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Chapter 1

Introduction

Due to safety reasons and hardware restrictions, systems’ actuators such as pumps,
valves, and compressors have movement limitations and threshold capacity. For ex-
ample, the liquid level in a tank is not the only bounded quantity, but also the liquid
level cannot change arbitrarily fast. These limitations protect the controlled plants
from drastic commands and physical wear, such as in aerodynamics systems [3–10]. If
these limitations are not handled and respected through the control method, it may
cause unexpected behavior or performance degradation ended by crashes. Flight ac-
cidents have been recorded [11] in which the extreme pitching-action caused circling
and instability that ended by incident. On another side, a study of a wind turbine
system [12] shows that a reduction in the oscillations’ amplitude of the generated
torque significantly improves the lifetime of the mechanical parts, and consequently,
it improves the maintenance cost of such systems.

The behavior of closed-loop systems under limitations on both of the actuator
signal’s amplitude and the actuator signal’s rate-of-change is the main interest of this
dissertation. A constraint on the actuator signal’s amplitude, unfortunately, converts
a linear controlled plant into a nonlinear one, and imposing constraints on the actuator
signal’s rate-of-change further complicates the stability problem, as has been studied
in [1,13–18]. A significant problem raised in those studies is the trade-off between the
stability region and the closed-loop performance [1,14], where a low-gain control action
is a good solution to prevent the actuator from being saturated. However, it does not
allow the controlled plant to work at high performance, especially in the presence of
uncertainties or external disturbances.

1
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Actuator

 input

Actuator

 output

Figure 1.1: Actuator model with amplitude- and rate-limitations.

1.1 Control techniques producing signals with lim-

ited amplitudes and limited rate-of-change

Considering that a first-order system is one possible representation of the actuator
system, one of the most common ways to implement amplitude- and rate-limitations
to such systems is the nested saturated implementation [1, 3, 13–16, 18–20], as shown
in Fig 1.1. The following various contexts are existing techniques to deal with such
limitations.

1.1.1 Optimal control

Optimal control [21–23] is a control technique in which the control law is selected to sat-
isfy some conditions or to optimize between some control objectives. These objectives
and conditions could be expressed by inequality constraints, which are solved together
to obtain the controller’s parameters. Regarding the aforementioned amplitude- and
rate-limitations, the optimal control is applied in some studies [18,24–26] to deal with
these limitations. It is not straight forward to directly consider these limitations via
inequality constraints, thus the generalized sector condition [27,28] has been employed
in some work to describe the nonlinearities imposed by the saturation functions and
to reduce the conservatism of estimating the stability region.

1.1.2 Anti-windup technique

Anti-windup [17, 20, 29, 30] is another technique used with systems subjected to ac-
tuator limitations. The main role of the anti-windup technique is to compensate an
existing controller, which has been designed to work in the absence of saturation. The
anti-windup loops only become active if saturation occurs, while the existing controller
is mainly designed to improve the system performance when there is no saturation.
The anti-windup technique could be a common solution for the problem of only the ex-
isting limitation on the actuator signal’s amplitude [31], while it is rarely presented to
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Actuator

 output
Actuator

 input

Figure 1.2: Actuator model with amplitude- and rate-limitations consisting of an

“ideal rate limiter”, i.e., γ1 = 0.

solve the problem of existing limitations on both of the amplitude and rate-of-change.
Regarding the problem of both limitations, a controller structure with anti-windup
loops is introduced in [17], where a linear output compensator is introduced to sup-
press the disturbance effects. One drawback of the anti-windup technique is that
the gains of the anti-windup loops are additional parameters that need to be tuned
appropriately.

1.1.3 Model predictive control

Model predictive control is a control technique that produces a control action with
certain constraints. Model predictive control technique [32–34] predicts the future
outputs over a specific prediction horizon, where a cost function is optimized on-line at
each sampling interval-time via a quadratic-programming algorithm [35,36]. Although
a long horizon results in better optimal performance, the first value in the predicted
control horizon is only applied, and then, the on-line optimization is repeated for the
next time interval. Due to the time needed in the on-line optimization, the model
predictive control is usually implemented for a relatively slow process, while there are
difficulties to be applied to a fast process [37].

1.2 Sliding mode control and its feature to pro-

duce a control signal with limited amplitude

and limited rate-of-change

Sliding mode control [38,39] is a nonlinear control technique known by its insensitivity
to the disturbances and its robustness against systems’ uncertainties. This technique
uses a set-valued control action to force the controlled system into a sliding surface of
known behavior. The boundedness of the set-valued function and the sliding nature of
the sliding mode control are the motivation in this dissertation to employ the sliding
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mode technique with the considered system in this dissertation, where the produced
control signal is already bounded and this boundary can be chosen within the limita-
tions of the actuator system. Sliding-mode control schemes have been proposed [40] to
deal with only the problem of exiting amplitude limitation [41–45], in which a low-gain
approach is used to reduce the control action of the linear component, while the dis-
continuous component is decided by the maximum amplitude of system’s uncertainty.
Meanwhile, dealing with the amplitude and the rate limitations together under the
approach of sliding mode control has not been studied yet, as far as the author aware.
It is expected that the sliding mode technique would be helpful to analyze and reduce
the nonlinearities of the actuator limitations and it would allow the system’s state to
slide into a linear surface, which is easy to be designed.

Now, let us approach the cases where the time constant (i.e., γ1 in Fig 1.1) of
such actuators is negligible. The saturation block that limits the rate-of-change can
be replaced by a set-valued function, which may be referred to as an ideal rate limiter
[13,14,46]. The set-valued function sgn(·) can be seen as an almost-everywhere point-
wise limit of the saturation function sat(·) as follows:

sgn(x) = lim
ε↘0

sat1(x/ε) ∀x 6= 0 (1.1)

where the saturation function and the set-valued function are defined respectively as
follows:

satα(x)
∆
=

{
αx/|x| if |x| > α
x if |x| ≤ α,

(1.2)

sgn(x)
∆
=

{
[−1, 1] if |x| = 0
x/|x| if |x| > 0.

(1.3)

This can be easily proven by considering the definitions of sgn(x) and sat(x) for x 6= 0
as follows:

lim
ε↘0

sat1(x/ε) = lim
ε↘0

x/ε

max(1, |x|/ε)
= lim

ε↘0

x

max(ε, |x|)
= x/|x| = sgn(x), ∀x 6= 0. (1.4)

Regarding the implementation of Fig 1.2, which comprises an ideal rate-limiter,
this dissertation is going to adopt a new sliding-mode technique to deal with the
limitations mentioned above. The set-valued function of the sliding mode controller
limits the control signal’s rate-of-change, while the control signal’s amplitude is limited
by a saturation function, implemented inside the set-valued function. A controller with
nested structure of set-valued functions shows its ultimate finite-time convergence to
the origin, as discussed by Miranda-Villatoro et al. [47]. In this dissertation, the
amplitude signal cannot be limited by a set-valued function instead of a saturation
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Figure 1.3: Graph (a) is the saturation function sat1(x/ε), graph (b) is an equivalent

function of that in graph (a), and graph (c) is the signum function sgn(x).

function, because the infinite-slope of the set-valued function does not match with the
bounded rate-of-change as Remark 2.4.2 shows later on.

Through the analysis of such configuration of nested sgn-sat functions, Chapter 2
suggests that the control law could include a variable parameter to overcome the
trade-off between the stability and the rejection of disturbances. This parameter is
recommended to be changeable according to the state and magnitude of the distur-
bances. This parameter is designed to be inversely proportional to the control action.
It holds at high values when the state is far from the origin, and consequently, it
facilitates a large region of attraction. Meanwhile, this nonlinear parameter holds at
low values after the state comes near the origin to consequently produce a high-gain
control action, which is a classical method used to reduce the effects of disturbances.
Although there is still lack in the theoretical analysis of the proposed controller with
respect to time-varying parameters, the results of the simulations in this dissertation
show its effectiveness to resolve and relax the trade-off problem between enlarging the
region of attraction, respecting the limitations of the actuator, and attenuating the
affects of disturbances.

1.3 Major Achievements

The objective of this dissertation is to propose a new control scheme with simple imple-
mentation to be applied to systems that need a control signal with limited amplitude
and limited rate-of-change. Corresponding to that objective, the major achievements
can be summarized as follows:
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1.3.1 New amplitude- and rate-saturated controller (Chap-

ter 2)

Based on the idea of the ideal rate limiter, Chapter 2 proposes a new nonlinear con-
troller applicable to single-input linear systems under bounded disturbance. The con-
troller provides control signals satisfying specified amplitude and rate-of-change limita-
tions. This feature is realized by its sliding mode-like structure comprising a set-valued
function. The controller also employs a state-dependent parameter to broaden the re-
gion of attraction and to shrink the terminal attractor. In addition, a discrete-time
implementation of the proposed controller has been developed based on a model-based
implicit discretization scheme. Numerical examples show the validity of the proposed
controller.

1.3.2 Parameter selection procedure for the proposed con-

troller (Chapter 3)

Chapter 3 presents a selection procedure to obtain parameter values of the proposed
amplitude- and rate-saturated controller. The proposed selection procedure involves
a set of linear matrix inequalities [48] and also includes iterative computation. The
effectiveness of the proposed selection procedure is shown through a comparison with
the parameter-tuning guideline of Chapter 2.

1.3.3 Extending the proposed controller to wind turbine sys-

tems (Chapter 4)

Chapter 4 proposes a new collective pitch controller appropriate for wind turbine
systems to maintain the generator speed constant in the region above the rated wind
speed. This controller is built on the controller of chapter 2 to satisfy the amplitude
and rate limitations imposed by the hardware of the pitch actuator system. The
control gain inversely correlates with the magnitude of the state and disturbances, so
that low-gain control action is produced when there is a significant variation in the
wind speed. The low-gain action here is to avoid performance degradation, which
may happen due to the limitations of the pitch actuator. Moreover, the controller
produces a high-gain action when the system state is near the origin to reject the
wind speed variations and to regulate the generator speed. The proposed controller
is validated by applying it to a three-bladed horizontal-axis wind turbine emulated
by a software simulator (FAST). The proposed controller is compared with a gain-
scheduling proportional-integral controller and a linear feedback controller.
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1.4 Organization

The rest of this dissertation is organized as follows. Chapter 2 proposes a new non-
linear controller applicable to single-input linear systems under bounded disturbance.
Chapter 3 proposes a selection procedure to obtain parameter values of the proposed
amplitude- and rate-saturated controller. Chapter 4 proposes a real application that
can utilize the proposed controller to work efficiently in the presence of hardware lim-
itations. Finally, Chapter 5 provides concluding remarks and some ideas for future
work.



Chapter 2

An amplitude- and rate-saturated

controller for linear plants

2.1 Introduction

The main interests of previous studies on systems under amplitude- and rate-saturated
controllers are to avoid the instability and to realize smooth behaviors. There have
been two control approaches to deal with such systems. The first approach [1,13,14] is
to model the actuator dynamics as a nested saturation system, in which the amplitude
and the rate-of-change of the control signal are saturated. Most of the studies that
applied this approach employed Linear Matrix Inequality-based conditions to select the
suitable linear feedback gains that maintain stability. The second approach [15–18] is
to construct a nonlinear controller providing control signals that already satisfy the
amplitude and rate limitations, which are imposed by the actuators.

Regarding the first approach, Gomes da Silva et al. [14] proposed a state feedback
controller for such linear systems with actuator limitations. They clarified the trade-off
between the closed-loop performance and the size of the region of attraction, and they
proposed an algorithm based optimization problem to obtain the controller parameters.
Palmeira et al. [1] also introduced a state feedback controller, in which the control
signal is sampled by a non-periodic sampling interval. In order to obtain the controller
parameters, they introduced two optimization problems based on two scenarios; one
aims to maximize the region of attraction, and the other aims to maximize the sampling
interval permissible for stability. It should be noted that the existence of external
disturbance was not taken into account in [1, 14].

0The content of this chapter is partially published in [49], namely, N. Baiomy, R. Kikuuwe. An

amplitude- and rate-saturated controller for linear systems. Asian Journal of Control, vol. 21, no. 6,

2019.
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Regarding the second approach, Stoorvogel and Saberi [15] presented a nonlinear
state feedback controller that produces a control signal with limited amplitude and
limited rate-of-change. They employed observer-based measurement feedback to re-
ject the disturbance effects. Gomes da Silva et al. [16] introduced a nonlinear control
scheme involving two anti-windup loops, which require additional parameters to be
tuned appropriately. This controller has been improved by Bender and Gomes da
Silva [17] to take the existence of disturbance into account, where the disturbance tol-
erance and the system output magnitude are treated in a framework of an optimization
problem under LMI constraints.

In this chapter, the second approach is followed, where a new controller is proposed
to provide a limited control signal in both its amplitude and its rate-of-change. This
controller has a structure in which the saturation function and the signum function are
used in a nested way. This structure is similar to the one called an ideal rate limiter [13,
14,46], and it does not include anti-windup loops. One of the main features of the new
controller is that it involves a nonlinear function to suppress the effect of disturbance
without affecting its convergence behavior. More specifically, this nonlinear function
imposes low gain when the state is far from the origin and imposes high gain when the
state is near the origin. Another feature of the proposed controller lies in its discrete-
time implementation, which is derived based on the implicit Euler method to avoid
chattering raised by the discontinuous (or more strictly, set-valued) function.

The remainder of this chapter is organized as follows. Section 2.2 presents the
problem formulation in the continuous-time and shows two previous approaches for
linear systems subjected to amplitude- and a rate-saturated control signal. In Section
2.3, the idea of using the signum function is analyzed to produce rate-saturated control
signals. Section 2.4 introduces a new control scheme with a designed nonlinear function
to improve its convergence behavior and its insensitivity against the disturbance near
the origin. A new discrete-time algorithm is also proposed in Section 2.4. Section 2.5
shows illustrative numerical examples of the proposed controller. Finally, a summary
is provided in Section 2.6.

2.2 Linear plants subjected to actuator limitations

Here, a linear controlled plant is considered with the following form:

ẋ = Ax+ b(u+ ζ) (2.1)

where x ∈ Rn is the state vector, u ∈ R is the control input, and ζ ∈ R is the unknown
perturbation. It is assumed that there exists Lm > 0 with which the perturbation ζ
satisfies |ζ| ≤ Lm for all t > 0. It is also assumed that the input signal u needs to
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satisfy
|u| ≤ α and |u̇| ≤ β (2.2)

where α and β are positive scalars, and Lm < α. For the convenience of further
derivation, another positive constant L is used so that it satisfies Lm < L < α. The
matrices A ∈ Rn×n and b ∈ Rn are constant, and the pair (A, b) is controllable.

To model the control input restrictions of (2.2), many studies [1, 3, 13–16, 18–20],
employ the following differential equation:

u̇ = −satβ

(
1

γ1

(u+ satα(σ(x)/γ))

)
. (2.3)

Here, σ(x) is a scalar function of the state vector x, and the scalars {γ, γ1} are
positive constants. This differential equation has been used for the model of the
hardware limitation of actuators [1, 13] and for controllers that have amplitude and
rate-of-change limitations [18].

When (2.3) is viewed as an actuator model, as shown in Fig. 2.1.(a), the constant
γ1 can be seen as a model parameter that is determined by the hardware and as
the time constant of the first-order lag. In this case, σ(x)/γ and u are the input
and the output of the actuator model, respectively. Bateman and Lin [13] employed
this actuator model and derived conditions for the controller parameters to achieve the
stability in the presence and in the absence of disturbances. Other research work [1,46]
focused on the enlargement of the domain of attraction.

