九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Backward Stochastic Differential Equations and Solutions

泉，優行
https：／／doi．org／10．15017／4060006

出版情報：Kyushu University，2019，博士（数理学），課程博士 バージョン：
権利関係：

Backward Stochastic Differential Equations and Solutions

Yuki Izumi

Abstract

In this paper, we consider backward stochastic differential equations (BSDEs for short). We are interested in two topics: The existence of L^{p} solutions to BSDEs with non-Lipschitz generators, and the higher order differentiability of solutions in the sense of the Malliavin calculus.

First, we deal with BSDEs with linear growth generators and show directly the existence of L^{p} solutions by constructing a Cauchy sequence of solutions to BSDEs approximationg the original one. Second, we will argue the differentiability of solutions in the sense of the Malliavin calculus. It is known that a solution is differentiable and the derivative is also a solution to a linear BSDE. Under additional conditions, we will show that the higher order differentiability of a solution to a BSDE and that it also becomes a solution to a linear BSDE.

Contents

1 Introduction 1
1.1 Backward Stochastic Differential Equations 1
1.2 Literature on BSDE and Our Work 2
1.3 Notations 4
1.3.1 BSDE and solution spaces 4
1.3.2 The Wiener space and the Malliavin derivatives 5
$2 L^{p}$ solutions to BSDEs 9
2.1 Assumptions 9
2.2 A priori estimates 10
2.3 Existence of an L^{p} solution 14
2.3.1 Approximation of linear growth functions 14
2.3.2 Approximation of a solution 14
3 Malliavin Dirrefentiability of Solutions 19
3.1 BSDEs on Hilbert spaces 19
3.2 Differentiability of Solutions to Linear BSDEs 22
3.3 Second Differentiability of Solutions to BSDEs 33
3.4 Higher Order Differentiability 37
3.4.1 Under Additional Conditions on f 38
3.4.2 Under Boundedness Assumption of Z 49

Chapter 1

Introduction

1.1 Backward Stochastic Differential Equations

Backward stochastic differential equations containing general nonlinear cases are first introduced by Pardoux and Peng [23]. Since then, these equations have been studied by a lot of researchers and known to have various applications on pricing and hedging financial derivatives, stochastic optimal control, connection with partial differential equations and so on.

General BSDEs are formulated as follows:

$$
\left\{\begin{array}{l}
-d Y_{t}=f\left(t, Y_{t}, Z_{t}\right) d t-Z_{t}^{*} d W_{t}, \quad 0 \leq t \leq T \\
Y_{T}=\xi
\end{array}\right.
$$

or, equivalently,

$$
\begin{equation*}
Y_{t}=\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s}^{*} d W_{s}, \quad 0 \leq t \leq T \tag{1.1}
\end{equation*}
$$

where T is a positive constant, ξ is a d-dimensional random variable, $\left(W_{t}\right)_{0 \leq t \leq T}$ is an n-dimensional standard Brownian motion, the generator f is a d-dimensional random function defined on $[0, T] \times \mathbb{R}^{d} \times \mathbb{R}^{n \times d}$ and the notation "*" represents the transpose of a matrix. We say a pair of \mathbb{R}^{d} - and \mathbb{R}^{n}-valued adapted processes (Y, Z) is a solution if (Y, Z) satisfies the equation.

Stochastic differential equations (SDEs) are kinds of differential equations with randomness given by stochastic integration, and their solutions are stochastic processes represented by one symbol generally. SDEs are often called forward SDEs in the context of contrasting to BSDEs since they are usually discussed under initial conditions are given. On the other hand, it is characteristic that BSDEs have terminal conditions and each of solutions consists of two processes symbolized by Y and Z such that Z enjoys the role of controlling Y to achieve the terminal conditions. Furthermore, it is important that the solutions are
adapted. The solutions to the equations (1.1) could be considered formally by the framework of usual forward SDEs. Such solutions, however, might fail to be adapted, that is, they might contain future information. This would impact significantly on applications.

In mathematical finance, for instance, pricing or hedging contingent claims is an important problem. The writers of claims have to replicate them on the maturity by determining asset allocation, at which time only market information obtained up to that time can be used. In this situation, for a solution to a $\operatorname{BSDE}(Y, Z), Y$ and Z correspond to a wealth process and a hedging strategy, respectively. Therefore, we see that adaptedness of (Y, Z) is necessary for consideration of real typical problems. In addition, studying properties of solutions is quite important not only for mathematical interest but also for applying to the problems.

1.2 Literature on BSDE and Our Work

Nonlinear BSDEs are first introduced by Pardoux and Peng [23] and they proved the existence and uniqueness of solution under Lipschitz condition on f. Since then, BSDEs have been studied by a lot of researchers in connection with mathematical finance. It is known that ξ, Y and Z correspond respectively to a contingent claim, a value of a replicating portfolio and a replicating strategy. And in connection with stochastic optimal control, BSDEs with values in Hilbert spaces are studied by $[3,9,10,11,12]$.

In this paper, we are interested in two themes on the equations: First, the existence of L^{p} solutions under lack of Lipschitz condition on generators f, and second, smoothness of solutions in the sense of the Malliavin calculus.

We begin with the explanation of the first one. As for $L^{p}(p>1)$ solutions to the BSDE, El Karoui et al. [7] proved an existence and uniqueness result when f is Lipschitz continuous and ξ is in L^{p} by using a fixed-point theorem. A natural question then arises whether the Lipschitz condition can be relaxed. On account of the standard forward SDEs, the linear growth condition of the generator seems to be a candidate for a weaker condition to guarantee the existence and the $L^{p_{-}}$ integrability of solutions. When f is continuous and of linear growth order and ξ is in L^{p}, the existence results were shown by Lepeltier and San Martin [17] for $p=2$, by Chen [6] for $1<p \leq 2$ and after them by Fan and Jiang [8] for general $p>1$. In these papers, a key role is played by an approximation sequence. When $1<p \leq 2$, the existence was obtained by proving that the sequence is a Cauchy one. When $p>2$, an L^{p} solution was constructed by taking advantage of a stopping time argument. And, it remained open to prove for the sequence to be a Cauchy one when $p>2$.

As for BSDEs and the Malliavin calculus, our second interest, Pardoux and

Peng [24] and El Karoui, Peng and Quenez [7] studied the differentiability in the sense of the Malliavin calculus. They showed that the solution is differentiable under some conditions and the Malliavin derivative of the solution is also a solution of a linear BSDE. In addition, they found the relation between Y and Z; $D_{t} Y_{t}=Z_{t}$. For the notation " D_{t} ", see Section 2. Since then, BSDEs have been studied via the Malliavin calculus from some viewpoints such as numerical simulations $[5,13]$ and densities [1, 2, 20]. Mastrolia et. al. [21] studied new conditions, which can be applicable also to quadratic growth BSDEs, to enable solutions to be differentiable. On the higher order differentiability of solutions, Lin [18] studied the second order differentiability under similar conditions in [7, 24]. Then arises a natural question if solutions have higher than the second order differentiability and the similar property holds between Y and Z under the same kind of assumptions as $[7,18,24]$.

In this paper, we will discuss the two themes mentioned earlier; the existence of L^{p} solutions under continuity and linear growth condition on f, and higher order differentiability of solutions in the sense of the Malliavin calculus. On the first one, one-dimensional BSDEs are dealt with: The comparison theorem, Theorem 2.1.2, plays an important role to show the convergence of the sequence of solutions to the approximating BSDEs, which yields the existence of L^{p} solution. Next, the higher order differentiability of solutions in the sense of the Malliavin calculus is discussed. Under our notation, the derivative of a solution takes values on the Cameron-Martin space. Then in order to deal with the higher order Malliavin derivatives, we introduce BSDEs which take values on Hilbert spaces. After showing the differentiability of solutions on Hilbert spaces, we will discuss the infinite differentiability of solutions on \mathbb{R}^{d}. Showing the third or higher differentiability of solutions needs additional conditions, under which the result on the differentiability of solutions on Hilbert spaces can be used. In comparison with the results $[7,18,24]$, our result is new in the point that we establish a framework to deal with any order differentiability of solutions simultaneously via the differentiability of solutions to BSDEs with values on Hilbert spaces as well as showing just higher than the second differentiability of solutions.

This paper is organized as follows. In the rest of this chapter, we introduce some notations on the Malliavin calculus as well as definitions on BSDEs and solution spaces. The paper is separated into two parts corresponding to our two interest, Chapter 2 and 3, respectively. In Chapter 2, the existence of L^{p} solutions to BSDEs with linear growth generators is shown. We construct an approximation sequence of solutions and see it is a Cauchy one by a priori estimates, Proposition 2.2.1. In Chapter 3, we discuss the differentiability of solutions in the sense of the Malliavin calculus. In the chapter, we introduce the first order differentiability result [7]. Under our notation, the derivative of a solution to a BSDE is also a solution to a linear BSDE on a Hilbert space. In order to show the higher order differentiability, we introduce a linear BSDE on a Hilbert space
and consider the differentiability of a solution to the BSDE. Then, the second order differentiability of a solution is shown. The rest of the chapter is devoted to showing the higher order differentiability of a solution under a condition on f and boundedness assumption of the Malliavin derivative of Z. Moreover, some examples are discussed.

1.3 Notations

In this section, we introduce some preliminaries of notations used hereafter.

1.3.1 BSDE and solution spaces

Let $T>0$ be fixed throughout this paper. Let (Ω, \mathcal{F}, P) be a complete probability space, $\left(W_{t}\right)_{0 \leq t \leq T}$ be an n-dimensional Brownian motion defined on the probability space and the filtration $\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}$ be the Brownian filtration augmented by all P-negligible sets. We consider the following BSDEs on a real separable Hilbert space \mathcal{K};

$$
\begin{equation*}
Y_{t}=\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} \cdot d W_{s}, \quad 0 \leq t \leq T \tag{1.2}
\end{equation*}
$$

where ξ is a \mathcal{K}-valued \mathcal{F}_{T}-measurable random variable, $f(t, \omega, y, z)$ is a function, which is called a generator, defined on $[0, T] \times \Omega \times \mathcal{K} \times \mathcal{K}^{n}$ with values in \mathcal{K} which is $\left(\mathcal{F}_{t}\right)$-progressively measurable for each y, z, and "." represents the Euclidean type product, that is, $z \cdot w=\sum_{j=1}^{n} z^{j} w^{j}$ for $z \in \mathcal{K}^{n}, w \in \mathbb{R}^{n}$.

Let $p>1$. Denote by $\mathscr{S}_{r c}^{p}(\mathcal{K})$ the space of all \mathcal{K}-valued adapted processes $\eta=\left(\eta_{t}\right)_{0 \leq t \leq T}$ whose sample paths are right continuous with left-hand limits (RCLL for short). We note that the space is complete under the norm

$$
\|\eta\|_{\mathscr{S}_{r_{c}}^{p}(\mathcal{K})}:=\left\{E\left[\sup _{0 \leq t \leq T}\left\|\eta_{t}\right\|_{\mathcal{K}}^{p}\right]\right\}^{\frac{1}{p}}<\infty .
$$

The closed subspace in $\mathscr{S}_{r c}^{p}(\mathcal{K})$ of all \mathcal{K}-valued adapted processes with continuous sample paths is denoted by $\mathscr{S}^{p}(\mathcal{K})$. And $\mathscr{H}^{p}(\mathcal{K})$ represents the Banach space of all \mathcal{K}-valued progressively measurable processes $\zeta=\left(\zeta_{t}\right)_{0 \leq t \leq T}$ endowed with the norm

$$
\|\zeta\|_{\mathscr{H}^{p}(\mathcal{K})}:=\left\{E\left[\left(\int_{0}^{T}\left\|\zeta_{s}\right\|_{\mathcal{K}}^{2} d s\right)^{\frac{p}{2}}\right]\right\}^{\frac{1}{p}}<\infty
$$

Definition 1.3.1. A pair (Y, Z) which consists of \mathcal{K}-valued continuous adapted process and \mathcal{K}^{n}-valued progressively measurable process is said to be a solution to
the $B S D E$ (1.2) with respect to the pair (f, ξ) if Y and Z satisfy

$$
\int_{0}^{T}\left\{\left\|f\left(s, Y_{s}, Z_{s}\right)\right\|_{\mathcal{K}}+\left\|Z_{s}\right\|_{\mathcal{K}^{n}}^{2}\right\} d s<\infty \quad \text { a.s. }
$$

and (1.2). In addition, we call (Y, Z) an L^{p} solution if $(Y, Z) \in \mathscr{S}^{p}(\mathcal{K}) \times \mathscr{H}^{p}\left(\mathcal{K}^{n}\right)$.
In what follows, we omit to specify the space \mathcal{K} if $\mathcal{K}=\mathbb{R}$ and write $\mathscr{S}^{p}(\mathbb{R})$ and $\mathscr{H}^{p}(\mathbb{R})$ as \mathscr{S}^{p} and \mathscr{H}^{p}.

1.3.2 The Wiener space and the Malliavin derivatives

Hereafter, we introduce Wiener space and differentiation on Wiener space briefly. For more detail, see $[25,14,22]$.

In Chapter 3 , we assume (Ω, \mathcal{F}, P) is the n-dimensional Wiener space, i.e., Ω is the space of \mathbb{R}^{n}-valued continuous functions defined on $[0, T]$ starting at the origin endowed with the uniform convergence norm, $\mathcal{F}=\mathcal{F}_{T}, \mathcal{F}_{t}=\sigma\left(\omega_{s} ; s \leq\right.$ $t, \omega \in \Omega) \vee \mathcal{N}$ and P is the Wiener measure, that is the measure under which coordinate mapping process becomes Brownian motion, where ω_{s} is the value of $\omega \in \Omega$ at time $s \in[0, T], \mathcal{N}$ represents the collection of all P-negligible sets. The Cameron-Martin subspace H is the subspace of absolutely continuous functions whose Radon-Nikodym derivatives are square integrable on $[0, T] . H$ is a real separable Hilbert space under the inner product;

$$
\left\langle h_{1}, h_{2}\right\rangle_{H}=\int_{0}^{T} \dot{h}_{1}(t) \cdot \dot{h}_{2}(t) d t, \quad h_{1}, h_{2} \in H
$$

where we write the Radon-Nikodym derivative of $h \in H$ as \dot{h} and "." represents the Euclidean inner product.

Let \mathcal{P} be the set of all functionals of the form $\phi=p\left(l_{1}, \ldots, l_{m}\right)$ with $m=$ $0,1,2, \ldots$, polynomials p defined on \mathbb{R}^{m} and continuous linear functionals l_{j} on Ω, and $\mathcal{P}(\mathcal{K})$ be the set of $\phi=\sum_{j=1}^{m^{\prime}} \phi_{j} e_{j}$ for all $m^{\prime}=1,2, \ldots, \phi_{j} \in \mathcal{P}$ and $e_{j} \in \mathcal{K}$. Then we define the Malliavin derivative of ϕ as follows:

$$
\begin{aligned}
& \nabla \phi=\sum_{j=1}^{m} \frac{\partial \phi}{\partial x^{j}}\left(l_{1}, \ldots, l_{m}\right) l_{j} \in H, \quad \text { if } \phi \in \mathcal{P} \\
& \nabla \phi=\sum_{j=1}^{m^{\prime}} \nabla \phi_{j} \otimes e_{j} \in H \otimes \mathcal{K}, \quad \text { if } \phi \in \mathcal{P}(\mathcal{K}),
\end{aligned}
$$

where, by the Riesz representation theorem, each l_{j} is considered an element of H, and for real separable Hilbert spaces E_{1} and $E_{2}, E_{1} \otimes E_{2}$ represents the Hilbert space of all Hilbert-Schmidt operators $E_{1} \rightarrow E_{2}$, and, for $e^{1} \in E_{1}, e^{2} \in E_{2}, e^{1} \otimes e^{2}$
represents the Hilbert-Schmidt operator: $E_{1} \ni e \mapsto\left\langle e^{1}, e\right\rangle_{E_{1}} e^{2} \in E_{2}$. $E_{1} \otimes E_{2}$ has an inner product given by $\langle A, B\rangle_{E_{1} \otimes E_{2}}=\sum_{j=1}^{\infty}\left\langle A e_{j}^{1}, B e_{j}^{1}\right\rangle_{E_{2}}$, where $\left(e_{j}^{1}\right)_{j=1,2, \ldots}$ is a complete orthonormal system of E_{1}.

By closability of the operator ∇, we extend the domain $\mathcal{P}(\mathcal{K})$ to $\mathbb{D}^{k, p}(\mathcal{K})$ by completion under the norm:

$$
\|\phi\|_{k, p}=\sum_{j=0}^{k}\left\{E\left[\left\|\nabla^{j} \phi\right\|_{H^{\otimes j} \otimes \mathcal{K}}^{p}\right]\right\}^{1 / p} .
$$

$\mathbb{L}_{m, p}^{a}(\mathcal{K})$ is denoted by the set of \mathcal{K}-valued progressively measurable processes $u=(u(t))_{0 \leq t \leq T}$ such that

- for each $t \in[0, T], u(t) \in \mathbb{D}^{m, p}(\mathcal{K})$,
- for each $k=1,2, \ldots, m, \nabla^{k} u(\cdot)$ admits a progressively measurable version,
- $\|u\|_{\mathbb{L}_{m, p}^{a}(\mathcal{K})}:=E\left[\sum_{k=0}^{m}\left(\int_{0}^{T}\left\|\nabla^{k} u(t)\right\|_{H^{\otimes k} \otimes \mathcal{K}}^{2} d t\right)^{\frac{p}{2}}\right]^{\frac{1}{p}}<\infty$.

It is known that, if $\left\|u^{i}-u^{j}\right\|_{\mathbb{L}_{m, p}^{a}(\mathcal{K})} \rightarrow 0(i, j \rightarrow \infty)$, then there exists $u \in \mathbb{L}_{m, p}^{a}(\mathcal{K})$ such that $\left\|u^{i}-u\right\|_{\mathbb{L}_{m, p}^{a}(\mathcal{K})} \rightarrow 0(i \rightarrow \infty)$.

We define an attendant operator D on ∇ as follows. Let $\left(h^{i}\right)_{i=1}^{\infty}$ and $\left(k^{j}\right)_{j=1}^{\infty}$ be complete orthonormal systems of H and \mathcal{K} respectively. Now we can get an isometric isomorphism between $H \otimes \mathcal{K}$ and $L^{2}\left([0, T], \mathcal{K}^{n}\right)$ by identifying $K=$ $\sum_{i, j} a_{i j} h^{i} \otimes k^{j} \in H \otimes \mathcal{K}$ and $\dot{K}(\cdot)=\sum_{i, j} a_{i j} \dot{h}^{i}(\cdot) k^{j} \in L^{2}\left([0, T], \mathcal{K}^{n}\right)$. We denote by \tilde{K} the isometric isomorphism $H \otimes \mathcal{K} \rightarrow L^{2}\left([0, T], \mathcal{K}^{n}\right)$ and $D:=\tilde{K} \nabla$, that is, for $X \in \mathbb{D}^{1,2}(\mathcal{K}), D X \in L^{2}\left([0, T], \mathcal{K}^{n}\right)$. For $v \in H \otimes \mathcal{K}, \tilde{K}_{u} v$ represents the value of v at $u \in[0, T]$ and we denote $D_{u} X=\tilde{K}_{u} \nabla X$ for $X \in \mathbb{D}^{1,2}(\mathcal{K})$ and $u \in[0, T]$. Then we see that

$$
\begin{aligned}
& (\nabla X) h=\int_{0}^{T} D_{u} X \cdot \dot{h}(u) d u, \quad h \in H \\
& \|\nabla X\|_{H \otimes \mathcal{K}}^{2}=\int_{0}^{T}\left\|D_{u} X\right\|_{\mathcal{K}^{n}}^{2} d u .
\end{aligned}
$$

In the same manner, we can define k-th order operators $\tilde{K}^{k}: H^{\otimes k} \otimes \mathcal{K} \rightarrow L^{2}\left([0, T]^{k}, \mathcal{K}^{n^{k}}\right)$ and $D^{k}=\tilde{K}^{k} \nabla^{k}, \tilde{K}_{u_{1}, \ldots, u_{k}}^{k}$ and $D_{u_{1}, \ldots, u_{k}}^{k}$ for $k=2,3, \ldots$ and $u_{1}, \ldots, u_{k} \in[0, T]$. Then it holds that for $h_{1}, \ldots, h_{k} \in H$,

$$
\left(\nabla^{k} X\right)\left(h_{1} \otimes \cdots \otimes h_{k}\right)=\int_{[0, T]^{k}} d u_{1} \cdots d u_{k} \sum_{j_{1}, \ldots, j_{k}=1}^{n}\left(D_{u_{1}, \ldots, u_{k}}^{k} X\right)^{j_{1}, \ldots, j_{k}} \dot{h}_{1}^{j_{1}}\left(u_{1}\right) \cdots \dot{h}_{k}^{j_{k}}\left(u_{k}\right),
$$

$$
\left\|\nabla^{k} X\right\|_{H^{\otimes k} \otimes \mathcal{K}}^{2}=\int_{[0, T]^{k}}\left\|D_{u_{1}, \ldots, u_{k}}^{k} X\right\|_{\mathcal{K}^{n^{k}}}^{2} d u_{1} \cdots d u_{k}
$$

where $\left(D_{u_{1}, \ldots, u_{k}}^{k} X\right)^{j_{1}, \ldots, j_{k}}$ represents the $\left(j_{1}, \ldots, j_{k}\right)$-th component of $D_{u_{1}, \ldots, u_{k}}^{k} X$ and \dot{h}_{i}^{j} does also the same.

Finally, we give a term on versions of stochastic processes. Let A be a subset of the Euclidean space and $g(t, \omega, x)$ be a function defined on $[0, T] \times \Omega \times A$. We also say that g admits a progressively measurable version if there exists a measurable function $\tilde{g}(t, \omega, x)$ defined on $[0, T] \times \Omega \times A$ such that

- for each $x \in A,(\tilde{g}(t, x))_{0 \leq t \leq T}$ is a progressively measurable process,
- for each $(t, x) \in[0, T] \times A, g(t, x)=\tilde{g}(t, x)$, a.s.

Chapter 2

L^{p} Solutions to BSDEs with Linear Growth Generators

In this chapter, we will discuss the existence of L^{p} solutions of \mathbb{R}-valued BSDEs (1.2) with linear growth generators.

