participants were instructed to register their eyes into eye-tracker 

interfaces. Both the average viewing distances and viewing angles under different 

lighting conditions were obtained. Although no performance comparisons were made 

between eye trackers, on average, the low-cost Eye Tribe© eye-tracking device in 

Experiment 2 could register participants’ eyes at somewhat larger and closer viewing 

distances and at higher and lower viewing angles, than the low-cost Tobii EyeX© eye-

tracking device used in Experiment 1. 

Furthermore, an important result from Experiment 1 is that the minimum and 

maximum viewing limit of the Tobii EyeX© did not vary significantly with different 

lighting conditions, and neither did the viewing angle range. Experiment 2, however, 
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showed that the maximum viewing distance of the Eye Tribe© was significantly 

different between two conditions of artificial lighting, although the average difference 

was just 1 cm (room light: 76.8 cm; full light: 77.8 cm). The lowest viewing angle that 

allowed registration into the Eye Tribe© system also differed significantly between the 

two artificial lighting conditions, the average angle difference was small too – 0.6 

degrees (room light: 81.3 degrees; full light: 81.9 degrees). Generally, the results of 

Experiments 1 and 2 indicated that both low-cost eye-tracking devices had relatively 

stable measuring results. From the results in Chapter 3, it can be concluded that 

 

(i) the performance of the two low-cost eye trackers tested in this dissertation was 

robust enough under different conditions of illuminance and luminance for 

participants’ eyes registration at various viewing distances and viewing angles. 

 

However, the calibration quality of Eye Tribe© was poor especially for participants 

who wore glasses. In Experiment 2, from 10 participants who wore glasses, relatively 

poor calibration was obtained in the natural light for 6 participants, in the room light 

for 5 participants, and in the full light for 7 participants. This result was in line with 

the previous finding that the calibration quality of eye-tracking devices was indeed 

poorer for participants with glasses than those without glasses (Funke et al., 2016).  

 

In Chapter 4 (Experiment 3), the aim was to investigate the effect of wearing 

glasses on the calibration process into the eye-tracking device under the same lighting 

conditions as used in Experiments 1 and 2. The same participants with uncorrected 

vision carried out the calibration without glasses and with non-prescription, clear 
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replica glasses, while the same participants with prescription glasses did the calibration 

both with and without prescription glasses, if they were able to do so. The calibration 

quality and calibration time data for the same participants in both with and without 

glasses conditions were obtained. Experiment 3 in Chapter 4 showed that  

 

(ii) with the low-cost eye-tracking devices used in the studies described in this 

dissertation, the calibration quality was poorer, and the calibration time was 

longer for participants who wore glasses as compared to the same participants 

without glasses under three different lighting conditions.  

 

The obtained result of Experiment 3 was not due to poor eyesight in the group with 

corrected vision; the participants with prescription glasses should have had difficulty 

performing the calibration task without their glasses, while the participants without 

glasses (or with contact lenses) should have had no increased difficulty performing the 

calibration with replica glasses. A possible explanation for this could be the presence 

of light reflection and glare when using glasses. Furthermore, when tracking an object 

on the screen at a viewing angle of 90 degrees, participants' eyes were sometimes 

obstructed by the thick frame of the glasses. It is imaginable that if eye tracking is 

going to be used in public settings for future applications, users will perform 

registration under different viewing angles. Users may be standing in front of a device 

(e.g., ticketing machines or automated teller machines) and register from viewing 

angles that differ because of differences in their height. Users may be sitting behind a 

device as well, because they are in a wheelchair or use eye tracking while sitting behind 

a steering wheel in a vehicle (Kandil, Rotter, & Lappe, 2010).  
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In Chapter 4, therefore, the first goal of Experiment 4 was to investigate the 

ideal angle of the display and the Eye Tribe© device for participants with different 

heights for the registration into the eye-tracker interface. The participants were asked 

to stand at a natural viewing position in front of the eye tracking device – as if they 

were using an ATM machine –, while some participants were also asked to sit in front 

of the eye tracker. The angle of the display and the eye tracker were systematically 

varied. Experiment 4 with the Eye Tribe© eye-tracking device showed a significant 

correlation between the height of the participants and the angles of the eye tracker and 

the display under which they could register themselves. In summary, if the participant 

was tall or viewing from a high position looking down on the display, the display 

should be angled upwards in a more horizontal position for registration to occur. By 

contrast, people sitting down on chairs or in wheelchairs would benefit from a vertical 

display position or a downward angle. 

The second goal of Experiment 4 was to perform calibration for participants 

with and without (replica) glasses at the different display angles under two different 

lighting conditions. The same participants with uncorrected vision carried out the 

calibration without glasses and with non-prescription, clear replica glasses, while the 

same participants with prescription glasses did the calibration both with and without 

glasses if they were able to perform. Since the reflection of the light spot appeared on 

the display at certain angles in the full light condition, the natural and room light 

conditions were only used in Experiment 4. The calibration quality and calibration 

time data were obtained. Although no statistics were performed due to differences in 

group sizes, the calibration quality and calibration time for participants with glasses in 
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Experiment 4 seemed better than in Experiment 3 under two lighting conditions. The 

results of Experiment 4 in Chapter 4 strongly suggest that 

 

(iii) in order to achieve good and fast calibration with the low-cost eye-tracking 

devices used in the studies described in this dissertation, the eye-tracking 

device and the display need to be set at a certain angle, depending on the 

viewing height of participants. If viewing angles can be adjusted, participants 

with glasses should be able to perform the calibration without problems. 

 

The findings obtained with regard to the cognitive aspects of users’ abilities for 

selecting a sequence of visual objects on a grid-based interface screen with eye-gaze-

based input, as described in Chapters 5 to 7 of this dissertation, were the following. 

The similar low-cost eye-tracker devices (the Tobii EyeX© and Tobii Eye Tracker 

4C©) were utilized as an eye-gaze-based input device to select a sequence of visual 

objects on various grid-based screen interfaces. The visual objects that were used 

consisted of alphanumeric characters, dots, and visual icons, from which a single 

visual password with a different number of objects needed to be selected. An 

interactive interface with multiple objects shown on the screen typically employs a 

grid to organize objects based on sequenced columns and rows (for details on visual 

password systems with higher grid densities, see Chapter 2). 

The goal in Chapter 5 (Experiment 5) was to identify which grid densities 

potentially are suitable to use with low-cost eye trackers. In Experiment 5, sixteen 

different grid formations were used in between 2×2 to 7×7 cells. When sitting in front 

of a computer, twenty-seven participants were asked to create an imaginary password 
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by selecting objects on the display using manual input with a mouse, thus without eye 

tracking. The imaginary password consisted of four to eight objects (alphanumeric 

characters, dots, or visual icons). Next, the participants were also asked to judge the 

16 grid densities about whether the grids are easy to use and potentially safe for making 

a visual password in an imagined situation using eye tracking. The user judgments of 

16 different grid densities for three visual password formats were obtained. 

Experiment 5 showed that a grid generally was considered more difficult to use, but 

potentially safer to make any password in three formats, when the number of grid cells 

increased. Furthermore, for each visual password format, some grid densities were 

thought to be relatively difficult to use (e.g., a 7×7 grid) or potentially unsafe (e.g., a 

2×2 grid). The results thus suggest that grid densities from 3×3 to 6×6 cells are suitable 

to use with low-cost eye tracking devices. 

In Chapter 6, the goal of Experiment 6 was to investigate which type of 

password format and grid formation is suitable for password authentication using eye-

gaze-based input. The Tobii EyeX© device was used. Participants were asked to 

memorize a 4-object and a 6-object password for three types of password formats and 

register (Task 1), confirm (Task 2), and log in (Task 4) the password on a grid by using 

eye-gaze-based input. The three recognition-based password formats were an 

alphanumeric format, a pattern format, and a picture format. Grid densities and 

formations were varied in 16 ways in between 3×3 and 6×6 object keys, following the 

results of Experiment 5. Task-completion time and task-success rate data were 

obtained. Participants also provided preference data based on a rating scale about the 

grid densities and formations (Task 3). Experiment 6 showed that, first, task-
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completion time was mostly shorter for the alphanumeric password format than for the 

pattern or picture format. Second, task-completion time of 4-object or 6-object 

passwords generally increased as the grid density increased, while the task-success 

rate at the first attempt decreased when the grid density increased. Finally, task-

completion time often was faster for grids with more columns than rows (horizontal 

formations, e.g., 4×3 cells) than for grids with more rows than columns (vertical 

formations, e.g., 3×4 cells). From the results of Experiment 6 in Chapter 6, it can be 

concluded that 

 

(iv) the chance of performing quick and successful password authentication by eye-

gaze-based input improves with horizontal grids (e.g., with more columns than 

rows, as in 4×3, 5×3, 6×3, 5×4, 6×4, or 6×5 grids) with relatively low grid 

densities.  

 

It can be said that horizontal grids are more efficient for password formation with eye-

gaze-based input. This corroborates studies on the visual search of objects or words, 

which have reported that the direction of the users’ eye movements often occurs more 

horizontally than vertically (Duchowski, 2007; Ojanpää et al., 2002; Goonetilleke et 

al., 2002). Participants also needed more time to make the password on a denser grid 

in which the chance of unwanted object selection with eye tracking increases. 

Furthermore, with increasing grid density, the passwords became more complex. The 

results of Experiment 6 in Chapter 6 also strongly suggests that  
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(v) the alphanumeric password format is the easiest to use for object selection with 

eye-gaze-based input, in that password input consisting of alphanumeric 

characters required relatively less time and relatively few mistakes were made. 

 

This result could be because participants most likely are more familiar with passwords 

consisting of numbers and letters in which they may memorize passwords by 

“chunking”, which allows them to recall passwords fast (Nelson & Vu, 2010). It was 

known that often-used objects are easier to remember (Kinsbourne & George, 1974).  

In the case of using icons (picture format) or dots (pattern format) in Experiment 6, the 

participants had not much time to adapt to these objects.  

 

A limitation of Experiment 6 was that a dwell time duration of 500 ms was 

used to select a sequence of visual objects in passwords with eye-gaze-based input. 

This duration may have been too short for participants or for some visual objects. In 

Chapter 7, the goal of Experiment 7 was to investigate the usability of various dwell 

times for selecting a sequence of 4 or 6 objects on four different grids. In this 

experiment, object selection from a display with eye-gaze-based input was 

investigated with object dwell times of 250, 500, 1000, and 2000 ms. Three different 

object types were used. A Tobii Eye Tracker 4C© device was used as an eye-gaze-

based input device. Twelve participants were asked to memorize a 4-object and 6-

object sequence, and to use their eye gaze to enter the sequence of objects onto a user 

interface. Besides entering the sequence of objects onto the user interface, the 

participants were also required to evaluate the usability of the four dwell time 
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durations. The selection time for each sequence and the number of object selection 

corrections, and dwell time evaluations were obtained.  