When (2.3) is viewed as a controller, as shown in Fig. 2.1.(b), the actuator is
considered as a part of the linear plant that accepts the control input satisfying (2.2).
The extreme case where γ1 ↘ 0 is considered by Stoovrogel and Saberi [15], where
(2.3) reduces to

u̇ ∈ −βsgn (u+ satα(σ(x)/γ)) , (2.4)

as shown in Fig. 2.1(c). Note that the controller of this extreme case is effective only if
the time constant γ1 of the actuator is sufficiently close to zero. As is formally pointed
out in [13,14,46], (2.4) can be seen as an ideal amplitude and rate limitation operator.

2.3 Analysis of the sgn-sat controller

By combining the controlled plant (2.1) with the control law (2.4), the following system
is obtained:

χ̇ ∈
[

Ax+ b(u+ ζ)
−βsgn

(
u+ satα

(
cTx/γ

)) ] (2.5)

|ζ| ≤ Lm < L < α (2.6)
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Figure 2.1: Some control structures involving amplitude and rate-of-change limi-

tations. (a) System with amplitude- and rate-limited actuator. (b) System with

amplitude- and rate-limited controller. (c) System with controller consisting of an

”ideal rate limiter,” which is an extreme case of (b), i.e., γ1 = 0.

where {α, β, γ} ⊂ R+, A ∈ Rn×n, b ∈ Rn, c ∈ Rn and

χ
∆
= [xT , u]T ∈ Rn+1 (2.7)

cTb > 0. (2.8)

Let us define

σ
∆
= cTx, η

∆
= cTAx/(cTb), κ

∆
= cTb, β̂

∆
= β/(cTb). (2.9)
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Then, we can consider a subsystem of the system (2.5)(2.6) as follows:

ξ̇ ∈

 κ(η + u+ ζ)
φ(x, u, ζ)

−κβ̂sgn (s(ξ))

 (2.10)

|ζ| ≤ Lm < L < α (2.11)

where

ξ
∆
= [σ, η, u]T ∈ R3 (2.12)

s(ξ)
∆
= u+ satα (σ/γ) (2.13)

and φ(x, u, ζ) is a linear function of {x, u, ζ}. The subsystem (2.10)(2.11) is obtained
by projecting the system (2.5)(2.6) to the subspace R3 with the following operation:

ξ =

[
M o2

oTn 1

]
χ =

[
Mx
u

]
∈ R3 (2.14)

where

M
∆
=

[
cT

cTA/(cTb)

]
∈ R2×n. (2.15)

For the convenience of further discussion, let us define the following subsets of the
sub-state space R3:

D ∆
=
{
ξ ∈ R3

∣∣ |η| < α− L
}

(2.16)

F ∆
=
{
ξ ∈ R3

∣∣ |η + u| < β̂γ − L
}

(2.17)

S ∆
=
{
ξ ∈ R3

∣∣ s(ξ) = 0
}

(2.18)

SL
∆
= {ξ ∈ S| |σ| < αγ} (2.19)

SC
∆
= {ξ ∈ S| |σ| > αγ} , (2.20)

which are illustrated in Fig. 2.2. The following operators; Ê : 2R3 → 2Rn+1
and

P : 2Rn+1 → 2R3
are defined as follows:

Ê(X )
∆
=

{[
x
u

]
∈ Rn+1

∣∣∣∣[ Mx
u

]
∈ X

}
(2.21)

P(X̂ )
∆
=

{[
Mx
u

]
∈ R3

∣∣∣∣[ xu
]
∈ X̂

}
, (2.22)

which are to make correspondence between a subset of the total state space Rn+1 and
a subset of the sub-state space R3. Throughout this chapter, a calligraphic symbol
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with or without a hat denotes a subset of Rn+1 or R3, respectively. In this chapter,
the symbols cl(X ) and X denote the closure and the complementary set, respectively,
of a set X . The interior and the boundary of a set X are denoted by Int(X ) and ∂X ,
respectively. The set of all subsets of a set X is denoted by 2X . For brevity, Eig(X)
denotes the set of all eigenvalues of a matrix X.

Now, let us show that the sliding mode takes place at a portion of S.

Theorem 2.3.1. Let us consider the system (2.5)(2.6). Then, the sliding mode takes

place at the portion Ê(SC ∪ (SL ∩ F)) of the surface Ê(S), on which s(ξ) = 0 is

satisfied.

Proof. Let us consider the following function:

Vs(s)
∆
= |s|. (2.23)

One can see that, for a ξs ∈ S, if there exists a λ > 0 that satisfies

V̇s(s(ξ)) ≤ −λ (2.24)

in the intersection of an open neighborhood of ξs ∈ S and the subset S, where s(ξ) 6= 0,

we can say that the sliding mode takes place at ξs ∈ S. The following proof shows

that such a λ > 0 exists for every ξ ∈ SC ∪ (SL ∩F).

From (2.13), we can obtain the following:

V̇s(s(ξ)) =

 −β if |σ| > αγ ∧ s(ξ) 6= 0

−β
(

1− sgn(s(ξ))
σ̇

βγ

)
if |σ| < αγ ∧ s(ξ) 6= 0.

(2.25)

This means that, if |σ| > αγ and s(ξ) 6= 0, (2.24) is satisfied with λ = β and thus

the sliding mode takes place on the set SC , which is the portion of S that lies in the

region |σ| > αγ.

Meanwhile, if |σ| < αγ, s(ξ) 6= 0 and also ξ ∈ F are satisfied, (2.25) implies that

the following is satisfied:

V̇s(s(ξ)) = −β
(

1− sgn(s(ξ))
σ̇

βγ

)
≤ −β

(
1− |η + u+ ζ|

β̂γ

)
≤ −β

(
β̂γ − |η + u| − Lm

β̂γ

)
≤ −κ(L− Lm)/γ, (2.26)
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Figure 2.2: Subsets of the sub-state space R3. (a) The switching surface S and its

subsets. (b) The projection of some subsets on the σ-η plane.

where the following the fact is used:

β̂γ > |η + u+ ζ| ∀ξ ∈ F . (2.27)

This means that (2.24) is also satisfied in this case and thus the sliding mode also takes

place on the set SL ∩F . Therefore, we can see that the subsystem (2.10)(2.11) is in

the sliding mode on the patch SC ∪ (SL∩F) of the switching surface S. This implies

that the total system (2.5)(2.6) is in the sliding mode on the patch Ê(SC ∪ (SL ∩F))

of the surface Ê(S). This completes the proof.

This theorem indicates that, once the state ξ reaches the manifold S, the state
may escape from S only from the portion SL ∩ F . Considering that u = −σ/γ is
satisfied on SL, the subset SL ∩F can be written as follows:

SL ∩F =
{
ξ ∈ SL

∣∣∣ |η − σ/γ| < β̂γ − L
}
. (2.28)

After reaching the set SC , the state ξ moves toward SL as long as it stays in SC ∩D.
The following theorem formally states this fact:

Theorem 2.3.2. Let us consider the system (2.5)(2.6) and assume that χ ∈ Ê(SC ∩
D) at t = t0. Then, the state χ reaches Ê(cl(SL)) or Ê(cl(SC ∩D)) in finite time.
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Proof. When ξ ∈ SC ∩D, the following is satisfied:

u = −αsgn(σ) ∧ |σ| ≥ αγ ∧ |η| < α− L, (2.29)

which leads to the following:

d|σ|/dt = sgn(σ)σ̇

= −κsgn(σ)(αsgn(σ)− η − ζ)

≤ −κ(α− |η| − Lm)

< −κ(L− Lm). (2.30)

With the use of the comparison lemma [50, Lemma 3.4], one can obtain the following

from (2.30):

ξ(t) ∈ SC ∩D ∀t ∈ (t0, t1)⇒ |σ(t1)| < |σ(t0)| − κ(L− Lm)(t1 − t0). (2.31)

In SC ∩D, |σ| is lower-bounded by αγ. Therefore, if we set

t1
∆
= t0 +

|σ(t0)| − αγ
κ(L− Lm)

, (2.32)

we have the following:

∃tm ∈ (t0, t1) s.t.
(
(ξ(t) ∈ SC ∩D ∀t ∈ (t0, tm)) ∧

(
ξ(tm) ∈ SC ∩D

))
. (2.33)

This means that, at such a time instant tm shown in (2.33), the state ξ is outside the

set SC ∩D. Because the sliding mode takes place on SC ∩D, the state does not move

directly from SC ∩D into S. Therefore, possible transitions at the time tm is only

into cl(SL) and cl(SC ∩D). This completes the proof.

After the state ξ reaches the set SL (i.e., the state χ reaches the set Ê(SL)), the

system is linear. As long as the system state χ stays in Ê(SL ∩F) (i.e., the condition
(2.27) is satisfied), one can prove that the state is attracted to a neighborhood of the
origin through the following Theorem:

Theorem 2.3.3. With the system (2.5)(2.6), there exists a set Ẑ ⊂ Ê(SL ∩F) that

includes the origin and is asymptotically stable if Lm is small enough and if A−bcT/γ
is Hurwitz.

Proof. When ξ ∈ SL, the system (2.5)(2.6) reduces to the following linear system:

ẋ = (A− bcT/γ)x+ bζ (2.34)

u = −cTx/γ. (2.35)
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If A − bcT/γ is Hurwitz, for every positive definite matrix Q ∈ Rn×n, there exists a

positive definite matrix P ∈ Rn×n that satisfies

P (A− bcT/γ) + (A− bcT/γ)TP = −2Q. (2.36)

With such Q and P , let us define the following function:

Vq(x)
∆
= xTPx/2. (2.37)

Then, one can find that

V̇q(x) = −xTQx+ xTPbζ

≤ −λQ‖x‖2 + Lm‖x‖‖Pb‖ (2.38)

where λQ stands for the minimum eigenvalue of Q. This means that V̇q(x) < 0 is

satisfied if

‖x‖ > Lm‖Pb‖/λQ. (2.39)

Thus, the following quantity can be defined:

ρa
∆
= max

x∈Rn

‖x‖≤‖Pb‖/λQ

Vq(x) = max
x∈Rn

‖x‖≤Lm‖Pb‖/λQ

Vq(x)

L2
m

, (2.40)

which does not depend on Lm. Based on this, let us define the followings:

Ẑ ∆
= {χ ∈ SL | Vq(x) < L2

mρa ∧ Vs(s(ξ)) = 0}. (2.41)

Let us assume that Ẑ ⊂ Int(Ê(SL∩F)). Then, there exists an open neighborhood

N̂ of Ẑ that is small enough to satisfy N̂ ∩ Ê(SL\F) = ∅. With such an N̂ , we can

see that V̇q(x) and V̇s(s(ξ)) are bounded as

V̇q(x) < a1 ∧ V̇s(s(ξ)) < −a2 ∀χ ∈ N̂ \Ê(SL) (2.42)

V̇q(x) < 0 ∧ V̇s(s(ξ)) = 0 ∀χ ∈ N̂ ∩ Ê(SL) (2.43)

where a1 and a2 are positive scalars. Therefore, if one set

Va(χ)
∆
= max(0, Vq(x)− L2

mρa) +
a1

a2

Vs(s(ξ)), (2.44)

we can see that Va(χ) = 0 is satisfied for all χ ∈ Ẑ and V̇a(χ) < 0 is satisfied for all

χ ∈ N̂ \Ẑ. Thus, Ẑ is asymptotically stable in a local sense if Ẑ ⊂ Int(Ê(SL ∩F)).

The definition (2.41) implies that Ẑ ⊂ Int(Ê(SL ∩ F)) is satisfied if Lm is small

enough. This completes the proof.
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With respect to the terminal attractor Ẑ, a subset of the region of attraction can
be given as follows:

Â ∆
=
{
χ ∈ Ê(SL) |Vq(x) < ρb

}
(2.45)

where
ρb

∆
= min

χ∈Rn+1

χ∈Ê(SL∩(∂F))

Vq(x). (2.46)

If the set Â shares its boundary with the set Ê(SL ∩F), then the state reaches the

terminal attractor Ẑ, as long as it stays in Ê(SL ∩F).

In conclusions, as long as χ is in the portion Ê(SC∩D), it is attracted to the subset

Ê(SL). Once χ reaches Â, which is a subset of Ê(SL ∩F), the state asymptotically

approaches the terminal attractor Ẑ. It should be noted that a smaller γ results in a
smaller terminal attractor Ẑ because it is a subset of Ê(SL ∩F), of which the width

is αγ. It however results in a smaller size of the linear sliding patch Ê(SL∩F), which

includes a subset of the region of attraction Â. Therefore, one can conclude that γ
should be large when the state is far from the origin and should be small when the
state is close to the origin.

2.4 Proposed controller

Now, a new controller algorithm based on the discussion in Section 2.3 is proposed. The
proposed controller is built on the controller (2.4) but the parameter γ is determined
by a particular function of the state variables x and u. This nonlinear function γ is
chosen to decrease the size of the terminal attractor Ẑ and to increase the size of the
linear sliding patch Ê(SL ∩F).

2.4.1 Continuous-time representation

For the application to the controlled plant (2.1), a new controller is presented as
follows:

u̇ ∈ −βsgn
(
u+ satα(cTx/γ(x, u))

)
(2.47)

where

γ(x, u)
∆
= min

(
γc,
|cTAx|+ cTb|u|+ cTbL

β

)
. (2.48)

Here, u is the control signal amplitude, γc is a positive constant representing an
upperbound of γ(x, u), L is a positive constant that is greater than the expected
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disturbance (i.e., L > |ζ|), and c ∈ Rn is a vector chosen so that it satisfies cTb > 0.
It is assumed that the maximum control signal amplitude α is greater than L, i.e.,

|ζ| < L < α. (2.49)

The choice of the nonlinear function γ(x, u) is motivated by the proof of Theorem
2.3.1, which shows that

γ >
|cTAx+ cTbu+ cTbζ|

β
(2.50)

needs to hold true to realize the sliding mode. To satisfy this condition, one choice is
to set γ as follows:

γ =
|cTAx|+ cTb|u|+ cTbL

β
. (2.51)

Here, γ needs to be prevented from becoming excessively large because a very large γ
means a very low control gain. Considering these points, we can see that the definition
(2.48) of γ(x, u) is a natural choice, in which an upperbound γc is set.

With the nonlinear function γ(x, u), the stability proofs in Section 2.3 do not
strictly hold because it will inject additional terms proportional to γ̇ to the derivatives
of Vs(s(ξ)) and Vq(x). They are still valid if γ̇ is small enough, although it is still
unclear in what regions of the state space |γ̇| can be said to be small enough. One
approach to this problem might be to use the fact that the upperbound of γ̇ can be
given as a function of the state vector χ. Leaving this problem as an open problem,
usefulness of the controller is supported through some numerical examples in Section
2.5.

2.4.2 Parameter tuning guideline

This section shows an approach to design the vector c ∈ Rn and the parameter γc > 0,
which comprise all parameters that need to be designed. Here, the problem to choose
c and γc is considered so that the eigenvalues of the matrix A − bcT/γ is within a
given region R in the complex plane for all γ ∈ (0, γc]. The region R can be given
according to required response characteristics, such as damping ratio and settling time,
of applications.