2.1 Assumptions

We use the following assumptions (H1)-(H3):
(H1) There exists a positive constant K and a non-negative predictable process $\left(g_{t}\right)_{0 \leq t \leq T}$ such that

$$
\begin{aligned}
E\left[\left(\int_{0}^{T} g_{s} d s\right)^{p}\right]<\infty, & |f(t, \omega, y, z)| \leq g_{t}(\omega)+K(|y|+|z|) \\
& \text { for any }(t, \omega, y, z) \in[0, T] \times \Omega \times \mathbb{R} \times \mathbb{R}^{d} .
\end{aligned}
$$

(H2) For each $(t, \omega) \in[0, T] \times \Omega, f(t, \omega, y, z)$ is continuous in (y, z).
$(\mathrm{H} 3) \quad \xi \in L^{p}$.
In the case $p>1$ and the generator is Lipschitz, the existence and uniqueness of L^{p} solution is known.

Theorem 2.1.1 (El Karoui et al. [7]). Assume that f is uniformly Lipschitz in (y, z), i.e., there exists a positive constant C such that

$$
\begin{aligned}
\left|f\left(t, \omega, y_{1}, z_{1}\right)-f\left(t, \omega, y_{2}, z_{2}\right)\right| & \leq C\left(\left|y_{1}-y_{2}\right|+\left|z_{1}-z_{2}\right|\right) \\
& \text { for any }(t, \omega) \in[0, T] \times \Omega, y_{1}, y_{2} \in \mathbb{R}, z_{1}, z_{2} \in \mathbb{R}^{d}
\end{aligned}
$$

And assume (H3) holds and

$$
E\left[\left(\int_{0}^{T}|f(s, 0,0)| d s\right)^{p}\right]<\infty
$$

Then, BSDE (1.2) has a unique L^{p} solution.
It is also known that
Theorem 2.1.2 (El Karoui et al. [7]). For $i=1,2$, let f^{i} be uniformly Lipschitz in $(y, z), \xi^{i}$ satisfy (H3) and

$$
E\left[\left(\int_{0}^{T}\left|f^{i}(s, 0,0)\right| d s\right)^{p}\right]<\infty
$$

In addition, assume that each $\left(Y^{i}, Z^{i}\right)$ is the L^{p} solution to the BSDE with respect to $\left(f^{i}, \xi^{i}\right)$. If $\xi^{1} \geq \xi^{2}$ a.s. and $f^{1}\left(t, Y_{t}^{2}, Z_{t}^{2}\right) \geq f^{2}\left(t, Y_{t}^{2}, Z_{t}^{2}\right) d t \times d P$-a.e., then $Y^{1} \geq Y^{2}$ a.s..
Remark 2.1.3. In [7], the assertion of Theorems 2.1.1 and 2.1.2 are stated under the assumptions like

$$
\begin{equation*}
E\left[\left(\int_{0}^{T}|f(s, 0,0)|^{2} d s\right)^{\frac{p}{2}}\right]<\infty \tag{2.1}
\end{equation*}
$$

which is stronger than the ones in the theorems. Observing the proof in [7] carefully, we can weaken the assumption (2.1) to the one as we used.

2.2 A priori estimates

We prepare the following estimations which play a key role in the observation of this paper, by generalizing the ones in [6] used by Chen for specified solutions.
Proposition 2.2.1. (i) Let $p>1$. There exists a positive constant C_{p}, depending only on p, such that for any L^{p} solution (Y, Z) to the BSDE (1.2) it holds that

$$
\begin{aligned}
& \|Y\|_{\mathscr{S}^{p}}^{p} \leq C_{p} E\left[|\xi|^{p}+\int_{0}^{T}\left|Y_{s}\right|^{p-1}\left|f\left(s, Y_{s}, Z_{s}\right)\right| d s\right] \\
& \|Z\|_{\mathscr{H}^{p}}^{p} \leq C_{p}\left\{E\left[|\xi|^{p}+\left(\int_{0}^{T}\left|Y_{s}\right|\left|f\left(s, Y_{s}, Z_{s}\right)\right| d s\right)^{\frac{p}{2}}\right]+\|Y\|_{\mathscr{S}^{p}}^{p}\right\} .
\end{aligned}
$$

Moreover, if f satisfies (H1), then there exists a positive constant C depending only on $p, K, T, E\left[|\xi|^{p}\right]$ and $E\left[\left(\int_{0}^{T} g_{s} d s\right)^{p}\right]$ such that

$$
\|Z\|_{\mathscr{C}^{p}}^{p} \leq C\left(1+\|Y\|_{\mathscr{S}^{p}}^{\frac{p}{2}}+\|Y\|_{\mathscr{S}^{p}}^{p}\right)
$$

holds.
(ii) Let $p>1$. There exists a positive constant C_{p} depending only on p such that if $\left(Y^{i}, Z^{i}\right)$ is an L^{p} solution to the BSDE with respect to $\left(f^{i}, \xi^{i}\right), i=1,2$, respectively, then

$$
\begin{aligned}
& \|\delta Y\|_{\mathscr{S}^{p}}^{p} \leq C_{p} E\left[\left|\delta Y_{T}\right|^{p}+\int_{0}^{T}\left|\delta Y_{s}\right|^{p-1}\left|\delta f_{s}\right| d s\right] \\
& \|\delta Z\|_{\mathscr{H}^{p}}^{p} \leq C_{p}\left\{E\left[\left|\delta Y_{T}\right|^{p}+\left(\int_{0}^{T}\left|\delta Y_{s}\right|\left|\delta f_{s}\right| d s\right)^{\frac{p}{2}}\right]+\|\delta Y\|_{\mathscr{S}^{p}}^{p}\right\},
\end{aligned}
$$

where $\delta Y:=Y^{1}-Y^{2}, \delta Z:=Z^{1}-Z^{2}, \delta f_{s}:=f^{1}\left(s, Y_{s}^{1}, Z_{s}^{1}\right)-f^{2}\left(s, Y_{s}^{2}, Z_{s}^{2}\right)$.
Proof. The assertion (ii) follows from (i). Namely, put $\tilde{f}(t, y, z)=f^{1}\left(t, Y_{t}^{2}+\right.$ $\left.y, Z_{t}^{2}+z\right)-f^{2}\left(t, Y_{t}^{2}, Z_{t}^{2}\right)$. Then, $\delta f_{t}=\tilde{f}\left(t, \delta Y_{t}, \delta Z_{t}\right)$ and the pair $(\delta Y, \delta Z) \in$ $\mathscr{S}^{p} \times \mathscr{H}^{p}$ satisfies

$$
\delta Y_{t}=\delta Y_{T}+\int_{t}^{T} \tilde{f}\left(s, \delta Y_{s}, \delta Z_{s}\right) d s-\int_{t}^{T} \delta Z_{s} \cdot d W_{s}, \quad 0 \leq t \leq T
$$

Thus, we only prove (i).
Let $p>1$. We first estimate Y. As an elementary application of Itô's formula, we obtain

$$
\begin{align*}
&\left|Y_{t}\right|^{p}+\frac{p(p-1)}{2} \int_{t}^{T}\left|Y_{s}\right|^{p-2} \tilde{\mathbf{1}}\left(Y_{s}\right)\left|Z_{s}\right|^{2} d s \\
&=|\xi|^{p}+p \int_{t}^{T} \operatorname{sgn}\left(Y_{s}\right)\left|Y_{s}\right|^{p-1} f\left(s, Y_{s}, Z_{s}\right) d s \\
& \quad-p \int_{t}^{T} \operatorname{sgn}\left(Y_{s}\right)\left|Y_{s}\right|^{p-1} Z_{s} \cdot d W_{s}, \quad 0 \leq t \leq T \tag{2.2}
\end{align*}
$$

where

$$
\tilde{\mathbf{1}}(y):=\left\{\begin{array}{ll}
\mathbf{1}_{\{y \neq 0\}}, & 1<p<2 \\
1, & 2 \leq p
\end{array}, \quad \operatorname{sgn}(x):=\left\{\begin{aligned}
-1, & x<0 \\
0, & x=0 \\
1, & x>0
\end{aligned}\right.\right.
$$

See also [4, Lemma 2.2]. Hence, we get

$$
\begin{align*}
& \sup _{0 \leq t \leq T}\left|Y_{t}\right|^{p} \leq|\xi|^{p}+p \int_{0}^{T}\left|Y_{s}\right|^{p-1}\left|f\left(s, Y_{s}, Z_{s}\right)\right| d s \\
&+\left.2 p \sup _{0 \leq t \leq T}\left|\int_{0}^{t} \operatorname{sgn}\left(Y_{s}\right)\right| Y_{s}\right|^{p-1} Z_{s} \cdot d W_{s} \mid \tag{2.3}
\end{align*}
$$

By the Burkholder-Davis-Gundy inequality (the BDG inequality in short), there exists a positive constant C_{1} such that

$$
\begin{align*}
2 p E & {\left[\left.\sup _{0 \leq t \leq T}\left|\int_{0}^{t} \operatorname{sgn}\left(Y_{s}\right)\right| Y_{s}\right|^{p-1} Z_{s} \cdot d W_{s} \mid\right] } \\
& \leq 2 p C_{1} E\left[\left(\int_{0}^{T}\left|Y_{s}\right|^{2 p-2} \tilde{\mathbf{1}}\left(Y_{s}\right)\left|Z_{s}\right|^{2} d s\right)^{\frac{1}{2}}\right] \\
& \leq 2 p C_{1} E\left[\sup _{0 \leq t \leq T}\left|Y_{t}\right|^{\frac{p}{2}}\left(\int_{0}^{T}\left|Y_{s}\right|^{p-2} \tilde{\mathbf{1}}\left(Y_{s}\right)\left|Z_{s}\right|^{2} d s\right)^{\frac{1}{2}}\right] \\
& \leq \frac{1}{2} E\left[\sup _{0 \leq t \leq T}\left|Y_{t}\right|^{p}\right]+2 p^{2} C_{1}^{2} E\left[\int_{0}^{T}\left|Y_{s}\right|^{p-2} \tilde{\mathbf{1}}\left(Y_{s}\right)\left|Z_{s}\right|^{2} d s\right] \tag{2.4}
\end{align*}
$$

where, to see the third inequality above, we have used the inequality

$$
\begin{equation*}
2 a b \leq \varepsilon a^{2}+\varepsilon^{-1} b^{2}, \quad \varepsilon>0, \quad a, b \geq 0 \tag{*}
\end{equation*}
$$

with $\varepsilon=1 / 2$.
By the Hölder inequality, we have

$$
\begin{aligned}
E[& \left.\left(\int_{0}^{T}\left|Y_{s}\right|^{2 p-2} \tilde{\mathbf{1}}\left(Y_{s}\right)\left|Z_{s}\right|^{2} d s\right)^{\frac{1}{2}}\right] \\
& \leq E\left[\sup _{0 \leq t \leq T}\left|Y_{t}\right|^{p-1}\left(\int_{0}^{T}\left|Z_{s}\right|^{2} d s\right)^{\frac{1}{2}}\right] \\
& \leq\left\{E\left[\sup _{0 \leq t \leq T}\left|Y_{t}\right|^{p}\right]\right\}^{1-\frac{1}{p}}\left\{E\left[\left(\int_{0}^{T}\left|Z_{s}\right|^{2} d s\right)^{\frac{p}{2}}\right]\right\}^{\frac{1}{p}}<\infty .
\end{aligned}
$$

Thus, $\left(\int_{0}^{t} \operatorname{sgn}\left(Y_{s}\right)\left|Y_{s}\right|^{p-1} Z_{s} \cdot d W_{s}\right)_{0 \leq t \leq T}$ is a martingale. Then, taking the expectations of (2.2), we get

$$
\begin{align*}
& \frac{p(p-1)}{2} E\left[\int_{0}^{T}\left|Y_{s}\right|^{p-2} \tilde{\mathbf{1}}\left(Y_{s}\right)\left|Z_{s}\right|^{2} d s\right] \\
& \leq E\left[|\xi|^{p}+p \int_{0}^{T}\left|Y_{s}\right|^{p-1}\left|f\left(s, Y_{s}, Z_{s}\right)\right| d s\right] \tag{2.5}
\end{align*}
$$

Then (2.3), (2.4) and (2.5) yield the estimation of Y.
Next, we estimate Z. By (2.2) with $p=2$, we deduce that

$$
\int_{0}^{T}\left|Z_{s}\right|^{2} d s \leq|\xi|^{2}+2 \int_{0}^{T}\left|Y_{s}\right|\left|f\left(s, Y_{s}, Z_{s}\right)\right| d s+2 \sup _{0 \leq t \leq T}\left|\int_{0}^{t} Y_{s} Z_{s} \cdot d W_{s}\right|
$$

Hence, it follows that

$$
\begin{align*}
& \left(\int_{0}^{T}\left|Z_{s}\right|^{2} d s\right)^{\frac{p}{2}} \\
& \quad \leq C_{2}\left\{|\xi|^{p}+\left(\int_{0}^{T}\left|Y_{s}\right|\left|f\left(s, Y_{s}, Z_{s}\right)\right| d s\right)^{\frac{p}{2}}+\sup _{0 \leq t \leq T}\left|\int_{0}^{t} Y_{s} Z_{s} \cdot d W_{s}\right|^{\frac{p}{2}}\right\} \tag{2.6}
\end{align*}
$$

where C_{2} is a positive constant depending only on p. By the BDG inequality, there exists a positive constant C_{3} depending only on p such that

$$
\begin{align*}
C_{2} E & {\left[\sup _{0 \leq t \leq T}\left|\int_{0}^{t} Y_{s} Z_{s} \cdot d W_{s}\right|^{\frac{p}{2}}\right] } \\
& \leq C_{2} C_{3} E\left[\left(\int_{0}^{T}\left|Y_{s}\right|^{2}\left|Z_{s}\right|^{2} d s\right)^{\frac{p}{4}}\right] \\
& \leq C_{2} C_{3} E\left[\sup _{0 \leq t \leq T}\left|Y_{t}\right|^{\frac{p}{2}}\left(\int_{0}^{T}\left|Z_{s}\right|^{2} d s\right)^{\frac{p}{4}}\right] \\
& \leq 2 C_{2}^{2} C_{3}^{2} E\left[\sup _{0 \leq t \leq T}\left|Y_{t}\right|^{p}\right]+\frac{1}{2} E\left[\left(\int_{0}^{T}\left|Z_{s}\right|^{2} d s\right)^{\frac{p}{2}}\right] \tag{2.7}
\end{align*}
$$

where, to see the third inequality above, we have used $(*)$ again with $\varepsilon=1 / 2$. Then, we get the second estimation from (2.6) and (2.7).

We finally show the last assertion of (i). To do this, it is sufficient to estimate the second term of the estimation with respect to Z. By (H1) and the Hölder inequality, there exists positive constants $C_{p, K}, C_{p, K, T}$ and $C_{p, K, T}^{\prime}$ which depend only on the subscripts such that

$$
\begin{aligned}
& E\left[\left(\int_{0}^{T}\left|Y_{s}\right|\left|f\left(s, Y_{s}, Z_{s}\right)\right| d s\right)^{\frac{p}{2}}\right] \\
& \leq C_{p, K}\left\{E\left[\left(\int_{0}^{T}\left|Y_{s}\right| g_{s} d s\right)^{\frac{p}{2}}\right]\right. \\
& + \\
& \left.\leq\left[\left(\int_{0}^{T}\left|Y_{s}\right|^{2} d s\right)^{\frac{p}{2}}\right]+E\left[\left(\int_{0}^{T}\left|Y_{s}\right|\left|Z_{s}\right| d s\right)^{\frac{p}{2}}\right]\right\} \\
& \leq C_{p, K, T}\left\{\|Y\|_{\mathscr{S}_{p}}^{\frac{p}{2}}\left\{E\left[\left(\int_{0}^{T} g_{s} d s\right)^{p}\right]\right\}^{\frac{1}{2}}\right. \\
& \left.\quad+\|Y\|_{\mathscr{S}^{p}}^{p}+E\left[\left(\int_{0}^{T}\left(\varepsilon^{-1}\left|Y_{s}\right|^{2}+\varepsilon\left|Z_{s}\right|^{2}\right) d s\right)^{\frac{p}{2}}\right]\right\}
\end{aligned}
$$

$$
\leq C_{p, K, T}^{\prime}\left(\|Y\|_{\mathscr{S}^{p}}^{\frac{p}{2}}\left\{E\left[\left(\int_{0}^{T} g_{s} d s\right)^{p}\right]\right\}^{\frac{1}{2}}+\varepsilon^{-\frac{p}{2}}\|Y\|_{\mathscr{S}^{p}}^{p}+\varepsilon^{\frac{p}{2}}\|Z\|_{\mathscr{C}^{p}}^{p}\right)
$$

where, to see the second inequality above, we have used $(*)$ with $C_{p} C_{p, K, T}^{\prime} \varepsilon^{\frac{p}{2}}=$ $1 / 2$. Then, we obtain the desired estimation.

2.3 Existence of an L^{p} solution

2.3.1 Approximation of linear growth functions

According to [17], linear growth functions can be approximated by Lipschitz functions. Precisely speaking, when a generator f satisfies (H1) and (H2),

$$
\begin{equation*}
f_{n}(t, y, z):=\inf _{(u, v) \in \mathbb{R}^{d+1}}\{f(t, u, v)+n(|y-u|+|z-v|)\}, \quad n \geq K \tag{2.8}
\end{equation*}
$$

is a Lipschitz function and approximates the linear growth function f, where K is a constant appeared in (H1).
Lemma 2.3.1. Assume (H1) and (H2) hold. Then, (2.8) is well-defined and the following properties i)-iv) hold:
i) $\left|f_{n}(t, \omega, y, z)\right| \leq g_{t}(\omega)+K(|y|+|z|)$ for any $(t, \omega, y, z) \in[0, T] \times \Omega \times \mathbb{R} \times \mathbb{R}^{d}$,
ii) $f_{n} \leq f_{n+1} \leq f, \quad n \geq K$,
iii) $\left|f_{n}\left(t, \omega, y_{1}, z_{1}\right)-f_{n}\left(t, \omega, y_{2}, z_{2}\right)\right| \leq n\left(\left|y_{1}-y_{2}\right|+\left|z_{1}-z_{2}\right|\right) \quad$ for any $\quad(t, \omega) \in$ $[0, T] \times \Omega$,
iv) if $\left(y_{n}, z_{n}\right) \rightarrow(y, z)$, then $f_{n}\left(t, \omega, y_{n}, z_{n}\right) \rightarrow f(t, \omega, y, z)$ for any $(t, \omega) \in$ $[0, T] \times \Omega$.

2.3.2 Approximation of a solution

Let $p>1$ and assumptions (H1)-(H3) hold. We consider the following onedimensional BSDEs:

$$
\begin{align*}
& Y_{t}^{n}=\xi+\int_{t}^{T} f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right) d s-\int_{t}^{T} Z_{s}^{n} \cdot d W_{s}, \quad n \geq K, \tag{2.9}\\
& U_{t}=\xi+\int_{t}^{T}\left\{g_{s}+K\left(\left|U_{s}\right|+\left|V_{s}\right|\right)\right\} d s-\int_{t}^{T} V_{s} \cdot d W_{s} .
\end{align*}
$$

Theorem 2.1.1 assures the existence and uniqueness of L^{p} solution to these BSDEs. Thus, $\left(Y^{n}, Z^{n}\right)$ and (U, V) are well-defined for $n \geq K$. Moreover, by Theorem 2.1.2 and Lemma 2.3.1-ii), we have

$$
\begin{equation*}
Y^{n} \leq Y^{n+1} \leq U, \quad n \geq K \tag{2.10}
\end{equation*}
$$

Theorem 2.3.2. $\left(Y^{n}, Z^{n}\right)$ is a Cauchy sequence in $\mathscr{S}^{p} \times \mathscr{H}^{p}$.
Proof. The assertion for $1<p \leq 2$ can be proved in the same manner as [6, Lemma 4]. Thus, we give the proof only for the case $p>2$.