Experiment 7 showed that regardless of the number and type of objects that 

had to be selected, the participants needed about 1000 ms to search a single target 

object on the display. Under this steady search time, as expected, the total time 

necessary to select 4 or 6 objects (object selection time) increased when dwell time 

increased, but with fewer object selection corrections. Experiment 7 also showed that 

a dwell time of 500 ms per object was evaluated as easier to use for eye-gaze-based 

selection of all three types of visual objects. The results of Experiment 7 in Chapter 7 

strongly suggests that 

 

(vi) a dwell time of 500 ms was recommendable for object selection using eye-

gaze-based input. This is based on the relatively low number of object selection 

corrections (particularly for alphanumeric sequences), the relatively low object 

selection time for a complete sequence of objects, and the participant 

evaluations of dwell time durations. 

 

Compared to this dwell time, with relatively short dwell time (e.g., 250-ms), 

participants may have unintentionally selected objects while still scanning the display 

to identify potential target objects to form the correct sequence. In reading tasks, 

regardless of whether words are familiar or not, lexical activation and recognition 

require fixation durations on average in between 200 and 300 ms (Rayner & Pollatsek, 

1989). In scene perception and visual search tasks, the fixation duration is 

approximately in between 180 and 330 ms (Rayner, 2009). Thus, with a short dwell 
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time of 250 ms, as used here, the visual object recognition process is still in progress.  

In Experiment 7, therefore, the participant sometimes selected undesired objects by 

chance with a dwell time of 250 ms. Furthermore, it has been reported that object 

selection with more than 1000-ms dwell time could cause discomfort to users 

(Majaranta et al., 2004). Goldberg and Kotval (1999) also indicated that longer dwell 

time were inconvenient in retrieving general information from a display. 

 

Overall, this dissertation describes research conducted to support the varying 

needs of the user in general or in certain situations to perform interactive interface 

tasks such as password authentication using eye-gaze-based input. It is expected that 

this dissertation will be a useful starting point and resource for researchers. 

Furthermore, it is also hoped that the dissertation will give helpful guidelines for 

developers of gaze-based authentication systems. 

 

A limitation of the research is that since low-cost eye tracking devices were 

used in the experiments in this dissertation, it was not possible to obtain some 

important data related to the eye movement metrics, e.g., calibration time, fixation 

duration, first fixation, saccades, etc. In the future, more research needs to be done to 

confirm the present conclusions with a sophisticated eye tracking device. Some other 

issues will need further investigation. First, the efficiency of the low-cost eye-tracker 

device with regard to pupil size and occlusion still needs to be investigated. Mostly, 

eye-tracking techniques rely on the visibility of the pupil and most registration errors 

occur due to (partial) pupil occlusion. Partial pupil occlusion mainly occurs when 

wearing glasses and it varies with ethnicity (Blignaut & Wium, 2014). Furthermore, if 



150 

 

the size of grid cells that used to place objects is too small, the target objects probably 

difficult to be reliably selected by using eye-gaze-based input. It is known that visual 

acuity in eye tracking depends on the size of target objects in the visual angle (see 

Chapter 2). Further research is thus necessary to investigate how big or small the size 

of grids can be used for eye-gaze-based object selection. 

Another issue is the effect of practice as regards object selection time and the 

number of object selection corrections. For example, it is known that participants may 

get used to searching visual objects on screen after a few days of practice (Baluch & 

Itti, 2010; Clark, Appelbaum, van den Berg, Mitroff, & Woldorff, 2015). As a result, 

visual search time may decrease and visual search accuracy may increase or at least 

become consistent. It is important to investigate whether object selection time and the 

number of selection corrections would decrease when the participants have more time 

to practice, especially with dot and visual icon objects. There is a possibility that the 

Midas-Touch problem will also become less with increasing user experience, which 

would suggest that an object dwell time of even less than 500 ms may become feasible 

in certain interactive interface systems. Finally, one issue open to investigation is 

whether older users would have the same dwell time usability evaluations as younger 

users. It is known that the visual area in which information can be obtained within one 

eye fixation reduces in size as a function of age (Ball et al., 1988). Furthermore, visual 

search accuracy is generally also affected by age (Madden, Gottlob, & Allen, 1999; 

Lee, Kim, & Ji, 2019). More research is thus necessary.  
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Appendix A. Instruction and informed consent of Experiment 1 and 2 

Instruction and Informed Consent of Eye-tracking experiment for participants 

on 8th floor building 3 (Ohashi Campus), at Kyushu University, Department of 

Human Science, Japan. 

 

 

Dear participant, 

 

Thank you for joining our eye tracking experiment.  

We would like to measure  

1. The maximum and minimum viewing distances at which we can use the eye tracker, 

2. The up-down angles at which the eye tracker is effective.  

 

We expect individual differences based on eye-size and other characteristics. If you 

agree, we would also like to take a picture of your eyes. There are no (health) risks 

involved in joining the experiment and bear in mind that you can opt-out of the 

experiment any time - participation is on voluntary basis. The experiment will take 

about 20 minutes.  

 

To process the data accurately, we would like to ask you for some information. We 

will use the information to analyze our data and, possibly, for data publication of group 

means. However, we guarantee your privacy: your data will be numbered and we will 

not disclose data of single individuals. 

 

Here are our questions: 

1. Do you wear glasses or contact lenses? [ yes / no ] 

2. How tall are you?   ......  cm 

3. What is your age?   ......   years old 

4. Can we take a picture of your eyes?  [ yes / no ] 

 

Experiment instructions: 

1. We will first calibrate the eye tracker when it is at a distance of 40 cm from your 

eyes. Please follow the instructions of the experimenter. 

2. We then will measure at what maximum and minimum distance the eye tracker 

works. Please follow the instructions of the experimenter. 

3. We will then measure at what maximum upper and lower angle the eye tracker 

works, from a viewing distance of 40 cm from the eye tracker. Please follow the 

instructions of the experimenter. 

 

 

Thank you for your participation! 

Yesaya Tommy Paulus, Gerard B. Remijn 
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Eye tracking experiment - Written informed consent 

Experimenter: Yesaya Tommy Paulus 

 

Your signature on this form indicates that you understand to your satisfaction the 

information provided to you about your participation in this experiment, and agree to 

participate as a research participant. 

 

You are free to withdraw from this experiment at any time. You should feel free to ask 

for clarification or new information throughout your participation. 

 

Participant’s Name:  

 

Participant’s Signature: 

 

Date: 
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Appendix B. Experiment set-up (Experiment 1 - Tobii EyeX© eye tracker) 
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Appendix C. Participants’ face photos of Experiment 1 
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Appendix D. Statistical analysis of Experiment 1 data 

1. Normality check of maximum viewing distance data 

Tests of Normality 

 Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Natural_L .155 25 .123 .941 25 .155 
Room_L .125 25 .200* .947 25 .214 
Full_L .107 25 .200* .945 25 .196 

*. This is a lower bound of the true significance. 
a. Lilliefors Significance Correction 

 

2. Normality check of minimum viewing distance data 

Tests of Normality 

 Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Natural_L .205 25 .008 .867 25 .004 
Room_L .197 25 .014 .856 25 .002 
Full_L .156 25 .118 .901 25 .019 

a. Lilliefors Significance Correction 

 

3. Friedman Test between lighting conditions for maximum viewing distance,  

Test Statisticsa 

N 25 
Chi-Square 2.362 
df 2 
Asymp. Sig. .307 

a. Friedman Test  

 

and minimum viewing distance 
Test Statisticsa 

N 25 
Chi-Square .775 
df 2 
Asymp. Sig. .679 

a. Friedman Test 

 

 

4. Normality check of highest viewing angle data 

Tests of Normality 

 Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Natural_L .173 25 .052 .944 25 .186 
Room_L .135 25 .200* .902 25 .020 
Full_L .119 25 .200* .969 25 .630 

*. This is a lower bound of the true significance. 
a. Lilliefors Significance Correction 
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5. Normality check of lowest viewing angle data 

Tests of Normality 

 Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Natural_L .070 25 .200* .985 25 .961 
Room_L .106 25 .200* .969 25 .620 
Full_L .188 25 .023 .807 25 .000 

*. This is a lower bound of the true significance. 
a. Lilliefors Significance Correction 

 

6. Friedman Test between lighting conditions for highest viewing angle, 

Test Statisticsa 

N 25 
Chi-Square 3.083 
df 2 
Asymp. Sig. .214 

a. Friedman Test 

 

and lowest viewing angle 
Test Statisticsa 

N 25 
Chi-Square .061 
df 2 
Asymp. Sig. .970 

a. Friedman Test 
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Appendix E. Experiment set-up (Experiment 2 - Eye Tribe© eye tracker) 

 
 

Participants’ face photos of Experiment 2 
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Appendix F.  Statistical analysis of Experiment 2 data 

1. Normality check of maximum viewing distance data 

Tests of Normality 

 Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Natural_L .083 28 .200* .980 28 .852 
Room_L .178 28 .023 .927 28 .053 
Full_L .118 28 .200* .976 28 .757 

*. This is a lower bound of the true significance. 
a. Lilliefors Significance Correction 

 

2. Normality check of minimum viewing distance data 

Tests of Normality 

 Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Natural_L .171 28 .035 .927 28 .052 
Room_L .206 28 .004 .942 28 .126 
Full_L .138 28 .187 .915 28 .026 

a. Lilliefors Significance Correction 

 

3. Friedman Test between lighting conditions for maximum viewing distance. 

Test Statisticsa 

N 28 
Chi-Square 9.406 
df 2 
Asymp. Sig. .009 

a. Friedman Test 

Pairwise comparisons with Wilcoxon signed-rank tests. 
Test Statisticsa 

 Room_L - 
Natural_L 

Full_L - 
Natural_L 

Full_L - 
Room_L 

Z -1.917b -.378b -2.820c 
Asymp. Sig. (2-tailed) .055 .706 .005 

a. Wilcoxon Signed Ranks Test 
b. Based on positive ranks. 
c. Based on negative ranks. 

 

4. For minimum viewing distance 

Test Statisticsa 

N 28 
Chi-Square 2.583 
df 2 
Asymp. Sig. .275 

a. Friedman Test 

 

5. Normality check of highest viewing angle data 

Tests of Normality 

Kolmogorov-Smirnova Shapiro-Wilk 
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 Statistic df Sig. Statistic df Sig. 