Let us define

Ad(γ)
∆
= A− bcT/γ. (2.52)

Then, one can see that, as γ ↘ 0, one of the eigenvalues of the matrix Ad(γ) goes to
−∞, while the others remain finite because it has been assumed that cTb > 0 in the
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          °=0

 

Figure 2.3: Illustrative graph for the region R and the loci of Eig(Ad(γ)).

condition (2.8). Thus, the vector c needs to be designed so that limγ↘0 Eig(Ad(γ)) ⊂
R. For this purpose, the following theorem is useful:

Theorem 2.4.1 (a special case of Theorem 2 in [51]). Let us define the following

matrices:

Ā =

[
Ā11 ā12

āT21 ā22

]
, b̄ =

[
on−1

1

]
, c̄ =

[
c̄1
T 1

]T
(2.53)

where Ā11 ∈ R(n−1)×(n−1), {ā21, ā12, c̄1} ⊂ Rn−1, and ā22 ∈ R. Let us assume that

γ > 0 and that the pair (Ā, b̄) is controllable. Let us define the following matrix:

Āc(γ) = Ā− b̄c̄T/γ. (2.54)

Then, as γ ↘ 0, one of the eigenvalues of Āc(γ) goes to −∞ and the other (n − 1)

eigenvalues converge to the eigenvalues of Ā11 − ā12c̄
T
1 ∈ R(n−1)×(n−1).

With this theorem, a pole placement problem of an n×n system with one infinitely
fast pole can be reduced to another pole placement problem of an (n − 1) × (n − 1)
system. This theorem can be used to set the eigenvalues of limγ↘0Ad(γ) to specified
locations {qi, · · · , qn−1}, which should be located in R. To apply this theorem to
system (2.1), let us define a matrix T ∈ Rn×n so that Tb = [oTn−1, 1]T is satisfied.
Once we obtain the vector c̄1 ∈ Rn−1 using Theorem 2.4.1, the vector c can be chosen
as follows:

c = T T
[
c̄1
T 1

]T
. (2.55)
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Now, let us discuss the choice of γc, which is the upperbound of the nonlinear
function γ(x, u). Recalling that Eig(Ad(γ)) ⊂ R should be satisfied for all γ ∈ (0, γc],
the maximum of such values of γ can be found by drawing the loci of Eig(Ad(γ)) with
γ increasing from zero and by searching for the critical value of γ with which at least
one of Eig(Ad(γ)) crosses the boundary of R. Fig. 2.3 is an illustrative graph to show
Eig(Ad(γ)) as a function of γ and to show the selection of γc according to the region
R.

In conclusion, the following procedure is for choosing the vector c and the upper-
bound γc:

1. Set a region R in the complex plane and the desired eigenvalue {q1, · · · , qn−1}
in R according to required response characteristics of the application.

2. Find an invertible matrix T ∈ Rn×n with which

Tb =

[
on−1

1

]
(2.56)

is satisfied.

3. Calculate the matrix Ā11 ∈ R(n−1)×(n−1) and the vector ā12 ∈ Rn−1 as follows:[
Ā11 ā12

āT21 ā22

]
:= TAT−1. (2.57)

4. Solve the pole placement problem to choose the vector c̄1 ∈ Rn−1 so that
Eig(Ā11 − ā12c̄

T
1 ) = {q1, · · · , qn−1}, and set c = T T [c̄1

T , 1]T .

5. Draw the loci of Eig(Ad(γ)) with γ increasing from zero, and find the critical
value of γc at which at least one of the loci crosses the boundary of R.

Note that the step 4 is to adjust Eig(Ad(γ)) at γ = 0 and that the step 5 is to
adjust Eig(Ad(γ)) at γ ∈ (0, γc].

2.4.3 Discrete-time implementation

This section presents a discrete-time algorithm of the proposed controller for its im-
plementation to digital controllers. Since the proposed continuous-time controller
(2.47)(2.48) involves the set-valued function sgn(·), inappropriate discretization pre-
vents the exact sliding mode and causes chattering [52,53]. Here, the approach called
an implicit method [54,55] is employed. The idea of the implicit method is to resolve
the set-valuedness of the controller’s equation by viewing the mutual dependence be-
tween the control input and the system state as an algebraic constraint. This approach
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utilizes the model of the controlled plant as a predictor of the system state that is
achieved by a given control input.

Let us start from the implicit Euler discretization of the controller (2.47)(2.48) as
follows:

uk − uk−1

h
∈ −βsgn

(
uk + satα

(
σk
γk

))
(2.58)

σk = cTxk (2.59)

γk = min

(
γc,
|cTAxk−1|+ cTb|uk−1|+ cTbL

β

)
, (2.60)

in which h denotes the sampling interval. Now, the system state x at time step k
needs to be predicted by the nominal model of the controlled plant, thus the following
“predictor” is used:

x̂k − xk−1

h
= Axk−1 + buk. (2.61)

This “predictor” equation is obtained by neglecting the perturbation ζ in the system
model (2.1). Substituting xk in (2.59) by the predicted value x̂k, the predicted value
of σk is obtained as follows:

σ̂k = cT (I + hA)xk−1 + cTbhuk (2.62)

Let us define wk−1
∆
= cT (I + hA)xk−1 so that σ̂k is rewritten as follows:

σ̂k = wk−1 + cTbhuk. (2.63)

Then, substituting σk in (2.58) by σ̂k in (2.63) yields the following:

uk ∈ uk−1 − hβsgn

(
uk + satα

(
wk−1 + cTbhuk

γk

))
, (2.64)

in which uk appears in both of the right- and left-hand sides. To solve (2.64) with
respect to uk, the following lemmas are introduced.

Lemma 2.4.1. For any y, z ∈ R and a > 0, the following is satisfied:

y ∈ asgn(z − y) ⇐⇒ y = sata(z). (2.65)

Proof. See [56, Sec.II].
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Lemma 2.4.2. For any y ∈ R and a, b, c, d > 0, the following is satisfied:

sgn

(
y + a+ satb

(
y + c

d

))
= sgn

(
y + a+ satb

(
c− a
1 + d

))
(2.66)

Proof. Let us define the following function:

φ(y)
∆
= y + a+ satb

(
y + c

d

)
. (2.67)

It is obvious that the function φ is strictly monotonically increasing function and it is

unbounded. Thus, it is clear that there is a unique real value Y that satisfies φ(Y ) = 0,

and that such a Y satisfies sgn(φ(y)) = sgn(y−Y ) is satisfied. Then, one can see that

the real value Y can be obtained by solving φ(Y ) = 0 as follows. First, if |Y +c|/d ≤ b,

φ(Y ) = 0 reduces to Y + a+ (Y + c)/d = 0, which is equivalent to:

Y = −a− c− a
1 + d

. (2.68)

Second, if (Y + c)/d > b, φ(Y ) = 0 reduces to Y + a+ b = 0, which is equivalent to:

Y = −a− b. (2.69)

Third, if (Y + c)/d < −b, φ(Y ) = 0 reduces to Y + a− b = 0, which is equivalent to:

Y = −a+ b. (2.70)

By combining these three cases (2.68),(2.69), and(2.70), one can obtain the solution

Y as follows:

Y = −a− satb

(
c− a
1 + d

)
. (2.71)

Therefore, the left-hand side of (2.66) is equal to sgn(y− Y ) with Y defined in (2.71),

and it is equal to the right-hand side of (2.66). This completes the proof.

Using Lemmas 2.4.1 and 2.4.2, one can obtain the following theorem:

Theorem 2.4.2. With any y ∈ R and a, b, c, d > 0 the following is satisfied:

y ∈ −fsgn

(
y + a+ satb

(
y + c

d

))
⇐⇒ y = −satf

(
a+ satb

(
c− a
1 + d

))
.(2.72)
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Now, Theorem 2.4.2 is used to solve (2.64) with respect to uk as follows:

uk = uk−1 − sathβ

(
uk−1 + satα

(
wk−1

γk + cTbh

))
. (2.73)

Here, one can see that the set-valuedness in (2.64) is resolved as in (2.73). In con-
clusion, the discrete-time controller, which realizes the controller (2.47)(2.48), can be
given as follows:

wk−1 := cT (I + hA)xk−1 (2.74)

γk := min

(
γc,
|cTAxk−1|+ cTb|uk−1|+ cTbL

β

)
(2.75)

uk := uk−1 − sathβ

(
uk−1 + satα

(
wk−1

γk + cTbh

))
. (2.76)

Remark 2.4.1. In case where the rate-of-change of the control signal is not limited

(i.e., β = ∞), the nonlinear function γk holds at zero. In this case, the controller

(2.74)(2.75)(2.76) reduces to the following simpler controller,

wk−1 = cT (I + hA)xk−1 (2.77)

uk = −satα(wk−1/(c
Tbh)), (2.78)

which is an implicit implementation of the conventional sliding mode controller u =

−αsgn(cTx) combined with the nominal plant model (2.61).

Remark 2.4.2. By setting β < ∞ and holding γ = 0, the controller (2.47)(2.48)

reduces to

u̇ ∈ −βsgn(u+ αsgn(cTx)) (2.79)

for all x satisfying cTx 6= 0. In order to deal with the case of cTx = 0, a nested signum

structure needs rigorous re-definition of the set-valued mapping sgn. A similar nested

signum structure appears in the work of Miranda-Villatoro et al. [47], who also used

the implicit discretization scheme [54, 55]. This chapter does not discuss the extreme

case of γ = 0 because γ > 0 is always satisfied in the proposed controller.

2.5 Examples

In this section, the proposed controller is applied to some numerical examples. The
simulations are performed with MATLAB software in the discrete time.
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Figure 2.4: Example 1: The region R and the loci of Eig(Ad(γ)).

2.5.1 Example 1

Here, an example reported in [13, 46] employs the controlled plant (2.1) with the
following matrices:

A =

[
0 −0.5
1 1.5

]
, b =

[
0
−1

]
(2.80)

where the pair (A, b) is controllable. Let us consider that this controlled plant is
subjected to disturbance and parameter uncertainty as in the following form:

ẋ = (A+ ∆A)x+ b(u+ ζ) (2.81)

where

∆A =

[
0 −0.05
0 0.1

]
, ζ = 0.1 sin(t). (2.82)

The control input u is under the restriction of |u| ≤ 1 and |u̇| ≤ 2.5, and the initial
states are x0 = [0, 0.4]T and u0 = 0. The requirement is to set the 2% settling time to
be less than or equal to 8 s and the damping ratio to be greater than or equal to 0.7.

The discrete-time algorithm (2.74)(2.75)(2.76) is applied with the sampling interval
h = 0.01, and L = 0.125. The parameters c and γc are obtained based on the design
procedure in Section 2.4.2 as follows:
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1. SetR as shown in Fig. 2.4, i.e., R = {s ∈ C | <(s) ≤ − ln(0.02)/8∧cos(arg(s)) ≤
−0.7}, and set q1 = −0.5 so that it resides in R.

2. Set T = −I in order to realize Tb = [0, 1]T .

3. From (2.57), we can find that Ā11 = 0 and ā12 = −0.5.

4. By solving Ā11 − ā12c̄
T
1 = q1, c̄1 = −1, and thus, c = [1,−1]T .

5. By drawing the loci of Eig(A − bcT/γ) as shown in Fig. 2.4, we can find that
γc = 1/3.62 = 0.277.

Fig. 2.5(a) shows the results of simulation under ζ = 0.1 sin(t) and ∆A = 0. Here,
one can see that the use of the small constant γ ≡ 0.6γc results in the instability. In
contrast, the use of the nonlinear function γ(x, u) provides best convergent behavior
in spite of the fact that the value of γ(x, u) eventually becomes smaller than 0.6γc. It
should be noted that the decrease of γ(x, u) takes place after the state comes close to
the origin. This decreasing leads to better disturbance rejection than the case with
the larger constant γ ≡ γc. Fig. 2.6 shows more details about the state trajectory in
σ-η plane under using γ(x, u), where the initial state lies in the portion (SC ∩D). As
long as the state trajectory stays in (SC ∩D), it reaches the linear portion SL in finite
time as proven in Theorem 2.3.2. After that, the trajectory catches the wider sliding
patch SL ∩F (the light-coral region), i.e., γ(x, u) at its maximum γc, and then, the
state moves towards the neighborhood of the origin inside a smaller sliding patch (the
red region), i.e., γ(x, u) = 0.105.

Fig. 2.5(b) shows the results of simulation under ζ and ∆A indicated in (2.82).
The state still smoothly converges to the neighborhood of the origin with the nonlinear
function γ(x, u), although the constant γ values produce larger errors and overshoots.
It should be noted that the nonlinear function γ(x, u) results in smaller terminal error
than the larger constant γ ≡ γc and smaller overshoots than the smaller constant
γ ≡ 0.9γc. It is also interesting to see that, although the constant γ ≡ 0.8γc results in
the instability, the proposed γ(x, u), which eventually falls far below 0.8γc, maintains
the stability with good convergence.
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Figure 2.5: (a) Results of Example 1 with ζ = 0.1 sin(t) and ∆A = 0. (b) Results of

Example 1 with ζ and ∆A indicated in (2.82).

2.5.2 Example 2

As an example of a third-order system, the controlled plant (2.1) is considered with
the following controllable pair of matrices:

A =

 0 0 1
172.6 −2.73 1.237
−195 2.538 −1.589

 , b =

 0
0

−1.0698

 .
(2.83)
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Figure 2.6: Example 1: The state trajectory (blue) in σ-η plane in case that ζ =

0.1 sin(t) and ∆A = 0. The light-coral region is (S ∩ F) at γ(x, u) ≡ γc, while the

red region is (S ∩F) at γ(x, u) ≡ 0.105.

Let us consider that this controlled plant is subjected to disturbance and parameter
uncertainty as in the following form:

ẋ = (A+ ∆A)x+ b(u+ ζ) (2.84)

where

∆A =

 0 0 0.1
−3 0.1 −0.5
−2 −0.2 0.1

 . (2.85)

The disturbance ζ is equal to 0.0184 sin(t) from 0 to 7 s, and after that, it changes into
ζ = 0.0184 sin(2t). The control signal amplitude and its rate-of-change are set to be
subject to the following limitations: |u| ≤ 1.5 and |u̇| ≤ 0.139. The initial states are
set as x0 = [0.0, 0.1, 0.01]T and u0 = 0.05. The requirement is to set the eigenvalues
of the overall system on the left side of the line <(s) = −1.9 and also it is required to
set {q1, q2} = {−1.92 + 13.8j,−1.92− 13.8j}.

In the use of the algorithm (2.74)(2.75)(2.76), h = 0.01 and L = 0.019. The
parameters c and γc are obtained through the design procedure in Section 2.4.2 as
follows:
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Figure 2.7: Example 2: The region R and the loci of Eig(Ad(γ)).

1. Set R as shown in Fig. 2.7, i.e., R = {s ∈ C | <(s) < −1.9}, and set {q1, q2} =
{−1.92 + 13.8j,−1.92− 13.8j} so that they reside in R.

2. To realize Tb = [0, 1]T , set

T =

 −1 0 0
0 −1 0
0 0 −0.9348

 . (2.86)

3. From (2.57), we can find that: Ā11 =

[
0 0

172.6 −2.73

]
and ā12 =

[
1.0698
1.3233

]
.

4. By solving the pole placement problem to put Eig(Ā11− ā12c̄
T
1 ) at {q1, q2}, it is

found that c̄1 = [−0.1177, 1.0549]T , and thus, c = [0.2681,−1.0556,−0.9348]T .

5. By drawing the loci of Eig(A − bcT/γ) as shown in Fig. 2.7, we can find that
γc = 1/1.44 = 0.69.

Fig. 2.8(a) shows the simulation results of Example 2 under the existence of ζ. It
is clearly seen that the convergence is much faster with γ(x, u) than with the smaller
constant γ ≡ 0.2γc in spite of the fact that γ(x, u) goes below 0.2γc. Fig. 2.8(a) also
shows that the system with γ(x, u) is less sensitive to the disturbance than that with
the larger constant γ ≡ γc.