Since $\left(Y^{n}\right)$ is non-decreasing, it admits the limit process Y. By (2.10), it follows that

$$
Y^{\lceil K\rceil} \leq Y^{n}, Y \leq U, \quad n \geq K
$$

where $\lceil\cdot\rceil$ represents the ceiling function. Thus, we have

$$
\begin{equation*}
\left|Y_{.}^{n}\right| \leq M, \quad|Y .| \leq M, \quad n \geq K \tag{2.11}
\end{equation*}
$$

where $\sup _{0 \leq t \leq T}\left|Y_{t}^{\lceil K\rceil}\right| \vee \sup _{0 \leq t \leq T}\left|U_{t}\right|=: M \in L^{p}$. Then, by the dominated convergence theorem, it follows that

$$
E\left[\int_{0}^{T}\left|Y_{s}^{n}-Y_{s}\right|^{p-1} g_{s} d s\right] \rightarrow 0, \quad E\left[\int_{0}^{T}\left|Y_{s}^{n}-Y_{s}\right|^{p} d s\right] \rightarrow 0
$$

and thus, we get

$$
\begin{align*}
& E\left[\int_{0}^{T}\left|Y_{s}^{n}-Y_{s}^{m}\right|^{p-1} g_{s} d s\right] \rightarrow 0, \quad E\left[\int_{0}^{T}\left|Y_{s}^{n}-Y_{s}^{m}\right|^{p} d s\right] \rightarrow 0 \\
& \text { as } n, m \rightarrow \infty \tag{2.12}
\end{align*}
$$

By Proposition 2.2.1-(ii), we have

$$
\begin{align*}
& \left\|Y^{n}-Y^{m}\right\|_{\mathscr{S}^{p}}^{p} \\
& \leq C_{p} E\left[\int_{0}^{T}\left|Y_{s}^{n}-Y_{s}^{m}\right|^{p-1}\left|f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right)-f_{m}\left(s, Y_{s}^{m}, Z_{s}^{m}\right)\right| d s\right], \tag{2.13}\\
& \left\|Z^{n}-Z^{m}\right\|_{\mathscr{H}^{p}}^{p} \\
& \leq C_{p}\left\{E\left[\left(\int_{0}^{T}\left|Y_{s}^{n}-Y_{s}^{m}\right|\left|f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right)-f_{m}\left(s, Y_{s}^{m}, Z_{s}^{m}\right)\right| d s\right)^{\frac{p}{2}}\right]\right. \\
& \left.+\left\|Y^{n}-Y^{m}\right\|_{\mathscr{S}^{p}}^{p}\right\} . \tag{2.14}
\end{align*}
$$

We first estimate the right hand side of (2.13). By Lemma 2.3.1-i), we get

$$
\begin{align*}
& E\left[\int_{0}^{T}\left|Y_{s}^{n}-Y_{s}^{m}\right|^{p-1}\left|f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right)-f_{m}\left(s, Y_{s}^{m}, Z_{s}^{m}\right)\right| d s\right] \\
& \quad \leq 2 E\left[\int_{0}^{T}\left|Y_{s}^{n}-Y_{s}^{m}\right|^{p-1} g_{s} d s\right]+K E\left[\int_{0}^{T}\left|Y_{s}^{n}-Y_{s}^{m}\right|^{p-1} F_{n, m}(s) d s\right] \tag{2.15}
\end{align*}
$$

where $F_{n, m}(s):=\left|Y_{s}^{n}\right|+\left|Z_{s}^{n}\right|+\left|Y_{s}^{m}\right|+\left|Z_{s}^{m}\right|$. By (2.12), we know the first term of (2.15) converges to zero. Thus, we estimate the second term of this. By the Hölder inequality and $(*)$, we have

$$
\begin{align*}
& K E\left[\int_{0}^{T}\left|Y_{s}^{n}-Y_{s}^{m}\right|^{p-1} F_{n, m}(s) d s\right] \\
& \begin{aligned}
& \leq K E {\left[\left(\int_{0}^{T}\left|Y_{s}^{n}-Y_{s}^{m}\right|^{2 p-2} d s\right)^{\frac{1}{2}}\left(\int_{0}^{T}\left\{F_{n, m}(s)\right\}^{2} d s\right)^{\frac{1}{2}}\right] } \\
& \leq K E\left[\sup _{0 \leq t \leq T}\left|Y_{t}^{n}-Y_{t}^{m}\right|^{\frac{p}{2}}\left(\int_{0}^{T}\left|Y_{s}^{n}-Y_{s}^{m}\right|^{p-2} d s\right)^{\frac{1}{2}}\left(\int_{0}^{T}\left\{F_{n, m}(s)\right\}^{2} d s\right)^{\frac{1}{2}}\right] \\
& \leq \varepsilon E\left[\sup _{0 \leq t \leq T}\left|Y_{t}^{n}-Y_{t}^{m}\right|^{p}\right]+\varepsilon^{-1} K^{2} E\left[\int_{0}^{T}\left|Y_{s}^{n}-Y_{s}^{m}\right|^{p-2} d s \int_{0}^{T}\left\{F_{n, m}(s)\right\}^{2} d s\right] \\
& \leq \varepsilon\left\|Y^{n}-Y^{m}\right\|_{\mathscr{S}^{p}}^{p} \\
& \quad \times \varepsilon^{-1} K^{2}\left\{E\left[\left(\int_{0}^{T}\left|Y_{s}^{n}-Y_{s}^{m}\right|^{p-2} d s\right)^{\frac{p}{p-2}}\right]\right\}^{1-\frac{2}{p}} \\
& \quad\left\{\left[\left(\int_{0}^{T}\left\{F_{n, m}(s)\right\}^{2} d s\right)^{\frac{p}{2}}\right]\right\}^{\frac{2}{p}} \\
& \leq \varepsilon\left\|Y^{n}-Y^{m}\right\|_{\mathscr{S} p}^{p} \\
&+\varepsilon^{-1} K^{2} T^{\frac{2}{p}}\left\{E\left[\int_{0}^{T}\left|Y_{s}^{n}-Y_{s}^{m}\right|^{p} d s\right]\right\}^{1-\frac{2}{p}} \\
& \times\left\{E\left[\left(\int_{0}^{T}\left\{F_{n, m}(s)\right\}^{2} d s\right)^{\frac{p}{2}}\right]\right\}^{\frac{2}{p}} .
\end{aligned}
\end{align*}
$$

By (2.11), we have

$$
\sup _{n \geq K}\left\|Y^{n}\right\|_{\mathscr{S}^{p}}<\infty
$$

Thus, by Proposition 2.2.1-(i), we see that

$$
\sup _{n, m \geq K} E\left[\left(\int_{0}^{T}\left\{F_{n, m}(s)\right\}^{2} d s\right)^{\frac{p}{2}}\right]<\infty
$$

Letting ε such that $C_{p} \varepsilon=1 / 2$, by (2.12), (2.13), (2.15) and (2.16), it follows that

$$
\left\|Y^{n}-Y^{m}\right\|_{\mathscr{S}^{p}} \rightarrow 0, \quad \text { as } \quad n, m \rightarrow \infty
$$

2.3. EXISTENCE OF AN L^{P} SOLUTION

By Lemma 2.3.1-i) and the Schwartz inequality, we get the following estimation for the first term of the right hand side of (2.14):

$$
\begin{aligned}
& E\left[\left(\int_{0}^{T}\left|Y_{s}^{n}-Y_{s}^{m}\right|\left|f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right)-f_{m}\left(s, Y_{s}^{m}, Z_{s}^{m}\right)\right| d s\right)^{\frac{p}{2}}\right] \\
& \leq C\left\{E\left[\left(\int_{0}^{T}\left|Y_{s}^{n}-Y_{s}^{m}\right| g_{s} d s\right)^{\frac{p}{2}}\right]+E\left[\left(\int_{0}^{T}\left|Y_{s}^{n}-Y_{s}^{m}\right| F_{n, m}(s) d s\right)^{\frac{p}{2}}\right]\right\} \\
& \leq C\left[\left\|Y^{n}-Y^{m}\right\|_{\mathscr{S}^{p}}^{\frac{p}{2}}\left\{E\left[\left(\int_{0}^{T} g_{s} d s\right)^{p}\right]\right\}^{\frac{1}{2}}\right. \\
& \left.\quad+T^{\frac{p}{4}}\left\|Y^{n}-Y^{m}\right\|_{\mathscr{S}^{p}}^{\frac{p}{2}}\left\{E\left[\left(\int_{0}^{T}\left\{F_{n, m}(s)\right\}^{2}\right)^{\frac{p}{2}}\right]\right\}^{\frac{1}{2}}\right]
\end{aligned}
$$

where C is a positive constant depending only on p. Since $\left\|Y^{n}-Y^{m}\right\|_{\mathscr{S}^{p}} \rightarrow 0$, we obtain $\left\|Z^{n}-Z^{m}\right\|_{\mathscr{C}^{p}} \rightarrow 0$.

By Theorem 2.3.2, we denote by (Y, Z) the limit of $\left(Y^{n}, Z^{n}\right)$ in $\mathscr{S}^{p} \times \mathscr{H}^{p}$.
Theorem 2.3.3. (Y, Z) is an L^{p} solution to the BSDE (1.2).
Proof. It is already seen that

$$
\left\|Y^{n}-Y\right\|_{\mathscr{S}_{p}} \rightarrow 0, \quad \text { as } \quad n \rightarrow \infty
$$

By the BDG inequality, we have

$$
\sup _{0 \leq t \leq T}\left|\int_{0}^{t}\left(Z_{s}^{n}-Z_{s}\right) \cdot d W_{s}\right| \rightarrow 0 \quad \text { in } L^{p}, \quad \text { as } \quad n \rightarrow \infty .
$$

Since $\left\|Y^{n}-Y\right\|_{\mathscr{S}_{p}} \rightarrow 0,\left\|Z^{n}-Z\right\|_{\mathscr{H}^{p}} \rightarrow 0$ as $n \rightarrow \infty$, we may assume

$$
\begin{aligned}
& Y_{t}^{n} \rightarrow Y_{t}, \quad 0 \leq t \leq T \quad \text { a.s. } \\
& Z^{n} \rightarrow Z, \quad d t \times d P \text {-a.e }
\end{aligned}
$$

by choosing a subsequence if necessary. Thus, by Lemma 2.3.1-iv), we get

$$
f_{n}\left(t, Y_{t}^{n}, Z_{t}^{n}\right) \rightarrow f\left(t, Y_{t}, Z_{t}\right), \quad d t \times d P \text {-a.e. }
$$

Now, by Lemma 2.3.1-i), we have

$$
\left|f_{n}\left(t, Y_{t}^{n}, Z_{t}^{n}\right)\right| \leq g_{t}+K\left(\left|Y_{t}^{n}\right|+\left|Z_{t}^{n}\right|\right)
$$

By the Hölder inequality, $Y^{n} \rightarrow Y, Z^{n} \rightarrow Z$ in L^{1} with respect to $d t \times d P$, and then, we see that $\left(Y^{n}\right)_{n \geq K}$ and $\left(Z^{n}\right)_{n \geq K}$ are uniformly integrable with respect to
$\frac{d t}{T} \times d P$. Hence, $\left(f_{n}\left(\cdot, Y_{.}^{n}, Z_{.}^{n}\right)\right)_{n \geq K}$ is uniformly integrable with respect to $\frac{d t}{T} \times d P$. Thus, we get

$$
\int_{0}^{T}\left|f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right)-f\left(s, Y_{s}, Z_{s}\right)\right| d s \rightarrow 0 \quad \text { in } L^{1}
$$

Therefore, letting $n \rightarrow \infty$ in (2.9), we obtain (1.2).

Chapter 3

Differentiability of solutions to BSDEs in the sense of the Mallivin calculus

3.1 BSDEs on Hilbert spaces

In this section, we present the results on the first differentiability of solutions in the sense of the Malliavin calculus.

In the rest of this paper, we assume $p \geq 2$. We introduce the assumption (A1):

1) $\xi \in \mathbb{D}^{1, p}\left(\mathbb{R}^{d}\right) \cap L^{2 p}$, where $\xi \in L^{q}$ means $E\left[|\xi|^{q}\right]<\infty$,
2) $E\left[\left(\int_{0}^{T}|f(s, 0,0)| d s\right)^{2 p}\right]<\infty$,
3) for every $(t, \omega) \in[0, T] \times \Omega, f(t, \omega, \cdot, \cdot) \in C_{b}^{1}\left(\mathbb{R}^{d} \times \mathbb{R}^{n \times d}, \mathbb{R}^{d}\right)$ and

$$
\sup _{\substack{t, \omega, y, z \\ 1 \leq i \leq d \\ 1 \leq j \leq n}}\left\{\left|\partial_{y^{i}} f(t, \omega, y, z)\right|+\left|\partial_{z^{j i}} f(t, \omega, y, z)\right|\right\}<\infty,
$$

4) for each $(y, z) \in \mathbb{R}^{d} \times \mathbb{R}^{n \times d}, f(\cdot, y, z) \in \mathbb{L}_{1, p}^{a}\left(\mathbb{R}^{d}\right)$, and the version of the Malliavin derivative is denoted by $\nabla f(t, y, z)$,
5) $E\left[\int_{0}^{T}\left\|\nabla f\left(s, Y_{s}, Z_{s}\right)\right\|_{H \otimes \mathbb{R}^{d}}^{p} d s\right]<\infty$,
6) there exists a nonnegative progressively measurable process $\left(K_{t}\right)_{0 \leq t \leq T}$ such that for any $(t, \omega) \in[0, T] \times \Omega, \quad y_{1}, y_{2} \in \mathbb{R}^{d}, z_{1}, z_{2} \in \mathbb{R}^{n \times d}$,

$$
\begin{aligned}
& \left\|\nabla f\left(t, \omega, y_{1}, z_{1}\right)-\nabla f\left(t, \omega, y_{2}, z_{2}\right)\right\|_{H \otimes \mathbb{R}^{d}} \leq K_{t}(\omega)\left(\left|y_{1}-y_{2}\right|+\left|z_{1}-z_{2}\right|\right) \\
& E\left[\int_{0}^{T} K_{s}^{2 p} d s\right]<\infty
\end{aligned}
$$

1) $\quad \xi \in \mathbb{D}^{1, p}\left(\mathbb{R}^{d}\right)$,
2) $E\left[\left(\int_{0}^{T}|f(s, 0,0)| d s\right)^{p}\right]<\infty$,
$6)^{\prime}$ there exists a positive constant L such that for any $(t, \omega) \in[0, T] \times \Omega, y_{1}, y_{2} \in$ $\mathbb{R}^{d}, z_{1}, z_{2} \in \mathbb{R}^{n \times d}$,

$$
\left\|\nabla f\left(t, \omega, y_{1}, z_{1}\right)-\nabla f\left(t, \omega, y_{2}, z_{2}\right)\right\|_{H \otimes \mathbb{R}^{d}} \leq L\left(\left|y_{1}-y_{2}\right|+\left|z_{1}-z_{2}\right|\right),
$$

are fulfilled instead of 1), 2) and 6) of (A1) respectively.
In repetition of the argument in [7], we see
Proposition 3.1.1. Suppose (A1) holds. Let (Y, Z) be a unique $L^{2 p}$ solution of BSDE;

$$
\begin{equation*}
Y_{t}=\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s}^{*} d W_{s}, \quad 0 \leq t \leq T \tag{3.1}
\end{equation*}
$$

Then, (Y, Z) belongs to $\mathbb{L}_{1, p}^{a}\left(\mathbb{R}^{d}\right) \times \mathbb{L}_{1, p}^{a}\left(\mathbb{R}^{n \times d}\right)$ and $(\nabla Y, \nabla Z) \in \mathscr{S}^{p}\left(H \otimes \mathbb{R}^{d}\right) \times$ $\mathscr{H}^{p}\left(H \otimes \mathbb{R}^{n \times d}\right)$ solves the following $H \otimes \mathbb{R}^{d}$-valued $B S D E$:

$$
\begin{align*}
\nabla Y_{t}= & \nabla \xi-\int_{\cdot \wedge t} Z_{s}^{*} d s \\
& +\int_{t}^{T}\left\{\nabla f\left(s, Y_{s}, Z_{s}\right)+\partial_{y} f\left(s, Y_{s}, Z_{s}\right) \nabla Y_{s}+\partial_{z} f\left(s, Y_{s}, Z_{s}\right) \nabla Z_{s}\right\} d s \\
& -\int_{t}^{T}\left(\nabla Z_{s}\right)^{*} d W_{s}, \quad 0 \leq t \leq T \tag{3.2}
\end{align*}
$$

where $\partial_{y} f, \partial_{z} f$ are Fréchet derivatives with respect to $y \in \mathbb{R}^{d}, z \in \mathbb{R}^{n \times d}$ respectively, and $\int_{. \wedge t} Z_{s}^{*} d s, \partial_{y} f\left(s, Y_{s}, Z_{s}\right) \nabla Y_{s}$ and $\partial_{z} f\left(s, Y_{s}, Z_{s}\right) \nabla Z_{s}$ represent HilbertSchmidt operators;

$$
\begin{aligned}
& H \ni h \mapsto \int_{t}^{T} Z_{s}^{*} \dot{h}(s) d s \in \mathbb{R}^{d}, \\
& H \ni h \mapsto \partial_{y} f\left(s, Y_{s}, Z_{s}\right)\left\{\left(\nabla Y_{s}\right) h\right\} \in \mathbb{R}^{d}, \\
& H \ni h \mapsto \partial_{y} f\left(s, Y_{s}, Z_{s}\right)\left\{\left(\nabla Z_{s}\right) h\right\} \in \mathbb{R}^{d} .
\end{aligned}
$$

Moreover, $D_{t} Y_{t}=Z_{t}$ for almost all $t \in[0, T]$.
Remark 3.1.2. In El Karoui et al. [7, Proposition 5.3], the following assumption, stronger than the assumption (A1)-6), is used;

- for a.e. $\theta \in[0, T]$ there exists a nonnegative progressively measurable process $\left(K_{\theta}(t, \cdot)\right)_{0 \leq t \leq T}$ such that for any $(t, \omega) \in[0, T] \times \Omega, y_{1}, y_{2} \in \mathbb{R}^{d}, z_{1}, z_{2} \in$ $\mathbb{R}^{n \times d}$,

$$
\begin{aligned}
& \left|D_{\theta} f\left(t, \omega, y_{1}, z_{1}\right)-D_{\theta} f\left(t, \omega, y_{2}, z_{2}\right)\right| \leq K_{\theta}(t, \omega)\left(\left|y_{1}-y_{2}\right|+\left|z_{1}-z_{2}\right|\right), \\
& \int_{0}^{T} E\left[\left(\int_{0}^{T}\left|K_{\theta}(s)\right|^{2} d s\right)^{p}\right] d \theta<\infty
\end{aligned}
$$

However, their argument works under the assumption (A1)-6).
As mentioned in the remark of [7, p.59], it holds
Corollary 3.1.3. Suppose (A1) holds. Let (Y, Z) be a unique L^{p} solution of BSDE (3.1). Then, (Y, Z) belongs to $\mathbb{L}_{1, p}^{a}\left(\mathbb{R}^{d}\right) \times \mathbb{L}_{1, p}^{a}\left(\mathbb{R}^{n \times d}\right)$ and $(\nabla Y, \nabla Z) \in$ $\mathscr{S}^{p}\left(H \otimes \mathbb{R}^{d}\right) \times \mathscr{H}^{p}\left(H \otimes \mathbb{R}^{n \times d}\right)$ solves (3.2).

Moreover, $D_{t} Y_{t}=Z_{t}$ for almost all $t \in[0, T]$.
Remark 3.1.4. In order to obtain the equality $D_{t} Y_{t}=Z_{t}$, it is necessary to take a simultaneous null set with respect to time parameter t. To do this, in this paper, we prepare Lemma 3.2.2 in the next subsection, which makes us possible to obtain a version of the derivative process of a solution; $(D . Y, D . Z)$.

We now proceed to a general Hilbert space \mathcal{K} to discuss higher order differentiability of solutions of real valued BSDEs. Then, we are going to consider BSDEs on Hilbert spaces and differentiability of solutions.

We can show a priori estimates and the existence and uniqueness of solution, in the same manner as [7];

Proposition 3.1.5. There exists a positive constant C_{p} such that for $\xi \in L^{p}(\mathcal{K})$, i.e., $E\left[\|\xi\|_{\mathcal{K}}^{p}\right]<\infty$, and L^{p} solution (Y, Z) to (1.2),

$$
E\left[\sup _{0 \leq t \leq T}\left\|Y_{t}\right\|_{\mathcal{K}}^{p}+\left(\int_{0}^{T}\left\|Z_{s}\right\|_{\mathcal{K}^{n}}^{2} d s\right)^{\frac{p}{2}}\right] \leq C_{p} E\left[\|\xi\|_{\mathcal{K}}^{p}+\left(\int_{0}^{T}\left\|f\left(s, Y_{s}, Z_{s}\right)\right\|_{\mathcal{K}} d s\right)^{p}\right]
$$

Theorem 3.1.6. Suppose the following conditions hold;

- $\xi \in L^{p}(\mathcal{K})$,
- $E\left[\left(\int_{0}^{T}\|f(s, 0,0)\|_{\mathcal{K}} d s\right)^{p}\right]<\infty$,
- There exists C such that for any $(t, \omega) \in[0, T] \times \Omega, y_{1}, y_{2} \in \mathcal{K}, z_{1}, z_{2} \in \mathcal{K}^{n}$,

$$
\left\|f\left(t, \omega, y_{1}, z_{1}\right)-f\left(t, \omega, y_{2}, z_{2}\right)\right\|_{\mathcal{K}} \leq C\left(\left\|y_{1}-y_{2}\right\|_{\mathcal{K}}+\left\|z_{1}-z_{2}\right\|_{\mathcal{K}^{n}}\right)
$$

Then, there exists a unique L^{p} solution to the BSDE (1.2).

Remark 3.1.7. In the next subsection, we consider the following type of \mathcal{K} valued BSDE;

$$
\begin{equation*}
Y_{t}=\xi+\zeta_{t}^{T}+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} \cdot d W_{s}, \quad 0 \leq t \leq T \tag{3.3}
\end{equation*}
$$

where $\zeta_{t}^{T}:=-\zeta_{T}+\zeta_{t}$ with a given \mathcal{K}-valued continuous (resp. RCLL) process $\left(\zeta_{t}\right)_{0 \leq t \leq T}$, which corresponds to $\int_{0}^{\cdot \wedge t} Z_{s}^{*} d s$ (resp. $\left.\mathbf{1}_{[0, t]}(u) Z_{u}^{*}\right)$. By letting $\tilde{Y}_{t}=$ $Y_{t}-\zeta_{t}$ and $\tilde{f}(t, y, z)=f\left(t, y+\zeta_{t}, z\right)$, BSDE above is rewritten as

$$
\begin{equation*}
\tilde{Y}_{t}=\xi+\int_{t}^{T} \tilde{f}\left(s, \tilde{Y}_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s}^{*} d W_{s} \tag{3.4}
\end{equation*}
$$

Thus, we can obtain a continuous (resp. RCLL) solution Y of (3.3) from a continuous solution \tilde{Y} of (3.4).

3.2 Differentiability of solutions in the sense of the Malliavin calculus to linear BSDEs on Hilbert spaces

As in Proposition 3.1.1, the Malliavin derivative process $(\nabla Y, \nabla Z)$ of the solution (Y, Z) of (3.1) is also the solution of a linear BSDE (3.2) on Hilbert space $H \otimes$ \mathbb{R}^{d}. Taking the Malliavin derivative of (3.2) formally, again a linear BSDE on a Hilbert space appears. We can see the same circumstances even if the solution is differentiated repeatedly. This formal argument indicates us that the higher order Malliavin derivatives of the solution are also solutions of associated linear BSDEs. In this section, thus, we focus on linear BSDEs on Hilbert spaces. We consider Malliavin differentiability of a solution to a linear BSDE and show the derivative process is also a solution of a linear BSDE on a Hilbert space.

First, we note that the existence of a version of the derivative of a solution. An equality containing the derivative of a solution, such as ($D_{u} Y_{t}, D_{u} Z_{t}$), gives us a negligible set depending on t, not simultaneously, because the equality is given in the sense of $L^{2}(d u)$. Therefore, it is critical to change t continuously under a fixed u. Thus, we will give the existence of a version of $\left(D_{u} Y_{t}, D_{u} Z_{t}\right)$ in order to take a simultaneous negligible set. The following lemma assures the existence of a version. We now mention that the assumptions of b and c in the lemma make sense only on canonical set-up; they correspond to ones on the derivatives of f with respect to y, z thus they are satisfied in later sections.