Natural_L .192 28 .010 .914 28 .025 
Room_L .137 28 .192 .932 28 .069 
Full_L .160 28 .065 .949 28 .186 

a. Lilliefors Significance Correction 

 

6. Normality check of lowest viewing angle data 

Tests of Normality 

 Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Natural_L .161 28 .062 .942 28 .126 
Room_L .118 28 .200* .972 28 .643 
Full_L .078 28 .200* .989 28 .985 

*. This is a lower bound of the true significance. 
a. Lilliefors Significance Correction 

 

7. Friedman Test between lighting conditions for highest viewing angle, 

Test Statisticsa 

N 28 
Chi-Square .491 
df 2 
Asymp. Sig. .782 

a. Friedman Test 

and lowest viewing angle 
Test Statisticsa 

N 28 
Chi-Square 9.135 
df 2 
Asymp. Sig. .010 

a. Friedman Test 

Pairwise comparisons with Wilcoxon signed-rank tests. 
Test Statisticsa 

 Room_L - 
Natural_L 

Full_L - 
Natural_L 

Full_L - 
Room_L 

Z -1.663b -.793c -2.815c 
Asymp. Sig. (2-tailed) .096 .428 .005 

a. Wilcoxon Signed Ranks Test 
b. Based on positive ranks. 
c. Based on negative ranks. 
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Appendix G. Instruction and informed consent in Experiment 3 

Instruction and Informed Consent of Eye-tracking experiment for participants 

on 8th floor building 3 (Ohashi Campus), at Kyushu University, Department of 

Human Science, Japan. 

 

Dear participant, 

 

Thank you for joining our eye tracking experiment. We would like to measure  

1. The calibration quality of the eye-tracker for users with glasses and without glasses, 

2. The time to get the results of the calibration.  
 

We expect individual differences based on eye-size and other characteristics. If you 

agree, we would also like to take a picture of your eyes. There are no (health) risks 

involved in joining the experiment and bear in mind that you can opt-out of the 

experiment any time - participation is on voluntary basis. The experiment will take 

about 40 minutes.  
 

To process the data accurately, we would like to ask you for some information. We 

will use the information to analyze our data and, possibly, for data publication of group 

means. However, we guarantee your privacy: your data will be numbered and we will 

not disclose data of single individuals. 
 

Here are our questions: 

1. Do you wear glasses? [ yes / no ] 

2. How thick your glasses? ......  mm 

3. Do you wear contact lenses? [ yes / no ] 

4. How tall are you?   ......  cm 

5. What is your age?   ......   years old 

6. Can we take a picture of your eyes?  [ yes / no ] 
 

Experiment instructions: 

1. We will measure the calibration quality for users who wear glasses at a viewing 

distance of 40 cm. If users can see without glasses, we will measure the calibration 

quality for users with or without glasses. If users cannot see without glasses, we 

will measure the calibration quality for users only with glasses, and at the same time 

we will measure the time it takes for this measurement. Please follow the 

instructions of the experimenter. 

2. We then will measure the calibration quality for users who do not wear glasses at a 

viewing distance of 40 cm always with or without (replica) glasses, and also at the 

same time we will measure the time it takes for this measurement. Replica glasses 

are non-prescription clear glasses. Please follow the instructions of the 

experimenter. 

 

Thank you for your participation! 

Yesaya Tommy Paulus, Gerard B. Remijn 
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Eye tracking experiment - Written informed consent 

Experimenter: Yesaya Tommy Paulus 

 

Your signature on this form indicates that you understand to your satisfaction the 

information provided to you about your participation in this experiment, and agree to 

participate as a research participant. 

 

You are free to withdraw from this experiment at any time. You should feel free to ask 

for clarification or new information throughout your participation. 

 

Participant’s Name:  

 

Participant’s Signature: 

 

Date:  
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Appendix H. Replica glasses used in Experiment 3 and 4 
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Participants’ face photos of Experiment 3 (n = 16) 
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Appendix I. Example movements of a circle (animation)  

appendix\9 point.swf 

or 

appendix\9 point.exe  

file:///D:/Kyushu%20University/eye%20tracking%20and%20visual%20passwords/Thesis/New/appendix/9%20point.swf
file:///D:/Kyushu%20University/eye%20tracking%20and%20visual%20passwords/Thesis/New/appendix/9%20point.exe
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Appendix J. Statistical analysis of Experiment 3 data 

1. Normality check of calibration quality with glasses 

Tests of Normality 

 Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Natural_L .216 16 .044 .846 16 .012 
Room_L .354 16 .000 .649 16 .000 
Full_L .372 16 .000 .698 16 .000 

a. Lilliefors Significance Correction 

 

2. Normality check of calibration quality without glasses 

Tests of Normality 

 Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Natural_L .231 16 .022 .825 16 .006 
Room_L .223 16 .033 .837 16 .009 
Full_L .231 16 .022 .825 16 .006 

a. Lilliefors Significance Correction 

 

3. Friedman Test between lighting conditions for calibration quality with glasses,  

Test Statisticsa 

N 16 
Chi-Square 5.826 
df 2 
Asymp. Sig. .054 

a. Friedman Test 

 

and calibration quality without glasses 
Test Statisticsa 

N 16 
Chi-Square .905 
df 2 
Asymp. Sig. .636 

a. Friedman Test 

 

4. Normality check of calibration time with glasses 

Tests of Normality 

 Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Natural_L .263 16 .004 .859 16 .019 
Room_L .185 16 .145 .861 16 .020 
Full_L .178 16 .190 .844 16 .011 

a. Lilliefors Significance Correction 

 

5. Normality check of calibration time without glasses 

Tests of Normality 

 Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 
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Natural_L .138 16 .200* .937 16 .315 
Room_L .322 16 .000 .736 16 .000 
Full_L .221 16 .035 .863 16 .021 

*. This is a lower bound of the true significance. 
a. Lilliefors Significance Correction 

 

6. Friedman Test between lighting conditions for calibration time with glasses,  

Test Statisticsa 

N 16 
Chi-Square 5.375 
df 2 
Asymp. Sig. .068 

a. Friedman Test 
 

and calibration time without glasses 
Test Statisticsa 

N 16 
Chi-Square 2.419 
df 2 
Asymp. Sig. .298 

a. Friedman Test 
 

 

 

 

Pairwise comparisons for calibration quality between glasses conditions under each 

lighting 
Test Statisticsa 

natural WithoutG - 
WithG 

Z -1.940b 
Asymp. Sig. (2-tailed) .052 

a. Wilcoxon Signed Ranks Test 
b. Based on negative ranks. 

 
Test Statisticsa 

room WithoutG - 
WithG 

Z -2.170b 
Asymp. Sig. (2-tailed) .030 

a. Wilcoxon Signed Ranks Test 
b. Based on negative ranks. 

 
Test Statisticsa 

full WithoutG - 
WithG 

Z -2.472b 
Asymp. Sig. (2-tailed) .013 

a. Wilcoxon Signed Ranks Test 
b. Based on negative ranks. 
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Pairwise comparisons for calibration time between glasses conditions under each 

lighting 
Test Statisticsa 

natural WithoutG - 
WithG 

Z -1.704b 
Asymp. Sig. (2-tailed) .088 

a. Wilcoxon Signed Ranks Test 
b. Based on positive ranks. 

 
Test Statisticsa 

room WithoutG - 
WithG 

Z -2.999b 
Asymp. Sig. (2-tailed) .003 

a. Wilcoxon Signed Ranks Test 
b. Based on positive ranks. 

 
Test Statisticsa 

full WithoutG - 
WithG 

Z -3.258b 
Asymp. Sig. (2-tailed) .001 

a. Wilcoxon Signed Ranks Test 
b. Based on positive ranks. 
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Appendix K. Instruction and informed consent in Experiment 4 

Instruction and Informed Consent of Eye-tracking experiment for participants 

on 8th floor building 3 (Ohashi Campus), at Kyushu University, Department of 

Human Science, Japan. 

 

 

Dear participant, 

 

Thank you for joining our eye tracking experiment. We would like to measure  

1. The angle of the eye-tracker and the display screen for calibration of participants 

with/without glasses, 

2. The time to get the results of the calibration under various angle conditions.  

 

We expect individual differences based on eye-size and other characteristics. If you 

agree, we would also like to take a picture of your eyes. There are no (health) risks 

involved in joining the experiment and bear in mind that you can opt-out of the 

experiment any time. We provide a payment for participation of JPY 1000. The 

experiment will take about 60 minutes.  

 

To process the data accurately, we would like to ask you for some information. We 

will use the information to analyze our data and, possibly, for data publication of group 

means. However, we guarantee your privacy: your data will be numbered and we will 

not disclose data of single individuals. 

 

Here are our questions: 

1. Do you wear glasses? [ yes / no ] 

2. How thick are your glasses? ......  mm 

3. Do you wear contact lenses? [ yes / no ] 

4. How tall are you?   ......  cm 

5. What is your age?   ......   years old 

6. Can we take a picture of your eyes?  [ yes / no ] 

 

Experiment instructions: 

1. Please stand in the middle on front of the screen and don’t cross the marking on the 

floor, relax and take a natural viewing position, and don’t move your head even 

when the angle of the display is changed. 

2. We will measure at different angles of the eye-tracker and the display screen for 

participants with glasses. If you can see without glasses, we will measure the 

calibration quality for participants with and without glasses. If you cannot see 

without glasses, we will measure the calibration quality for participants only with 

glasses. At the same time, we will measure the time necessary for the calibration, 

but only when your eyes appear on the calibration display. Please follow the 

instructions of the experimenter. 

3. We will measure at different angles of the eye-tracker and the display screen for 
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participants without glasses with and without (replica) glasses. At the same time, 

we will measure the time necessary for the calibration, but only when your eyes 

appear on the calibration display. Replica glasses are non-prescription, clear 

glasses. Please follow the instructions of the experimenter. 

 

 

Thank you for your participation!  

Yesaya Tommy Paulus, Gerard B. Remijn 
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Eye tracking experiment - Written informed consent 

Experimenter: Yesaya Tommy Paulus 

 

Your signature on this form indicates that you understand to your satisfaction the 

information provided to you about your participation in this experiment, and agree to 

participate as a research participant. 

 

You are free to withdraw from this experiment at any time. You should feel free to ask 

for clarification or new information throughout your participation. 