Fig. 2.8(b) shows the simulation results of Example 2 under the existence of both
ζ and ∆A. The states with γ(x, u) converge faster than those with γ ≡ 0.2γc, and are
less sensitive to the disturbance than those with γ ≡ γc.
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Figure 2.8: (a) Results of Example 2 with ∆A = 0, ζ = 0.0184 sin(t) from 0 to 7 s,

and ζ = 0.0184 sin(2t) after 7 s. (b) Results of Example 2 with ∆A indicated in (2.85)

and ζ of the same setting as in (b).

2.5.3 Example 3

In this example, the proposed controller is compared with a previous discrete-time
controller introduced by Palmeira et al. [1]. The plant considered in [1] is as follows.

ẋ = Ax+ bua + bζ (2.87)

u̇a = satβ

(
1

γ1

(−ua + satα(u))

)
(2.88)

ζ = 0.1 sin(t), (2.89)
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Figure 2.9: Example 3: The region R and the loci of Eig(Ad(γ)).

with the following controllable pair of matrices:

A =

[
0 1
10 −0.1

]
, b =

[
0
1

]
. (2.90)

Here, (2.88) is regarded as an actuator having dynamics with the time constant γ1

as in Fig. 2.1(a). The actuator provides the input ua to the plant (2.87) and the
control command u needs to be provided by the controller. The initial states are set
as x0 = [0.01,−0.24]T , and ua0 = 1.2. The actuator parameters are set as γ1 = 0.05,
α = 1 and β = 10.

Palmeira et al.’s [1] controller is obtained by solving an optimization problem that
maximizes the region of attraction with a given sampling interval h ∈ [0.01, 0.07],
without considering the existence of disturbance ζ. The obtained controller is written
as follows:

u =
[
−6.318 −1.966 0.502

] [ x
ua

]
. (2.91)

The proposed controller is applied to this example with neglecting the actuator
dynamics (2.88). The requirements are assumed to place the eigenvalues of the overall
system in the region <(s) < −3 and {q1} = {−4}. By setting h = 0.01 and L = 0.11
to satisfy |ζ| < L and by using the proposed tuning guideline, the vector c and γc are
obtained in the following procedure:

1. Set R as shown in Fig. 2.9, i.e., R = {s ∈ C | <(s) < −3}, and set {q1} = {−4}
so that it resides in R.
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Figure 2.10: (a) Results of Example 3 with no disturbance, i.e., ζ = 0. The red lines

represent the results of the proposed controller. The blue lines represent the results

of Palmeira et al.’s [1] controller. (b) Results of Example 3 with ζ indicated in (2.89).

The red lines represent the results of the proposed controller. The blue lines represent

the results of Palmeira et al.’s [1] controller.

2. To realize Tb = [0, 1]T , set T = I.

3. From (2.57), It is found that: Ā11 = 0, and ā12 = 1.

4. By solving the pole placement problem to put Eig(Ā11 − ā12c̄
T
1 ) at {q1}, It is

found that c̄1 = 4, and thus, c = [4, 1]T .

5. By drawing the loci of Eig(A − bcT/γ) as shown in Fig. 2.9, one can obtain
γc = 0.17.
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Figure 2.11: Example 3: The state trajectory (blue) in σ-η plane in case that ζ =

0.1 sin(t) and ∆A = 0. The light-coral region is (S ∩ F) at γ(x, u) ≡ γc, while the

red region is (S ∩F) at γ(x, u) = 0.023.

Fig. 2.10(a) and Fig. 2.10(b) compare the proposed controller with the previous con-
troller introduced in [1]. Fig. 2.10(a) shows the results under no disturbance (ζ ≡ 0),
where the both controllers realize smooth convergence. Fig. 2.10(b) shows the results
with non-vanishing disturbance ζ = 0.1 sin(t), where the proposed controller shows
much better performance against the disturbance than the previous one. Fig. 2.11
shows the state trajectory in σ-η plane when the system is subjected to ζ = 0.1 sin(t).
Here, the initial state lies in the portion (SC ∩ D), and the state trajectory moves
towards the wider sliding patch SL ∩F , i.e., γ(x, u) at its maximum γc. After that,
the state trajectory stays at a neighborhood of the origin inside a smaller sliding patch,
i.e., γ(x, u) = 0.023.

The graphs in Fig. 2.10(a) and Fig. 2.10(b) show that there exists a significant lag
between the actuator signals {ua, u̇a} and the controller signal {u, u̇}, which is caused
by the actuator dynamics (2.88). We can see that the proposed controller provides
smooth and accurate convergence even under this lag.
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2.6 Summary

This chapter has proposed a sliding mode-like controller that produces control signal
with limitations on both its amplitude and its rate-of-change. This chapter is mo-
tivated by the idea of the ideal rate limiter, which involves the nested signum (sgn)
function, while a saturation (sat) function has been used to produce limited control
signal amplitude. The analysis of this sng-sat type controller shows that the closed-
loop system reduces to a linear system in the sliding mode. Based on the analysis,
a nonlinear parameter has been proposed so that the value of this parameter reduces
when the state approaches the origin, and it contributes the reduction of the size of
the terminal attractor. A tuning guideline for other controller parameters is also pre-
sented, which places the poles of the system in a given region in the complex plane. A
discrete-time implementation of the proposed controller is also presented. This imple-
mentation does not produce chattering, which could be caused by other discretization
schemes. The discrete-time implementation has been applied to three various systems
to clarify the efficacy of the proposed controller and the influence of using the nonlinear
function γ(x, u).



Chapter 3

Parameter Selection Procedure

3.1 Introduction

The controller proposed in Chapter 2 has two groups of parameters, i.e., the vector
c and a positive scalar γc. Roughly speaking, the vector c governs the feedback gain
for the case where the state is sufficiently close to the origin, and γc governs how far
the region of attraction can be enlarged when the state is far from the origin. The
previous chapter also proposed a tuning guideline for c and γc. Drawbacks of that
previous procedure are that the vector c is chosen only based on the pole placement
problem [58,59] and that the reduction of the feedback gain is not explicitly intended.
Moreover, the desired poles need to be given in advance. In addition, the tuning
procedure of the parameter γc is not well sophisticated in that it requires the user to
draw the loci of eigenvalues in the complex plane.

This chapter proposes a new design procedure for the proposed controller of Chap-
ter 2. The new procedure explicitly attempts to realize low-gain control action, for
enlarging the region of attraction, by reducing the norm of the vector c. This chapter
also employs a method to obtain γc without drawing the loci of eigenvalues, which is
now incorporated in an automatic iterative algorithm. The proposed procedure is an
iterative method in which a set of linear matrix inequalities (LMIs) [48] needs to be
satisfied.

This chapter is organized as follows. Section 3.2 presents the proposed selection
procedure in which the procedure of selecting c is explained in Section 3.2.2, while
the procedure of selecting γc is explained in Sections 3.2.3 and 3.2.4. In Section 3.3,
numerical examples illustrate the efficacy of the proposed method. Section 3.4 provides

0The content of this chapter is partially published in [57], namely, N. Baiomy and R. Kikuuwe.

Parameter selection procedure for an amplitude- and rate-saturated controller. International Journal

of Control, Automation and Systems, vol. 17, no. 4, pp. 926-935, 2019.
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the summary of this chapter.

3.2 New parameter selection scheme

3.2.1 Design objectives

In the previous chapter, the controller (2.47)(2.48) was motivated by a consideration
on the controller (2.47) with a fixed γ value. The behavior of the plant (2.1) combined
with the controller (2.47) with a fixed γ is illustrated by using a three-dimensional
subspace of the state space as shown in Fig. 2.2. The previous chapter has shown that
the sliding mode takes place on the portion SC ∪ (SL ∩F) of the switching surface.
It has also be shown that the sliding mode on the linear portion SL ∩F requires the
following condition:

|cTAx+ cTbu|+ cTbL
β

< γ. (3.1)

This shows that increasing γ enlarges the region in which the condition (3.1) is satisfied.
Meanwhile, it has been shown that increasing γ enlarges the size of the finite-time
attractor (indicated by the yellow ellipse in Fig. 2.2), which is a part of the linear
portion SL.

In Fig. 2.2(b), one can see that enlarging the linear region SL ∩ F requires a
smaller norm of the vector c and a larger value of γ. It is also required that the
Eig(A − bcT/γ(x, u)) maintain inside a given desired region R ⊂ C for all γ(x, u) ∈
[γmin, γc], where R is a subset of the left half-plane of the complex plane, and γmin is
the lowerbound of γ(x, u) defined as follows:

γmin
∆
= cTbL/β, (3.2)

in which b satisfies

b =

[
on−1

1

]
(3.3)

as has been introduced in Chapter 2.
Based on the above requirements, the design objectives are organized as follows:

• Objective 1: the vector norm ‖c‖ should be small,

• Objective 2: the eigenvalues of the matrix A− bcT/γ should be located in the
set R for all γ ∈ [γmin, γc], and
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• Objective 3: the upperbound γc should be large.

In the parameter tuning guideline of Chapter 2, the desired locations of limγ↘0 Eig(A−
bcT/γ) are given and the vector c is obtained by solving a pole placement problem
without considering a smaller norm of c (i.e., see Theorem 2.4.1). Now, an LMI-based
parameter selection procedure is introduced to obtain c with a small norm considering
that the desired locations of limγ↘0 Eig(A− bcT/γ) are not given.

3.2.2 The selection procedure of c

When γ(x, u) = γmin and ζ = 0, the plant (2.1) combined with the controller (2.47)(2.48)
reduces to a linear system described as follows:

ẋ = Ax+ bu (3.4)

u = −cTx/γmin. (3.5)

Objective 1 states that the norm of c should be set small. To take this point into
account, let us consider the following cost function:

J
∆
=

∫ ∞
0

(xTQx+ γ2
minRu

2)dt (3.6)

whereQ ∈ Rn×n is a positive definite matrix and R ∈ R is a positive constant. Because
of (3.5), the cost function can be rewritten as follows:

J =

∫ ∞
0

xT (Q+ cRcT )xdt. (3.7)

This cost function becomes small when both x and c are kept small. This feature
justifies the inclusion of γ2

min in the definition (3.6) of the cost function J .
Now, let us introduce the following lemma:

Lemma 3.2.1. With the linear system (3.4)(3.5) with initial state x0, the cost function

J defined in (3.6) is upperbounded as J < xT0Px0 if there exists a symmetric matrix

P ∈ Rn×n that satisfies

P > 0 (3.8)

P (A− bcT/γmin) + (A− bcT/γmin)TP + cRcT +Q < 0. (3.9)

Proof. From the system (3.4)(3.5), we have the following differential equation:

ẋ = (A− bcT/γmin)x, x(0) = x0. (3.10)
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Here, one can see that if positive definite matrices P ∈ Rn×n, Q ∈ Rn×n and a positive

scalar R satisfy (3.9), the followings are satisfied:

d

dt
(xTPx) < −xT (Q+ cRcT )x (3.11)

lim
t→∞

xTPx = 0. (3.12)

Therefore, one can see that

J =

∫ ∞
0

xT (Q+ cRcT )xdt

<

∫ ∞
0

− d

dt
(xTPx)dt = −xTPx

∣∣∣t=∞
t=0

= xT0Px0. (3.13)

This implies that, if there exists a symmetric matrix P ∈ Rn×n that satisfies (3.8)

and (3.9), the cost function J is upperbounded by J < xT0Px0 where x0 is the initial

value of x.

Now, for a given pair {Q, R}, we are searching for {c,P , γmin} that provides a
small xT0Px0 under the inequality constraints (3.8)(3.9). One difficulty here is that
the inequality (3.9) is nonlinear and cannot be transformed into an LMI because of
the products of c, P , and γ−1

min. In addition, c and γmin are constrained by (3.2), which
implies that c is partitioned as

c = [cT1 , c2]T . (3.14)

Here, c1 ∈ Rn−1 and c2
∆
= γminβ/L. Therefore, if one assumes that γmin is given,

the inequality (3.9) can be seen as a nonlinear matrix inequality with respect to an
unknown vector-matrix pair {c1,P }.

For the convenience of derivation, A, Q and P are partitioned as follows:

A =

[
A11 A12

A21 A22

]
, Q =

[
Q1 Q2

∗ Q3

]
, P =

[
P11 γminP̃12

∗ γminP̃22

]
(3.15)

where {A11,Q1,P11} ⊂ R(n−1)×(n−1), {A12,A
T
21,Q2, P̃12} ⊂ Rn−1, {A22, Q3, P̃22} ⊂ R,

and the symbol ∗ inside a matrix stands for the transpose of its symmetric element.
Then, the inequalities (3.8)(3.9) are rewritten as the following partitioned forms:[

P11 γminP̃12

∗ γminP̃22

]
> 0 (3.16)[

L1 L2

∗ L3

]
+ γmin

[
L̄1 L̄2

∗ L̄3

]
< 0 (3.17)
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where

L1
∆
= P11A11 +AT

11P11 − P̃12c
T
1 − c1P̃

T
12 + c1Rc

T
1 +Q1 (3.18)

L2
∆
= P11A12 − c2P̃12 − c1P̃22 + c2Rc1 +Q2 (3.19)

L3
∆
= −2c2P̃22 + c2

2R +Q3, (3.20)

and

L̄1
∆
= P̃12A21 +AT

21P̃
T
12 (3.21)

L̄2
∆
= P̃12A22 +AT

11P̃12 +AT
21P̃22 (3.22)

L̄3
∆
= P̃ T

12A12 + P̃22A22 +AT
12P̃12 + A22P̃22. (3.23)

Let us consider using [
L1 L2

∗ L3

]
≤ 0 (3.24)

as an approximation of (3.17). We can search for a quartet {c1,P11, P̃12, P̃22} satisfying
the approximation (3.24), and then check whether the found quartet {c1,P11, P̃12, P̃22}
satisfies the original inequalities (3.16)(3.17).

Now, let us decompose the inequality (3.24) into three inequalities using the fol-
lowing lemma, which is a slightly modified version of Lemma 1 in [60,61]:

Lemma 3.2.2. : For square matrices M1 and M3 and a matrix M2 with appropriate

dimensions, the inequality [
M1 M2

MT
2 M3

]
≤ 0 (3.25)

holds true if there exist positive scalars δ1 and δ2 such that the following inequalities

hold true:

M1 + δ1I ≤ 0 (3.26) −δ1

δ2

I M2

∗ −I

 ≤ 0 (3.27)

M3 + δ−1
2 I ≤ 0. (3.28)

Proof. The matrix inequality (3.27) implies that

−δ1I +M2(δ2I)MT
2 ≤ 0, (3.29)
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and the inequalities (3.26) and (3.28) imply

M1 ≤ −δ1I < 0 (3.30)

0 < −M−1
3 ≤ δ2I, (3.31)

respectively. Therefore, we have

M1 −M2M
−1
3 MT

2 ≤ 0. (3.32)

Because M3 is negative definite and invertible due to (3.31), (3.32) implies (3.25) (see

the Section “Schur complements for nonstrict inequalities” in [62, Chapter 2]).