We prepare a term for simplification.
Definition 3.2.1. Denote by $\mathcal{L}(\mathcal{H}, \mathcal{K})$ the space of all bounded linear operators from a Hilbert space \mathcal{H} to a Hilbert one \mathcal{K} with the operator norm, and denote
$\mathcal{L}(\mathcal{H})=\mathcal{L}(\mathcal{H}, \mathcal{H})$.
Let $k \in \mathbb{N}$ and $\left(\alpha_{t}\right)_{0 \leq t \leq T}$ be an $\mathcal{L}(\mathcal{K})$-valued (or $\mathcal{L}\left(\mathcal{K}^{n}, \mathcal{K}\right)$-valued) process. We say $\left(\alpha_{t}\right)_{0 \leq t \leq T}$ is exchangeable if there exists an $\mathcal{L}\left(\mathcal{K}^{n^{k}}\right)$-valued (resp. $\mathcal{L}\left(\mathcal{K}^{n \times n^{k}}, \mathcal{K}^{n^{k}}\right)$ valued) process $\left(\tilde{\alpha}_{t}\right)_{0 \leq t \leq T}$ such that for any $\eta \in H^{\otimes k} \otimes \mathcal{K}\left(\right.$ resp. $\left.\eta \in H^{\otimes k} \otimes \mathcal{K}^{n}\right)$ and $0 \leq t \leq T$, it holds that $\left\|\alpha_{t}\right\|=\left\|\tilde{\alpha}_{t}\right\|$ and

$$
\tilde{K}_{u}^{k}\left(\alpha_{t} \eta\right)=\tilde{\alpha}_{t} \tilde{K}_{u}^{k} \eta, \quad \text { a.e. } u \in[0, T]^{k}
$$

where, for $u=\left(u_{1}, \ldots, u_{k}\right) \in[0, T]^{k}, \tilde{K}_{u}^{k}$ is the same as $\tilde{K}_{u_{1}, \ldots, u_{k}}^{k}$ in Subsection 1.3.
$\left(\tilde{\alpha}_{t}\right)_{0 \leq t \leq T}$ is said to be an exchangeable version of $\left(\alpha_{t}\right)_{0 \leq \leq T}$.
Lemma 3.2.2. Let $k \in \mathbb{N}$ and let $(Y, Z) \in \mathscr{S}^{p}\left(H^{\otimes k} \otimes \mathcal{K}\right) \times \mathscr{H}^{p}\left(H^{\otimes k} \otimes \mathcal{K}^{n}\right)$ be a unique solution to the following $H^{\otimes k} \otimes \mathcal{K}$-valued linear BSDE;

$$
Y_{t}=\xi+\int_{t}^{T}\left\{a_{s}+b_{s} Y_{s}+c_{s} Z_{s}\right\} d s-\int_{t}^{T} Z_{s} \cdot d W_{s}
$$

where ξ is an \mathcal{F}_{T}-measurable $H^{\otimes k} \otimes \mathcal{K}$-valued random variable, $\left(a_{t}\right)_{0 \leq t \leq T}$ is an $H^{\otimes k} \otimes \mathcal{K}$-valued progressively measurable process, $\left(b_{t}\right)_{0 \leq t \leq T}$ is an $\mathcal{L}(\mathcal{K})$-valued progressively measurable process and $\left(c_{t}\right)_{0 \leq t \leq T}$ is an $\mathcal{L}\left(\mathcal{K}^{n}, \mathcal{K}\right)$-valued progressively measurable process. Let $q \in[2, p]$ and suppose

- $E\left[\int_{[0, T]^{k}}\left\|\tilde{K}_{u_{1}, \ldots, u_{k}}^{k} \xi\right\|_{\mathcal{K}}^{q} d u_{1} \cdots d u_{k}\right]<\infty$,
- $E\left[\int_{[0, T]^{k}}\left(\int_{0}^{T}\left\|\tilde{K}_{u_{1}, \ldots, u_{k}}^{k} a_{s}\right\|_{\mathcal{K}} d s\right)^{q} d u_{1} \cdots d u_{k}\right]<\infty$,
- $\sup _{t, \omega}\left(\left\|b_{t}(\omega)\right\|_{\mathcal{L}(\mathcal{K})}+\left\|c_{t}(\omega)\right\|_{\mathcal{L}\left(\mathcal{K}^{n}, \mathcal{K}\right)}\right)<\infty$,
- $\left(b_{t}\right)_{0 \leq t \leq T}$ and $\left(c_{t}\right)_{0 \leq t \leq T}$ admit exchangeable versions $\left(\tilde{b}_{t}\right)_{0 \leq t \leq T}$ and $\left(\tilde{c}_{t}\right)_{0 \leq t \leq T}$, respectively.

Denote by $\left(\bar{\Omega}^{(k)}, \overline{\mathcal{F}}^{(k)}, \bar{P}^{(k)}\right)$ the completion of $\left([0, T]^{k} \times \Omega, \mathcal{B}\left([0, T]^{k}\right) \otimes \mathcal{F}, \mu^{(k)} \otimes P\right)$, where $d \mu^{(k)}=\frac{d u_{1} \cdots d u_{k}}{T^{k}}$, and let $\overline{\mathcal{F}}_{t}^{(k)}=\left(\mathcal{B}\left([0, T]^{k}\right) \otimes \mathcal{F}_{t}\right) \vee \mathcal{N}^{\bar{P}^{(k)}}=\left(\mathcal{B}\left([0, T]^{k}\right) \otimes\right.$ $\left.\mathcal{F}_{t}^{W}\right) \vee \mathcal{N}^{\bar{P}^{(k)}}$ for $t \in[0, T]$, where $\mathcal{N}^{\bar{P}^{(k)}}$ represents the collection of all $\bar{P}^{(k)}-$ negligible sets. We may extend a random variable X on (Ω, \mathcal{F}, P) to one on $\left(\bar{\Omega}^{(k)}, \overline{\mathcal{F}}^{(k)}, \bar{P}^{(k)}\right)$ by defining for $(u, \omega) \in \bar{\Omega}^{(k)}, \bar{X}(u, \omega)=X(\omega)$. Furthermore, $\mathscr{S}^{q}\left(\mathcal{K}^{n^{k}}, \bar{P}^{(k)}\right)$ and $\mathscr{H}^{q}\left(\mathcal{K}^{n \times n^{k}}, \bar{P}^{(k)}\right)$ represent the spaces $\mathscr{S}^{q}\left(\mathcal{K}^{n^{k}}\right)$ and $\mathscr{H}^{q}\left(\mathcal{K}^{n \times n^{k}}\right)$ defined in Subsection 1.3 under the probability space $\left(\bar{\Omega}^{(k)}, \overline{\mathcal{F}}^{(k)}, \bar{P}^{(k)}\right)$, respectively. Then, there exists a pair $(\bar{Y}, \bar{Z}) \in \mathscr{S}^{q}\left(\mathcal{K}^{n^{k}}, \bar{P}^{(k)}\right) \times \mathscr{H}^{q}\left(\mathcal{K}^{n \times n^{k}}, \bar{P}^{(k)}\right)$ such that

$$
\int_{0}^{T} \int_{[0, T]^{k}}\left\|\tilde{K}_{u}^{k} Y_{t}-\bar{Y}_{t}(u)\right\|_{\mathcal{K}^{k}}^{2} d \mu^{(k)}(u) d t
$$

$$
\begin{equation*}
=\int_{0}^{T} \int_{[0, T]^{k}}\left\|\tilde{K}_{u}^{k} Z_{t}-\bar{Z}_{t}(u)\right\|_{\mathcal{K}^{n \times n^{k}}}^{2} d \mu^{(k)}(u) d t=0 \tag{3.5}
\end{equation*}
$$

and

$$
\begin{aligned}
& \bar{Y}_{t}(u)=\tilde{K}_{u}^{k} \xi+\int_{t}^{T}\left\{\tilde{K}_{u}^{k} a_{s}+\tilde{b}_{s} \bar{Y}_{s}(u)+\tilde{c}_{s} \bar{Z}_{s}(u)\right\} d s-\int_{t}^{T}\left\{\bar{Z}_{s}(u)\right\}^{*} d W_{s} \\
& 0 \leq t \leq T, \quad \bar{P}^{(k)}-\text { a.e. }
\end{aligned}
$$

Proof. For simplicity of notation, we only prove when $k=1$.
By Theorem 3.1.6, there exists a unique solution $(\bar{Y}, \bar{Z}) \in \mathscr{S}^{q}\left(\mathcal{K}^{n}, \bar{P}\right) \times$ $\mathscr{H}^{q}\left(\mathcal{K}^{n \times n}, \bar{P}\right)$ to the \mathcal{K}^{n}-valued BSDE on $(\bar{\Omega}, \overline{\mathcal{F}}, \bar{P}):=\left(\bar{\Omega}^{(1)}, \overline{\mathcal{F}}^{(1)}, \bar{P}^{(1)}\right) ;$

$$
\bar{Y}_{t}=\tilde{K} \xi+\int_{t}^{T}\left\{\tilde{K} a_{s}+\tilde{b}_{s} \bar{Y}_{s}+\tilde{c}_{s} \bar{Z}_{s}\right\} d s-\int_{t}^{T} \bar{Z}_{s}^{*} d W_{s}, \quad 0 \leq t \leq T
$$

$H \otimes \mathcal{K}$-valued process $\left(\eta_{t}\right)_{0 \leq t \leq T}$ and $H \otimes \mathcal{K}^{n}$-valued process $\left(\zeta_{t}\right)_{0 \leq t \leq T}$ are defined by

$$
\begin{aligned}
& \eta_{t}: H \ni h \mapsto \int_{0}^{T} \bar{Y}_{t}(u) \cdot \dot{h}(u) d u \in \mathcal{K}, \\
& \zeta_{t}: H \ni h \mapsto \int_{0}^{T}\left\{\bar{Z}_{t}(u)\right\}^{*} \dot{h}(u) d u \in \mathcal{K}^{n} .
\end{aligned}
$$

Let $\left(h^{j}\right)_{j=1,2, \ldots}$. be a complete orthonormal system of H. Then, for all j, we get

$$
\begin{aligned}
& \int_{0}^{T} \bar{Y}_{t}(u) \cdot \dot{h}^{j}(u) d u \\
& =\int_{0}^{T} \tilde{K}_{u} \xi \cdot \dot{h}^{j}(u) d u \\
& \quad+\int_{t}^{T}\left\{\int_{0}^{T} \tilde{K}_{u} a_{s} \cdot \dot{h}^{j}(u) d u+b_{s} \int_{0}^{T} \bar{Y}_{s}(u) \cdot \dot{h}^{j}(u) d u+c_{s} \int_{0}^{T}\left\{\bar{Z}_{s}(u)\right\}^{*} \dot{h}^{j}(u) d u\right\} d s \\
& \quad+\int_{0}^{T}\left(\int_{t}^{T}\left\{\bar{Z}_{s}(u)\right\}^{*} d W_{s}\right) \cdot \dot{h}^{j}(u) d u
\end{aligned}
$$

By the representation of elements of $L^{2}\left([0, T], \mathcal{K}^{n}\right)$, we know that $\bar{Z}_{s}(u)$ is represented as $\sum_{i, j=1}^{\infty} a_{i j}(s) \dot{h}^{i}(u)\left(k^{j}\right)^{*}$, where $\left(k^{j}\right)_{j=1,2, \ldots}$ is a complete orthonormal system of \mathcal{K}^{n}. Then, for all j, we obtain

$$
\int_{0}^{T}\left(\int_{t}^{T}\left\{\bar{Z}_{s}(u)\right\}^{*} d W_{s}\right) \cdot \dot{h}^{j}(u) d u=\int_{t}^{T}\left(\int_{0}^{T}\left\{\bar{Z}_{s}(u)\right\}^{*} \dot{h}^{j}(u) d u\right) \cdot d W_{s}
$$

Thus, for all j, we get

$$
\eta_{t} h^{j}=\int_{0}^{T} \tilde{K}_{u} \xi \cdot \dot{h}^{j}(u) d u+\int_{t}^{T}\left\{\int_{0}^{T} \tilde{K}_{u} a_{s} \cdot \dot{h}^{j}(u) d u+b_{s}\left(\eta_{s} h^{j}\right)+c_{s}\left(\zeta_{s} h^{j}\right)\right\} d s
$$

$$
-\int_{t}^{T} \zeta_{s} h^{j} \cdot d W_{s}
$$

Then, it follows

$$
\eta_{t}=\xi+\int_{t}^{T}\left\{a_{s}+b_{s} \eta_{s}+c_{s} \zeta_{s}\right\} d s-\int_{t}^{T} \zeta_{s} \cdot d W_{s}
$$

By uniqueness of solution, we obtain $\eta=Y, \zeta=Z$ in $\mathscr{S}^{q}(H \otimes \mathcal{K}, \bar{P}) \times \mathscr{H}^{q}(H \otimes$ $\left.\mathcal{K}^{n}, \bar{P}\right)$. Thus, (3.5) is satisfied.

Remark 3.2.3. η in the proof is continuous because, by the identity

$$
\frac{1}{T} E\left[\int_{0}^{T} \sup _{0 \leq t \leq T}\left\|\bar{Y}_{t}(u)\right\|_{\mathcal{K}}^{2} d u\right]=E_{\bar{P}}\left[\sup _{0 \leq t \leq T}\left\|\bar{Y}_{t}\right\|_{\mathcal{K}}^{2}\right]<\infty
$$

the dominated convergence theorem and the continuity of \bar{Y}, it follows

$$
\left\|\eta_{t}-\eta_{s}\right\|_{H \otimes \mathcal{K}}^{2}=\int_{0}^{T}\left\|\bar{Y}_{t}(u)-\bar{Y}_{s}(u)\right\|_{\mathcal{K}}^{2} d u \rightarrow 0(t \rightarrow s)
$$

Therefore, we can use the uniqueness of solution.
Remark 3.2.4. In the general theory of BSDE, a solution Z is constructed by the martingale representation theorem (see [7]). The theorem requires the filtration to be the Brownian. In the proof of the lemma, the filtration is not a one generated by the Brownian motion extended to $(\bar{\Omega}, \overline{\mathcal{F}}, \bar{P})$ but a product σ-field containing the original Brownian filtration. Then, we can see that the martingale representation on the extended probability space version holds as usual.

In what follows, the notation of derivatives of solutions, such as $\left(D_{u} Y_{t}, D_{u} Z_{t}\right)$, $\left(D_{u} \nabla Y_{t}, D_{u} \nabla Z_{t}\right),\left(D_{u, v}^{2} Y_{t}, D_{u, v}^{2} Z_{t}\right)$ and so on, are used in the sense of the lemma.

Hereafter, as in the proof of Lemma 3.2.2, $\left(\bar{\Omega}^{(1)}, \overline{\mathcal{F}}^{(1)}, \bar{P}^{(1)}\right)$ is denoted by $(\bar{\Omega}, \overline{\mathcal{F}}, \bar{P})$.

We consider the following \mathcal{K}-valued linear BSDE;

$$
\begin{equation*}
Y_{t}=\xi+\zeta_{t}^{T}+\int_{t}^{T}\left\{A_{s}+B_{s} Y_{s}+\Gamma_{s} Z_{s}\right\} d s-\int_{t}^{T} Z_{s} \cdot d W_{s}, \quad 0 \leq t \leq T \tag{3.6}
\end{equation*}
$$

where $\zeta_{t}^{T}=-\zeta_{T}+\zeta_{t}, \zeta=\left(\zeta_{t}\right)_{0 \leq t \leq T}$ is a \mathcal{K}-valued continuous adapted process, $A=$ $\left(A_{t}\right)_{0 \leq t \leq T}$ is a \mathcal{K}-valued progressively measurable process and $B=\left(B_{t}\right)_{0 \leq t \leq T}$ is an $\mathcal{L}(\mathcal{K})$-valued progressively measurable process and $\Gamma=\left(\Gamma_{t}\right)_{0 \leq t \leq T}$ is a $\overline{\mathcal{L}}\left(\mathcal{K}^{n}, \mathcal{K}\right)$ valued progressively measurable process.

We introduce the assumption (A2):

1) $\xi \in \mathbb{D}^{1, p}(\mathcal{K}) \cap L^{2 p}(\mathcal{K})$,
2) $E\left[\left(\int_{0}^{T}\left\|A_{s}\right\|_{\mathcal{K}} d s\right)^{2 p}\right]<\infty$,
3) $\sup _{t, \omega}\left(\left\|B_{t}(\omega)\right\|_{\mathcal{L}(\mathcal{K})}+\left\|\Gamma_{t}(\omega)\right\|_{\mathcal{L}\left(\mathcal{K}^{n}, \mathcal{K}\right)}\right)<\infty$,
4) $\zeta \in \mathbb{L}_{1, p}^{a}(\mathcal{K}) \cap \mathscr{S}^{2 p}(\mathcal{K})$,
5) for each $t \in[0, T], A_{t} \in \mathbb{D}^{1, p}(\mathcal{K})$, and $\left(\nabla A_{t}\right)_{0 \leq t \leq T}$ admits a progressively measurable version and satisfies $E\left[\left(\int_{0}^{T}\left\|\nabla A_{s}\right\|_{H \otimes \mathcal{K}} d s\right)^{p}\right]<\infty$,
6) for any $F \in \mathbb{D}^{1, p}(\mathcal{K})$ and $G \in \mathbb{D}^{1, p}\left(\mathcal{K}^{n}\right), B F$ and ΓG belong to $\mathbb{L}_{1, p}^{a}(\mathcal{K})$ and there exist an $\mathcal{L}(\mathcal{K}, H \otimes \mathcal{K})$-valued progressively measurable process ${ }^{\nabla} B$, an $\mathcal{L}\left(\mathcal{K}^{n}, H \otimes \mathcal{K}\right)$-valued progressively measurable process ${ }^{\nabla} \Gamma$, an $\mathcal{L}(\mathcal{K})$-valued progressively measurable process \tilde{B} and an $\mathcal{L}\left(\mathcal{K}^{n}, \mathcal{K}\right)$-valued progressively measurable process $\tilde{\Gamma}$ such that $\nabla\left(B_{t} F\right)={ }^{\nabla} B_{t} F+\tilde{B}_{t} \nabla F$ and $\nabla\left(\Gamma_{t} G\right)=$ ${ }^{\nabla} \Gamma_{t} G+\tilde{\Gamma}_{t} \nabla G$,
7) $\sup _{t, \omega}\left(\left\|\tilde{B}_{t}(\omega)\right\|_{\mathcal{L}(\mathcal{K})}+\left\|\tilde{\Gamma}_{t}(\omega)\right\|_{\mathcal{L}\left(\mathcal{K}^{n}, \mathcal{K}\right)}\right)<\infty$, $E\left[\left(\int_{0}^{T}\left\{\left\|^{\nabla} B_{s}\right\|_{\mathcal{L}(\mathcal{K}, H \otimes \mathcal{K})}^{2}+\| \|^{\nabla} \Gamma_{s} \|_{\mathcal{L}\left(\mathcal{K}^{n}, H \otimes \mathcal{K}\right)}^{2}\right\} d s\right)^{p}\right]<\infty$.

We say that the assumption (A2)' is satisfied if, in addition to (A2),
8) $E\left[\int_{0}^{T}\left(\int_{0}^{T}\left\|D_{u} A_{s}+\tilde{K}_{u}\left({ }^{\nabla} B_{s} Y_{s}\right)+\tilde{K}_{u}\left({ }^{\nabla} \Gamma_{s} Z_{s}\right)\right\|_{\mathcal{K}^{n}} d s\right)^{2} d u\right]<\infty$,
9) if $t<u, \tilde{K}_{u}\left({ }^{\nabla} B_{t} Y_{t}\right)=\tilde{K}_{u}\left({ }^{\nabla} \Gamma_{t} Z_{t}\right)=0$,
10) $D . \zeta \in \mathscr{S}_{r c}^{2}\left(\mathcal{K}^{n}, \bar{P}\right)$
are fulfilled.
We say the assumption (A2)" is satisfied if
$1)^{\prime} \xi \in \mathbb{D}^{1, p}(\mathcal{K})$,
2) ${ }^{\prime} E\left[\left(\int_{0}^{T}\left\|A_{s}\right\|_{\mathcal{K}} d s\right)^{p}\right]<\infty$,
4) $\quad \zeta \in \mathbb{L}_{1, p}^{a}(\mathcal{K}) \cap \mathscr{S}^{p}(\mathcal{K})$,
$7)^{\prime} \sup _{t, \omega}\left(\left\|\tilde{B}_{t}\right\|_{\mathcal{L}(\mathcal{K})}+\left\|\tilde{\Gamma}_{t}\right\|_{\mathcal{L}\left(\mathcal{K}^{n}, \mathcal{K}\right)}+\left\|{ }^{\nabla} B_{s}\right\|_{\mathcal{L}(\mathcal{K}, H \otimes \mathcal{K})}+\left\|{ }^{\nabla} \Gamma_{s}\right\|_{\mathcal{L}\left(\mathcal{K}^{n}, H \otimes \mathcal{K}\right)}\right)<\infty$,
are fulfilled instead of 1), 2), 4) and 7) of (A2)' respectively.
Theorem 3.2.5. Suppose (A2) holds. Let (Y, Z) be a unique $L^{2 p}$ solution to the BSDE (3.6). Then, (Y, Z) belongs to $\mathbb{L}_{1, p}^{a}(\mathcal{K}) \times \mathbb{L}_{1, p}^{a}\left(\mathcal{K}^{n}\right)$ and $(\nabla Y, \nabla Z) \in$ $\mathscr{S}^{p}(H \otimes \mathcal{K}) \times \mathscr{H}^{p}\left(H \otimes \mathcal{K}^{n}\right)$ solves the following $H \otimes \mathcal{K}$-valued linear BSDE;

$$
\left.\left.\left.\begin{array}{rl}
\nabla Y_{t}=\nabla \xi & +\nabla \zeta_{t}^{T}-\int_{\cdot \wedge t} Z_{s} d s \\
& +\int_{t}^{T}\left\{\nabla A_{s}+{ }^{\nabla} B_{s} Y_{s}+{ }^{\nabla} \Gamma_{s} Z_{s}\right.
\end{array}\right)+\tilde{B}_{s} \nabla Y_{s}+\tilde{\Gamma}_{s} \nabla Z_{s}\right\} d s\right\}
$$

where $\int_{\cdot \wedge t} Z_{s} d s$ represents a Hilbert-Schmidt operator $H \ni h \mapsto \int_{t}^{T} Z_{s} \cdot \dot{h}(s) d s \in$ \mathcal{K}.