 

Participant’s Name:  

 

Participant’s Signature: 

 

Date:  
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Appendix L. Experiment set-up (Experiment 4 - Eye Tribe© eye tracker) 
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Appendix M. Participants’ face photos of Experiment 4 (n = 30) 
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Appendix N. Statistical analysis of Experiment 4 data 

A Pearson's correlation results between variabels 
Correlations 

 Height FirstAngle SecondAngle 

Height 

Pearson Correlation 1 .940** .972** 

Sig. (2-tailed)  .000 .000 

N 30 30 16 

FirstAngle 

Pearson Correlation .940** 1 1.000** 

Sig. (2-tailed) .000  .000 

N 30 30 16 

SecondAngle 

Pearson Correlation .972** 1.000** 1 

Sig. (2-tailed) .000 .000  
N 16 16 16 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

Data Analysis for the first angle data 
 

1. Normality check of calibration quality with glasses  
Tests of Normality 

 Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Natural_L .313 30 .000 .731 30 .000 
Room_L .302 30 .000 .749 30 .000 

a. Lilliefors Significance Correction 

 

2. Normality check of calibration quality without glasses (three participants with 

prescription glasses were not able to perform the calibration without glasses at their 

first angle) 
Tests of Normality 

 Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Natural_L .382 27 .000 .698 27 .000 
Room_L .346 27 .000 .740 27 .000 

a. Lilliefors Significance Correction 

 

3. Friedman Test between lighting conditions for calibration quality with glasses,  
Test Statisticsa 

N 30 
Chi-Square .077 
df 1 
Asymp. Sig. .782 

a. Friedman Test 

 

and calibration quality without glasses 
Test Statisticsa 

N 27 
Chi-Square .091 
df 1 
Asymp. Sig. .763 

a. Friedman Test 
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4. Normality check of calibration time with glasses 
Tests of Normality 

 Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Natural_L .270 30 .000 .782 30 .000 
Room_L .331 30 .000 .673 30 .000 

a. Lilliefors Significance Correction 

 

5. Normality check of calibration time without glasses (three participants with 

prescription glasses were not able to perform the calibration without glasses at their 

first angle) 
Tests of Normality 

 Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Natural_L .171 27 .041 .867 27 .002 
Room_L .204 27 .005 .799 27 .000 

a. Lilliefors Significance Correction 

 

6. Friedman Test between lighting conditions for calibration time with glasses,  
Test Statisticsa 

N 30 
Chi-Square .034 
df 1 
Asymp. Sig. .853 

a. Friedman Test 

 

and calibration time without glasses 
Test Statisticsa 

N 27 
Chi-Square .615 
df 1 
Asymp. Sig. .433 

a. Friedman Test 

 

7. Pairwise comparisons for calibration quality between glasses conditions under 

natural and room lighting (n = 27) 
Test Statisticsa 

natural WithoutG - 
WithG 

Z -1.915b 
Asymp. Sig. (2-tailed) .056 

a. Wilcoxon Signed Ranks Test 
b. Based on negative ranks. 

 
Test Statisticsa 

room WithoutG - 
WithG 

Z -.032b 
Asymp. Sig. (2-tailed) .975 

a. Wilcoxon Signed Ranks Test 
b. Based on negative ranks. 
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8. Pairwise comparisons for calibration time between glasses conditions under 

natural and room lighting (n = 27) 
Test Statisticsa 

natural WithoutG - 
WithG 

Z -2.423b 
Asymp. Sig. (2-tailed) .015 

a. Wilcoxon Signed Ranks Test 
b. Based on positive ranks. 

 
Test Statisticsa 

room WithoutG - 
WithG 

Z -1.828b 
Asymp. Sig. (2-tailed) .068 

a. Wilcoxon Signed Ranks Test 
b. Based on positive ranks. 
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Data Analysis for the second angle data 
 

1. Normality check of calibration quality with glasses  
Tests of Normality 

 Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Natural_L .238 16 .016 .819 16 .005 

Room_L .350 16 .000 .692 16 .000 

a. Lilliefors Significance Correction 

 

2. Normality check of calibration quality without glasses 
Tests of Normality 

 Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Natural_L .296 16 .001 .796 16 .002 
Room_L .395 16 .000 .601 16 .000 

a. Lilliefors Significance Correction 

 

3. Friedman Test between lighting conditions for calibration quality with glasses,  
Test Statisticsa 

N 16 
Chi-Square .667 

df 1 
Asymp. Sig. .414 

a. Friedman Test 

 

and calibration quality without glasses 
Test Statisticsa 

N 16 
Chi-Square 1.000 

df 1 
Asymp. Sig. .317 

a. Friedman Test 

 

4. Normality check of calibration time with glasses 

Tests of Normality 

 Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Natural_L .273 16 .002 .806 16 .003 
Room_L .217 16 .043 .770 16 .001 

a. Lilliefors Significance Correction 

 

5. Normality check of calibration time without glasses 

Tests of Normality 

 Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Natural_L .344 16 .000 .723 16 .000 
Room_L .248 16 .010 .872 16 .029 

a. Lilliefors Significance Correction 
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6. Friedman Test between lighting conditions for calibration time with glasses,  
Test Statisticsa 

N 16 
Chi-Square 2.571 

df 1 
Asymp. Sig. .109 

a. Friedman Test 

 

and calibration time without glasses 
Test Statisticsa 

N 16 
Chi-Square .286 

df 1 
Asymp. Sig. .593 

a. Friedman Test 

 

7. Pairwise comparisons for calibration quality between glasses conditions under 

natural and room lighting (n = 16) 
Test Statisticsa 

natural WithoutG - 
WithG 

Z -2.124b 
Asymp. Sig. (2-tailed) .034 

a. Wilcoxon Signed Ranks Test 
b. Based on negative ranks. 

 
Test Statisticsa 

room WithoutG - 
WithG 

Z -1.709b 
Asymp. Sig. (2-tailed) .088 

a. Wilcoxon Signed Ranks Test 
b. Based on negative ranks. 

 

8. Pairwise comparisons for calibration time between glasses conditions under 

natural and room lighting (n = 16) 
Test Statisticsa 

natural WithoutG - 
WithG 

Z -2.435b 
Asymp. Sig. (2-tailed) .015 

a. Wilcoxon Signed Ranks Test 
b. Based on positive ranks. 

 
Test Statisticsa 

room WithoutG - 
WithG 

Z -.683b 
Asymp. Sig. (2-tailed) .495 

a. Wilcoxon Signed Ranks Test 
b. Based on positive ranks. 
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Appendix O. Instruction and informed consent in Experiment 5 

Instruction and Informed Consent of Grid experiment for participants on 8th 

floor building 3 (Ohashi Campus), at Kyushu University, Department of Human 

Science, Japan. 

 

Dear participant, 

 

Thank you for agreeing to participate in today’s experiment. We are investigating 

visual passwords. The goal of the experiment is to assess and evaluate which is the 

best grid for each visual password format. We would like to obtain your preferences 

by means of a rating scale. 

 

Note that we would like you to make some “ideal” passwords during the 

experiment. Please NEVER use a password that you use in daily life. 

 

There are no (health) risks involved in joining the experiment and bear in mind that 

you can opt-out of the experiment any time - participation is on a voluntary basis. The 

experiment will take about 60 minutes. If you have a question or problem at any point 

in our experiment, please do not hesitate to ask the instructor. 

 

To process the data accurately, we would like to ask you for some information. We 

will use the information to analyze our data and, possibly, for data publication of group 

means. However, we guarantee your privacy: your data will be numbered, and we will 

not disclose data of single individuals.  

 

Here are our questions: 

1. Do you wear glasses? [ yes / no ] 

2. Do you wear contact lenses? [ yes / no ] 

3. How tall are you?   ......  cm 

4. What is your age?   ......   years old 

5. Can you join again for the next experiment?  [ yes / no ] 

 

General experiment instructions: 

1. The program will be conducted with counterbalance between visual password 

formats for each participant automatically based on the participant's ID.  

2. We will ask you to make (draw or select) some "ideal" passwords on the monitor 

screen for each grid of the three visual password formats. Please follow the 

instructions of the experimenter. 

3. We will ask you to answer some questions about the password you will make for 

each grid and ask you to evaluate some assessments for the use of the grids on 

three visual password formats. Please follow the instructions of the experimenter. 

 

Thank you for your participation!  

Yesaya Tommy Paulus, Gerard B. Remijn 
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Grids Experiment, Experimenter: Yesaya Tommy Paulus - Written informed 

consent 

 

Your signature on this form indicates that you understand to your satisfaction the 

information provided to you about your participation in this experiment, and agree to 

participate as a research participant. 

 

You are free to withdraw from this experiment at any time. You should feel free to ask 

for clarification or new information throughout your participation. 

 

Participant’s Name:      Date: 

 

Participant’s Signature:  
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Appendix P. Experiment set-up (Experiment 5) 
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Appendix Q. Visual icons used in Experiments 5 to 7 
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Appendix R. The frequency analysis of a sound used in Experiments 5 to 7 

 
 

The sound file is in appendix\Windows Background.wav   

file:///D:/Kyushu%20University/eye%20tracking%20and%20visual%20passwords/Thesis/New/appendix/Windows%20Background.wav
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Appendix S. Regression analysis of Experiment 5 

Easy judgments: regression analysis with a linear function (y = ax + b) for all visual 

password formats 

Model Summary 
  

R R Square 
Adjusted R 

Square 
Std. Error of the 

Estimate   

.922 .851 .847 .405 
  

The independent variable is GC.   
ANOVA 

  
Sum of 
Squares 

df Mean Square F Sig. 

Regression 43.017 1 43.017 261.814 .000 

Residual 7.558 46 .164     

Total 50.575 47       

The independent variable is GC. 

Coefficients 

  
Unstandardized Coefficients 

Standardized 
Coefficients t Sig. 

B Std. Error Beta 

GC -.068 .004 -.922 -16.181 .000 

(Constant) 6.087 .111   54.900 .000 

 

Easy judgments: regression analysis with a logarithmic function [y = ln(x)] for all visual 

password formats 

Model Summary 
  

R R Square 
Adjusted R 

Square 
Std. Error of the 

Estimate   

.922 .850 .847 .406 
  

The independent variable is GC.   
ANOVA 

  
Sum of 
Squares 

df Mean Square F Sig. 

Regression 42.983 1 42.983 260.456 .000 

Residual 7.591 46 .165     

Total 50.575 47       

The independent variable is GC. 

Coefficients 

  
Unstandardized Coefficients 

Standardized 
Coefficients t Sig. 

B Std. Error Beta 

GC -1.257 .078 -.922 -16.139 .000 

(Constant) 8.168 .231   35.369 .000 
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Safe judgments: regression analysis with a logarithmic function [y = ln(x)] for all visual 

password formats 

Safe judgment     
Model Summary 

  

R R Square 
Adjusted R 

Square 
Std. Error of the 

Estimate   

.973 .947 .946 .378 
  

The independent variable is GC.   
ANOVA 

  
Sum of 
Squares 

df Mean Square F Sig. 

Regression 117.924 1 117.924 825.208 .000 

Residual 6.574 46 .143     

Total 124.498 47       

The independent variable is GC. 

Coefficients 

  

Unstandardized 
Coefficients 

Standardized 
Coefficients t Sig. 