Then, the inequality (3.24) is satisfied if there exist δ1 > 0 and δ2 > 0 satisfying
the following three inequalities:

L1 + δ1I ≤ 0 (3.33) −δ1

δ2

I L2

∗ −1

 ≤ 0 (3.34)

L3 + 1/δ2 ≤ 0. (3.35)

Here, we can notice that (3.35) is a linear scalar inequality with respect to P̃22, while
(3.33) and (3.34) are nonlinear with respect to {c1,P11, P̃12, P̃22} due to the terms
c1P̃

T
12, c1Rc

T
1 and c1P̃22. The inequality (3.34), however, can be seen as linear with

respect to {c1,P11, P̃12}, if we use P̃22 obtained by (3.35).
Regarding the inequality (3.33), let us employ an approach presented in [60,61] to

relax it into the following matrix inequality:

L1 + δ1I + (P̃12 − P120)R−1(P̃12 − P120)T ≤ 0 (3.36)

where P120 ∈ Rn−1 is given. Due to the fact that R > 0, the second term in the
left-hand side of (3.36) is positive definite, and thus (3.36) is a sufficient condition of
(3.33). Through a tedious but straightforward derivations, one can see that (3.36) is
equivalent to the following LMI:[

Σ1 P̃12R
−1 − c1

∗ −R−1

]
≤ 0 (3.37)

where

Σ1
∆
= P11A11 +AT

11P11 +Q1 + δ1I

+ P120R
−1P T

120 − P̃12R
−1P T

120 − P120R
−1P̃ T

12 (3.38)
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because the left-hand side of (3.36) is the Schur complement of −R−1 in the left-hand
side of (3.37) [62, Chapter 2].

Now, the given vector P120 needs to be close to P̃12 to make the inequality (3.37) as
less restrictive as the original nonlinear inequality (3.33). Therefore, let us minimize
tr(P11) subject to the LMIs (3.34)(3.37), and refine P120 by substituting it with the
obtained P̃12. To make this iterative loops, there is a need to set an initial value for
P120. One way to obtain a wild initial guess for the P120 is to choose a c with zero
norm (extremely small norm) as an initial guess and find P120 and P110 satisfying

L1|c1=0,P11=P110
+ δ1I = 0 (3.39)

L2|c1=0,P11=P110,P̃12=P120
= 0. (3.40)

They are rewritten as

P110(A11 − εI) + (A11 − εI)TP110 +Q1 + δ1I = 0 (3.41)

P110A12 − c2P120 +Q2 = 0 (3.42)

where ε is a small positive scalar and P110 > 0. Now, (3.41) is easy to be solved because
it is a continuous Lyapunov function, while the obtained P110 from the solution of
(3.41) is used to obtain P120 as follows:

P120 := (P110A12 +Q2)/c2 (3.43)

in which c2 is a scalar.
We have now the linear inequalities (3.37)(3.34)(3.35) involving given variables,

which are {Q, R, δ1, δ2, γmin,P120}, where (3.37) and (3.34) are LMIs with respect to
{c1,P11, P̃12}, and (3.35) is a linear scalar inequality with respect to P̃22. Because
the matrix P determines an upperbound of the cost function J , it is needed to find a
quartet {c1,P11, P̃12, P̃22} that provides small tr(P11) and P̃22 under the approximated
linear inequality constraints (3.37)(3.34)(3.35). After finding such a quartet, we have
to check whether it actually satisfies the original inequalities (3.16) (3.17) and the
original eigenvalue requirement Eig(A − bcT/γmin) ⊂ R as mentioned in Objective
2. If it does not, we need to try again with different values of {γmin, δ1, δ2}. This
procedure is now written as the following algorithm.

Algorithm 1:

• Step 1: Select a quartet of positive scalars {δ1, δ2, γmin, R} and a symmetric
positive definite matrix Q.

• Step 2: Set c2 := γminβ/L.
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• Step 3: Find the minimum of P̃22 subject to (3.35). By noting that (3.35) is
equivalent to

P̃22 ≥
c2

2R +Q3 + δ−1
2

2c2

, (3.44)

the minimum value of P̃22 that satisfies the above inequality is obtained as:

P̃22 :=
c2

2R +Q3 + δ−1
2

2c2

. (3.45)

• Step 4: Solve (3.41) with respect to P110 and set P120 := (P110A12 +Q2)/c2, as
an initial guess for P̃12 (see Appendix C).

• Step 5: Find the set {c1,P11, P̃12} that minimizes tr(P11) subject to (3.34) and
(3.37), which are LMIs with respect to {c1,P11, P̃12}, with P120 obtained in Step
4.

• Step 6: Set P120 := P̃12 and repeat Step 5 until tr(P11) converges to a certain
value.

• Step 7: Check whether the conditions (3.16), (3.17), and Eig(A−bcT/γmin) ⊂ R
are satisfied. If not, repeat the algorithm with different values of {δ1, δ2, γmin}.
If yes, set c := [cT1 , c2]T .

It should be noted that, although this algorithm tends to provide small tr(P11) and
P22, it is not a minimization algorithm in a strict sense.

With regards to choosing a value of the parameter γc, Chapter 2 proposed a method
in which the loci of Eig(A − bcT/γ(x, u)) are drawn and the critical value γc is
found manually. This chapter introduces two new methods to obtain γc automati-
cally. One is a general method and it employs an iterative computation to locate
Eig(A−bcT/γ(x, u)) inside a specific region in the left half of the complex plane. The
second is used when there is no specific requirements on the loci of Eig(A−bcT/γ(x, u))
inside the left half of the complex plane.

3.2.3 Selection procedure of γc: Method A

Regarding Objective 2 and Objective 3, detailed in Section 3.2.1, Method A is searching
for the maximum γc with which Eig(Ad(γc)) are inside R. Let us assume that the
region R is given in the following form:

R = {s ∈ C |N + sM + s̄MT < 0} (3.46)
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where M and N are real matrices and N = NT . This representation of regions in the
complex plane has been proposed by Chilali and Gahinet [63, Definition 2.1]. Some
examples for the matrix values of M and N are given as follows:

• for R = {s ∈ C | cos(arg(s)) ≤ − cos(θ)}:

M =

[
sin(θ) − cos(θ)
cos(θ) sin(θ)

]
, N = 02×2, (3.47)

• for R = {s ∈ C | <(s) ≤ −αr}:

M = 1, N = 2αr, (3.48)

• for R = {s ∈ C | <(s) ≤ −αr ∧ cos(arg(s)) ≤ − cos(θ)}:

M =

 sin(θ) − cos(θ) 0
cos(θ) sin(θ) 0

0 0 1

 , N =

[
o2×2 0

0 2αr

]
. (3.49)

From [63, 64], it can be seen that Eig(Ad(γ)) ⊂ R if and only if there exists a
symmetric positive definite matrix X that satisfies

N ⊗X +M ⊗ (XAd(γ)) +MT ⊗ (AT
d (γ)X) < 0 (3.50)

where ⊗ denotes the Kronecker product. Here, we have to note that the inequality
(3.50) is an LMI with respect to X for a fixed γ. In order to obtain γc with which
(3.50) is satisfied for all γ ∈ [γmin, γc], let us employ an iterative loop searching for
X > 0 that satisfies (3.50) at every single loop with a given incremental value of γ.
Starting with γ ≡ γmin, the value of γ is gradually increased and the loop is repeated
as long as we can find X > 0 that satisfies (3.50). Once we fail to find such X, the
repeated loop is broken and the critical value of γ is chosen as γc.

3.2.4 Selection procedure of γc: Method B

The following method is introduced to directly obtain the upperbound γc without
iterative computation. This method is only valid in case where the desired region R
coincides with the whole left half of the complex plane C−.

Fuller [65, Section 13] has studied systems’ stability under variable parameters,
where a system is known to be stable for certain values of this parameter, and the
problem is to find how far these parameter can be changed without losing the stability.
For such a case, Fuller has introduced two necessary conditions with which the system
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is within the stability region. Fuller called these conditions by “a critical criteria”,
which is derived from his theorem [65, Theorem 9] to check the Hurwitzness of a
matrix via calculating the bialternate sum of the same matrix itself.

In the same light, the condition Eig(A−bcT/γmin) ⊂ R in Algorithm 1 (i.e., Step 7)
shows that the matrix Ad(γ) defined in (2.52) is already Hurwitz when γ ≡ γmin,
and the problem here is to find the critical value of γ that keeps the Hurwitzness of
Ad(γ). Fuller’s Theorem 9 [65] and Fuller’ derivation in Section Critical Criteria [65,
Section 13] can be merged and written in the following theorem:

Theorem 3.2.1. An n-dimensional square matrix X is Hurwitz if and only if the

following two conditions are satisfied:

(−1)n det[X] > 0 (3.51)

(−1)n(n−1)/2 det[G[X]] > 0 (3.52)

where G[X] is an n(n− 1)/2-dimensional square matrix defined as follows:

G[X] = X ⊗ In×n + In×n ⊗X. (3.53)

Proof. See [65, Section 13].

Here, it should be noted that G[X] is often referred to as the bialternate sum of
X with itself. Following this theorem, one can obtain the following corollary:

Corollary 3.2.1. With the square matrix Ad(γ) defined in (2.52), let us assume that

it is already Hurwitz with γ = γmin. Then, Ad(γ) is Hurwitz if γmin ≤ γ ≤ min(γc1, γc2)

where γc1 and γc2 are the values of γ with which

(−1)n det[Ad(γ)] = 0 (3.54)

(−1)n(n−1)/2 det[G[Ad(γ)]] = 0, (3.55)

are satisfied, respectively.

Following this Corollary, it is founded that the upper limit of γ, which is defined
by γc in this dissertation, is obtained as follows:

γc ≡ min(γc1, γc2). (3.56)

The next sections will show how to obtain γc1 and γc2 that respectively satisfy the
conditions (3.54) and (3.55).



Chapter 3. Parameter Selection Procedure 44

3.2.5 Fuller’s first condition of Hurwitzness

Now, let us obtain the value of γ that satisfies the first condition (3.54). Considering
the partition forms of A and c in (3.15) and (3.14), respectively, let us partition Ad(γ)
as follows:

Ad(γ) =

[
A11 A12

A21 − cT1 /γ A22 − c2/γ

]
. (3.57)

Following the properties of matrices’ determinant [66, Section 2.4], one can see that

det[Ad(γ)] ≡ γ−1 det

[[
A11 A12

−cT1 −c2

]
+ γ

[
0 0
A21 A22

]]
(3.58)

≡ γ−1 det[E1 + γF1], (3.59)

in which

E1 =

[
A11 A12

−cT1 −c2

]
, F1 =

[
0 0
A21 A22

]
. (3.60)

Because c is designed so that cTb > 0, the matrix Ad(γ) is Hurwitz when γ ↘ 0.
Thus, condition (3.51) implies that:

lim
γ↘0

(−1)nγ−1 det[E1 + γF1] > 0, (3.61)

which reduces to

(−1)n det[E1] > 0. (3.62)

Now, let us rewrite the condition (3.54) as follows:

(−1)nγ−1 det[E1(I + γF1E
−1
1 )] = 0 (3.63)

which is reduced to

det[I + γF1E
−1
1 ] = 0 (3.64)

because of (3.62). By defining λm1 as the minimum real eigenvalue of (F1E
−1
1 ), the

critical value γc1 that satisfy (3.54) is obtained as follows:

γc1 =

{
∞ if λm1 > 0
−1/λm1 if λm1 < 0.

(3.65)
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3.2.6 Fuller’s second condition of Hurwitzness

Now, let us obtain the critical value of γ that satisfies the second condition (3.55). For
simplicity, each element in G[Ad(γ)] can be separately calculated as:

gpq,rs =

∣∣∣∣adpr adps
δqr δqs

∣∣∣∣+

∣∣∣∣ δpr δps
adqr adqs

∣∣∣∣ (3.66)

where adij denotes the (i, j)-th element of the matrix Ad(γ). The labels pq and rs
are the label of rows and columns of G[Ad(γ)], respectively with the following values;
p = 2, 3, . . . , n, q = 1, 2, . . . , p − 1, r = 2, 3, . . . , n and s = 1, 2, . . . , r − 1 (i.e., when
n=3, the elements of the first raw are {g21,21, g21,31, g21,32}, the elements of the second
raw are {g31,21, g31,31, g31,32} and the elements of the last raw are {g32,21, g32,31, g32,32}).
The operator δij stands for the Kronecker delta, which is defined as follows:

δij
∆
=

{
0 if i 6= j
1 if i = j.

(3.67)

Through a tedious but straightforward derivations, one can determine det[G[Ad(γ)]]
as follows:

det[G[Ad(γ)]] = γ−l det[E2 + γF2] (3.68)

where l = −(n− 1), and each element of the matrices E2 and F2 can be respectively
obtained as follows:

epq,rs =


∣∣∣∣apr aps
δqr δqs

∣∣∣∣+

∣∣∣∣δpr δps
aqr aqs

∣∣∣∣ if p ≤ n1, or q > n1∣∣∣∣c̄pr c̄ps
δqr δqs

∣∣∣∣ otherwise
(3.69)

fpq,rs =


0 if p ≤ n1, or q > n1∣∣∣∣apr aps
δqr δqs

∣∣∣∣+

∣∣∣∣δpr δps
aqr aqs

∣∣∣∣ otherwise ,
(3.70)

in which aij denotes the (i, j)-th element of the matrix A, and c̄ij denotes the (i, j)-th

element of the matrix c̄, which is defined as c̄
∆
= −[oTn−1, 1]TcT . The configuration

(3.68) is similar to the one that have been developed by Sen and Datta [67], while
the definitions of E2 and F2 here are different due to the configuration of the matrix
Ad(γ). As an illustrative example for the calculation of G[Ad(γ)], E2 and F2, let us
consider a matrix with n = 3, and cT ≡ [c11, c12, c2]. Then, G[Ad(γ)] is calculated as
follows:

G[Ad(γ)] =

 a11 + a22 a23 −a13

a32 − c12/γ a11 + a33 − c2/γ a12

−a31 + c11/γ a21 a22 + a33 − c2/γ

 , (3.71)
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and E and F are calculated as follows:

E2 =

 a11 + a22 a23 −a13

−c12 −c2 0
c11 0 −c2

 (3.72)

F2 =

 0 0 0
a32 a11 + a33 a12

−a31 a21 a22 + a33

 . (3.73)

Because the matrix Ad(γ) is Hurwitz when γ ↘ 0, where cTb > 0, the condition
(3.52) implies that:

lim
γ↘0

(−1)n(n−1)/2γ−l det[E2 + γF2] > 0, (3.74)

which reduces to

(−1)n(n−1)/2 det[E2] > 0. (3.75)

Now, let us rewrite (3.55) as follows:

(−1)n(n−1)/2γ−l det[E2(I + γF2E
−1
2 )] = 0, (3.76)

which is reduced to

det[I + γF2E
−1
2 ] = 0 (3.77)

because of (3.75) and γ−l > 0. By defining λm2 as the minimum real eigenvalue of
(F2E

−1
2 ), the critical bound γc2 that satisfy (3.55) is obtained as follows:

γc2 =

{
∞ if λm2 > 0
−1/λm2 if λm2 < 0,

(3.78)

Finally, γc is obtained as follows:

γc ≡ min(γc1, γc2). (3.79)

3.2.7 The complete selection procedure of {c, γc}
After proposing the aforementioned methods to obtain the controller parameters {c, γc},
one can see that the obtained γc by any of Method A or Method B depends on the
vector c. This implies that we may find c and γc with a smaller norm of c/γc by
searching wider ranges of the sets {δ1, δ2, γmin}. Therefore, the complete selection pro-
cedure to obtain the controller parameters is shown in the flowchart of Fig. 3.1, which
includes some nested iterative loops. It should again be noted that, as Algorithm 1 is
not a strict minimization algorithm, the overall selection procedure in Fig. 3.1 is not
a strict optimization procedure either.
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Figure 3.1: The overall flowchart of the proposed selection procedure.
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Remark 3.2.1. This chapter presents a modification version of the selection procedure

proposed by Baiomy and Kikuuwe [68]. The main modification lies in the procedure to

obtain γc, where γc is obtained via repeated loop containing an inequality constraints

as shown in Method A or by directly solving mathematical equations as in Method B,

while the method in [68] obtains γc by drawing the loci of all the eigenvalues of the

system with different values of γ, similar to the method proposed in Chapter 2. This

modification allows the realization of the outer iterative loop of the flowchart in Fig. 3.1,

which automatically searches for smaller norm of c/γc within given ranges of inputs.