Moreover, under (A2)', and if there exist an $\mathcal{L}\left(\mathcal{K}^{n}\right)$-valued progressively measurable process $\left(\bar{B}_{t}\right)_{0 \leq t \leq T}$ and an $\mathcal{L}\left(\mathcal{K}^{n \times n}, \mathcal{K}^{n}\right)$-valued progressively measurable process $\left(\bar{\Gamma}_{t}\right)_{0 \leq t \leq T}$ such that for any $\kappa \in \mathcal{K}^{n}, \boldsymbol{\kappa} \in \mathcal{K}^{n \times n}, h \in H$ and $0 \leq t, u \leq T$,

$$
\begin{aligned}
& \tilde{B}_{t}(\kappa \cdot \dot{h}(u))=\left(\bar{B}_{t} \kappa\right) \cdot \dot{h}(u), \quad \tilde{\Gamma}_{t}\left(\boldsymbol{\kappa}^{*} \dot{h}(u)\right)=\left(\bar{\Gamma}_{t} \boldsymbol{\kappa}\right)^{*} \dot{h}(u), \\
& \left\|\tilde{B}_{t}\right\|_{\mathcal{L}(\mathcal{K})}=\left\|\bar{B}_{t}\right\|_{\mathcal{L}\left(\mathcal{K}^{n}\right)}, \quad\left\|\tilde{\Gamma}_{t}\right\|_{\mathcal{L}\left(\mathcal{K}^{n}, \mathcal{K}\right)}=\left\|\bar{\Gamma}_{t}\right\|_{\mathcal{L}\left(\mathcal{K}^{n \times n}, \mathcal{K}^{n}\right)},
\end{aligned}
$$

then $(D . Y, D . Z) \in \mathscr{S}_{r c}^{2}\left(\mathcal{K}^{n}, \bar{P}\right) \times \mathscr{H}^{2}\left(\mathcal{K}^{n \times n}, \bar{P}\right)$ and $D_{t} Y_{t}=D_{t} \zeta_{t}+Z_{t}$ for almost all $t \in[0, T]$.
Example 3.2.6. Let $\left(W_{t}\right)_{0 \leq t \leq T}$ be a one-dimensional Brownian motion and r, θ be real constants. Suppose $\xi \in D^{1, p}(\mathcal{K}) \cap L^{2 p}(\mathcal{K}), \phi \in \mathbb{L}_{1, p}^{a}\left(\mathcal{K}^{n}\right) \cap \mathscr{H}^{2 p}\left(\mathcal{K}^{n}\right)$. Then, the following \mathcal{K}-valued BSDE;

$$
Y_{t}=\xi-\int_{\cdot \wedge t}^{\cdot} \phi_{s} d s-\int_{t}^{T}\left(r Y_{s}+\theta Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}
$$

satisfies (A2)'. This type of BSDE is given by taking the Malliavin derivative of the portfolio under the Black-Scholes model, where r represents an interest rate of nonrisky asset and θ does a risk premium (see [7]).

Before the proof, we mention the following lemma on differentiability of stochastic integration in the sense of the Malliavin calculus. This lemma is an extension of the result of El Karoui et al. [7, Lemma 5.1] to Hilbert space valued processes.
Lemma 3.2.7. (1) Assume $\zeta=\left(\zeta_{t}\right)_{0 \leq t \leq T} \in \mathscr{H}^{p}\left(\mathcal{K}^{n}\right)$ and $\xi:=\int_{0}^{T} \zeta_{s} \cdot d W_{s} \in$ $\mathbb{D}^{1, p}(\mathcal{K})$. Then, ζ admits a version $\tilde{\zeta}=\left(\tilde{\zeta}_{t}\right)_{0 \leq t \leq T} \in \mathbb{L}_{1, p}^{a}\left(\mathcal{K}^{n}\right)$ such that $\xi=\int_{0}^{T} \tilde{\zeta}_{s} \cdot d W_{s}$.
(2) If $\zeta=\left(\zeta_{t}\right)_{0 \leq t \leq T} \in \mathbb{L}_{1, p}^{a}\left(\mathcal{K}^{n}\right)$, then $\xi(t):=\int_{0}^{t} \zeta_{s} \cdot d W_{s} \in \mathbb{D}^{1, p}(\mathcal{K})$ for every $t \in[0, T]$ and

$$
\nabla \xi(t)=\int_{0}^{t} \nabla \zeta_{s} \cdot d W_{s}+\int_{0}^{\cdot \wedge t} \zeta_{s} d s
$$

where $\int_{0}^{\wedge}{ }^{\wedge t} \zeta_{s} d s \in H \otimes \mathcal{K}$ represents a Hilbert-Schimidt operator $H \ni h \mapsto$ $\int_{0}^{t} \zeta_{s} \cdot \dot{h}(s) d s$.

First, we show the following; for any $\xi \in \mathbb{D}^{1, p}(\mathcal{K})$ which is represented as a stochastic integral of a $\zeta \in \mathbb{L}_{1, p}^{a}\left(\mathcal{K}^{n}\right)$, i.e. $\xi=\int_{0}^{T} \zeta_{s} \cdot d W_{s}$,

$$
\begin{equation*}
c_{p}\|\zeta\|_{\mathbb{L}_{1, p}^{a}\left(\mathcal{K}^{n}\right)} \leq\|\xi\|_{\mathbb{D}^{1}, p}(\mathcal{K}) \leq C_{p}\|\zeta\|_{\mathbb{L}_{1, p}^{a}\left(\mathcal{K}^{n}\right)}, \tag{3.8}
\end{equation*}
$$

where c_{p} and C_{p} are positive constants depending only on p.
In calculation below, all notations c, C represent just positive constants depending only on p and they may change from place to place. By the martingale moment inequality, we get

$$
c E\left[\left(\int_{0}^{T}\left\|\zeta_{s}\right\|_{\mathcal{K}^{n}}^{2} d s\right)^{\frac{p}{2}}\right] \leq E\left[\|\xi\|_{\mathcal{K}}^{p}\right] \leq C E\left[\left(\int_{0}^{T}\left\|\zeta_{s}\right\|_{\mathcal{K}^{n}}^{2} d s\right)^{\frac{p}{2}}\right]
$$

By (2), we see that

$$
\nabla \xi=\int_{0}^{T} \nabla \zeta_{s} \cdot d W_{s}+\int_{0} \zeta_{s} d s
$$

Thus, we obtain

$$
\begin{aligned}
E\left[\|\nabla \xi\|_{H \otimes \mathcal{K}}^{p}\right] & \leq C E\left[\left\|\int_{0} \zeta_{s} d s\right\|_{H \otimes \mathcal{K}}^{p}+\left\|\int_{0}^{T} \nabla \zeta_{s} \cdot d W_{s}\right\|_{H \otimes \mathcal{K}}^{p}\right] \\
& \leq C\left(E\left[\left(\int_{0}^{T}\left\|\zeta_{s}\right\|_{\mathcal{K}^{n}}^{2} d s\right)^{\frac{p}{2}}\right]+C E\left[\left(\int_{0}^{T}\left\|\nabla \zeta_{s}\right\|_{H \otimes \mathcal{K}^{n}}^{2} d s\right)^{\frac{p}{2}}\right]\right)
\end{aligned}
$$

and it follows that

$$
\|\xi\|_{\mathbb{D}^{1, p}(\mathcal{K})} \leq C_{p}\|\zeta\|_{\mathbb{L}_{1, p}^{a}\left(\mathcal{K}^{n}\right)}
$$

By using

$$
\int_{0}^{T} \nabla \zeta_{s} \cdot d W_{s}=\nabla \xi-\int_{0} \zeta_{s} d s
$$

and the martingale moment inequality, we obtain

$$
\begin{aligned}
E\left[\left(\int_{0}^{T}\left\|\nabla \zeta_{s}\right\|_{H \otimes \mathcal{K}^{n}}^{2} d s\right)^{\frac{p}{2}}\right] & \leq C E\left[\left\|\int_{0}^{T} \nabla \zeta_{s} \cdot d W_{s} d s\right\|_{H \otimes \mathcal{K}}^{p}\right] \\
& \leq C\left\{E\left[\|\nabla \xi\|_{H \otimes \mathcal{K}}^{p}\right]+E\left[\left(\int_{0}^{T}\left\|\zeta_{s}\right\|_{\mathcal{K}^{n}}^{2} d s\right)^{\frac{p}{2}}\right]\right\} \\
& \leq C\left\{E\left[\|\nabla \xi\|_{H \otimes \mathcal{K}}^{p}\right]+C E\left[\left\|\int_{0}^{T} \zeta_{s} \cdot d W_{s}\right\|_{\mathcal{K}}^{p}\right]\right\}
\end{aligned}
$$

$$
\leq C\left(E\left[\|\xi\|_{\mathcal{K}}^{p}\right]+E\left[\|\nabla \xi\|_{H \otimes \mathcal{K}}^{p}\right]\right)
$$

Thus, we get

$$
c_{p}\|\zeta\|_{\mathbb{L}_{1, p}^{a}\left(\mathcal{K}^{n}\right)} \leq\|\xi\|_{\mathbb{D}^{1, p}(\mathcal{K})}
$$

Thus inequalities (3.8) have been shown.
We now proceed to the proof of the assertion (2). Put $A=\{\xi \in \mathcal{P}(\mathcal{K}) ; E[\xi]=$ $0\}$ and $B=\left\{\xi=\int_{0}^{T} \zeta_{s} \cdot d W_{s} ; \zeta \in \mathbb{L}_{1, p}^{a}\left(\mathcal{K}^{n}\right)\right\}$. Then, we know $A, B \subset \mathbb{D}^{1, p}(\mathcal{K}) \cap$ $\{\xi ; E[\xi]=0\}$. For any $\xi \in A$, we see that

$$
\xi=\int_{0}^{T} E\left[D_{s} \xi \mid \mathcal{F}_{s}\right] \cdot d W_{s}
$$

where we have used the Hilbert space version of the Clark-Ocone formula, which is easily obtained from well-known real-valued one. Thus, we get $A \subset B$. Since A is dense in $\mathbb{D}^{1, p}(\mathcal{K}) \cap\{\xi ; E[\xi]=0\}$ with respect to $\mathbb{D}^{1, p}(\mathcal{K})$-topology, so is B. Then, for any $\xi=\int_{0}^{T} \zeta_{s} \cdot d W_{s} \in \mathbb{D}^{1, p}(\mathcal{K})$, there exists a sequence $\xi^{m}=\int_{0}^{T} \zeta_{s}^{m} \cdot d W_{s} \in B$ such that $\left\|\xi^{m}-\xi\right\|_{\mathbb{D}^{1, p}(\mathcal{K})} \rightarrow 0(m \rightarrow \infty)$. $\operatorname{By}(3.8),\left\|\zeta^{l}-\zeta^{m}\right\|_{\mathbb{L}_{1, p}^{a}\left(\mathcal{K}^{n}\right)} \rightarrow 0(l, m \rightarrow$ $\infty)$. Thus, we can take $\tilde{\zeta}$ as the limit of $\zeta^{m} \in \mathbb{L}_{1, p}^{a}\left(\mathcal{K}^{n}\right)$.

We give the proof of Theorem 3.2.5, modifying the argument of El Karoui et al. [7, Proposition 5.3].

Proof of Theorem 3.2.5. Let $\left(Y^{k}, Z^{k}\right) \in \mathscr{S}^{2 p}(\mathcal{K}) \times \mathscr{H}^{2 p}\left(\mathcal{K}^{n}\right)$ be the Picard iterative sequence; $\left(Y^{0}, Z^{0}\right)=(0,0)$ and, for $k \geq 1$,

$$
\begin{equation*}
Y_{t}^{k+1}=\xi+\zeta_{t}^{T}+\int_{t}^{T}\left\{A_{s}+B_{s} Y_{s}^{k}+\Gamma_{s} Z_{s}^{k}\right\} d s-\int_{t}^{T} Z_{s}^{k+1} \cdot d W_{s}, \quad 0 \leq t \leq T \tag{3.9}
\end{equation*}
$$

In exactly the same manner as real valued case ([7, Corollary 2.1]), $\left\|Y^{k}-Y\right\|_{\mathscr{S}^{2 p}(\mathcal{K})}$ and $\left\|Z^{k}-Z\right\|_{\mathscr{H}^{2 p}\left(\mathcal{K}^{n}\right)}$ tend to zero as $k \rightarrow \infty$.

Obviously, $\left(Y^{0}, Z^{0}\right) \in \mathbb{L}_{1, p}^{a}(\mathcal{K}) \times \mathbb{L}_{1, p}^{a}\left(\mathcal{K}^{n}\right)$. Now we show $\left(Y^{k}, Z^{k}\right) \in \mathbb{L}_{1, p}^{a}(\mathcal{K}) \times$ $\mathbb{L}_{1, p}^{a}\left(\mathcal{K}^{n}\right)$ for all $k \geq 0$ by induction. Assume $\left(Y^{k}, Z^{k}\right) \in \mathbb{L}_{1, p}^{a}(\mathcal{K}) \times \mathbb{L}_{1, p}^{a}\left(\mathcal{K}^{n}\right)$. By (3.9) and that $\xi+\zeta_{t}^{T}+\int_{t}^{T}\left\{A_{s}+B_{s} Y_{s}^{k}+\Gamma_{s} Z_{s}^{k}\right\} d s \in \mathbb{D}^{1, p}(\mathcal{K})$, we see that $Y_{t}^{k+1}=$ $E\left[\xi+\zeta_{t}^{T}+\int_{t}^{T}\left\{A_{s}+B_{s} Y_{s}^{k}+\Gamma_{s} Z_{s}^{k}\right\} d s \mid \mathcal{F}_{t}\right] \in \mathbb{D}^{1, p}(\mathcal{K})$. Then we get $Y^{k+1} \in \mathbb{L}_{1, p}^{a}(\mathcal{K})$. Again by (3.9), we see that $\int_{0}^{T} Z_{s}^{k+1} \cdot d W_{s}=\xi+\zeta_{0}^{T}+\int_{0}^{T}\left\{A_{s}+B_{s} Y_{s}^{k}+\Gamma_{s} Z_{s}^{k}\right\} d s-$ $Y_{0}^{k+1} \in \mathbb{D}^{1, p}(\mathcal{K})$. Then, by Lemma 3.2.7, it follows $Z^{k+1} \in \mathbb{L}_{1, p}^{a}\left(\mathcal{K}^{n}\right)$.

Taking the Malliavin derivative of (3.9), by Lemma 3.2.7, we get

$$
\nabla Y_{t}^{k+1}=\nabla \xi+\nabla \zeta_{t}^{T}-\int_{\cdot \wedge t} Z_{s}^{k+1} d s
$$

$$
+\int_{t}^{T}\left\{\nabla A_{s}+{ }^{\nabla} B_{s} Y_{s}^{k}+{ }^{\nabla} \Gamma_{s} Z_{s}^{k}+\tilde{B}_{s} \nabla Y_{s}^{k}+\tilde{\Gamma}_{s} \nabla Z_{s}^{k}\right\} d s-\int_{t}^{T} \nabla Z_{s}^{k+1} \cdot d W_{s}
$$

We now show that $\left(Y^{k}, Z^{k}\right)$ converges in $\mathbb{L}_{1, p}^{a}(\mathcal{K}) \times \mathbb{L}_{1, p}^{a}\left(\mathcal{K}^{n}\right)$. Let $\left(Y^{\nabla}, Z^{\nabla}\right) \in$ $\mathscr{S}^{p}(H \otimes \mathcal{K}) \times \mathscr{H}^{p}\left(H \otimes \mathcal{K}^{n}\right)$ be the unique solution of the following $H \otimes \mathcal{K}$-valued linear BSDE:

$$
\left.\begin{array}{rl}
Y_{t}^{\nabla}= & \nabla \xi
\end{array}\right)+\nabla \zeta_{t}^{T}-\int_{\cdot \wedge t} Z_{s} d s
$$

For $k \geq 0$, define

$$
E_{k+1}=E\left[\sup _{0 \leq t \leq T}\left\|\nabla Y_{t}^{k+1}-Y_{t}^{\nabla}\right\|_{H \otimes \mathcal{K}}^{p}+\left(\int_{0}^{T}\left\|\nabla Z_{s}^{k+1}-Z_{s}^{\nabla}\right\|_{H \otimes \mathcal{K}}^{2} d s\right)^{\frac{p}{2}}\right]
$$

By Proposition 3.1.5, we obtain

$$
\begin{aligned}
& \left.E_{k+1}{ }^{E_{p} E[(} \int_{0}^{T}\left\|{ }^{\nabla} B_{s}\left(Y_{s}^{k}-Y_{s}\right)+{ }^{\nabla} \Gamma_{s}\left(Z_{s}^{k}-Z_{s}\right)+\tilde{B}_{s}\left(\nabla Y_{s}^{k}-Y_{s}^{\nabla}\right)+\tilde{\Gamma}_{s}\left(\nabla Z_{s}^{k}-Z_{s}^{\nabla}\right)\right\|_{H \otimes \mathcal{K}} d s\right)^{p} \\
& \\
& \left.\quad+\left(\int_{0}^{T}\left\|Z_{s}^{k+1}-Z_{s}\right\|_{\mathcal{K}^{n}}^{2} d s\right)^{\frac{p}{2}}\right]
\end{aligned}
$$

where C_{p} represents a positive constant depending only on p. Since

$$
\begin{aligned}
& \left\|{ }^{\nabla} B_{s}\left(Y_{s}^{k}-Y_{s}\right)+{ }^{\nabla} \Gamma_{s}\left(Z_{s}^{k}-Z_{s}\right)+\tilde{B}_{s}\left(\nabla Y_{s}^{k}-Y_{s}^{\nabla}\right)+\tilde{\Gamma}_{s}\left(\nabla Z_{s}^{k}-Z_{s}^{\nabla}\right)\right\|_{H \otimes \mathcal{K}} \\
\leq & \left\|{ }^{\nabla} B_{s}\right\|_{\mathcal{L}(\mathcal{K}, H \otimes \mathcal{K})}\left\|Y_{s}^{k}-Y_{s}\right\|_{\mathcal{K}}+\left\|{ }^{\nabla} \Gamma_{s}\right\|_{\mathcal{L}\left(\mathcal{K}^{n}, H \otimes \mathcal{K}\right)}\left\|Z_{s}^{k}-Z_{s}\right\|_{\mathcal{K}^{n}} \\
& +\left\|\tilde{B}_{s}\right\|_{\mathcal{L}(\mathcal{K})}\left\|\nabla Y_{s}^{k}-Y_{s}^{\nabla}\right\|_{H \otimes \mathcal{K}}+\left\|\tilde{\Gamma}_{s}\right\|_{\mathcal{L}\left(\mathcal{K}^{n}, \mathcal{K}\right)}\left\|\nabla Z_{s}^{k}-Z_{s}^{\nabla}\right\|_{H \otimes \mathcal{K}^{n}}
\end{aligned}
$$

we obtain

$$
\begin{equation*}
E_{k+1} \leq C_{p}\left(\alpha_{k}+\beta_{k}+\gamma_{k}\right) \tag{3.10}
\end{equation*}
$$

where
$\alpha_{k}:=E\left[\left(\int_{0}^{T}\left\|{ }^{\nabla} B_{s}\right\|_{\mathcal{L}(\mathcal{K}, H \otimes \mathcal{K})}\left\|Y_{s}^{k}-Y_{s}\right\|_{\mathcal{K}} d s\right)^{p}+\left(\int_{0}^{T}\left\|{ }^{\nabla} \Gamma_{s}\right\|_{\mathcal{L}\left(\mathcal{K}^{n}, H \otimes \mathcal{K}\right)}\left\|Z_{s}^{k}-Z_{s}\right\|_{\mathcal{K}^{n}} d s\right)^{p}\right]$,
$\beta_{k}:=E\left[\left(\int_{0}^{T}\left\|\tilde{B}_{s}\right\|_{\mathcal{L}(\mathcal{K})}\left\|\nabla Y_{s}^{k}-Y_{s}^{\nabla}\right\|_{\mathcal{K}} d s\right)^{p}\right.$

$$
\begin{gathered}
\left.+\left(\int_{0}^{T}\left\|\tilde{\Gamma}_{s}\right\|_{\mathcal{L}\left(\mathcal{K}^{n}, \mathcal{K}\right)}\left\|\nabla Z_{s}^{k}-Z_{s}^{\nabla}\right\|_{H \otimes \mathcal{K}^{n}} d s\right)^{p}\right] \\
\gamma_{k}:=E\left[\left(\int_{0}^{T}\left\|Z_{s}^{k+1}-Z_{s}\right\|_{\mathcal{K}^{n}}^{2} d s\right)^{\frac{p}{2}}\right]
\end{gathered}
$$

We note that $\gamma_{k}=\left\|Z^{k+1}-Z\right\|_{\mathscr{H}^{p}\left(\mathcal{K}^{n}\right)}^{p}$ tends to 0 as $k \rightarrow \infty$.
By the Schwarz inequality, we get

$$
\begin{array}{rl}
\alpha_{k} \leq\{ & \left.E\left[\left(\int_{0}^{T}\left\|^{\nabla} B_{s}\right\|_{\mathcal{L}(\mathcal{K}, H \otimes \mathcal{K})}^{2} d s\right)^{p}\right]\right\}^{\frac{1}{2}}\left\{E\left[\left(\int_{0}^{T}\left\|Y_{s}^{k}-Y_{s}\right\|_{\mathcal{K}}^{2} d s\right)^{p}\right]\right\}^{\frac{1}{2}} \\
& +\left\{E\left[\left(\int_{0}^{T}\left\|^{\nabla} \Gamma_{s}\right\|_{\mathcal{L}\left(\mathcal{K}^{n}, H \otimes \mathcal{K}\right)}^{2} d s\right)^{p}\right]\right\}^{\frac{1}{2}}\left\{E\left[\left(\int_{0}^{T}\left\|Z_{s}^{k}-Z_{s}\right\|_{\mathcal{K}^{n}}^{2} d s\right)^{p}\right]\right\}^{\frac{1}{2}} \\
\leq\{ & \left.E\left[\left(\int_{0}^{T}\left\|^{\nabla} B_{s}\right\|_{\mathcal{L}(\mathcal{K}, H \otimes \mathcal{K})}^{2} d s\right)^{p}\right]\right\}^{\frac{1}{2}} \times T^{\frac{p}{2}}\left\|Y^{k}-Y\right\|_{\mathscr{S}^{2 p}(\mathcal{K})}^{p} \\
& +\left\{E\left[\left(\int_{0}^{T}\left\|^{\nabla} \Gamma_{s}\right\|_{\mathcal{L}\left(\mathcal{K}^{n}, H \otimes \mathcal{K}\right)}^{2} d s\right)^{p}\right]\right\}^{\frac{1}{2}} \times\left\|Z^{k}-Z\right\|_{\mathscr{H}^{2 p}\left(\mathcal{K}^{n}\right)}^{p} \\
\rightarrow 0 & 0(k \rightarrow \infty) .
\end{array}
$$

Then by Schwarz inequality, we obtain also

$$
\begin{aligned}
\beta_{k} & \leq\left(\|\tilde{B}\|_{\infty}^{p}+\|\tilde{\Gamma}\|_{\infty}^{p}\right) E\left[\left(\int_{0}^{T}\left\|\nabla Y_{s}^{k}-Y_{s}^{\nabla}\right\|_{H \otimes \mathcal{K}} d s\right)^{p}+\left(\int_{0}^{T}\left\|\nabla Z_{s}^{k}-Z_{s}^{\nabla}\right\|_{H \otimes \mathcal{K}} d s\right)^{p}\right] \\
& \leq\left(\|\tilde{B}\|_{\infty}^{p}+\|\tilde{\Gamma}\|_{\infty}^{p}\right)\left(T^{p}+T^{\frac{p}{2}}\right) E_{k},
\end{aligned}
$$

where $\|\cdot\|_{\infty}$ represents the supremum with respect to $(t, \omega) \in[0, T] \times \Omega$. We can divide $[0, T]$ into subdivisions and consider the convergence of the approximation on each of them. Thus, we can assume T is sufficiently small such that

$$
r:=C_{p}\left(\|\tilde{B}\|_{\infty}^{p}+\|\tilde{\Gamma}\|_{\infty}^{p}\right)\left(T^{p}+T^{\frac{p}{2}}\right)<1 .
$$

Fix an $\varepsilon>0$ arbitrarily. Then, by $\alpha_{k}, \gamma_{k} \rightarrow 0(k \rightarrow \infty)$, there exists $N \in \mathbb{N}$ such that, for any $k>N, C_{p}\left(\alpha_{k}+\gamma_{k}\right)<\varepsilon$. Thus, by (3.10), for any $k>N$, we obtain

$$
\begin{aligned}
E_{k+1} & \leq r E_{k}+\varepsilon \\
& \leq r\left(r E_{k-1}+\varepsilon\right)+\varepsilon \\
& \vdots \\
& \leq r^{k+1-N} E_{N}+\varepsilon\left(1+r+\cdots+r^{k-N}\right) \\
& \leq r^{k+1-N} E_{N}+\frac{\varepsilon}{1-r} .
\end{aligned}
$$

Then, it follows $E_{k} \rightarrow 0(k \rightarrow \infty)$. Therefore, we see that $\left(Y^{k}, Z^{k}\right)$ converges to (Y, Z) in $\mathbb{L}_{1, p}^{a}(\mathcal{K}) \times \mathbb{L}_{1, p}^{a}\left(\mathcal{K}^{n}\right)$ and $(\nabla Y, \nabla Z)$ is equal to $\left(Y^{\nabla}, Z^{\nabla}\right)$.