B Std. Error Beta 

GC 2.083 .073 .973 28.726 .000 

(Constant) -1.389 .215   -6.464 .000 

 

Safe judgments: regression analysis with a linear function (y = ax + b) for all visual 

password formats 

Safe judgment     
Model Summary 

  

R R Square 
Adjusted R 

Square 
Std. Error of the 

Estimate   

.879 .772 .767 .786 
  

The independent variable is GC.   
ANOVA 

  
Sum of 
Squares 

df Mean Square F Sig. 

Regression 96.093 1 96.093 155.614 .000 

Residual 28.405 46 .618     

Total 124.498 47       

The independent variable is GC. 

Coefficients 

  

Unstandardized 
Coefficients 

Standardized 
Coefficients t Sig. 

B Std. Error Beta 

GC .102 .008 .879 12.475 .000 

(Constant) 2.304 .215   10.719 .000 
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Appendix T. Instruction and informed consent in Experiment 6 

Instruction and Informed Consent of grids experiment for participants on 8th 

floor building 3 (Ohashi Campus), at Kyushu University, Department of Human 

Science, Japan. 
 

 

Dear participant, 

 

Thank you for agreeing to participate in today’s experiment. We are investigating the 

use of different grid densities for visual password formats using eye-tracking. The goal 

of the experiment is to identify whether a particular grid and visual password format 

is easy to use when authenticating a password with actual eye tracking. 

 

Note that we would like you to register, confirm, and enter (log in) a short or long 

visual password during the experiment. A password was generated randomly 

with a minimum length of four (short) and a maximum length of six (long) visual 

objects for each grid density on three visual password formats. The passwords 

are set differently to each grid density for each format. 

 

There are no (health) risks involved in joining the experiment and bear in mind that 

you can opt-out of the experiment any time. We provide a payment for the participation 

of JPY 4000 upon finishing the experiment, and also some snacks and drinks are 

provided during the break time. The experiment will take about 360 minutes, divided 

over 3 sessions. If you have a question or problem at any point in our experiment, 

please do not hesitate to ask the experimenter. Please follow the instructions of the 

experimenter. 

 

Pre-experiment instructions: 

1. We will ask you to register and calibrate your eyes on Tobii EyeX software at one 

of the viewing angles. 

2. We will ask you to do practice for registering, confirming, entering (log in) a short 

or long visual password on each grid density for all formats using eye tracking - 

twice for each format. Note that before entering a password, we will ask you to 

answer two questions (make an evaluation for each grid density) 

 

Overall, the general instructions are divided into three tasks as shown in the following: 

Task 1 (Registration / Confirmation) 

1. Please stand in the middle on the front of the screen, don’t cross the marking on 

the floor, relax and take a natural viewing position, and don’t move your head 

during the experiment. 

2. We will show and provide a short or long visual password to you for each grid 

density of three visual password formats. 

3. Please memorize the short password in one minute or the long password in two 

minutes. 
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4. We will ask you to register the memorized visual password (short or long) by 

selecting visual objects (alphanumeric characters, dots, visual icons) on the screen 

for each grid density on three visual password formats using eye tracking. 

5. On the same screen, we will ask you to confirm the current password (short or long 

password) by re-selecting the same visual objects correctly for each grid density 

on three visual password formats using eye tracking. 

 If the password does not match with your current password, i.e., the one that 

you memorized, you could retry the confirmation until five times. If you cannot 

correctly confirm the password five times, you should return to step 4 with a 

different password (short or long). 

 If your password matches with your current password (correct confirm), you 

can go to step 6. 

 

Task 2 (Rating-scale judgment) 

6. We will ask you to answer on a two 7-point rating scale questions on the screen 

about: 

 whether you think that a particular grid density will be easy to use for 

registering and confirming a short or long visual password using eye tracking. 

 whether you think that a short or long visual password will be easy to memorize 

and recall on each grid density of three formats with eye tracking. 

 

Task 3 (Login) 
7. We will ask you to entry (login) to the system by selecting a sequence of visual 

objects on the screen that matches your current password. 

 If your password does not match with your current password, you could retry 

the login until five times. If you cannot correctly login within five times, you 

should return to step 4 with a different password (short or long). 

 If your password matches with your current password (correct login), you can 

return to step 4 with the next password length or next grid. 

 

8. After finishing all tasks for all grids and formats, please fill in the questionnaire 

regarding your experience. 

 

 

Note that you will perform this experiment with counterbalance in order of three visual 

password formats. Also, the order of password lengths will be counterbalanced among 

participants. 

 

 

Thank you for your participation!  

Yesaya Tommy Paulus, Gerard B. Remijn 



196 

 

Grids Experiment, Experimenter: Yesaya Tommy Paulus - Written informed 

consent 

 

Your signature on this form indicates that you understand to your satisfaction the 

information provided to you about your participation in this experiment, and agree to 

participate as a research participant. 

 

You are free to withdraw from this experiment at any time. You should feel free to ask 

for clarification or new information throughout your participation. 

 

Participant’s Name:      Date: 

 

Participant’s Signature:  
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Appendix U. Screen interfaces of Experiment 6 

Screen interface for Tasks 1 (registration) and 2 (confirmation) with a 5×5 grid. 
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Screen interface for Task 4 (login) with a 5×5 grid. 

 
 

 

Screen interface for Task 3 (grid evaluation) 
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Appendix V. Sequence memorized visual passwords in Experiment 6 
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Appendix W. Questionnaire of Experiment 6 

Questionnaire 
 

To process the data accurately, we would like to ask you for some information. We 

will use the information to analyze our data and, possibly, for data publication of group 

means. 

There are no right and no wrong answers – important to us is that you tell your personal 

opinion. Probably some possible answers might seem not applicable or appropriate. In 

this case, please choose the answer that applies the most. Please do not skip any 

answers and do not think much about each question. Please try to answer 

spontaneously and as accurately as possible. 

All data will be handled in absolute confidentiality, anonymity, and we will not 

disclose data of single individuals. Here are our questions: 

1. What is your age? _____ years old 

2. How tall are you? _____ cm 

3. What is your gender? [ male / female ] 

4. Do you wear glasses? [ yes / no ] 

5. Do you wear contact lenses? [ yes / no ] 

6. What is your ethnicity? Check ( √ ) only one 

□ Asian  

□ Caucasian   

□ Latino/Hispanic  

□ Other: ____________________
 

7. What is the highest level of education you have completed? 

□ High school 

□ Bachelor’s degree  

□ Master’s degree 

□ Doctoral degree 

□ Other: ___________________

 

8. Are you currently a student or a company employee? [ not a student or a company 

employee ] 

If a student, what is your major? 

________________________________________________________________ 

If a company employee, what is your occupation?  

________________________________________________________________ 

9. Do you use a personal computer (PC) in daily or for work? [ yes / no ] 
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10. Please read this statement: “Most problems I find when using a PC, I can fix on 

my own.”   

How does this apply to you (encircle a number): 1 = Always, 2 = Very Often, 3 = 

Sometimes, 4 = Rarely, 5 = Never 

11. Do you have a degree in or are you currently studying toward a degree in an IT-

related field (e.g., information technology, computer science, electrical 

engineering, computer security etc.)? [ yes / no ] 

12. Have you ever (select all that apply):  

□ Configured a firewall on a computer 

□ Created a database 

□ Installed a computer program 

□ Written a computer program 

□ None of the above 
 

13. Do you have any experience using a text-based password (e.g., a PIN with 

numbers or letters) in public settings (e.g., on ATMs, on Laptops / PCs, or 

Smartphones)? [ yes / no] 

14. Do you have any experience using a visual password in public settings (e.g., 

selecting visual icons or patterns on ATMs, on Laptops / PCs, or Smartphones)? 

[ yes / no ] 

If yes, what experience are those? 

15. Do you have any experience using a visual password with eye tracking in public 

settings (e.g., on ATMs, on Laptops / PCs, or Smartphones)? [ yes / no ] 

If yes, what experience are those? 

16. Do you have any mobile device (e.g., a tab/pad, or a smartphone)?  [ yes / no ] 

If yes, please specify the brand and model of your mobile device 

17. If you have a mobile device, which of the following options best describes your 

screen lock habits? 

□ I use a numeric passcode (PIN: Personal Identification Number) to lock/unlock 

screen on my device 

 

 

 



202 

 

□ I use a pattern lock screen on my device 

□ I have no lock screen setting on my device 

□ I don’t have a mobile device 

18. Please give a description of your first impressions regarding the login process 

during the experiment. 

19. Do you have any strategy to memorize the password on each format? [ yes / no ] 

If yes, please describe your strategy 

20. Do you need more time to memorize? [ yes / no ] 

If yes, which password length [ short / long ] 

21. Which visual password format do you think is suitable (best) to use in a real 

situation with eye tracking? [ Alphanumeric / Pattern / Picture ] 

Please describe your reason 

22. After finishing this experiment, would you use the visual password system with 

grid and eye tracking to: 

□ login into a computer or a laptop  

□ access an email 

□ login into an online banking system 

 

Alphanumeric: 

 

Pattern: 

 

Picture: 
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□ unlock a screen of the mobile device (instead of entering the PIN) 

□ Other: _________________________________________________________ 

□ None of the above
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Appendix X. Friedman Tests for task-completion time  

Task 1: 4-object password 
Test Statisticsa 

N 16 
Chi-Square 14.000 
df 2 
Asymp. Sig. .001 

a. Friedman Test 
 

Test Statisticsa 

4-object password Pattern - 
Alphanumeric 

Picture - 

Alphanumeric 

Picture - Pattern 

Z -.625b 
-3.309b -3.361b 

Asymp. Sig. (2-tailed) .532 
.001 .001 

a. Wilcoxon Signed Ranks Test 
b. Based on negative ranks. 

 

Task 1: 6-object password 
Test Statisticsa 

N 16 
Chi-Square 16.625 
df 2 
Asymp. Sig. .000 

a. Friedman Test 
 

Test Statisticsa 

 Pattern - 
Alphanumeric 

Picture - 
Alphanumeric 

Picture - Pattern 

Z -1.603b -3.464b -3.051b 
Asymp. Sig. (2-tailed) .109 .001 .002 

a. Wilcoxon Signed Ranks Test 
b. Based on negative ranks. 