The selection procedure of this Chapter includes a condition to examine that Eig(A−
bcT/γmin) ⊂ R, while in [68], it only guarantees the Hurwitzness of the matrix (A −
bcT/γmin).

3.3 Examples

3.3.1 Example 1

A third-order system proposed in [35] is considered here with a sinusoidal disturbance
as follows:

ẋ =

−0.2 1 0
0 −0.2 1
0 0 −0.2

x+

 0
0
−1

 (u+ ζ) (3.80)

ζ = 0.01 sin(t). (3.81)

The control input u is under the limitations of |u| ≤ 0.6 and |u̇| ≤ 0.3. The initial
states are x0 = [−1,−1, 1]T and u0 = 0, and the desired region is given as R = {s ∈
C | cos(arg(s)) ≤ −0.7}.

In order to have the vector b of the form of (3.3), the transformation matrix
T = −I is used to transform the pair (A, b) into (AT , [0, 0, 1]T ), where AT = TAT−1

and [0, 0, 1]T = Tb. The inputs of the procedure of Fig. 3.1 are selected as follows; δ1 ∈
[10−5, 1], δ2 ∈ [0.06, 4], γmin ∈ [0.01, 0.1], AT = TAT−1, β = 0.3, L = 0.011, R = 1,
and Q = I. The obtained controller parameters are cTT−1 = [0.5568, 1.6346, 3.6734]
and γc = 2.5353 with δ1 = 10−5, δ2 = 0.08, γmin = 0.1347, P̃22 = 3.6742, P̃12 =

[−0.5569,−1.6350]T , and P11 =

[
1.7252 2.0365
2.0365 6.0020

]
. The simulations are performed

with the discrete-time algorithm (2.74)(2.75)(2.76) with the sampling interval h =
0.01.

The simulation results are shown in Fig. 3.2. Here, we can see that γ(x, u) with
the designed values of the parameter set {c, γc} realizes accurate convergence. This
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Figure 3.2: Example 1: Simulation results with different values of γ.

figure also includes the results with two constant γ values. The larger γ value realizes
convergence but it is less accurate than that of γ(x, u), as indicated in the small panel
in the graph. The state with the smaller constant γ goes unstable although this smaller
constant γ = 0.25 is larger than γmin.



Chapter 3. Parameter Selection Procedure 50

3.3.2 Example 2

Here, the proposed controller is applied to a second order system adopted in [13, 46].
The controlled plant (2.1) is with the following matrices:

Figure 3.3: Example 2: Simulation results with the initial conditions x0 = [0, 0.4]T

and u0 = 0 and different values of γ.
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A =

[
0 −0.5
1 1.5

]
, b =

[
0
−1

]
, (3.82)

and is subjected to the following disturbance:

ζ = 0.1 sin(t). (3.83)

The control input u is limited as |u| ≤ 1 and |u̇| ≤ 2.5. The desired region is given as
R = {s ∈ C | <(s) ≤ −0.49 ∧ cos(arg(s)) ≤ −0.7}.

In order to have the vector b of the form of (3.3), we can use the transformation
matrix T = −I to transform the pair (A, b) into (AT , [0, 1]T ), where AT = TAT−1

and [0, 1]T = Tb. The inputs of the procedure of Fig. 3.1 are chosen as follows; δ1 ∈
[10−5, 1], δ2 ∈ [0.01, 4], γmin ∈ [0.01, 0.1], AT = TAT−1, β = 2.5, L = 0.125, R = 1,
and Q = I. The selection procedure in Fig. 3.1 obtains the controller parameters
as cTT−1 = [−0.8499, 1] and γc = 0.2899, where δ1 = 10−5, δ2 = 2.6, γmin = 0.05,
P̃22 = 1.1923, P̃12 = 1.0134, and P11 = 2.3498.

The simulations are performed with the discrete-time algorithm (2.74)(2.75)(2.76)
with the sampling interval h = 0.01. To show the efficacy of γ(x, u) with the designed
parameter set {c, γc}, Fig. 3.3 compares the results of γ(x, u) and the results of two
constant values of γ. Here, the state with γ ≡ γmin goes unstable, while that with
γ(x, u) does not lose the convergence. We also can see that the system with γ(x, u)
is less sensitive to the disturbance (i.e., has a smaller finite-time attractor) than that
with γ ≡ γc.

The contraction of the finite-time attractor due to the use of γ(x, u) is shown in
Fig. 3.4. In this figure, the linear portion SL ∩ F is shown with γ ≡ γc (i.e., the
light-coral region), and with γ ≡ 0.1045 (i.e., the red region), which is an upperbound
of γ after t > 5, indicated in Fig. 3.3. We can see that the system state with γ(x, u),
which is the blue-thin trajectory, goes inside the contracted finite-time attractor (i.e.,
inside the red region), while the state with the constant γ ≡ γc, which is the gray-thick
trajectory, goes to the larger finite-time attractor (i.e., the yellow ellipsoidal region).

Regarding this example, the previous parameter tuning method in Chapter 2 ob-
tained c and γc as indicated in Table 3.1. From Table 3.1, one can see that the
proposed method in this chapter provides smaller ‖c‖ and ‖c‖/γc than that of the
previous method. Another point to be noted is that, with c obtained by the proposed
method, the slowest pole of A − bcT/γmin is −0.50 + 0j, which is marginally inside
R, and limγ→0(A− bcT/γ) is outside R. Meanwhile, with c obtained by the previous
method, the poles are in R even for γ → 0. Considering that γ is lowerbounded by
γmin, the previous method can be said to be unnecessarily conservative for the choice
of c, resulting in a larger norm of c.
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Table 3.1: Example 2: Comparison of parameter values obtained by the parameter

tuning guideline in Chapter 2 and the proposed selection procedure here.

Proposed Method (Chapter 3) Previous Method (Chapter 2)

c [0.8499,−1]T [1,−1]T

γc 0.2899 0.276

‖c‖/γc 4.52 5.12

Fig. 3.5 compares the two parameter sets in Table 1, which are obtained by the
proposed and the previous methods. With the initial state x0 = [0, 0.4]T , these param-
eter sets realize similar performance to each other. Meanwhile, with the initial state
x0 = [0, 0.47]T , which is at a larger distance from the origin, the parameter set with the
previous procedure resulted in unstable behavior, while that of the proposed method
maintains the stability. This difference can be attributed to the smaller norm of c/γc

Figure 3.4: Example 2: The state mapping in σ-η plane with the initial condition

x0 = [0, 0.4]T . The blue-thin trajectory is the state trajectory with γ(x, u), while the

gray-thick one is the state trajectory with γ ≡ γc.
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realized by the proposed method, which resulted in a larger region of attraction.

Figure 3.5: Example 2: comparison between the controllers with two parameter sets

in Table 1, which are obtained by the proposed and the previous methods, with two

different initial states x0.
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3.4 Summary

This chapter has proposed a selection procedure for the parameter values of an amplitude-
and rate-saturated controller proposed in Chapter 2. The proposed selection procedure
explicitly seeks a small norm for the control action to enlarge the region of attraction.
It obtains the parameter values through an iterative computation that involves linear
matrix inequalities. The simulation results show that the parameter values obtained
by the proposed procedure realizes proper performance of the controller, and also re-
sults in a larger region of attraction than the previous parameter designing procedure
in Chapter 2.



Chapter 4

Application to Wind Turbine

Systems

4.1 Introduction

One application needs amplitude- and rate-saturated controller is the wind turbine
systems [8,69]. The control techniques of the wind turbine system are growing research
area, which concerns with improving the efficiency of the generation process with
better power quality and with less maintenance cost [70–72]. The control targets of
the variable-speed wind turbine [73, 74] are specified by the operating regions, which
are classified according to a power versus wind speed curve shown in Fig 4.1. The wind
speed range in that curve is bounded by a cut-in speed at which the turbine starts to
produce energy, and a cut-out speed at which the turbine is braked to save its structure
from damage. Between the cut-in and cut-out speeds, there is a rated wind speed value
at which the designed rated power of the turbine is achieved. In a region called “Region
3”, in which the wind speed is above the rated value, the generated power needs to be
constant at the rated power to avoid overloading on the generator [75,76]. One method
to maintain the generated power constant in Region 3 is to maintain the generator
speed via manipulating the angles of the turbine blades [76]. Each blade of them has
limitations on its angle and its angle rate-of-change. The control method that would
manipulate the blades’ angles should be robust enough to regulate the speed of the
generator over a wide range of wind speeds [70, 77]. In addition, the control method
should respect the limitations of the blade angle to avoid degradation in the turbine
performance.

A control scheme that sends identical pitch angle commands to all blades of a
turbine is referred to as collective pitch control (CPC). Various CPC methods have
been developed to achieve the regulation of the generator speed in Region 3. Gain-

55
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Figure 4.1: Power-versus-wind speed of variable-speed wind turbine.

scheduling proportional integral (GSPI) controller [2, 78] is a conventional controller
used with most commercial wind turbines [75]. This conventional control methodology
has a difficulty in tuning the controller parameters for a wide range of wind speeds,
which continuously change during operation. Disturbance accommodation control
(DAC) is another control methodology, which is applied earlier to wind turbine systems
[79, 80] to attenuate the effect of wind disturbances. One of its drawbacks is the
sensitivity against the unmodeled dynamics of the turbine, which may cause instability
in the turbine performance [81].

Some sliding mode control schemes have been proposed [82–84] to cope with the tur-
bine structure nonlinearity and uncertainty. Beltran et al. [83] introduced a dynamic
sliding-mode controller to maintain the generated speed via controlling the torque of
the generator. Their sliding-mode controller employs an adaptive gain, which contin-
uously increases as long as there exists an error between the reference and the actual
power of the turbine. The methodology of employing an adaptive gain proportional to
the error may be undesirable to be used for controlling the pitch angles of the turbine
because, in such a case, the control signal may increase over the limitations of the
pitch angles.

In order to circumvent the so-called chattering problem produced by sliding-mode
controllers, modified schemes have been developed, in which the sign function is re-
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laxed into a saturation function [82, 83], while in another work, higher-order sliding-
mode schemes [85] are introduced. Colombo et al. [86] have proposed a sliding-mode
approach to maintain the generator speed via controlling the pitch angle, and they em-
ployed the boundary-layer method to reduce the chattering phenomenon. Although
their scheme is designed to deal with several uncertainties in the model, it does not
take the amplitude- and rate-limitations of the blade angle into account. As far as the
author is aware, there have been no studies employing sliding mode controllers taking
into account the limitations on the blade angles and their rate-of-change.

This chapter proposes a new CPC scheme based on the proposed controller in
Chapter 2. The proposed CPC scheme respects the hardware limitation of the pitch
actuators, and it involves a nonlinear function in order to change the control gain
according to the state and the magnitude of the disturbance. This nonlinear function
facilitates a wider region of attraction when there are significant variations in the wind
speed and also facilitates a proper regulation of the generator speed when the variations
are small. The chattering is eliminated by a model-based implicit method [54, 55]
employed in the discrete-time implementation of the controller.

The controller is based on a standardized linearlized modeling scheme for the inher-
ently nonlinear wind turbine dynamics, which is provided by a well-established wind
turbine simulator (“Fatigue, Aerodynamics, Structures, and Turbulence”) [87]. The
validation of the proposed controller is shown through a comparative study with two
conventional control methods; a gain-scheduling proportional integral controller [2],
and a linear state-feedback controller of which the gains are obtained based on an
H2/H∞ criteria [88].

The rest of this chapter is organized as follows. Section 4.2 presents a reduced linear
time-invariant model of the wind turbine system. Section 4.3 proposes the controller
combined with a state and disturbance observer. Section 4.4 shows simulation results,
including comparison with other previous methods. Section 4.5 provides a summary
for this chapter.

4.2 Wind turbine model

The modeling scheme adopted by FAST [87] is employed here, in which the following
nonlinear equation of motion describes the wind turbine:

M(Q,U , t)Q̈+ F (Q, Q̇,U ,Ξ, t) = 0 (4.1)

where M denotes the inertia matrix, F is a nonlinear term, and t is the time. The
vector Q represents the displacements of the system’s degrees of freedoms (DOFs)
including the azimuth angle and the displacements of elastic components such as the
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blades, the generator shaft, the drivetrain gearbox, and the tower. For a three-bladed
horizontal-axis wind turbine, the full dimension of Q can be set as 24 as accounted
in [87], and in such a case, we have M ∈ R24×24 and F ∈ R24. The vector U is
the input to the plant, which may include the pitch angles of the blades, the nacelle
yaw angle rate and the electrical torque of the generator. The vector Ξ includes
disturbances, such as the hub-height wind speed and the wind share.

4.2.1 Reduced LTI model for controller development

To consider a controller for the plant (4.1), a linear time-invariant (LTI) approximation
of (4.1) is needed. The modeling scheme adopted by FAST [87] is followed to derive
such an approximation. Considering the nature of wind turbine systems, we can see
that the time dependency of the system (4.1) is very small. Moreover, among the many
DOFs of the whole system, the rotating motions of the generator and the torsional
motion of the drivetrain can be seen as two of the dominant DOFs. The drivetrain
here represents the gears and other flexible components that transmit the mechanical
power from the rotor shaft to the generator shaft. Thus, we can say that the dominant
elements of the vector Q are θ and φ, which respectively denote the rotor-shaft angle
(rad) and the drivetrain torsional displacement (rad). In addition, it is assumed that
the identical pitch angle commands are sent to all blades, and thus the dominant
element of U is only one command û ∈ R, which is referred to as the collective pitch
angle (rad). The dominant member of the disturbance vector Ξ is assumed to be

the horizontal wind speed ξ̂ ∈ R measured in m/s. Then, we can write the reduced
time-invariant nonlinear model as follows:[

θ̇

φ̇

]
=

[
ω
ν

]
(4.2)[

ω̇
ν̇

]
= f

([
θ
φ

]
,

[
ω
ν

]
,

[
û

ξ̂

])
(4.3)

where ω and ν are the angular velocity (rad/s) of the rotor shaft and the rate-of-change
(rad/s) of the drivetrain torsion, respectively. Such a reduced-dimensional model can
be obtained by FAST [87] by “disabling” specified DOFs and specifying necessary
elements of U and Ξ.

Here, let us set the following assumption:

Assumption 1. With a given angular velocity ωr of the rotor shaft and a given wind

speed ξ̂r, there exists a collective pitch angle û = ûf (ξ̂r, ωr) with which the system is in

the steady state.
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Figure 4.2: Dynamics of 2 DOFs.