Since $Z \in \mathscr{H}^{2 p}(\mathcal{K})$ and by (A2)'-8), we see

$$
\begin{aligned}
& E\left[\int_{0}^{T}\left(\int_{0}^{T}\left\|\bar{A}_{s}^{1}(u)\right\|_{\mathcal{K}} d s\right)^{2} d u\right] \\
& \quad \leq C\left(E\left[\int_{0}^{T}\left(\int_{0}^{T}\left\|\bar{A}_{s}^{2}(u)\right\|_{\mathcal{K}} d s\right)^{2} d u+T^{2} \int_{0}^{T}\left\|Z_{u}\right\|_{\mathcal{K}}^{2} d u\right]\right)<\infty
\end{aligned}
$$

where C represents a positive constant, $\bar{A}_{t}^{1}(u)=\bar{A}_{t}^{2}(u)+\bar{B}_{t}\left(D_{u} \zeta_{t}+\mathbf{1}_{[0, t]}(u) Z_{u}\right)$ and $\bar{A}_{t}^{2}(u)=D_{u} A_{t}+\tilde{K}_{u}\left({ }^{\nabla} B_{t} Y_{t}\right)+\tilde{K}_{u}\left({ }^{\nabla} \Gamma_{t} Z_{t}\right)$. Thus, putting $\bar{Y}_{t}(u)=D_{u} Y_{t}-D_{u} \zeta_{t}-$ $\mathbf{1}_{[0, t]}(u) Z_{u}$, by (3.7) and Lemma 3.2.2, $(\bar{Y}(\cdot), D . Z)$ belongs to $\mathscr{S}^{2}(\mathcal{K}) \times \mathscr{H}^{2}(\mathcal{K})$ and satisfies

$$
\begin{aligned}
\bar{Y}_{t}(u)=D_{u} \xi-D_{u} \zeta_{T}-Z_{u}+ & \int_{t}^{T}\left\{\bar{A}_{s}^{1}(u)+\bar{B}_{s} \bar{Y}_{s}(u)+\bar{\Gamma}_{s} D_{u} Z_{s}\right\} d s \\
& -\int_{t}^{T}\left(D_{u} Z_{s}\right)^{*} d W_{s}, \quad 0 \leq t \leq T, \quad d u \otimes d P-\text { a.e. }
\end{aligned}
$$

Since

$$
E\left[\int_{0}^{T} \sup _{0 \leq t \leq T} \mathbf{1}_{[0, t]}(u)\left\|Z_{u}\right\|_{\mathcal{K}}^{2} d u\right] \leq\|Z\|_{\mathscr{H}^{2}(\mathcal{K})}^{2}<\infty
$$

and by $\left.(\mathrm{A} 2)^{\prime}-10\right)$, we obtain $(D . Y, D . Z) \in \mathscr{S}_{r c}^{2}(\mathcal{K}, \bar{P}) \times \mathscr{H}^{2}(\mathcal{K}, \bar{P})$. Then, for almost all $u \in[0, T],\left(D_{u} Y, D_{u} Z\right)$ satisfies

$$
\begin{aligned}
D_{u} Y_{t} & -D_{u} \zeta_{t}=D_{u} \xi-D_{u} \zeta_{T}-\mathbf{1}_{(t, T]}(u) Z_{u} \\
& +\int_{t}^{T}\left\{\bar{A}_{s}^{2}(u)+\bar{B}_{s} D_{u} Y_{s}+\bar{\Gamma}_{s} D_{u} Z_{s}\right\} d s-\int_{t}^{T}\left(D_{u} Z_{s}\right)^{*} d W_{s}, \quad 0 \leq t \leq T
\end{aligned}
$$

Fix $u \in(0, T]$ satisfying the above identity and let $t<u \leq s, t, s \in[0, T]$. Then, we obtain

$$
\begin{aligned}
D_{u} Y_{t}-D_{u} \zeta_{t}= & D_{u} Y_{s}-D_{u} \zeta_{s}-Z_{u} \\
& \quad+\int_{t}^{s}\left\{\bar{A}_{\sigma}^{2}(u)+\bar{B}_{\sigma} D_{u} Y_{\sigma}+\bar{\Gamma}_{\sigma} D_{u} Z_{\sigma}\right\} d \sigma-\int_{t}^{s}\left(D_{u} Z_{\sigma}\right)^{*} d W_{\sigma}
\end{aligned}
$$

By $D_{u} Y_{t}=D_{u} \zeta_{t}=0$ and, for $\sigma<u, \bar{A}_{\sigma}^{2}(u)=0$ and $D_{u} Z_{\sigma}=0$, we see that

$$
D_{u} Y_{s}=D_{u} \zeta_{s}+Z_{u}-\int_{u}^{s}\left\{\bar{A}_{\sigma}^{2}(u)+\bar{B}_{\sigma} D_{u} Y_{\sigma}+\bar{\Gamma}_{\sigma} D_{u} Z_{\sigma}\right\} d \sigma-\int_{u}^{s}\left(D_{u} Z_{\sigma}\right)^{*} d W_{\sigma}
$$

Then, taking $s=u$ yields that $D_{u} Y_{u}=D_{u} \zeta_{u}+Z_{u}$.

By the proof of Theorem 3.2.5, we see the following instantly.
Corollary 3.2.8. Under the assumption (A2)", the unique L^{p} solution (Y, Z) to the BSDE (1.2) belongs to $\mathbb{L}_{1, p}^{a}(\mathcal{K}) \times \mathbb{L}_{1, p}^{a}\left(\mathcal{K}^{n}\right)$ and $(\nabla Y, \nabla Z) \in \mathscr{S}^{p}(H \otimes \mathcal{K}) \times$ $\mathscr{H}^{p}\left(H \otimes \mathcal{K}^{n}\right)$ solves (3.7).

Moverover, under the same assumptions on $\tilde{B}, \tilde{\Gamma}$ as in Theorem 3.2.5, $(D . Y, D . Z) \in$ $\mathscr{S}_{r c}^{2}\left(\mathcal{K}^{n}, \bar{P}\right) \times \mathscr{H}^{2}\left(\mathcal{K}^{n \times n}, \bar{P}\right)$ and $D_{t} Y_{t}=D_{t} \zeta_{t}+Z_{t}$ for almost all $t \in[0, T]$.

3.3 Second Differentiability of Solutions to BSDEs

In this subsection, we consider the second Malliavin differentiability of solutions to real valued BSDEs (3.1) by using the result in the previous subsection. The same kind of result is shown in Lin [18, Theorem 2.2].

We introduce the assumption (A3):

1) (A1) with $2 p$, instead of p, holds,
2) $\xi \in \mathbb{D}^{2, p}\left(\mathbb{R}^{d}\right)$,
3) for each $(y, z) \in \mathbb{R}^{d} \times \mathbb{R}^{n \times d}, f(\cdot, y, z) \in \mathbb{L}_{2, p}^{a}\left(\mathbb{R}^{d}\right)$ and the the version of the second Malliavin derivative is denoted by $\nabla^{2} f(t, y, z)$,
4) for each $(y, z) \in \mathbb{R}^{d} \times \mathbb{R}^{n \times d}, \partial_{y^{i}} f(\cdot, y, z), \partial_{z^{j i}} f(\cdot, y, z) \in \mathbb{L}_{1, p}^{a}\left(\mathbb{R}^{d}\right)$ and the versions of the Malliavin derivatives are denoted by $\nabla \partial_{y^{i}} f(t, y, z), \nabla \partial_{z^{j i}} f(t, y, z)$ respectively,
5) for each $(t, \omega) \in[0, T] \times \Omega, \nabla^{2} f(t, \omega, \cdot, \cdot)$ is continuous, and there exists a nonnegative random variable $M \in L^{p}$ such that for any $(t, \omega) \in[0, T] \times \Omega$, $y \in \mathbb{R}^{d}, z \in \mathbb{R}^{n \times d}$

$$
\left\|\nabla^{2} f(t, \omega, y, z)\right\|_{H_{\otimes 2} \otimes \mathbb{R}^{d}} \leq M
$$

6) for each $(t, \omega) \in[0, T] \times \Omega, f(t, \omega, \cdot, \cdot) \in C_{b}^{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{n \times d}, \mathbb{R}^{d}\right)$ and

$$
\sup _{\substack{t, \omega, y, z \\ 1 \leq i, i_{1}, i_{2} \leq d \\ 1 \leq j_{1}, j_{2} \leq n}}\left\{\left|\frac{\partial^{2} f}{\partial y^{i} \partial y^{j}}(t, \omega, y, z)\right|+\left|\frac{\partial^{2} f}{\partial z^{j_{1} i_{1}} \partial z^{j_{2} i_{2}}}(t, \omega, y, z)\right|+\left|\frac{\partial^{2} f}{\partial y^{i} \partial z^{j_{1} i_{1}}}(t, \omega, y, z)\right|\right\}<\infty
$$

7) for each $(t, \omega) \in[0, T] \times \Omega, \nabla f(t, \omega, \cdot, \cdot) \in C_{b}^{1}\left(\mathbb{R}^{d} \times \mathbb{R}^{n \times d}, H \otimes \mathbb{R}^{d}\right)$.

We say the assumption (A3)' is satisfied if
$1)^{\prime}(\mathrm{A} 1)^{\prime}$ with $2 p$, instead of p, holds.

By Proposition 3.1.1 and Theorem 3.2.5, we obtain the following theorem.
Theorem 3.3.1. Suppose (A3) holds. Let (Y, Z) be a unique $L^{4 p}$ solution to the BSDE (3.1). Then, (Y, Z) belongs to $\mathbb{L}_{2, p}^{a}\left(\mathbb{R}^{d}\right) \times \mathbb{L}_{2, p}^{a}\left(\mathbb{R}^{n \times d}\right)$, and $(\nabla Y, \nabla Z) \in$ $\mathscr{S}^{2 p}\left(H \otimes \mathbb{R}^{d}\right) \times \mathscr{H}^{2 p}\left(H \otimes \mathbb{R}^{d}\right)$ solves (3.2) and $\left(\nabla^{2} Y, \nabla^{2} Z\right) \in \mathscr{S}^{p}\left(H^{\otimes 2} \otimes \mathbb{R}^{d}\right) \times$ $\mathscr{H}^{p}\left(H^{\otimes 2} \otimes \mathbb{R}^{n \times d}\right)$ solves the following $H^{\otimes 2} \otimes \mathbb{R}^{d}$-valued linear BSDE:

$$
\begin{align*}
& \nabla^{2} Y_{t}^{\alpha} \\
& =\nabla^{2} \xi^{\alpha}-\nabla\left(\int_{\cdot \wedge t} Z_{s}^{\alpha} d s\right)-\int_{\cdot \wedge t}^{\cdot} \nabla Z_{s}^{\alpha} d s \\
& +\int_{t}^{T}\left\{\nabla^{2} f^{\alpha}\left(s, Y_{s}, Z_{s}\right)\right. \\
& +\sum_{i=1}^{n} \nabla Y_{s}^{i} \otimes \nabla \partial_{y^{i}} f^{\alpha}\left(s, Y_{s}, Z_{s}\right)+\sum_{i=1}^{n} \sum_{j=1}^{d} \nabla Z_{s}^{j i} \otimes \nabla \partial_{z^{j i}} f^{\alpha}\left(s, Y_{s}, Z_{s}\right) \\
& +\sum_{i=1}^{n} \nabla \partial_{y^{i}} f^{\alpha}\left(s, Y_{s}, Z_{s}\right) \otimes \nabla Y_{s}^{i}+\sum_{i=1}^{n} \sum_{j=1}^{d} \nabla \partial_{z z^{i}} f^{\alpha}\left(s, Y_{s}, Z_{s}\right) \otimes \nabla Z_{s}^{j i} \\
& +\sum_{i, j=1}^{d} \partial_{y^{i}} \partial_{y^{j}} f^{\alpha}\left(s, Y_{s}, Z_{s}\right) \nabla Y_{s}^{i} \otimes \nabla Y_{s}^{j}+\sum_{i, j=1}^{d} \sum_{k=1}^{n} \partial_{y^{i}} \partial_{z^{k j}} f^{\alpha}\left(s, Y_{s}, Z_{s}\right) \nabla Y_{s}^{i} \otimes \nabla Z_{s}^{k j} \\
& +\sum_{i, j=1}^{d} \sum_{k=1}^{n} \partial_{z^{k j}} \partial_{y^{i}} f^{\alpha}\left(s, Y_{s}, Z_{s}\right) \nabla Z_{s}^{j k} \otimes \nabla Y_{s}^{i}+\sum_{i, j=1}^{d} \sum_{k, l=1}^{n} \partial_{z^{k i}} \partial_{z^{l j}} f^{\alpha}\left(s, Y_{s}, Z_{s}\right) \nabla Z_{s}^{k i} \otimes \nabla Z_{s}^{l j} \\
& \left.+\sum_{i=1}^{n} \partial_{y^{i}} f^{\alpha}\left(s, Y_{s}, Z_{s}\right) \nabla^{2} Y_{s}^{i}+\sum_{j=1}^{n} \sum_{j=1}^{d} \partial_{z^{j i}} f^{\alpha}\left(s, Y_{s}, Z_{s}\right) \nabla^{2} Z^{j i}\right\} d s \\
& -\int_{t}^{T} \nabla^{2} Z_{s}^{\alpha} \cdot d W_{s}, \quad 0 \leq t \leq T, \quad 1 \leq \alpha \leq d, \tag{3.11}
\end{align*}
$$

where, superscripts of ξ, f, Y, Z represent corresponding components of them respectively and $Z^{\alpha}=\left(Z^{1 \alpha}, \ldots, Z^{n \alpha}\right)^{*}$.

Moreover, $(D . \nabla Y, D . \nabla Z) \in \mathscr{S}_{r c}^{2}\left(\left(H \otimes \mathbb{R}^{d}\right)^{n}, \bar{P}\right) \times \mathscr{H}^{2}\left(\left(H \otimes \mathbb{R}^{n \times d}\right)^{n}, \bar{P}\right)$ and $D_{t} \nabla Y_{t}=\nabla Z_{t}$ for almost all $t \in[0, T]$.

Proof. For simplicity of notation, we give the proof in the case when $d=n=1$.
By Proposition 3.2, $(\nabla Y, \nabla Z) \in \mathscr{S}^{2 p}(H) \times \mathscr{H}^{2 p}(H)$ solves the following H valued BSDE:

$$
\begin{aligned}
\nabla Y_{t}= & \nabla \xi-\int_{\cdot \wedge t} Z_{s} d s \\
& +\int_{t}^{T}\left\{\nabla f\left(s, Y_{s}, Z_{s}\right)+\partial_{y} f\left(s, Y_{s}, Z_{s}\right) \nabla Y_{s}+\partial_{z} f\left(s, Y_{s}, Z_{s}\right) \nabla Z_{s}\right\} d s
\end{aligned}
$$

$$
-\int_{t}^{T} \nabla Z_{s} d W_{s}, \quad 0 \leq t \leq T
$$

Then, the correspondence to (3.6) is as follows:
$\zeta_{t}=-\int_{0}^{\wedge \wedge t} Z_{s} d s, \quad A_{t}=\nabla f\left(t, Y_{t}, Z_{t}\right), \quad B_{t}=\partial_{y} f\left(t, Y_{t}, Z_{t}\right), \quad \Gamma_{t}=\partial_{z} f\left(t, Y_{t}, Z_{t}\right)$.
It follows that
$\nabla \zeta_{t}=-\nabla\left(\int_{0}^{\wedge \wedge} Z_{s} d s\right)$,
$\nabla A_{t}=\nabla^{2} f\left(t, Y_{t}, Z_{t}\right)+\nabla Y_{t} \otimes \nabla \partial_{y} f\left(t, Y_{t}, Z_{t}\right)+\nabla Z_{t} \otimes \nabla \partial_{z} f\left(t, Y_{t}, Z_{t}\right)$,
${ }^{\nabla} B_{t} h=\nabla \partial_{y} f\left(t, Y_{t}, Z_{t}\right) \otimes h+\partial_{y}^{2} f\left(t, Y_{t}, Z_{t}\right) \nabla Y_{t} \otimes h+\partial_{z} \partial_{y} f\left(t, Y_{t}, Z_{t}\right) \nabla Z_{t} \otimes h, \quad \forall h \in H$, $\tilde{B}_{t}=\partial_{y} f\left(t, Y_{t}, Z_{t}\right)$,
${ }^{\nabla} \Gamma_{t} g=\nabla \partial_{z} f\left(t, Y_{t}, Z_{t}\right) \otimes g+\partial_{y} \partial_{z} f\left(t, Y_{t}, Z_{t}\right) \nabla Y_{t} \otimes g+\partial_{z}^{2} f\left(t, Y_{t}, Z_{t}\right) \nabla Z_{t} \otimes g, \quad \forall g \in H$, $\tilde{\Gamma}_{t}=\partial_{z} f\left(t, Y_{t}, Z_{t}\right)$.

We shall show $(\nabla Y, \nabla Z) \in \mathbb{L}_{1, p}^{a}(H) \times \mathbb{L}_{1, p}^{a}(H)$ by applying Theorem 3.2.5. By the assumption and (3.2), we see that (A2)-1)-4),6) are satisfied. Thus, it suffices to show (A2)'-5),7).

By (A1)-3),6) with $2 p$ and (A3)-5), it follows

$$
\begin{aligned}
& E\left[\left(\int_{0}^{T}\left\|\nabla A_{s}\right\|_{H^{\otimes 2}} d s\right)^{p}\right] \leq C\left(T E\left[M^{p}\right]\right. \\
&\left.+\left\{E\left[\int_{0}^{T} K_{s}^{2 p} d s\right]\right\}^{\frac{1}{2}}\left(T^{p}\|\nabla Y\|_{\mathscr{S}^{2 p}(H)}^{p}+\|\nabla Z\|_{\mathscr{H}^{2 p}(H)}^{p}\right)\right) \\
&<\infty
\end{aligned}
$$

where C_{1} is a positive constant. Thus, (A2 $\left.)^{\prime}-5\right)$ is satisfied.
$\left.(\mathrm{A} 2)^{\prime}-7\right)$ follows from the following inequality obtained form (A1)-3),6) with $2 p$;

$$
\begin{aligned}
& E\left[\left(\int_{0}^{T}\left\{\| \|^{\nabla} B_{s}\left\|_{\mathcal{L}\left(H, H^{\otimes 2}\right)}+\right\|^{\nabla} \Gamma_{s} \|_{\mathcal{L}\left(H, H^{\otimes 2}\right)}\right\}^{2} d s\right)^{p}\right] \\
& \\
& \leq C_{2}\left(E\left[\int_{0}^{T} K_{s}^{2 p} d s\right]\right. \\
& \\
& \\
& \left.\quad+\left(\left\|\partial_{y}^{2} f\right\|_{\infty}^{2 p}+\left\|\partial_{y} \partial_{z} f\right\|_{\infty}^{2 p}\right)\left(T^{2 p}\|\nabla Y\|_{\mathscr{S}^{2 p}(H)}^{2 p}+\|\nabla Z\|_{\mathscr{C ^ { 2 p } (H)}}^{2 p}\right)\right)
\end{aligned}
$$

where C_{2} is a positive constant and $\|\cdot\|_{\infty}$ represents the supremum. Thus, (A2)'-7) is satisfied. Therefore, $\left(\nabla^{2} Y, \nabla^{2} Z\right) \in \mathscr{S}^{p}\left(H^{\otimes 2}\right) \times \mathscr{H}^{p}\left(H^{\otimes 2}\right)$ solves (3.11).