 

 

Task 2: 4-object password 
Test Statisticsa 

N 16 
Chi-Square 6.125 
df 2 
Asymp. Sig. .047 

a. Friedman Test 
 

Test Statisticsa 

 Pattern - 
Alphanumeric 

Picture - 
Alphanumeric 

Picture - Pattern 

Z -2.689b -2.223b -.155b 
Asymp. Sig. (2-tailed) .007 .026 .877 

a. Wilcoxon Signed Ranks Test 
b. Based on negative ranks. 
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Task 2: 6-object password 
Test Statisticsa 

N 16 
Chi-Square 24.125 
df 2 
Asymp. Sig. .000 

a. Friedman Test 
 

Test Statisticsa 

 Pattern - 
Alphanumeric 

Picture - 
Alphanumeric 

Picture - Pattern 

Z -3.516b -3.516b -.465c 
Asymp. Sig. (2-tailed) .000 .000 .642 

a. Wilcoxon Signed Ranks Test 
b. Based on negative ranks. 
c. Based on positive ranks. 

 

 

Task 4: 4-object password 
Test Statisticsa 

N 16 
Chi-Square 6.500 
df 2 
Asymp. Sig. .039 

a. Friedman Test 
 

Test Statisticsa 

 Pattern - 
Alphanumeric 

Picture - 
Alphanumeric 

Picture - Pattern 

Z -1.862b -2.715b -1.500b 
Asymp. Sig. (2-tailed) .063 .007 .134 

a. Wilcoxon Signed Ranks Test 
b. Based on negative ranks. 

 

Task 4: 6-object password 
Test Statisticsa 

N 16 
Chi-Square 7.875 
df 2 
Asymp. Sig. .019 

a. Friedman Test 
 

Test Statisticsa 

 Pattern - 
Alphanumeric 

Picture - 
Alphanumeric 

Picture - Pattern 

Z -.517b -2.948b -2.223b 
Asymp. Sig. (2-tailed) .605 .003 .026 

a. Wilcoxon Signed Ranks Test 
b. Based on negative ranks. 
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Appendix Y. Pearson's correlation analyses for task-completion time 

Task 1: 4-object password 
Correlations 

 Grid_Cells AN_4object PA_4object PI_4object 

Grid_Cells 
Pearson Correlation 1 .600* .497 .768** 

Sig. (2-tailed)  .014 .050 .001 

*. Correlation is significant at the 0.05 level (2-tailed). 
**. Correlation is significant at the 0.01 level (2-tailed). 

 
 

Task 1: 6-object password 
Correlations 

 Grid_Cells AN_6object PA_6object PI_6object 

Grid_Cells 
Pearson Correlation 1 .661** .664** .814** 

Sig. (2-tailed)  .005 .005 .000 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
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Task 2: 4-object password 
 Correlations 

 Grid_Cells AN_4object PA_4object PI_4object 

Grid_Cells 
Pearson Correlation 1 .478 .228 .590* 

Sig. (2-tailed)  .061 .395 .016 

*. Correlation is significant at the 0.05 level (2-tailed). 
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Task 2: 6-object password 
Correlations 

 Grid_Cells AN_6object PA_6object PI_6object 

Grid_Cells 
Pearson Correlation 1 .761** .736** .895** 

Sig. (2-tailed)  .001 .001 .000 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

 

Task 4: 4-object password  
Correlations 

 Grid_Cells AN_4object PA_4object PI_4object 

Grid_Cells 
Pearson Correlation 1 .489 .473 .492 

Sig. (2-tailed)  .055 .064 .053 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Task 4: 6-object password 
Correlations 

 Grid_Cells AN_6object PA_6object PI_6object 

Grid_Cells 
Pearson Correlation 1 .704** .558* .070 

Sig. (2-tailed)  .002 .025 .798 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
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Appendix Z. Pearson's correlation analyses for task-success rate 

Task 2: 4-object password 

Correlations 

 Grid_Cells AN_4object PA_4object PI_4object 

Grid_Cells 
Pearson Correlation 1 -.665** -.644** -.402 

Sig. (2-tailed)  .005 .007 .123 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 

 
 

Task 2: 6-object password 
Correlations 

 Grid_Cells AN_6object PA_6object PI_6object 

Grid_Cells 
Pearson Correlation 1 -.687** -.764** -.662** 

Sig. (2-tailed)  .003 .001 .005 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
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Task 4: 4-object password 
Correlations 

 Grid_Cells AN_4object PA_4object PI_4object 

Grid_Cells 
Pearson Correlation 1 -.217 -.326 -.702** 

Sig. (2-tailed)  .420 .219 .002 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Task 4: 6-object password 
Correlations 

 Grid_Cells AN_6object PA_6object PI_6object 

Grid_Cells 
Pearson Correlation 1 -.230 -.659** -.400 

Sig. (2-tailed)  .392 .006 .125 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
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Appendix AA. Pearson's correlation analyses for grid evaluation 

Easy-to-use judgment: 4-object password and 6-object password. 
Correlations 

4-object password Grid_Cells AN_4object PA_4object PI_4object 

Grid_Cells 
Pearson Correlation 1 -.814** -.958** -.936** 

Sig. (2-tailed)  .000 .000 .000 

**. Correlation is significant at the 0.01 level (2-tailed). 
Correlations 

6-object password Grid_Cells AN_6object PA_6object PI_6object 

Grid_Cells 
Pearson Correlation 1 -.869** -.944** -.903** 

Sig. (2-tailed)  .000 .000 .000 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

Easy-to-remember judgment: 4-object password and 6-object password. 
Correlations 

4-object password Grid_Cells AN_4object PA_4object PI_4object 

Grid_Cells 
Pearson Correlation 1 -.614* -.956** -.638** 

Sig. (2-tailed)  .011 .000 .008 

*. Correlation is significant at the 0.05 level (2-tailed). 
**. Correlation is significant at the 0.01 level (2-tailed). 

Correlations 

6-object password Grid_Cells AN_6object PA_6object PI_6object 

Grid_Cells 
Pearson Correlation 1 -.821** -.857** -.787** 

Sig. (2-tailed)  .000 .000 .000 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Appendix AB. User preferences from a questionnaire  

The question number 21 in the questionnaire 

ID 
Which visual password format do you think is suitable (best) to use in a real 
situation with eye tracking? 

1 Picture, it seems memorable because has a story 

2 
Alphanumeric, it's easy to remember it and someone can set the password by 
their memory 

3 Picture, it seems sader and easy to use 

4 Alphanumeric, we familiar with this format 

5 
Alphanumeric, The reason is: the pattern is difficult to remember when it's not 
created by the user self, picture can be defined in many ways so it can be 
mistaken, and only alphanumeric can be read or remember straightly. 

6 
Alphanumeric: it's the easiest one to remember, Picture: it's interesting and 
hard to forget. 

7 
Alphanumeric, easy/simple/ fast in use but maybe the number of passwords 
can be added using 7 or 8 digits. 

8 
Alphanumeric, the pattern and the picture are very interesting but seem to be 
easy. So I will choose the one not easy to remember. 

9 Alphanumeric, because Pattern is difficult to memorize. 

10 
Alphanumeric is used in daily life so it's easy to use, Picture is easy to 
memorize (and funny). 

11 Alphanumeric, it is easy to memorize for me 

12 Alphanumeric, it is easy to remember. Picture, there may be cultural differences 

13 
Alphanumeric, it is better to change digit's place every time, Pattern is hard to 
remember by other 

14 Alphanumeric is very common in my daily life 

15 
Picture, it was the easiest one for me to remember. Even after finishing the 
experiment I could still remember some of the stories. 

  

The alphanumeric format: 12 out of 15.  

The picture format: 3 out of 15, and the pattern format was none.  



215 

 

Appendix AC. Instruction and informed consent of Experiment 7 

Instruction and Informed Consent of dwell time experiment for participants on 

8th floor building 3 (Ohashi Campus), at Kyushu University, Department of 

Human Science, Japan. 
 

Dear participant, 

 

Thank you for agreeing to participate in today’s experiment. The goal of the 

experiment is to investigate the usability of various dwell times for selecting a 

sequence of 4 or 6 objects on four different grids with eye-gaze-based input. Dwell 

time is the gaze time needed to select specific objects on a display, for example by 

using eye tracking. 

 

Note that we would like you to input a 4-object or 6-object password by using 

your eye-gaze with a dwelling time of 250 ms, 500 ms, 1000 ms, or 2000 ms, 

respectively, during the experiment. A password was generated randomly with a 

minimum length of 4 and a maximum length of 6 visual objects. The passwords 

are set differently to each grid and each password format. Please NEVER use a 

password formation strategy that you use in daily life. 

 

There are no (health) risks involved in joining the experiment and bear in mind that 

you can opt-out of the experiment at any time. We provide a payment for the 

participation of JPY 1000 upon finishing the experiment, and also some candies are 

provided during the break time. The experiment takes about 1 hour and 30 minutes. If 

you have a question or problem at any point in our experiment, please do not hesitate 

to ask the experimenter. Please follow the instructions of the experimenter. 

 

To process the data accurately, we would like to ask you for some information. We 

will use the information to analyze our data and, possibly, for data publication of group 

means. However, we guarantee your privacy: your data will be numbered, and we will 

not disclose data of single individuals.  

 

Here are our questions: 

1. Do you wear glasses? [ yes / no ] 

2. Do you wear contact lenses? [ yes / no ] 

3. How tall are you?   ......  cm 

4. What is your age?   ......   years old 

5. Did you participate in my previous experiment? [ yes / no ] 

 

Pre-experiment instructions: 

1. We will ask you to register and calibrate your eyes on Tobii EyeX software. 

2. We will ask you to do practice for entering a password using eye tracking with a 

dwell time on a grid and a password format. Note that after entering a password, 
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we will ask you to answer a question about making an evaluation for each dwell 

time. 

 

The main instructions: 

1. Please stand in the middle on the front of the screen, don’t cross the marking on 

the floor, relax and take a natural viewing position, and don’t move your head 

during the experiment. 

2. We will show a 4-object or 6-object sequence randomly generated for each of the 

three object types, on a grid that was randomly selected from the four different 

grids. Please memorize the 4-object sequence in one minute or the 6-object 

sequence in two minutes. 

3. After memorizing, we will ask you to enter the memorized 4-object or 6-object 

sequences by selecting visual objects (alphanumeric characters, dots, visual icons) 

on the screen by using your eye-gaze with a dwell time of 250 ms, 500 ms, 1000 

ms or 2000 ms, respectively. 

 If you select a wrong object, you can use a “Clr” key to clear the selected 

object. 

 If the object selection was incorrect or selecting objects in the wrong order, 

you could retry the selection until five times. If you cannot enter the correct 

object on the fifth attempt, you should return to step 2 with a different password 

for the same dwell time, password format and grid. 

 If your sequence matches with your current sequence (correct enter), you can 

restart step 3 

4. Finally, we will ask you to answer on a 7-point rating scale question on the screen 

about whether you think the dwell time used in step 3 as easy to use for object 

selection with eye-gaze-based inputs. 

 

 

Thank you for your participation!  