The steady state here stands for the situation where ω is constant (at a value ωr)
and ν and φ exhibit cyclic behaviors of which each cycle corresponds to the rotation
of θ from 0 to 2π. Actually, FAST [87] has a function to find such a steady state and

ûf (ξ̂r, ωr) according to given values of ξ̂r and ωr. In such a situation, ω̇ = 0 is satisfied
and φ, ν and ν̇ are functions of θ. That is, there exist appropriate functions φf , νf and
νDf (where the subscript f stands for a function) with which the following equation
is satisfied for all θ0 ∈ [0, 2π):[

0

νDf (θ0, ξ̂r, ωr)

]
= f

([
θ0

φf (θ0, ξ̂r, ωr)

]
,

[
ωr

νf (θ0, ξ̂r, ωr)

]
,

[
ûf (ξ̂r, ωr)

ξ̂r

])
.(4.4)

Such a situation can be referred to as an “operating point”, which can be defined as
follows:

P(θ0, ξ̂r, ωr) =
{
θ = θ0, φ = φf (θ0, ξ̂r, ωr), ω = ωr, ν = νf (θ0, ξ̂r, ωr),

ω̇ = 0, ν̇ = νDf (θ0, ξ̂r, ωr), ξ̂ = ξ̂r, û = ûf (ξ̂r, ωr)
}
. (4.5)

Around an operating point P(θ0, ξ̂r, ωr), one can obtain a linear approximation of
the system (4.3) as follows:

θ̇ − ωr
φ̇− νf (θ0, ξ̂r, ωr)

ω̇

ν̇ − νDf (θ, ξ̂r, ωr)

 = Â(θ0, ξ̂r, ωr)


θ − θ0

φ− φf (θ0, ξ̂r, ωr)
ω − ωr

ν − νf (θ0, ξ̂r, ωr)


+B̂(θ0, ξ̂r, ωr)

[
û− ûf (ξ̂r, ωr)

ξ̂ − ξ̂r

]
(4.6)
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where

Â(θ0, ξ̂r, ωr)
∆
=

[
O2×2 I2

∂f/∂[θ, φ]T ∂f/∂[ω, ν]T

]∣∣∣∣
P(θ0,ξ̂r,ωr)

∈ R4×4 (4.7)

B̂(θ0, ξ̂r, ωr)
∆
=

[
O2×2

∂f/∂[û, ξ̂]T

]∣∣∣∣
P(θ0,ξ̂r,ωr)

∈ R4×2. (4.8)

Because of the cyclic nature of the behavior and the fact that θ is not of interest
for control purposes, one can consider an averaged dynamics of the system over θ0 ∈
[0, 2π). Let N be a natural number. Averaging over N operating points yields the
following:

A(ξ̂r, ωr)
∆
=

1

N

N∑
i=1

JÂ(2πi/N, ξ̂r, ωr)J
T ∈ R3×3 (4.9)

B(ξ̂r, ωr)
∆
=

1

N

N∑
i=1

JB̂(2πi/N, ξ̂r, ωr) ∈ R3×2 (4.10)

φ̄f (ξ̂r, ωr)
∆
=

1

N

N∑
i=1

φf (2πi/N, ξ̂r, ωr) ∈ R. (4.11)

Here, J
∆
= [o3, I3] ∈ R3×4 where o3 is the three dimensional zero column vector, and

I3 is the three dimensional identity matrix. In addition, the cyclic change of φ results
in the following:

1

N

N∑
i=1

νf (2πi/N, ξ̂r, ωr) ≈ 0 (4.12)

1

N

N∑
i=1

νDf (2πi/N, ξ̂r, ωr) ≈ 0. (4.13)

As a result, we can obtain the following reduced system: φ̇
ω̇
ν̇

 = A(ξ̂r, ωr)

 φ− φ̄f (ξ̂r, ωr)
ω − ωr
ν

+B(ξ̂r, ωr)

[
û− ûf (ξ̂r, ωr)

ξ̂ − ξ̂r

]
. (4.14)

Next, let us set another assumption and consider using ξ̂m, which is the wind-speed
value measured by a sensor.

Assumption 2. The changes in A(ξ̂, ωr) and B(ξ̂, ωr) according to the change in ξ̂

are sufficiently small within a certain range of ξ̂ including ξ̂r and ξ̂m.
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This assumption leads to the following approximation of (4.14): φ̇
ω̇
ν̇

 = A(ξ̂r, ωr)

 φ− φ̄f (ξ̂m, ωr)
ω − ωr
ν

+B(ξ̂r, ωr)

[
û− ûf (ξ̂m, ωr)

ξ̂ − ξ̂m

]
. (4.15)

With a fixed ξ̂r and ωr and the measured ξ̂m, let us define

x
∆
=

 φ− φ̄f (ξ̂m, ωr)
ω − ωr
ν

 (4.16)

u
∆
= û− ûf (ξ̂m, ωr) (4.17)

ξ
∆
= ξ̂ − ξ̂m (4.18)

A
∆
= A(ξ̂r, ωr) (4.19)

[b, g]
∆
= B(ξ̂r, ωr). (4.20)

Then, (4.15) is now described as the following LTI system:

ẋ = Ax+ bu+ gξ. (4.21)

Such an LTI model, more specifically, the set of matricesA ∈ R3×3, b ∈ R3 and g ∈ R3,
can be obtained by utilizing built-in functions of FAST [87]. Linear approximations
of the form (4.21) of wind turbine systems have also been used by some previous
researchers [36,88].

In the LTI model (4.21), the state vector x is not available, except the second
element being obtained through the rotor tachometer, but the later Section 4.3.2 will
introduce a state- and disturbance-observer to estimate it. As for the first element
of x, its value is directly obtained through the observer, although φ is not available
and φ̄f (ξ̂m, ωr) does not have to be computed. Although ξ̂m is available, the true wind

speed ξ̂ is unavailable and the measurement error ξ is to be estimated also through
the observer. The control input u is to be provided by a controller designed based on
the LTI model (4.21). The actual control input û, to be given to the plant, should be

obtained as û = u+ ûf (ξ̂m, ωr), as can be seen in (4.17). Here, the function ûf (ξ̂m, ωr)
needs to be given as a lookup table built in advance. It can be built with, for example,
FAST [87], which has functions of searching for the steady states.

The output equation of the LTI model (4.21) is as follows:

∆ωg = hTx (4.22)
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where

∆ωg
∆
= ωg − ωgr (4.23)

and ωg (rpm) and ωgr (rpm) are the observed and the reference generator speeds. The
vector h is defined as h = [0, h1, 0]T where h1 is the product of the gear ratio and the
conversion coefficient from rad/s to rpm (i.e., h1 = ωgr (rpm)/ωr (rad/s)).

Remark 4.2.1. It should be noted that the LTI model (4.21) is an approximation of

the nonlinear system (4.1) neglecting the motions of 22 DOFs, and it does not even

include any error terms that may be caused by this approximation. The validity of the

proposed controller built on this simplified LTI model (4.21) will be empirically tested

with simulation, in which the controller is applied to the fully nonlinear time-variant

system (4.1).

4.2.2 Pitch actuator model

Each blade of the wind turbine has a pitch actuator that receives the control signal û
and changes the blade angle accordingly around its longitude axis. Due to its intrinsic
mechanical properties, the angle and the angular velocity of the blades are limited,
which means that the control signal û needs to satisfy the following conditions:

|û| ≤ α, |dû/dt| ≤ β (4.24)

where α and β are positive constants. For example, the pitch actuator of a 5 MW
wind turbine discussed in [2] has the following; α = 1.5 rad and β = 0.14 rad/s. We

can now divide the limitations (4.24) corresponding to u and ûf (ξ̂m, ωr) as follows:

|u| ≤ αu, |u̇| ≤ βu, (4.25)

|ûf (ξ̂m, ωr)| ≤ αûf ,

∣∣∣∣∣dûf (ξ̂m, ωr)dt

∣∣∣∣∣ ≤ βûf (4.26)

where α = αu + αûf and β = βu + βûf .

4.3 Colletive Pitch Controller

4.3.1 An amplitude- and rate-saturated controller

This section extends the controller of Chapter 2 to be able to deal with the LTI system
(4.21), which approximates the nonlinear plant (4.1). The main part of this controller
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has the following form:

u̇ ∈ −βusgn
(
u+ satαu(cTx/γ(x, u))

)
(4.27)

where the vector c ∈ R3 is a controller parameter that should be chosen appropriately,
γ(x, u) is a nonlinear function defined later. In almost the same way as in Chapter 2,
it can be shown that the controller (4.27) applied to the LTI plant (4.21) is a sliding
mode controller of which the sliding surface is u + satαu(cTx/γ) = 0 and that the
sliding mode takes place when

γ >
|cTAx+ cTbu|+ |cTgξ|

βu
(4.28)

is satisfied. This implies that selecting large γ enlarges the region in which the sliding
mode happens. In the sliding mode, the controller (4.27) reduces to a linear controller
u = −cTx/γ (see Theorem 2.3.1) and the poles of the closed-loop system coincide
with the eigenvalues of the matrix (A − bcT/γ). In such a case, a small value of γ
facilitates a high-gain control action, which mitigates the influence of disturbances and
attracts the state to a neighborhood of the origin, reducing the size of the finite time
attractor.

Chapter 2 employed a particular definition of the nonlinear function γ(x, u) to
enlarge the region of attraction when the state is far from the origin and to shrink
the finite time attractor when the state is near the origin. Because the plant (4.21)
is slightly different from the plant considered in (2.1), this chapter proposes a slightly
modified definition of γ(x, u), which is described as follows:

γ(x, u)
∆
= min

(
γc,
|cTAx|+ cTb|u|+ |cTgξ|+ cTbL

βu

)
(4.29)

where γc and L are positive scalars that need to be appropriately chosen. The param-
eter γc should be chosen large to enlarge the region of attraction but should be small
enough to set the eigenvalues of the matrix (A− bcT/γ(x, u)) within a give subset of
the complex plane. As for the choice of the parameter L, we at this time do not have
a clear guideline, although in Chapter 2, it was suggested to choose it according to the
upperbound of a disturbance superposed to the input u, which is absent in the plant
(4.21). It should be noted that cTb > 0 is assumed to be satisfied.

Because the proposed controller (4.27) is to be implemented in discrete-time con-
trollers, we need to avoid the chattering caused by inappropriate treatment of the set-
valued sgn function in the discretization. Chapter 2 employed a model-based implicit
discretization scheme [54, 55] to obtain a discrete-time algorithm of the controller. In
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the same light, the following discrete-time algorithm is proposed as an implementation
of the controller (4.27) combined with (4.29):

wk−1 := cT (I + hA)xk−1 (4.30a)

γk := min

(
γc,
|cTAxk−1|+ cTb|uk−1|+ |cTgξk−1|+ cTbL

βu

)
(4.30b)

uk := uk−1 − sathβu

(
uk−1 + satαu

(
wk−1

γk + cTbh

))
(4.30c)

where k is the discrete-time index and h is the sampling interval.

4.3.2 State and disturbance observer

In the controller (4.30), the state x and the residual disturbance ξ cannot be measured
directly. One method to estimate them is the use of an observer called an unknown
input observer (UIO) [89]. An early version of UIO was introduced by Johnson [90]. He
later extended it to be a part of a disturbance accommodation controller (DAC) [79],
which has been applied also to wind turbine systems [80,81].

In the same light as in [80,91], a direct application of an UIO to the plant composed
of (4.21) and (4.22) can be obtained as follows:

d

dt

[
x̂

ξ̂

]
= A

[
x̂

ξ̂

]
+ Bu+K(∆ωg − hT x̂) (4.31)

where

A ∆
=

[
A g
oT3 0

]
, B ∆

=

[
b
0

]
. (4.32)

Here, the vector x̂ is the estimated state vector and ξ̂ is the estimated residual distur-
bance. The observer gain K ∈ R4 is calculated via a pole placement problem to assign
the eigenvalues of (A−KH) at desired locations, where H = [hT , 0]. This observer
structure of course requires the observability of the pair {A,H}, which can be easily
checked when the linearlized model is obtained. At this time, a strict proof of the
observability of wind turbine systems is not derived here, but at least a wind turbine
model provided by FAST [87] presented in the next section is indeed observable. The
overall control scheme including this observer is shown in Fig. 4.3.

4.3.3 Parameter design

To implement the discrete-time algorithm (4.30), we need to set the values of the
parameters {A, b, g, αu, βu, L, c, γc}. Among them, {A, b, g, αu, βu} are determined
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Figure 4.3: Block diagram of the proposed control scheme, where Pg is the generated

power.

by the physical properties of the plant (4.21), while the rest ones, {L, c, γc}, need to
be carefully designed. Chapter 3 proposed a selection procedure for the parameters
{c, γc} based on the assumption that L is given in advance. The procedure was based
on the following two main objectives. One is to make ‖c/γc‖ small to enlarge the
region in which the sliding mode occurs, i.e., in which the condition (4.28) is satisfied.
The second is to keep all the eigenvalues of A− bcT/γ(x, u) inside a specified region
R in the complex plane. Further discussion and details are found in Section 3.2.

4.4 Simulation setup and results

4.4.1 Simulation setup

The wind turbine simulator FAST [87] is used here to simulate a 5 MW, three-bladed,
horizontal-axis wind turbine as specified in Table 4.1. The full 24-DOF nonlinear
dynamics model of the turbine is considered in the simulation. The proposed controller
(4.30) combined with the state- and disturbance-observer (4.31) and the lookup table

ûf (ξ̂m, ωr) are applied to the FAST simulator, as illustrated in Fig. 4.3, via Simulink
interface. In this simulation, a step-like wind speed profile and a stochastic wind speed
profile are used.



Chapter 4. Application to Wind Turbine Systems 66

Table 4.1: Wind Turbine Specifications [2, Table 1-1].

Power rating 5 MW

Number of blades 3

Rotor diameter 126 m

Hub Height 90 m

Cut-in wind speed 3 m/s

Rated wind speed 11.4 m/s

Cut-out wind speed 25 m/s

Cut-in rotor speed 6.9 rpm

Rated rotor speed 12.1 rpm

Gearbox ratio 97:1

Rated generator speed 1173.7 rpm

To determine the matrices A, b and g of the plant (4.21), the linearization feature

of FAST [87] is applied at a particular operating point of P(ξ̂r, ωr). Here, the steady

wind speed is selected as ξ̂r = 18 m/s, while ωr is set as the rated speed of the turbine,
which is 1.27 rad/s (i.e.,12.1 rpm as specified in Table 4.1). The resulted matrices
were as follows:

A =

 0 0 1
172.6 −2.731 1.237
−195 2.4555 −1.6725

 , (4.33)

b =

 0
0

−1.3265

 , g =

 0
0

0.0308

 , (4.34)

h =
[

0 926.3 0
]T
. (4.35)

The second element of h is the ratio between the generator speed in rpm and the
rotor-shaft speed in rad/s, which is the reduction ratio of the gearbox, as indicated in
Table 4.1 by 97, multiplied by 60/(2π).

The linearization process of FAST was also performed with a set of steady wind
speed values ξ̂m from 12 m/s to 22 m/s to obtain the corresponding pitch angles

ûf (ξ̂m, ωr). The results data of the linearization process are arranged in a lookup
table shown in Table 4.2. In a real implementation, the wind speed is supposed
to be measured via proper sensors such as LiDAR [2], or a cup anemometer. The
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Table 4.2: The Lookup table that is applied to obtain the pitch angle ûf (ξ̂m, ωr).

ξ̂m ûf (ξ̂m, ωr)

12 m/s 0.077266 rad

13 m/s 0.121026 rad

14 m/s 0.155668 rad

15 m/s 0.185741 rad

16 m/s 0.213168 rad

17 m/s 0.238465 rad

18 m/s 0.262362 rad

19 m/s 0.285104 rad

20 m/s 0.306746 rad

21 m/s 0.327591 rad

22 m/s 0.347891 rad

limitations of u and ûf (ξ̂m, ωr), which are defined in (4.25) and (4.26), are set as
follows; αu = 0.5 rad, βu = 0.06 rad/s, αûf = 1 rad and βûf = 0.08 rad/s.