Next, we check (A2)'-8) in order to get $D_{t} \nabla Y_{t}=\nabla Z_{t}$. We see

$$
D_{u} A_{t}=D_{u} \nabla f\left(t, Y_{t}, Z_{t}\right)+D_{u} Y_{t} \nabla \partial_{y} f\left(t, Y_{t}, Z_{t}\right)+D_{u} Z_{t} \nabla \partial_{z} f\left(t, Y_{t}, Z_{t}\right)
$$

Then, by the Schwarz inequality, (A1)-6) and (A3)-5),

$$
\begin{aligned}
& E\left[\int_{0}^{T}\left(\int_{0}^{T}\left\|D_{u} A_{s}\right\|_{H} d s\right)^{2} d u\right] \leq C_{3}\left\{E\left[\int_{0}^{T}\left(\int_{0}^{T}\left\|D_{u} \nabla f\left(s, Y_{s}, Z_{s}\right)\right\|_{\mathcal{K}} d s\right)^{2} d u\right]\right. \\
& +E\left[\int_{0}^{T}\left(\int_{0}^{T}\left|D_{u} Y_{s}\right|\left\|\nabla \partial_{y} f\left(s, Y_{s}, Z_{s}\right)\right\|_{H} d s\right)^{2} d u\right] \\
& \left.+E\left[\int_{0}^{T}\left(\int_{0}^{T}\left|D_{u} Z_{s}\right|\left\|\nabla \partial_{z} f\left(s, Y_{s}, Z_{s}\right)\right\|_{H} d s\right)^{2} d u\right]\right\} \\
& \leq C_{3}\left\{T^{2} E\left[M^{2}\right]+E\left[\int_{0}^{T}\left\|\nabla Y_{s}\right\|_{H}^{2} d s \int_{0}^{T} K_{s}^{2} d s\right]\right. \\
& \left.+E\left[\int_{0}^{T}\left\|\nabla Z_{s}\right\|_{H}^{2} d s \int_{0}^{T} K_{s}^{2} d s\right]\right\} \\
& \leq C_{3}\left\{T^{2} E\left[M^{2}\right]+T^{\frac{3}{2}}\|\nabla Y\|_{\mathscr{S}^{4}(H)}^{2}\left(E\left[\int_{0}^{T} K_{s}^{4} d s\right]\right)^{\frac{1}{2}}\right. \\
& \left.+T^{\frac{1}{2}}\|\nabla Z\|_{\mathscr{H}^{4}(H)}^{2}\left(E\left[\int_{0}^{T} K_{s}^{4} d s\right]\right)^{\frac{1}{2}}\right\} \\
& <\infty,
\end{aligned}
$$

where C_{3} represents a positive constant.
Since

$$
\begin{aligned}
& \tilde{K}_{u}\left({ }^{\nabla} B_{t} \nabla Y_{t}\right) \\
& =D_{u} \partial_{y} f\left(t, Y_{t}, Z_{t}\right) \nabla Y_{t}+\partial_{y}^{2} f\left(t, Y_{t}, Z_{t}\right) D_{u} Y_{t} \nabla Y_{t}+\partial_{y} \partial_{z} f\left(t, Y_{t}, Z_{t}\right) D_{u} Z_{t} \nabla Y_{t}, \\
& \tilde{K}_{u}\left({ }^{\nabla} \Gamma_{t} \nabla Z_{t}\right) \\
& =D_{u} \partial_{z} f\left(t, Y_{t}, Z_{t}\right) \nabla Z_{t}+\partial_{y} \partial_{z} f\left(t, Y_{t}, Z_{t}\right) D_{u} Y_{t} \nabla Z_{t}+\partial_{z}^{2} f\left(t, Y_{t}, Z_{t}\right) D_{u} Z_{t} \nabla Z_{t},
\end{aligned}
$$

we see that

$$
\begin{aligned}
& E\left[\int_{0}^{T}\left(\int_{0}^{T}\left\{\left\|\tilde{K}_{u}\left({ }^{\nabla} B_{t} \nabla Y_{t}\right)\right\|_{H}+\left\|\tilde{K}_{u}\left({ }^{\nabla} \Gamma_{t} \nabla Z_{t}\right)\right\|_{H}\right\} d s\right)^{2} d u\right] \\
& \leq C_{4}\left\{E\left[\int_{0}^{T}\left(\int_{0}^{T}\left|D_{u} \partial_{y} f\left(s, Y_{s}, Z_{s}\right)\right|\left\|\nabla Y_{s}\right\|_{H} d s\right)^{2} d u\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& \quad+E\left[\int_{0}^{T}\left(\int_{0}^{T}\left|D_{u} Y_{s}\right|\left\|\nabla Y_{s}\right\|_{H} d s\right)^{2} d u\right]+E\left[\int_{0}^{T}\left(\int_{0}^{T}\left|D_{u} Z_{s}\right|\left\|\nabla Y_{s}\right\|_{H} d s\right)^{2} d u\right] \\
& \\
& +E\left[\int_{0}^{T}\left(\int_{0}^{T}\left|D_{u} \partial_{z} f\left(s, Y_{s}, Z_{s}\right)\right|\left\|\nabla Z_{s}\right\|_{H} d s\right)^{2} d u\right] \\
& \\
& \left.+E\left[\int_{0}^{T}\left(\int_{0}^{T}\left|D_{u} Y_{s}\right|\left\|\nabla Z_{s}\right\|_{H} d s\right)^{2} d u\right]+E\left[\int_{0}^{T}\left(\int_{0}^{T}\left|D_{u} Z_{s}\right|\left\|\nabla Z_{s}\right\|_{H} d s\right)^{2} d u\right]\right\} \\
& \leq C_{4}\left\{\left(T^{\frac{3}{2}}\|\nabla Y\|_{\mathscr{S}^{4}(H)}^{2}+T^{\frac{1}{2}}\|\nabla Z\|_{\mathscr{H}^{4}(H)}^{2}\right)\left(E\left[\int_{0}^{T} K_{s}^{4} d s\right]\right)^{\frac{1}{2}}\right. \\
& \\
& \left.\quad+T^{2}\|\nabla Y\|_{\mathscr{L}^{4}(H)}^{4}+\|\nabla Z\|_{\mathscr{H}^{4}(H)}^{4}+2 T\|\nabla Y\|_{\mathscr{L}^{4}(H)}^{2}\|\nabla Z\|_{\mathscr{H}^{4}(H)}^{2}\right\}
\end{aligned}
$$

where C_{4} is a positive constant.
Thus (A2)'-8) is satisfied. Then, we get $(D . \nabla Y, D . \nabla Z) \in \mathscr{S}_{r c}^{2}(H) \times \mathscr{H}^{2}(H)$ and $D_{t} \nabla Y_{t}=-D_{t} \zeta_{t}+\nabla Z_{t}$ by Theorem 3.2.5. Since $D_{u} Z_{t}=0$ for $t<u$, we see

$$
\left\|D_{u} \zeta_{t}\right\|_{H}^{2}= \begin{cases}0, & t \leq u \\ \int_{u}^{t}\left|D_{u} Z_{s}\right|^{2} d s, & u<t\end{cases}
$$

Then we obtain $D_{t} \nabla Y_{t}=\nabla Z_{t}$.
By the proof of Theorem 3.3.1, we see also the following.
Corollary 3.3.2. Suppose (A3) holds. Let (Y, Z) be a unique $L^{2 p}$ solution to the BSDE (3.1). Then, (Y, Z) belongs to $\mathbb{L}_{2, p}^{a}\left(\mathbb{R}^{d}\right) \times \mathbb{L}_{2, p}^{a}\left(\mathbb{R}^{n \times d}\right)$, and $(\nabla Y, \nabla Z) \in$ $\mathscr{S}^{2 p}\left(H \otimes \mathbb{R}^{d}\right) \times \mathscr{H}^{2 p}\left(H \otimes \mathbb{R}^{d}\right)$ solves (3.2) and $\left(\nabla^{2} Y, \nabla^{2} Z\right) \in \mathscr{S}^{p}\left(H^{\otimes 2} \otimes \mathbb{R}^{d}\right) \times$ $\mathscr{H}^{p}\left(H^{\otimes 2} \otimes \mathbb{R}^{n \times d}\right)$ solves (3.11).

Moreover, $D_{t} \nabla Y_{t}=\nabla Z_{t}$ for almost all $t \in[0, T]$.

3.4 Higher Order Differentiability of Solutions of BSDEs

In this section, we consider the higher order differentiability of solutions of BSDEs. When considering higher than the second order differentiability, there is an obstacle from the chain rule.

Let us take the one more differentiation of (3.11) formally. Then by the chain rule, we get a term $\int_{t}^{T} \partial_{z}^{3} f\left(s, Y_{s}, Z_{s}\right) \nabla Z_{s} \otimes \nabla Z_{s} \otimes \nabla Z_{s} d s$, whose integrability corresponds to (A2)-5). It is impossible to show the integrability of it because we can't control it with the norm $\|\cdot\|_{\mathscr{H}^{p}}$. The same circumstances occur when considering higher order differentiability of solution. When a term contains more than two derivatives of Z, it is impossible to estimate it appropriately. Then, we need some restriction which enable the estimation of such a term.

In what follows, we deal with the cases where additional assumptions are made on either f or Z.

3.4.1 Under Additional Conditions on f

In this subsection, we consider the higher order Malliavin differentiability of solutions with assumptions of generator f.

We set $\mathscr{S}^{\infty}(\mathcal{K})=\bigcap_{p \geq 2} \mathscr{S}^{p}(\mathcal{K}), \mathscr{H}^{\infty}(\mathcal{K})=\bigcap_{p \geq 2} \mathscr{H}^{p}(\mathcal{K}), \mathbb{D}^{\infty}(\mathcal{K})=\bigcap_{k \geq 1, p \geq 2} \mathbb{D}^{k, p}(\mathcal{K})$, $\mathbb{L}_{\infty}^{a}(\mathcal{K})=\bigcap_{k \geq 1, p \geq 2} \mathbb{L}_{k, p}^{a}(\overline{\mathcal{K}})$.

We introduce some more notations. Let \mathbb{Z}_{+}be the set of nonnegative integers. For

$$
\beta=\left(\beta_{1}, \ldots, \beta_{d}, \beta_{11}, \ldots, \beta_{1 d}, \ldots, \beta_{n 1}, \ldots, \beta_{n d}\right) \in \mathbb{Z}_{+}^{d+n d}
$$

we denote $|\beta|=\sum_{i=1}^{d}\left(\beta_{i}+\sum_{j=1}^{n} \beta_{j i}\right)$. Then, we write the derivative of a function $g(y, z)$ defined on $\mathbb{R}^{d} \times \mathbb{R}^{n \times d}$ as

$$
\partial^{\beta} g=\left(\frac{\partial}{\partial y^{1}}\right)^{\beta_{1}} \cdots\left(\frac{\partial}{\partial y^{d}}\right)^{\beta_{d}}\left(\frac{\partial}{\partial z^{11}}\right)^{\beta_{11}} \cdots\left(\frac{\partial}{\partial z^{n d}}\right)^{\beta_{n d}} g, \quad \beta \in \mathbb{Z}_{+}^{d+n d}
$$

We introduce the assumption (A4). Especially, (A4)-3) plays a key role to overcome the above-mentioned obstacle. (A4):

1) $\xi \in \mathbb{D}^{\infty}\left(\mathbb{R}^{d}\right)$,
2) for any $p \geq 2, E\left[\left(\int_{0}^{T}|f(s, 0,0)| d s\right)^{p}\right]<\infty$,
3) for each $(t, \omega) \in[0, T] \times \Omega, f(t, \omega, \cdot, \cdot) \in C_{b}^{\infty}\left(\mathbb{R}^{d} \times \mathbb{R}^{n \times d}, \mathbb{R}^{d}\right)$ and

$$
\begin{aligned}
& \frac{\partial^{3} f}{\partial z^{j_{1} i_{1}} \partial z^{j_{2} i_{2}} \partial z^{j_{3} i_{3}}}(t, \omega, y, z)=0, \quad 1 \leq \forall i_{1}, i_{2}, i_{3} \leq d, 1 \leq \forall j_{1}, j_{2}, j_{3} \leq n, \\
& \sup _{t, \omega, y, z}\left|\partial^{\beta} f(t, \omega, y, z)\right|<\infty, \quad \forall \beta \in \mathbb{Z}_{+}^{d+n d} \text { with }|\beta| \geq 1,
\end{aligned}
$$

4) for each $\beta \in \mathbb{Z}_{+}^{d+n d}$ and $(y, z) \in \mathbb{R}^{d} \times \mathbb{R}^{n \times d}, \partial^{\beta} f(\cdot, y, z) \in \mathbb{L}_{\infty}^{a}\left(\mathbb{R}^{d}\right)$ and the version of the Malliavin derivative is denoted by $\nabla \partial^{\beta} f(t, y, z)$,
5) for any $k \geq 1$ and $p \geq 2$,

$$
E\left[\int_{0}^{T}\left\|\nabla^{k} f\left(s, Y_{s}, Z_{s}\right)\right\|_{H \otimes k \otimes \mathbb{R}^{d}}^{p} d s\right]<\infty
$$

6) for each $k \geq 1, \beta \in \mathbb{Z}_{+}^{d+n d}$ and $(t, \omega) \in[0, T] \times \Omega, \nabla^{k} \partial^{\beta} f(t, \omega, \cdot, \cdot) \in$ $C_{b}^{\infty}\left(\mathbb{R}^{d} \times \mathbb{R}^{n \times d}, H^{\otimes k} \otimes \mathbb{R}^{d}\right)$, and

$$
\sup _{\substack{t, \omega, y, z \\ 1 \leq i \leq d \\ 1 \leq j \leq n}}\left(\left\|\partial_{y^{i}} \nabla^{k} \partial^{\beta} f(t, \omega, y, z)\right\|_{H^{\otimes k \otimes \mathbb{R}^{d}}}+\left\|\partial_{z^{j i}} \nabla^{k} \partial^{\beta} f(t, \omega, y, z)\right\|_{H^{\otimes k \otimes \mathbb{R}^{d}}}\right)<\infty .
$$

Theorem 3.4.1. Suppose (A4) holds. Let (Y, Z) be a unique solution to the $B S D E$ (3.1). Then, (Y, Z) belongs to $\mathbb{L}_{\infty}^{a}\left(\mathbb{R}^{d}\right) \times \mathbb{L}_{\infty}^{a}\left(\mathbb{R}^{n \times d}\right)$.

Moreover, for each $k \geq 0$, $\left(D . \nabla^{k} Y, D . \nabla^{k} Z\right) \in \mathscr{S}_{r c}^{2}\left(H^{\otimes k} \otimes \mathbb{R}^{d}, \bar{P}\right) \times \mathscr{H}^{2}\left(H^{\otimes k} \otimes\right.$ $\left.\mathbb{R}^{n \times d}, \bar{P}\right)$ and $D_{t} \nabla^{k} Y_{t}=\nabla^{k} Z_{t}$ for almost all $t \in[0, T]$.

Example 3.4.2. We now give some examples under the Black-Scholes model.
Let $b \in \mathbb{R}, \sigma>0,\left(W_{t}\right)_{0 \leq t \leq T}$ be a one-dimensional Brownian motion and let $\left(S_{t}\right)_{0 \leq t \leq T}$, which is a risky asset, obey the SDE;

$$
d S_{t}=b S_{t} d t+\sigma S_{t} d W_{t}
$$

The interest rate of the nonrisky asset is denoted by $r>0$. Denote by Δ_{t} the number of the risky asset held at t. Let Φ be a function defined on \mathbb{R} satisfying $\sup _{x \in \mathbb{R}}|\Phi(x)| /(1+|x|)^{k}<\infty$ for some $k \in \mathbb{N}$. In the theory of mathematical finance, it is known that the self-financing portfolio Y replicating an European contingent claim $\Phi\left(S_{T}\right)$ satisfies the following BSDE;

$$
\left\{\begin{array}{l}
d Y_{t}=\left(r Y_{t}+\theta \Delta_{t} \sigma S_{t}\right) d t+\Delta_{t} \sigma S_{t} d W_{t} \\
Y_{T}=\Phi\left(S_{T}\right)
\end{array}\right.
$$

where $\theta=(b-r) / \sigma$. By regarding $\Delta_{t} \sigma S_{t}$ as Z_{t}, we obtain

$$
\begin{equation*}
Y_{t}=\Phi\left(S_{T}\right)-\int_{t}^{T}\left(r Y_{t}+\theta Z_{t}\right) d t-\int_{t}^{T} Z_{s} d W_{s} \tag{3.12}
\end{equation*}
$$

It is also known that

$$
\begin{equation*}
Y_{t}=c\left(t, S_{t}\right), \quad \Delta_{t}=\frac{\partial c}{\partial x}\left(t, S_{t}\right) \tag{3.13}
\end{equation*}
$$

where

$$
\begin{align*}
& c(t, x)=e^{-r(T-t)} \int_{\mathbb{R}} \Phi\left(x e^{\sigma y+\left(r-\frac{\sigma^{2}}{2}\right)(T-t)}\right) g(T-t, y) d y, \quad 0 \leq t<T \tag{3.14}\\
& g(t, y)=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{|y|^{2}}{2}}
\end{align*}
$$

which satisfies the Black-Scholes partial differential equation.
(1) Let $\Phi \in C^{\infty}(\mathbb{R})$ and assume that for any $m \in \mathbb{Z}_{+}$, there exists a $k \in \mathbb{N}$ such that $\sup _{x \in \mathbb{R}}\left|\frac{\partial^{m} \Phi}{\partial x^{m}}(x)\right| /(1+|x|)^{k}<\infty$. Then by (3.2) and (3.13), we see that $(Y, Z) \in \mathbb{L}_{\infty}^{a}(\mathbb{R}) \times \mathbb{L}_{\infty}^{a}(\mathbb{R})$ and $D_{t} \nabla^{k} Y_{t}=\nabla^{k} Z_{t}$. On the other hand, since (3.12) satisfies (A4), Theorem 3.4.1 yields the same result.
(2) Let $\Phi\left(S_{T}\right)=\left(S_{T}-K\right)^{+}:=\max \left\{S_{T}-K, 0\right\}$, which is called an European call option. We know $\Phi\left(S_{T}\right)$ is differentiable and $\nabla \Phi\left(S_{T}\right)=\mathbf{1}_{(0, \infty)}\left(S_{T}-K\right) \nabla S_{T}$. Hence, $\Phi\left(S_{T}\right)$ would not be smooth. Thus, $\left(Y_{T}, Z_{T}\right)$ fails to belong to $\mathbb{D}^{\infty} \times \mathbb{D}^{\infty}$.

Proof of Theorem 3.4.1. For simplicity of letter, we give the proof in the case when $d=n=1$. In the proof, notation C represents just a positive constant which may change form place to place.

Let $(Y, Z) \in \mathscr{S}^{\infty}(\mathbb{R}) \times \mathscr{H}^{\infty}(\mathbb{R})$. By Corollary 3.1.3, for any $p \geq 2$,

- $(Y, Z) \in \mathbb{L}_{1, p}^{a}(\mathbb{R}) \times \mathbb{L}_{1, p}^{a}(\mathbb{R})$ and $(\nabla Y, \nabla Z) \in \mathscr{S}^{p}(H) \times \mathscr{H}^{p}(H)$,
- $(D . Y, D . Z) \in \mathscr{S}_{r c}^{2}(\mathbb{R}, \bar{P}) \times \mathscr{H}^{2}(\mathbb{R}, \bar{P})$.

We show the following Claim 1 and 2 for $k \geq 2$ by induction:
Claim 1 Let $p \geq 2$. Then, $\left(\nabla^{k-1} Y, \nabla^{k-1} Z\right) \in \mathbb{L}_{1, p}^{a}\left(H^{\otimes(k-1)}\right) \times \mathbb{L}_{1, p}^{a}\left(H^{\otimes(k-1)}\right)$ and $\left(\nabla^{k} Y, \nabla^{k} Z\right) \in \mathscr{S}^{p}\left(H^{\otimes k}\right) \times \mathscr{H}^{p}\left(H^{\otimes k}\right)$ is a unique solution to the BSDE;

$$
\begin{aligned}
\nabla^{k} Y_{t}= & \nabla^{k} \xi-\sum_{i=0}^{k-1} \nabla^{i}\left(\int_{\cdot \wedge t} \nabla^{k-1-i} Z_{s} d s\right) \\
& +\int_{t}^{T}\left\{A_{s}^{k}+B_{s}^{k} \nabla^{k} Y_{s}+\Gamma_{s}^{k} \nabla^{k} Z_{s}\right\} d s-\int_{t}^{T} \nabla^{k} Z_{s} d W_{s}, \quad 0 \leq t \leq T
\end{aligned}
$$

where $B_{t}^{k}=\partial_{y} f\left(t, Y_{t}, Z_{t}\right), \Gamma_{t}^{k}=\partial_{z} f\left(t, Y_{t}, Z_{t}\right)$ and A^{k} is defined inductively as

$$
\begin{aligned}
& A_{t}^{1}=\nabla f\left(t, Y_{t}, Z_{t}\right) \\
& A_{t}^{k}=\nabla A_{t}^{k-1}+{ }^{\nabla} B_{t}^{k-1} \nabla^{k-1} Y_{t}+{ }^{\nabla} \Gamma_{t}^{k-1} \nabla^{k-1} Z_{t}, \quad k \geq 2
\end{aligned}
$$

Moreover, it holds that

$$
\begin{align*}
A_{t}^{k}= & \nabla^{k} f\left(t, Y_{t}, Z_{t}\right) \\
& +\sum_{1, k}\left(\nabla^{\alpha_{1}} Y_{t} \otimes \cdots \otimes \nabla^{\alpha_{m-1-r}} Y_{t}\right. \\
& \left.\otimes \nabla^{\beta_{1}} Z_{t} \otimes \cdots \otimes \nabla^{\beta_{r}} Z_{t} \otimes \nabla^{\gamma} \partial_{y}^{m-1-r} \partial_{z}^{r} f\left(t, Y_{t}, Z_{t}\right)\right)^{\Sigma} \\
& +\sum_{2, k} \partial_{y}^{m-r} \partial_{z}^{r} f\left(t, Y_{t}, Z_{t}\right) \\
& \times\left(\nabla^{\alpha_{1}} Y_{t} \otimes \cdots \otimes \nabla^{\alpha_{m-r}} Y_{t} \otimes \nabla^{\beta_{1}} Z_{t} \otimes \cdots \otimes \nabla^{\beta_{r}} Z_{t}\right)^{\Sigma} \tag{3.15}
\end{align*}
$$

where the notations of summation represent

$$
\sum_{1, k}:=\sum_{m=2}^{k} \sum_{r=0}^{(m-1) \wedge 2} \sum_{\substack{\alpha \in \mathbb{N}_{n D}^{m-1-r} \\ \beta \in \mathbb{N}^{N} \\ \gamma \in \mathbb{N}^{\prime} \\|\alpha|+|\beta|+\gamma=k}}, \sum_{2, k}:=\sum_{m=2}^{k} \sum_{r=0}^{m \wedge 2} \sum_{\substack{\alpha \in \mathbb{N}_{n-r}^{m-r} \\ \beta \in \mathbb{N}_{N D}^{N} \\|\alpha|+|\beta|=k}},
$$

$\mathbb{N}_{\mathrm{ND}}^{k}$ denotes the set of $\alpha \in \mathbb{N}^{k}$ such that $\alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{k}$, and the sum of all components of the tensor of $\nabla^{\alpha_{1}} F_{1}, \ldots, \nabla^{\alpha_{k}} F_{k}$ is denoted by $\left(\nabla^{\alpha_{1}} F_{1} \otimes \cdots \otimes \nabla^{\alpha_{k}} F_{k}\right)^{\Sigma}$; for example, for $h_{1}, h_{2}, h_{3} \in H$,

$$
\begin{aligned}
& \left(\nabla^{2} F_{1} \otimes \nabla F_{2}\right)^{\Sigma}\left(h_{1} \otimes h_{2} \otimes h_{3}\right) \\
& =\nabla^{2} F_{1}\left(h_{1} \otimes h_{2}\right) \nabla F_{2}\left(h_{3}\right)+\nabla^{2} F_{1}\left(h_{1} \otimes h_{3}\right) \nabla F_{2}\left(h_{2}\right)+\nabla^{2} F_{1}\left(h_{2} \otimes h_{3}\right) \nabla F_{2}\left(h_{1}\right) .
\end{aligned}
$$

We note that the number of terms in each term of the sum is determined only by α, β, γ.