Yesaya Tommy Paulus, Gerard B. Remijn 
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Dwell time experiment, Experimenter: Yesaya Tommy Paulus - Written 

informed consent 

 

Your signature on this form indicates that you understand to your satisfaction the 

information provided to you about your participation in this experiment, and agree to 

participate as a research participant. 

 

You are free to withdraw from this experiment at any time. You should feel free to ask 

for clarification or new information throughout your participation. 

 

Participant’s Name:      Date: 

 

Participant’s Signature: 
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Appendix AD. Screen interfaces of Experiment 7 

Screen interfaces for selecting a sequence of visual objects (alphanumeric characters, 

[a pattern of] dots, and visual icons) on a 3×4 grid. 
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Appendix AE. Sequence memorized visual objects in Experiment 7 
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Appendix AF. Kruskal-Wallis and Friedman tests 

Kruskal-Wallis tests between grid formations (4-object) 
Test Statisticsa,b 

 AN250 PA250 PI250 AN500 PA500 PI500 AN1000 PA1000 PI1000 AN2000 PA2000 PI2000 

Chi-Square 2.825 3.557 1.018 1.860 .384 1.146 3.755 .241 2.308 4.242 4.691 1.371 
df 3 3 3 3 3 3 3 3 3 3 3 3 
Asymp. Sig. .419 .313 .797 .602 .944 .766 .289 .971 .511 .236 .196 .712 

a. Kruskal Wallis Test 
b. Grouping Variable: GRIDS 

 

Kruskal-Wallis tests between object types (4-object) 
Test Statisticsa,b 

 TIME
250 
3x4 

TIME 
250 
4x3 

TIME 
250 
4x5 

TIME 
250 
5x4 

TIME 
500 
3x4 

TIME 
500 
4x3 

TIME 
500 
4x5 

TIME 
500 
5x4 

TIME 
1000 
3x4 

TIME 
1000 
4x3 

TIME 
1000 
4x5 

TIME 
1000 
5x4 

TIME 
2000 
3x4 

TIME 
2000 
4x3 

ITIME
2000 
4x5 

ITIME
2000 
5x4 

Chi-Square 3.578 2.851 .826 1.026 1.005 3.437 1.758 1.499 1.641 .599 3.573 1.326 .524 1.533 .140 .722 
df 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Asymp. Sig. .167 .240 .662 .599 .605 .179 .415 .473 .440 .741 .168 .515 .770 .465 .933 .697 

a. Kruskal Wallis Test 
b. Grouping Variable: FORMATS 

 

Friedman tests between object types  (6-object) 
Test Statisticsa 

  
250 500 1000 2000 

3x4 4x3 4x5 5x4  3x4 4x3 4x5 5x4  3x4 4x3 4x5 5x4  3x4 4x3 4x5 5x4 

N 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 

Chi-Square 2.667 1.167 2.000 2.667 .667 3.167 2.167 .667 .500 4.500 .167 1.167 3.167 3.500 .167 1.167 

df 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

Asymp. Sig. .264 .558 .368 .264 .717 .205 .338 .717 .779 .105 .920 .558 .205 .174 .920 .558 

a. Friedman Test 
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Friedman tests between grid formations (6-object) 
Test Statisticsa 

  
250 500 1000 2000 

AN PA PI AN PA PI AN PA PI AN PA PI 

N 12 12 12 12 12 12 12 12 12 12 12 12 

Chi-Square 3.300 1.700 5.300 13.400 5.500 1.900 .100 1.500 3.700 3.700 1.500 9.900 

df 3 3 3 3 3 3 3 3 3 3 3 3 

Asymp. Sig. .348 .637 .151 .004 .139 .593 .992 .682 .296 .296 .682 .019 

a. Friedman Test 

 

For a dwell time of 500 ms: Test Statisticsa with Holm Bonferonni 

  Z Asymp. Sig. (2-tailed) Rank Holm-Bonferonni SIG 

AN5x4500 - AN4x3500 -2.432c .015 1 0.008 FALSE 

AN5x4500 - AN3x4500 -2.118c .034 2 0.010 FALSE 

AN4x5500 - AN4x3500 -1.804c .071 3 0.013 FALSE 

AN4x5500 - AN3x4500 -1.255c .209 4 0.017 FALSE 

AN5x4500 - AN4x5500 -1.020c .308 5 0.025 FALSE 

AN4x3500 - AN3x4500 -.235b .814 6 0.050 FALSE 

a. Wilcoxon Signed Ranks Test 

b. Based on positive ranks. 

c. Based on negative ranks. 

 

For a dwell time of 2000 ms: Test Statisticsa with Holm Bonferonni 

  Z Asymp. Sig. (2-tailed) Rank Holm-Bonferonni SIG 

PI4x52000 - PI4x32000 -2.589b .010 1 0.008 FALSE 

PI5x42000 - PI4x32000 -2.510b .012 2 0.010 FALSE 

PI4x52000 - PI3x42000 -2.432b .015 3 0.013 FALSE 

PI5x42000 - PI3x42000 -2.197b .028 4 0.017 FALSE 

PI5x42000 - PI4x52000 -.471b .638 5 0.025 FALSE 

PI4x32000 - PI3x42000 -.314b .754 6 0.050 FALSE 

a. Wilcoxon Signed Ranks Test 

b. Based on positive ranks. 
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Appendix AG. Regression analysis of Experiment 7 with a linear function 

Regression analysis with a linear function (y = a + bx) for all visual objects 

4-object: 
Model Summary   

R R Square 
Adjusted R 

Square 
Std. Error of the 

Estimate   
.998 .995 .995 244.711   

The independent variable is DT.   
ANOVA 

  Sum of Squares df Mean Square F Sig. 

Regression 119916792.888 1 119916792.888 2002.495 .000 

Residual 598836.855 10 59883.685     

Total 120515629.743 11       

The independent variable is DT. 

Coefficients 

  
Unstandardized Coefficients 

Standardized 
Coefficients t Sig. 

B Std. Error Beta 

DT 4.717 .105 .998 44.749 .000 

(Constant) 3288.059 121.466   27.070 .000 

 

 

6-object: 

Model Summary 
  

R R Square 
Adjusted R 

Square 
Std. Error of the 

Estimate   
.998 .995 .995 328.327   

The independent variable is DT.   
ANOVA 

 Sum of Squares df Mean Square F Sig. 

Regression 231149540.590 1 231149540.590 2144.276 .000 

Residual 1077984.022 10 107798.402     

Total 232227524.612 11       

The independent variable is DT. 

Coefficients 

  

Unstandardized Coefficients 
Standardized 
Coefficients 

t Sig. B Std. Error Beta 

DT 6.548 .141 .998 46.306 .000 

(Constant) 5192.447 162.969   31.861 .000 
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Regression analysis with a linear function (y = a + bx) for each visual object 

 

 

The continuous lines show the best-fitting a linear function of the form (y = a + bx), in which 

the correlation between object selection time (4 or 6 objects) and dwell time duration is 

significantly linear (p < 0.01) for each type of three visual objects. 
 

DT: Dwell times, AN_4: Alphanumeric 4-object 
Model Summary 

Model R R Square Adjusted R 
Square 

Std. Error of the 
Estimate 

1 1.000a .999 .999 111.338350859767 

a. Predictors: (Constant), DT 
ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 

Regression 37615201.278 1 37615201.278 3034.407 .000b 

Residual 24792.457 2 12396.228     
Total 37639993.735 3       

a. Dependent Variable: AN_4 
b. Predictors: (Constant), DT 

Coefficientsa 

Model Unstandardized Coefficients Standardized 
Coefficients 

t Sig. 

B Std. Error Beta 

1 
(Constant) 3363.875 95.721   35.143 .001 

DT 4.575 .083 1.000 55.085 .000 

a. Dependent Variable: AN_4 

 

DT: Dwell times, PA_4: (a pattern of) dot 4-object 
Model Summary 

Model R R Square 
Adjusted R 

Square 
Std. Error of the 

Estimate 

1 .999a .998 .996 228.62068 

a. Predictors: (Constant), DT 
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ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 

Regression 44295089.241 1 44295089.241 847.470 .001b 

Residual 104534.830 2 52267.415     
Total 44399624.071 3       

a. Dependent Variable: PA_4 
b. Predictors: (Constant), DT 

Coefficientsa 

Model Unstandardized Coefficients Standardized 
Coefficients 

t Sig. 

B Std. Error Beta 

1 
(Constant) 2903.122 196.551   14.770 .005 

DT 4.965 .171 .999 29.111 .001 

a. Dependent Variable: PA_4 

 

DT: Dwell times, PI_4: Visual Icon 4-object 
Model Summary 

Model R R Square Adjusted R 
Square 

Std. Error of the 
Estimate 

1 1.000a .999 .999 107.16005 

a. Predictors: (Constant), DT 
ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 

Regression 38173959.027 1 38173959.027 3324.309 .000b 

Residual 22966.554 2 11483.277     
Total 38196925.581 3       

a. Dependent Variable: PI_4 
b. Predictors: (Constant), DT 

Coefficientsa 

Model Unstandardized Coefficients Standardized 
Coefficients 

t Sig. 

B Std. Error Beta 

1 
(Constant) 3597.181 92.128   39.045 .001 

DT 4.609 .080 1.000 57.657 .000 

a. Dependent Variable: PI_4 

 

 

DT: Dwell times, AN_6: Alphanumeric 6-object 
Model Summary 

Model R R Square Adjusted R 
Square 

Std. Error of the 
Estimate 

1 .998a .996 .995 372.53735 

a. Predictors: (Constant), DT 
ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 

Regression 75856361.254 1 75856361.254 546.578 .002b 

Residual 277568.151 2 138784.076     
Total 76133929.405 3       

a. Dependent Variable: AN_6 
b. Predictors: (Constant), DT 

Coefficientsa 

Model Unstandardized Coefficients Standardized 
Coefficients 

t Sig. 
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B Std. Error Beta 

1 
(Constant) 5072.193 320.280   15.837 .004 

DT 6.497 .278 .998 23.379 .002 

a. Dependent Variable: AN_6 

 

DT: Dwell times, PA_6: (a pattern of) dot 6-object 
Model Summary 

Model R R Square Adjusted R 
Square 

Std. Error of the 
Estimate 

1 .999a .998 .997 281.25200 

a. Predictors: (Constant), DT 
ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 

Regression 83718185.302 1 83718185.302 1058.348 .001b 

Residual 158205.373 2 79102.687     
Total 83876390.675 3       

a. Dependent Variable: PA_6 
b. Predictors: (Constant), DT 

Coefficientsa 

Model Unstandardized Coefficients Standardized 
Coefficients 

t Sig. 