The parameters for the controller (4.30) were chosen as L = 0.05, γc = ∞ and
c = [−0.2130,−0.0225,−0.0081]T , partially through the procedure presented in Sec-
tion 3.2. Some trial and error were needed for the parameter tuning because the
procedure in Section 3.2 was originally for the plant defined in (2.1), which is slightly
different from the plant (4.21). Specifically, the parameter L was initially set to be
L = 0.001 and the procedure was performed to obtain c and γc. After that, by ob-
serving the preliminary simulation results, L was manually tuned and ended up with
L = 0.05. In the application of the procedure of Section 3.2, auxiliary inputs were
set as: R = the whole left half plane, R = 1, Q = 10−4I, δ1 ∈ [0.01, 1], δ2 ∈ [1, 1000],
γmin ∈ [10−7, 0.01]. The matrix T = diag[−1,−1,−0.7539] is also used to transform
the system into the equivalent system satisfying Tb = [oT3 , 1]T , which was necessary
for the procedure. As a result, the aforementioned values of c and γc are obtained
and the auxiliary outputs γmin = 1.8× 10−5, δ1 = 0.01, δ2 = 1000. Fig. 4.4 is the root
locus diagram of the matrix A− bcT/γ with varying γ, showing that the eigenvalues
are always inside R.

The sampling interval of the discrete-time implementation (4.30) was set as h =
0.01. Regarding the UIO, we can see that the pair {A,H} is observable from the
definitions of A, g, and h in (4.33)-(4.35). The gain vector of the observer was set as
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Figure 4.4: The loci of the eigenvalues of the matrix (A − bcT/γ) within the region

R.

K = [0.05, 0.19, 0.86, 200]T , with which the eigenvalues of (A −KH) are placed at
−10, −20, −50, and −100.

4.4.2 Simulation results

Here, the proposed controller is compared with two previous controllers. One is a gain-
scheduling PI controller described in [2]. This controller employs a gain-correction
factor to automatically modify the proportional and integral gains corresponding to
the latest value of the collective pitch angle. Further details about the gain-correction
factor can be found in [2]. The proportional and integral gains are set as 0.0019 and
0.0008, respectively, while the gain-correction factor is set as 1/(1 + (û/0.11)).

The other is a controller shown in Fig. 4.5, which is a linear state-feedback con-
troller combined with a linear state observer and a feedforward term ûf (ξ̂m, ωr). This
controller is motivated by the controller of Hassan et al. [88], who proposed an op-
timization method for a linear controller for wind turbines combined with some so-
phisticated techniques such as Kalman filtering and individual pitch control. In the
controller of Fig. 4.5, the gain vector k is particularly chosen as:

k = [3.5842, 2.0471, 1.6246]T , (4.36)

which is exactly the result of Hassan et al. [88], who applied their H2/H∞ optimization
technique to the same plant. As for the linear observer in Fig. 4.5, the observer gains
are chosen so that its poles were placed at {−10,−20,−50}.
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Figure 4.5: Block diagram of the control scheme used for the comparison study includ-

ing the linear feedback controller (4.36), a linear state observer and the lookup table

detailed in Table 4.2. Here, Pg denotes the generated power.

Here, it is needed to point out that both of those previous controllers apply the
pitch actuator limitations (4.24) through an amplitude saturation and rate limiter
imposed on the total control action û, as shown in Fig. 4.5.

Fig. 4.6 shows the results of the simulation in which the wind turbine is subjected
to a step-like wind profile. The graphs of the wind speed and γ shows that γ takes
larger values when the wind speed changes. Such large values of γ produces low-gain
actions, resulting in smaller fluctuations in the generator speed and the generator
power than the other controllers.

Fig. 4.7 shows the results of the simulation in which the wind turbine is subjected to
a stochastic wind speed profile. Here, the wind speed fluctuation is smaller than that in
Fig. 4.6. In this case, γ maintains low values, which result in a high-gain control action
in the regulation of the generator speed. The regulation of the generator speed under
the proposed controller and the linear controller are almost the same, although a very
slight improvement under the proposed controller can be seen in Table 4.3. With both
of the linear controller and the proposed controller, the regulation of the generator
speed is better than that with the scheduling PI controller. It can be concluded that
the main feature of the proposed controller is that it is robust against high variations
in the wind speed while achieving almost the same performance as an optimized linear
controller under small fluctuation in the wind speed.
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Proposed controller

Gain-scheduling PI [5]

Linear controller of Fig. 3

K

Figure 4.6: Simulation results of the proposed control scheme (red), a gain-scheduling

PI controller (blue) [2], and a linear state-feedback controller (dark-gray), detailed in

Fig 4.5, with a step-like wind speed profile.
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Proposed controller

Gain-scheduling PI [5]

Linear controller of Fig. 3

K

Figure 4.7: Simulation results of the proposed control scheme (red), a gain-scheduling

PI controller (blue) [2], and a linear state-feedback controller (dark-gray), detailed in

Fig 4.5, with a stochastic wind speed profile.
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Table 4.3: Statistic analysis of the simulation results of Fig. 4.7.

mean std.

Proposed controller

Gen. Speed 1172 2.931

Gen. Power 4879 112.7

Linear feedback controller

Gen. Speed 1171 3.01

Gen. Power 4867 116.4

4.5 Summary

This chapter has proposed a new collective pitch controller to maintain the generator
speed at its rated value in Region 3. The proposed controller, which is an extension of
the controller proposed in Chapter 2, respects the limitations of the blade angles by
producing control signal with a limited amplitude and a limited rate-of-change. The
simulation results have shown that the proposed controller is robust against significant
variations in wind speed. Extending the proposed controller for MIMO systems is
highly needed in a future study to consider the mechanical fatigue loads [92] on the
blades in addition to the regulation of the generator speed.



Chapter 5

Conclusion

5.1 Conclusion remarks

This dissertation has proposed a control technique for the system that has an amplitude-
and rate-limitation on its input signal. Chapter 2 has proposed a sliding-mode like
controller involving a state-dependent parameter, which influences the feedback gain.
In this particular sliding-mode like structure, a higher gain results in a steeper slope
of the switching surface, which further results in a smaller sliding patch on the sliding
surface and a smaller finite-time attractor. Therefore, the nonlinear function γ(x, u)
is designed so that the gain is low when the state is far from the origin to enlarge
the region of attraction, and is high when the state is close to the origin to set the
finite-time attractor smaller. In Chapter 2 also, the controller parameters are designed
to place the closed loop eigenvalues in pre-specified locations inside a given region in
the complex plane when the state-dependent parameter reaches its minimum. The pa-
rameters are also designed to maintain the eigenvalues inside the given complex-region
along the different values of the nonlinear function γ(x, u).

Chapter 3 has proposed a new design procedure to select the controller parameters.
This procedure has been divided into two stages; the first obtains the vector c using an
iterative algorithm, which involves a set of LMIs. These LMIs are derived in the case
where the state-dependent parameter comes to its minimum for which the asymptotic
stability is guaranteed in the absence of disturbance. The second stage is designed
to search for a maximum possible value of the upperbound γc to achieve low control
action when the state goes far from the origin.

Chapter 4 represents a direct application to a real system, which needs an amplitude-
and rate-saturated controller. The application system is a nonlinear wind turbine sys-
tem and the purpose of controlling is to maintain the generated speed constant when
the wind speed is above the rated wind speed. Because the controller in Chapter 2 is

73
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mainly proposed considering a linear controlled plant, the linearized model of the wind
turbine system was necessary to design the proposed controller in this chapter, and the
utilized function γ(x, u) has been slightly modified to match with the linearized model.
Finally, the controller is applied to a full nonlinear wind turbine plant emulated by a
software simulator called “FAST” [87]. The advantage of the proposed controller has
been shown by comparing it with another control method. The comparison shows that
the proposed controller reduces the fluctuations’ amplitude of the generated power,
specially in the presence of high wind-speed variations. This reduction is expected to
promote better generated-power quality and longer life-time for the mechanical parts
of the wind turbine system.

5.2 Future Work

The controller proposed in this dissertation still needs further studies to obtain the
controller parameters respecting a specific region of attraction. Moreover, the proposed
design procedure of the controller parameters would not be the only method that could
be used for the design of the controller. The selection of the controller parameters is
an open problem according to the purpose of the design. The following are some of
open problems, and suggestions regarding each one.

5.2.1 Stability proofs considering the effects of γ̇

With the nonlinear function γ(x, u), the stability proofs in Section 2.3 do not strictly
hold because it will inject additional terms proportional to γ̇ to the derivatives of
Vs(s(ξ)) and Vq(x). They are still valid if γ̇ is small enough, although it is still unclear
in what regions of the state space |γ̇| can be said to be small enough.

5.2.2 Estimating a specific region of attraction

The sliding mode-like controller proposed in Chapter 2 needs further study to estimate
a set of initial states that could be attracted to the designed switching surface. On
the same context, a future study should address extensions of the parameter designing
procedure to choose the parameter values so that a given initial state is included in
the region of attraction and so that a given size of the finite-time attractor is realized.

Regarding this open problem, the sliding mode condition (2.27) needs to hold true
at an initial state (x0, u0). This implies that:

γc >
|cTAx0 + cTbu0 + cTbζ|

β
. (5.1)
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Figure 5.1: Different size of the region SL ∩F corresponding to different γc.

Considering the σ-η plane, one can say that the initial point (σ0, η0) needs to be inside
the region SL ∩F .

To obtain the controller parameters {c, γc} respecting the above condition, one
possible idea is to use the design procedure of Chapter 3 to find the vector c, and then,
γc could be selected according to the condition (5.1). Fig 5.1 shows the influences of
different values of γc to include a certain initial condition.

Another possible idea might be inspired from Method B of Sec. 3.2.3, in which
the upperbound γc is obtained based on the matrices {E1,F1,E2,F2}, specifically, γc
depends on the minimum real eigenvalues of (F1E

−1
1 ) and (F2E

−1
2 ). Because these

matrices are functions of c, we can develop a new selection method of c to result in
(F1E

−1
1 ) and (F2E

−1
2 ) with real eigenvalues as large as possible.

5.2.3 Controller parameter tuning for already-stable plants

With a stable system in the open loop, a significant-low control action keeps the system
near the stable open loop. One possible idea here might be setting the parameter γc to
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Figure 5.2: An example of the root locus of stable system and the working region R.

be∞, which is an ideal value for the upperbound of γ(x, u) to facilitate a wide region
of attraction. In such a case, the selection procedure of the controller parameters
will be started by setting γc ≡ ∞, and then, the other controller parameters c will
be selected respecting a small size of the finite-time attractor. During the design of
c, we have to be sure from the system’s stability along the changes in γ from ∞ to
the designed γmin. This scenario is valid only when there is no conditions on the
eigenvalues of the closed loop system when γ holds at γc.

5.2.4 Extension for MIMO systems

For multi-input multi-output (MIMO) systems, a MIMO controller is necessary to
achieve multi control purposes. For example, the wind turbine system, discussed in
Chapter 4, could need an individual pitch angle controller to overcome the fatigue
loads on the blades [92]. In such a case, the controlled plant is MIMO systems, in
which the measured moment of each blade is required to construct the controller. It
would be beneficial to extend the controller proposed in Chapter 2 to be applied to
MIMO systems. The selection procedure of the controller parameters in Chapter 3
can also be modified to be compatible with a MIMO version of the proposed controller
of this dissertation.
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[75] J. G. Njiri and D. Söffker, “State-of-the-art in wind turbine control: Trends and
challenges,” Renewable and Sustainable Energy Reviews, vol. 60, pp. 77–393, 2016.

[76] E. Muljadi and C. P. Butterfield, “Pitch-controlled variable-speed wind turbine
generation,” IEEE Transactions on Industry Applications, vol. 37, no. 1, pp. 240–
246, 2001.

[77] D. C. Vega, J. A. Marin, and R. T. Sánchez, “Pitch angle controllers design for
a horizontal axis wind turbine,” in Proceedings of IEEE International Autumn
Meeting on Power, Electronics and Computing, 2015, pp. 1–6.

[78] H. Takaai, Y. Chida, K. Sakurai, and T. Isobe, “Pitch angle control of wind
turbine generator using less conservative robust control,” pp. 542–547, July 2009.

[79] C. D. Johnson, “Theory of disturbance-accommodating controllers,” Control and
Dynamic Systems, vol. 12, pp. 387–489, 1976.

[80] M. Balas, Y. Lee, and L. Kendall, “Disturbance tracking control theory with
application to horizontal axis wind turbines,” American Institute of Aeronautics
and Astronautics, pp. 95–99, Jan. 1998.



References 84

[81] I. P. Girsang and J. S. Dhupia, “Collective pitch control of wind turbines using
stochastic disturbance accommodating control,” Wind Energy, vol. 37, no. 5, pp.
517–534, Oct. 2013.

[82] S. H. Lee, Y. J. Joo, J. Back, and J. H. Seo, “Sliding mode controller for torque and
pitch control of wind power system based on PMSG,” in Proceedings of Interna-
tional Conference on Control, Automation and Systems, Oct 2010, pp. 1079–1084.

[83] B. Beltran, T. Ahmed-Ali, and M. E. H. Benbouzid, “Sliding mode power control
of variable-speed wind energy conversion systems,” IEEE Transactions on Energy
Conversion, vol. 23, no. 2, pp. 551–558, June 2008.

[84] H. De Battista, R. J. Mantz, and C. F. Christiansen, “Dynamical sliding mode
power control of wind driven induction generators,” Power Engineering Society
Summer Meeting, Seattle, WA, USA, July 2000.

[85] B. Beltran, T. Ahmed-Ali, and M. E. H. Benbouzid, “High-order sliding-mode
control of variable-speed wind turbines,” IEEE Transactions on Industrial Elec-
tronics, vol. 56, no. 9, pp. 3314–3321, Sep. 2009.

[86] L. Colombo, M. Corradini, G. Ippoliti, and G. Orlando, “Pitch angle control of
a wind turbine operating above the rated wind speed: A sliding mode control
approach,” ISA Transactions, 2019.

[87] J. M. Jonkman and M. L. Buhl, Jr., “FAST user’s guide,” National Renewable
Energy Laboratory, Tech. Rep. NREL/EL-500-38230, 2005.

[88] H. Hassan, A. ElShafei, W. Farag, and M. Saad, “A robust lmi-based pitch con-
troller for large wind turbines,” Renewable Energy, vol. 44, pp. 63–71, 2012.

[89] L. G. W. Chen, J. Yang and S. Li, “Disturbance-observer-based control and
related methods−an overview,” IEEE Transactions on Industrial Electronics,
vol. 63, no. 2, pp. 1083–1095, Feb. 2016.

[90] C. D. Johnson, “Optimal control of the linear regulator with constant distur-
bances,” IEEE Transactions on Automatic Control, vol. 13, no. 4, pp. 416–421,
Aug. 1968.

[91] K. T. Magar, M. Balas, S. Frost, and N. Li, “Adaptive state feedback-theory and
application for wind turbine control,” Energies, vol. 10, no. 12, pp. 1–15, Dec.
2017.

[92] E. A. Bossanyi, “Wind turbine control for load reduction,” Wind Energy, vol. 6,
no. 3, pp. 229–244, 2003.



Appendix A 85

[93] Creative commons. [Online]. Available: https://creativecommons.org/licenses/



Appendix A

FAST files

A.1 Linearization file

The linearized model of the wind turbine system is obtained via FAST [87] after
carrying out some steps as follows;

• Inside a file called “primary” file, we adjust FAST task to linearization, and we
enable the desired DOFs.

• Other flags in the “primary” file such as PCMode, YCMode, GenTiStr, Gen-
TiStp, TimGenOn, THSSBrDp, TiDynBrk, TTpBrDpi, TYawManS, TPitManSi
and TBDepISpi, must be adjusted as described in the guide manual of FAST [87].

• The wind profile in a file with extension “ .hh” must be steady.

Now, after setting the aforementioned steps, we run “FAST.exe” directly or via the
“Command Prompt” to trace errors, which could be happened during the execution of
the linearization process. The generated file that contains the linearization data has
an extension “.lin”, and it appears as follows:
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Appendix B

MATLAB codes

The following is an example of the implementation of the discrete-time controller
proposed in this thesis.
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