B Std. Error Beta 

1 
(Constant) 5018.676 241.800   20.755 .002 

DT 6.826 .210 .999 32.532 .001 

a. Dependent Variable: PA_6 

 

DT: Dwell times, PI_6: Visual Icon 6-object 
Model Summary 

Model R R Square Adjusted R 
Square 

Std. Error of the 
Estimate 

1 .998a .997 .995 344.67283 

a. Predictors: (Constant), DT 
ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 

Regression 71810246.828 1 71810246.828 604.467 .002b 

Residual 237598.723 2 118799.361     
Total 72047845.551 3       

a. Dependent Variable: PI_6 
b. Predictors: (Constant), DT 

Coefficientsa 

Model Unstandardized Coefficients Standardized 
Coefficients 

t Sig. 

B Std. Error Beta 

1 
(Constant) 5486.471 296.325   18.515 .003 

DT 6.322 .257 .998 24.586 .002 

a. Dependent Variable: PI_6 
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Appendix AH. Regression analysis of Experiment 7 with a quadratic function  

Regression analysis with a quadratic function (y = ax2 + bx + c) for each visual object 

 
 

 

alphanumeric characters    
Model Summary   

R R Square 
Adjusted R 

Square 
Std. Error of the 

Estimate   

.910 .828 .485 1.213   
The independent variable is DT.   

ANOVA 

  
Sum of 

Squares 
df Mean Square F Sig. 

Regression 7.094 2 3.547 2.412 .414 

Residual 1.470 1 1.470     

Total 8.564 3       

The independent variable is DT. 

Coefficients 

  
Unstandardized Coefficients 

Standardized 
Coefficients t Sig. 

B Std. Error Beta 

DT .001 .005 .378 .178 .888 

DT ** 2 -1.182E-06 .000 -1.278 -.600 .656 

(Constant) 5.338 1.959   2.724 .224 
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(a pattern of) dots     
Model Summary   

R R Square 
Adjusted R 

Square 
Std. Error of the 

Estimate   

.895 .801 .403 1.066   
The independent variable is DT.   

ANOVA 

  
Sum of 
Squares df Mean Square F Sig. 

Regression 4.574 2 2.287 2.012 .446 

Residual 1.136 1 1.136     

Total 5.710 3       

The independent variable is DT. 

Coefficients 

  

Unstandardized Coefficients 
Standardized 
Coefficients 

t Sig. B Std. Error Beta 

DT .003 .004 1.492 .651 .633 

DT ** 2 -1.745E-06 .000 -2.310 -1.008 .498 

(Constant) 3.428 1.723   1.990 .296 

 

 
visual icons     

Model Summary   

R R Square 
Adjusted R 

Square 
Std. Error of the 

Estimate   

.928 .862 .585 1.276   
The independent variable is DT.   

ANOVA 

  
Sum of 
Squares df Mean Square F Sig. 

Regression 10.146 2 5.073 3.115 .372 

Residual 1.629 1 1.629     

Total 11.775 3       

The independent variable is DT. 

Coefficients 

  

Unstandardized Coefficients 
Standardized 
Coefficients 

t Sig. B Std. Error Beta 

DT .009 .005 3.648 1.909 .307 

DT ** 2 -4.529E-06 .000 -4.176 -2.185 .273 

(Constant) 1.698 2.062   .824 .561 
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Regression analysis with a quadratic function (y = ax2 + bx + c) for each visual object 

through three dwell time durations 

alphanumeric characters    
Model Summary   

R R Square 
Adjusted R 

Square 
Std. Error of the 

Estimate   

1.000 1.000       
The independent variable is DT.   

ANOVA 

  
Sum of 

Squares 
df Mean Square F Sig. 

Regression 2.038 2 1.019     

Residual 0.000 0       

Total 2.038 2       

The independent variable is DT. 

Coefficients 

  
Unstandardized Coefficients 

Standardized 
Coefficients t Sig. 

B Std. Error Beta 

DT .016 0.000 5.993     

DT ** 2 -1.312E-05 0.000 -6.448     

(Constant) 1.780 0.000       

 

(a pattern of) dots    
Model Summary   

R R Square 
Adjusted R 

Square 
Std. Error of the 

Estimate   

1.000 1.000       
The independent variable is DT.   

ANOVA 

  
Sum of 

Squares 
df Mean Square F Sig. 

Regression 1.509 2 .755     

Residual .000 0       

Total 1.509 2       

The independent variable is DT. 

Coefficients 

  
Unstandardized Coefficients 

Standardized 
Coefficients t Sig. 

B Std. Error Beta 

DT .016 0.000 6.972     

DT ** 2 -1.224E-05 0.000 -6.990     

(Constant) .300 0.000       
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Visual icons    
Model Summary   

R R Square 
Adjusted R 

Square 
Std. Error of the 

Estimate   

1.000 1.000       
The independent variable is DT.   

ANOVA 

  
Sum of 

Squares 
df Mean Square F Sig. 

Regression 5.853 2 2.926     

Residual .000 0       

Total 5.853 2       

The independent variable is DT. 

Coefficients 

  
Unstandardized Coefficients 

Standardized 
Coefficients t Sig. 

B Std. Error Beta 

DT .025 0.000 5.612     

DT ** 2 -1.709E-05 0.000 -4.957     

(Constant) -2.047 0.000       
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Appendix AI. The Linex loss function 

The asymmetric Linex loss function f(x) is given by: 

 

𝑓(𝑥) = −exp(𝑎𝑥) + 𝑎𝑥 − 1 
 

where x is the loss associated predictive error, a is given parameter, and exp is the 

exponential function.  

 

Small (large) curves can be arranged by determining the value of a. 

If the value of a is negative, the continuous curve will be plotted to the right direction, 

and vice-versa if the value of a is negative.  

 

The following figure is an example that shows a continuous curve through the four 

dwell time durations for three types of visual objects. Furthermore, this function can 

be used to estimate the peak points of dwell time evaluations, as shown in this figure. 
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Appendix AJ. Friedman tests for dwell time evaluations 

For alphanumeric characters, 
Test Statisticsa 

N 12 
Chi-Square 25.226 
df 3 
Asymp. Sig. .000 

a. Friedman Test 

 
Test Statisticsa with Holm Bonferonni 

Alphanumeric Z Asymp. Sig. (2-tailed) Rank Holm-Bonferonni SIG 

AN2000 - AN500 -3.134c .002 1 0.008 TRUE 

AN1000 - AN500 -3.100c .002 2 0.010 TRUE 

AN2000 - AN1000 -3.093c .002 3 0.013 TRUE 

AN2000 - AN250 -2.662c .008 4 0.017 TRUE 

AN500 - AN250 -2.313b .021 5 0.025 TRUE 

AN1000 - AN250 -.628c .530 6 0.050 FALSE 

a. Wilcoxon Signed Ranks Test 

b. Based on negative ranks. 

c. Based on positive ranks. 

 

For (a pattern of) dots, 
Test Statisticsa 

N 12 
Chi-Square 18.471 
df 3 
Asymp. Sig. .000 

a. Friedman Test 

 
Test Statisticsa with Holm Bonferonni 

Pattern Z Asymp. Sig. (2-tailed) Rank Holm-Bonferonni SIG 

PA2000 - PA500 -2.971c .003 1 0.008 TRUE 

PA2000 - PA1000 -2.821c .005 2 0.010 TRUE 

PA1000 - PA500 -2.539c .011 3 0.013 TRUE 

PA500 - PA250 -2.215b .027 4 0.017 FALSE 

PA2000 - PA250 -2.099c .036 5 0.025 FALSE 

PA1000 - PA250 -.669b .503 6 0.050 FALSE 

a. Wilcoxon Signed Ranks Test   
b. Based on negative ranks.   
c. Based on positive ranks.    

 

For visual icons, 
Test Statisticsa 

N 12 
Chi-Square 26.838 
df 3 
Asymp. Sig. .000 

a. Friedman Test 
 



232 

 

Test Statisticsa with Holm Bonferonni 

Picture Z Asymp. Sig. (2-tailed) Rank Holm-Bonferonni SIG 

PI2000 - PI1000 -3.089c .002 1 0.008 TRUE 
PI2000 - PI500 -3.088c .002 2 0.010 TRUE 
PI1000 - PI250 -2.954b .003 3 0.013 TRUE 
PI500 - PI250 -2.816b .005 4 0.017 TRUE 

PI2000 - PI250 -1.273c .203 5 0.025 FALSE 
PI1000 - PI500 -.749c .454 6 0.050 FALSE 

a. Wilcoxon Signed Ranks Test     
b. Based on negative ranks.     
c. Based on positive ranks.     
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Appendix AK. Dwell time usability between object types (Friedman tests) 

For dwell time of 250 ms, 
Test Statisticsa 

N 12 
Chi-Square 13.317 
df 2 
Asymp. Sig. .001 

a. Friedman Test 

s 
Test Statisticsa with Holm Bonferonni 

  Z Asymp. Sig. (2-tailed) Rank Holm-Bonferonni SIG 

PI250 - AN250 -2.969b .003 1 0.017 TRUE 
PA250 - AN250 -1.853b .064 2 0.025 FALSE 
PI250 - PA250 -.497b .619 3 0.050 FALSE 

a. Wilcoxon Signed Ranks Test    
b. Based on positive ranks. 

 

   
 

For dwell time of 500 ms, 
Test Statisticsa 

N 12 
Chi-Square 6.200 
df 2 
Asymp. Sig. .045 

a. Friedman Test 

Test Statisticsa swith Holm Bonferonni 
 Z Asymp. Sig. (2-tailed) Rank Holm-Bonferonni SIG 

PA500 - AN500 -2.200b .028 1 0.017 FALSE 
PI500 - PA500 -1.980c .048 2 0.025 FALSE 
PI500 - AN500 -.707b .480 3 0.050 FALSE 
a. Wilcoxon Signed Ranks Test    
b. Based on positive ranks.    
c. Based on negative ranks.    

 

For dwell time of 1000 ms, 
Test Statisticsa 

N 12 
Chi-Square 13.282 
df 2 
Asymp. Sig. .001 

a. Friedman Test 

Test Statisticsa with Holm Bonferonni 
 Z Asymp. Sig. (2-tailed) Rank Holm-Bonferonni SIG 

PI1000 - PA1000 -2.969c .003 1 0.017 TRUE 
PI1000 - AN1000 -2.448c .014 2 0.025 TRUE 
PA1000 - AN1000 -.917b .359 3 0.050 FALSE 
a. Wilcoxon Signed Ranks Test 

 

   
b. Based on positive ranks. 

 

   
c. Based on negative ranks. 
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For dwell time of 2000 ms, 
Test Statisticsa 

N 12 
Chi-Square 3.379 
df 2 
Asymp. Sig. .185 

a. Friedman Test 

 

Note: 

AN: alphanumeric characters, PA: (a pattern of) dots, and PI: visual icons 