Claim 2 Let $p \geq 2$. Then,

$$
E\left[\int_{0}^{T}\left(\int_{0}^{T}\left\|\tilde{K}_{u} A_{s}^{k}\right\|_{H^{\otimes(k-1)}} d s\right)^{2} d u\right]<\infty
$$

and then $\left(D \cdot \nabla^{k-1} Y, D \cdot \nabla^{k-1} Z\right) \in \mathscr{S}^{2}\left(H^{\otimes(k-1)}, \bar{P}\right) \times \mathscr{H}^{2}\left(H^{\otimes(k-1)}, \bar{P}\right)$ and $D_{t} \nabla^{k-1} Y_{t}=\nabla^{k-1} Z_{t}$ for almost all $t \in[0, T]$.

We show the case $k=2$. Let $p \geq 2$. By Corollary 3.3.2, $\left(\nabla^{2} Y, \nabla^{2} Z\right) \in$ $\mathscr{S}^{p}\left(H^{\otimes 2}\right) \times \mathscr{H}^{p}\left(H^{\otimes 2}\right)$ solves (3.11). Then, Claim 1 holds. As in the proof of Theorem 3.3.1, Claim 2 holds.

Then, we assume that $k>2$ and the cases when $1,2, \ldots, k-1$ hold.
We shall prove Claim 1. Let $p \geq 2$. By the inductive assupmtion, $\left(\nabla^{k-1} Y, \nabla^{k-1} Z\right) \in$ $\mathscr{S}^{2 p}\left(H^{\otimes(k-1)}\right) \times \mathscr{H}^{2 p}\left(H^{\otimes(k-1)}\right)$ is a unique solution to the BSDE;

$$
\begin{align*}
\nabla^{k-1} Y_{t}= & \nabla^{k-1} \xi-\sum_{i=0}^{k-2} \nabla^{i}\left(\int_{\cdot \wedge t} \nabla^{k-2-i} Z_{s} d s\right) \\
& +\int_{t}^{T}\left\{A_{s}^{k-1}+B_{s}^{k-1} \nabla^{k-1} Y_{s}+\Gamma_{s}^{k-1} \nabla^{k-1} Z_{s}\right\} d s-\int_{t}^{T} \nabla^{k-1} Z_{s} d W_{s}, \quad 0 \leq t \leq T \tag{3.16}
\end{align*}
$$

where $B_{t}^{k-1}=\partial_{y} f\left(t, Y_{t}, Z_{t}\right), \Gamma_{t}^{k-1}=\partial_{z} f\left(t, Y_{t}, Z_{t}\right)$,

$$
\begin{aligned}
A_{t}^{k-1}=\nabla^{k} f(& \left.t, Y_{t}, Z_{t}\right) \\
& +\sum_{1, k-1}\left(\nabla^{\alpha_{1}} Y_{t} \otimes \cdots \otimes \nabla^{\alpha_{m-1-r}} Y_{t}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\quad \otimes \nabla^{\beta_{1}} Z_{t} \otimes \cdots \otimes \nabla^{\beta_{r}} Z_{t} \otimes \nabla^{\gamma} \partial_{y}^{m-1-r} \partial_{z}^{r} f\left(t, Y_{t}, Z_{t}\right)\right)^{\Sigma} \\
& +\sum_{2, k-1} \partial_{y}^{m-r} \partial_{z}^{r} f\left(t, Y_{t}, Z_{t}\right) \\
& \quad \times\left(\nabla^{\alpha_{1}} Y_{t} \otimes \cdots \otimes \nabla^{\alpha_{m-r}} Y_{t} \otimes \nabla^{\beta_{1}} Z_{t} \otimes \cdots \otimes \nabla^{\beta_{r}} Z_{t}\right)^{\Sigma} .
\end{aligned}
$$

We show $\left(\nabla^{k-1} Y, \nabla^{k-1} Z\right) \in \mathbb{L}_{1, p}^{a}\left(H^{\otimes(k-1)}\right) \times \mathbb{L}_{1, p}^{a}\left(H^{\otimes(k-1)}\right)$ by applying Theorem 3.2.5. By (3.16) and (A4)-6), we see (A2)-3) is satisfied. The correspondence to (3.6) is as follows;

$$
\begin{aligned}
\xi & =\nabla^{k-1} \xi \\
\zeta_{t} & =-\sum_{i=0}^{k-2} \nabla^{i}\left(\int_{0}^{\cdot \wedge t} \nabla^{k-2-i} Z_{s} d s\right)
\end{aligned}
$$

We note that $\nabla^{i}\left(\int_{0}^{\wedge \lambda} \nabla^{k-2-i} Z_{s} d s\right)$ represents a Hilbert-Schmidt operator such that

$$
\begin{aligned}
H^{\otimes(k-1)} \ni h_{1} & \otimes \cdots \otimes h_{k-1} \\
& \mapsto \int_{0}^{t}\left(\nabla^{k-2} Z_{s}\right)\left(h_{1} \otimes \cdots \otimes h_{i} \otimes h_{i+2} \otimes \cdots \otimes h_{k-1}\right) \dot{h}_{i+1}(s) d s \in \mathbb{R}
\end{aligned}
$$

Thus (A2)-1),4) are satisfied. We see that for any $F, G \in H^{\otimes(k-1)}$,
${ }^{\nabla} B_{t}^{k-1} F=\nabla \partial_{y} f\left(t, Y_{t}, Z_{t}\right) \otimes F+\partial_{y}^{2} f\left(t, Y_{t}, Z_{t}\right) \nabla Y_{t} \otimes F+\partial_{z} \partial_{y} f\left(t, Y_{t}, Z_{t}\right) \nabla Z_{t} \otimes F$, $\tilde{B}_{t}^{k-1}=\partial_{y} f\left(t, Y_{t}, Z_{t}\right)$,
${ }^{\nabla} \Gamma_{t}^{k-1} G=\nabla \partial_{z} f\left(t, Y_{t}, Z_{t}\right) \otimes G+\partial_{y} \partial_{z} f\left(t, Y_{t}, Z_{t}\right) \nabla Y_{t} \otimes G+\partial_{z}^{2} f\left(t, Y_{t}, Z_{t}\right) \nabla Z_{t} \otimes G$, $\tilde{\Gamma}_{t}^{k-1}=\partial_{z} f\left(t, Y_{t}, Z_{t}\right)$.
Hence, (A2)-6) is satisfied.
From careful calculation, we obtain that $\nabla A_{t}^{k-1}+{ }^{\nabla} B_{t}^{k-1} \nabla^{k-1} Y_{t}+{ }^{\nabla} \Gamma_{t}^{k-1} \nabla^{k-1} Z_{t}$ is equal to the right-hand side of (3.15). Then let $p \geq 2$. By (A4)-6), we obtain

$$
\begin{aligned}
& E\left[\left(\int_{0}^{T}\left\|\nabla A_{s}^{k-1}\right\|_{H^{\otimes k}} d s\right)^{p}\right] \\
& \leq C\left\{E\left[\int_{0}^{T}\left\|\nabla^{k} f\left(s, Y_{s}, Z_{s}\right)\right\|_{H^{\otimes k}}^{p} d s\right]\right.
\end{aligned}
$$

$$
\left.+\sum_{\substack{m, r \in \mathbb{Z}_{+} \\ r \leq 2 \\ 1 \leq m+r \leq k}} \sum_{\substack{\alpha \in\left(\mathbb{Z}_{+} \cap[1, k-1]\right)^{m+r} \\ m+r \leq|\alpha| \leq k}} E\left[\left(\int_{0}^{T} \prod_{j=1}^{m}\left\|\nabla^{\alpha_{j}} Y_{s}\right\|_{H^{\otimes \alpha_{j}}} \prod_{j^{\prime}=1}^{r}\left\|\nabla^{\alpha_{j^{\prime}+m}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m}}} d s\right)^{p}\right]\right\}
$$

where the products above are defined to take 1 when $m=0$ or $r=0$. By the Hölder inequality, for each term of the summation above, we see

$$
\begin{aligned}
& E\left[\left(\int_{0}^{T} \prod_{j=1}^{m}\left\|\nabla^{\alpha_{j}} Y_{t}\right\|_{H^{* \alpha_{j}}} \prod_{j^{\prime}=1}^{r}\left\|\nabla^{\alpha_{j^{\prime}+m}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m}}} d s\right)^{p}\right] \\
& \leq\left\{E\left[\prod_{j=1}^{m} \sup _{0 \leq t \leq T}\left\|\nabla^{\alpha_{j}} Y_{t}\right\|_{H^{\otimes \alpha_{j}}}^{2 p}\right]\right\}^{\frac{1}{2}}\left\{E\left[\left(\int_{0}^{T} \prod_{j^{\prime}=1}^{r}\left\|\nabla^{\alpha_{j^{\prime}+m}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m}}} d s\right)^{2 p}\right]\right\}^{\frac{1}{2}} \\
& \leq\left(1+T^{\frac{p}{2}}\right) \prod_{j=1}^{m}\left\|\nabla^{\alpha_{j}} Y\right\|_{\mathscr{S}^{2 p_{j}}\left(H^{\otimes \alpha_{j}}\right)}^{p} \prod_{j^{\prime}=1}^{r}\left\|\nabla^{\alpha_{j^{\prime}+m}} Z\right\|_{\mathscr{H}^{2 q_{j^{\prime}}\left(H^{\otimes \alpha_{j^{\prime}+m}}\right)}}^{p} \\
& <\infty
\end{aligned}
$$

where $1 / p=\sum_{j=1}^{m} 1 / p_{j}=\sum_{j^{\prime}=1}^{r} 1 / q_{j^{\prime}}$. Then, by (A4)-5),

$$
E\left[\left(\int_{0}^{T}\left\|\nabla A_{s}^{k-1}\right\|_{H^{\otimes k}} d s\right)^{p}\right]<\infty
$$

$\left.(\mathrm{A} 2)^{\prime}-5\right)$ is satisfied.
We check (A2)'-7). We now recall that for any $F, G \in H^{\otimes(k-1)}$,
${ }^{\nabla} B_{t}^{k-1} F=\nabla \partial_{y} f\left(t, Y_{t}, Z_{t}\right) \otimes F+\partial_{y}^{2} f\left(t, Y_{t}, Z_{t}\right) \nabla Y_{t} \otimes F+\partial_{z} \partial_{y} f\left(t, Y_{t}, Z_{t}\right) \nabla Z_{t} \otimes F$, $\tilde{B}_{t}^{k-1}=\partial_{y} f\left(t, Y_{t}, Z_{t}\right)$,
${ }^{\nabla} \Gamma_{t}^{k-1} G=\nabla \partial_{z} f\left(t, Y_{t}, Z_{t}\right) \otimes G+\partial_{y} \partial_{z} f\left(t, Y_{t}, Z_{t}\right) \nabla Y_{t} \otimes G+\partial_{z}^{2} f\left(t, Y_{t}, Z_{t}\right) \nabla Z_{t} \otimes G$, $\tilde{\Gamma}_{t}^{k-1}=\partial_{z} f\left(t, Y_{t}, Z_{t}\right)$.

Then, we get $\sup _{t, \omega}\left(\left\|\tilde{B}_{t}(\omega)\right\|_{\mathcal{L}(\mathcal{K})}+\left\|\tilde{\Gamma}_{t}(\omega)\right\|_{\mathcal{L}(\mathcal{K})}\right)<\infty$. In addition, the following inequalities;

$$
\begin{aligned}
& \left\|^{\nabla} B_{t}^{k-1}\right\|_{\mathcal{L}\left(H^{\left.\otimes(k-1), H^{\otimes k}\right)}\right.} \leq\left\|\nabla \partial_{y} f\left(t, Y_{t}, Z_{t}\right)\right\|_{H}+\left\|\partial_{y}^{2} f\right\|_{\infty}\left\|\nabla Y_{t}\right\|_{H}+\left\|\partial_{y} \partial_{z} f\right\|_{\infty}\left\|\nabla Z_{t}\right\|_{H} \\
& \left\|^{\nabla} \Gamma_{t}^{k-1}\right\|_{\mathcal{L}\left(H^{\otimes(k-1)}, H^{\otimes k}\right)} \leq\left\|\nabla \partial_{z} f\left(t, Y_{t}, Z_{t}\right)\right\|_{H}+\left\|\partial_{y} \partial_{z} f\right\|_{\infty}\left\|\nabla Z_{t}\right\|_{H}+\left\|\partial_{z}^{2} f\right\|_{\infty}\left\|\nabla Z_{t}\right\|_{H}
\end{aligned}
$$

and (A4)-3),6) yield that

$$
\begin{align*}
& E\left[\left(\int_{0}^{T}\left\{\left\|^{\nabla} B_{s}^{k-1}\right\|_{\mathcal{L}(\mathcal{K}, H \otimes \mathcal{K})}^{2}+\left\|^{\nabla} \Gamma_{s}^{k-1}\right\|_{\mathcal{L}(\mathcal{K}, H \otimes \mathcal{K})}^{2}\right\} d s\right)^{p}\right] \\
& \leq C\left(1+\|\nabla Y\|_{\mathscr{S}^{2 p}(H)}^{2 p}+\|\nabla Z\|_{\mathscr{H}^{2 p}(H)}^{2 p}\right)<\infty \tag{3.18}
\end{align*}
$$

Thus (A2)' -7) is satisfied.

Now, we see that (A2)-2),3) are satisfied because the properties corresponding to them are shown in previous k on (A2)-7) and Claim 2.

From the above results and Theorem 3.2.5, we obtain $\left(\nabla^{k-1} Y, \nabla^{k-1} Z\right) \in$ $\mathbb{L}_{1, p}^{a}\left(H^{\otimes(k-1)}\right) \times \mathbb{L}_{1, p}^{a}\left(H^{\otimes(k-1)}\right)$ and $\left(\nabla^{k} Y, \nabla^{k} Z\right) \in \mathscr{S}^{p}\left(H^{\otimes k}\right) \times \mathscr{H}^{p}\left(H^{\otimes k}\right)$ is a solution to the BSDE;

$$
\begin{aligned}
\nabla^{k} Y_{t}=\nabla^{k} \xi & -\sum_{i=0}^{k-1} \nabla^{i}\left(\int_{\cdot \wedge t} \nabla^{k-1-i} Z_{s} d s\right) \\
+ & \int_{t}^{T}\left\{\nabla A_{s}^{k-1}+{ }^{\nabla} B_{s}^{k-1} \nabla^{k-1} Y_{s}+{ }^{\nabla} \Gamma_{s}^{k-1} \nabla^{k-1} Z_{s}+\tilde{B}_{s}^{k-1} \nabla^{k} Y_{s}+\tilde{\Gamma}_{s}^{k-1} \nabla^{k} Z_{s}\right\} d s \\
& -\int_{t}^{T} \nabla^{k} Z_{s} d W_{s}, \quad 0 \leq t \leq T
\end{aligned}
$$

Define $A_{t}^{k}=\nabla A_{t}^{k-1}+{ }^{\nabla} B_{t}^{k-1} \nabla^{k-1} Y_{t}+{ }^{\nabla} \Gamma_{t}^{k-1} \nabla^{k-1} Z_{t}$. As mentioned above, A_{t}^{k} is written as the form (3.15). Claim 1 is proved.

We shall prove Claim 2. By (3.15) and (A4)-5),6), we get

$$
\begin{align*}
& E\left[\int_{0}^{T}\left(\int_{0}^{T}\left\|\tilde{K}_{u} A_{s}^{k}\right\|_{H^{\otimes(k-1)}} d s\right)^{2} d u\right] \\
& \leq C\left\{E\left[\int_{0}^{T}\left\|\nabla^{k} f\left(s, Y_{s}, Z_{s}\right)\right\|_{H^{\otimes k}}^{2} d s\right]\right. \\
& \quad+\sum_{1} E\left[\int_{0}^{T}\left(I_{1}^{m, r, \alpha}(u)\right)^{2} d u\right]+\sum_{2} E\left[\int_{0}^{T}\left(I_{2}^{m, \alpha}(u)\right)^{2} d u\right] \\
& \quad+\sum_{3} E\left[\int_{0}^{T}\left(I_{3}^{m, r, \alpha}(u)\right)^{2} d u\right]+\sum_{4} E\left[\int_{0}^{T}\left(I_{4}^{m, \alpha}(u)\right)^{2} d u\right] \\
& \left.\quad+\sum_{5} E\left[\int_{0}^{T}\left(I_{5}^{m, r, \alpha}(u)\right)^{2} d u\right]\right\}, \tag{3.19}
\end{align*}
$$

where

$$
\begin{aligned}
& I_{1}^{m, r, \alpha}(u)=\int_{0}^{T}\left\|D_{u} \nabla^{\alpha_{1}-1} \partial_{y}^{m} \partial_{z}^{r} f\left(s, Y_{s}, Z_{s}\right)\right\|_{H^{\otimes\left(\alpha_{1}-1\right)}} \\
& \quad \times \prod_{j=1}^{m}\left\|\nabla^{\alpha_{j+1}} Y_{s}\right\|_{H^{\otimes \alpha_{j}}} \prod_{j^{\prime}=1}^{r}\left\|\nabla^{\alpha_{j^{\prime}+m+1}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m}}} d s, \\
& \sum_{1}^{m, \alpha}(u)=I_{\substack{m, r \in \mathbb{Z}_{+} \\
r \leq 1 \\
1 \leq m+r \leq k-1}}^{I_{1}^{m, 2, \alpha}(u),} \begin{array}{l}
\alpha \in\left(\mathbb{Z}_{+} \cap[1, k-1]\right)^{m+r+1}|\alpha|=k
\end{array} \\
& \sum_{\substack{m+1}}, \sum_{\substack{m \in \mathbb{Z}_{+} \\
0 \leq m \leq k-3}} \sum_{\substack{\alpha \in\left(\mathbb{Z}_{+} \cap[1, k-2]\right)^{m+3} \\
|\alpha|=k}},
\end{aligned}
$$

$$
\begin{aligned}
& I_{3}^{m, r, \alpha}(u)=\int_{0}^{T}\left\|D_{u} \nabla^{\alpha_{1}-1} Y_{s}\right\|_{H^{\otimes\left(\alpha_{1}-1\right)}} \prod_{j=2}^{m}\left\|\nabla^{\alpha_{j}} Y_{s}\right\|_{H^{\otimes \alpha_{j}}} \prod_{j^{\prime}=1}^{r}\left\|\nabla^{\alpha_{j^{\prime}+m}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m}}} d s \\
& I_{4}^{m, \alpha}(u)=\int_{0}^{T}\left\|D_{u} \nabla^{\alpha_{1}-1} Y_{s}\right\|_{H^{\otimes\left(\alpha_{1}-1\right)}} \prod_{j=2}^{m}\left\|\nabla^{\alpha_{j}} Y_{s}\right\|_{H^{\otimes \alpha_{j}}} \prod_{j^{\prime}=1}^{2}\left\|\nabla^{\alpha_{j^{\prime}+m}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m}}} d s, \\
& \sum_{\substack{m, r \in \mathbb{Z}_{+} \\
m \geq 1 \\
1 \leq m+1 \leq k}} \sum_{\substack{\alpha \in\left(\mathbb{Z}_{+} \cap[1, k-1]\right)^{m+r} \\
m+r \leq|\alpha| \leq k}}, \sum_{4}=\sum_{\substack{m, r \in \mathbb{Z}_{+} \\
m \geq 1 \\
1 \leq m \leq k-2}} \sum_{\substack{\alpha \in\left(\mathbb{Z}_{+} \cap[1, k-2]\right)^{m+2} \\
m+2 \leq|\alpha| \leq k}}, \\
& I_{5}^{m, r, \alpha}(u)=\int_{0}^{T}\left\|D_{u} \nabla^{\alpha_{1+m}-1} Z_{s}\right\|_{H^{\otimes\left(\alpha_{1+m}-1\right)}} \prod_{j=1}^{m}\left\|\nabla^{\alpha_{j}} Y_{s}\right\|_{H^{\otimes \alpha_{j}}} \prod_{j^{\prime}=2}^{r}\left\|\nabla^{\alpha_{j^{\prime}+m}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m}}} d s, \\
& \sum_{5}=\sum_{\substack{m, r \in \mathbb{Z}_{+} \\
1 \leq \leq 2 \leq 2 \leq k \\
1 \leq m+r \leq k}} \sum_{\substack{\alpha \in\left(\mathbb{Z}_{+} \cap[1, k-1]\right)^{m+r} \\
m+r \leq|\alpha| \leq k}} .
\end{aligned}
$$

In above, $\prod_{j=a}^{b} x_{j}$ is defined to be 1 if $a>b$. For each term of the summation \sum_{1} in (3.19), we get by the Schwarz inequality,

$$
\begin{aligned}
E\left[\int_{0}^{T}\left(I_{1}^{m, r, \alpha}(u)\right)^{2} d u\right] \leq E & {\left[\int_{0}^{T} d u \int_{0}^{T}\left\|D_{u} \nabla^{\alpha_{1}-1} \partial_{y}^{m} \partial_{z}^{r} f\left(s, Y_{s}, Z_{s}\right)\right\|_{H^{\otimes\left(\alpha_{1}-1\right)}}^{2} d s\right.} \\
& \left.\times \int_{0}^{T} \prod_{j=1}^{m}\left\|\nabla^{\alpha_{j+1}} Y_{s}\right\|_{H^{\otimes \alpha_{j+1}}}^{2} \prod_{j^{\prime}=1}^{r}\left\|\nabla^{\alpha_{j^{\prime}+m+1}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m+1}}}^{2} d s\right] \\
\leq E[& \int_{0}^{T}\left\|\nabla^{\alpha_{1}} \partial_{y}^{m} \partial_{z}^{r} f\left(s, Y_{s}, Z_{s}\right)\right\|_{H^{\otimes \alpha_{1}}}^{2} d s \\
& \left.\times \int_{0}^{T} \prod_{j=1}^{m}\left\|\nabla^{\alpha_{j+1}} Y_{s}\right\|_{H^{\otimes \alpha_{j+1}}}^{2} \prod_{j^{\prime}=1}^{r}\left\|\nabla^{\alpha_{j^{\prime}+m+1}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m+1}}}^{2} d s\right] \\
\leq C E & {\left[\prod_{j=1}^{m} \sup _{0 \leq t \leq T}\left\|\nabla^{\alpha_{j+1}} Y_{t}\right\|_{H^{\otimes \alpha_{j+1}}}^{2} \int_{0}^{T} \prod_{j^{\prime}=1}^{r}\left\|\nabla^{\alpha_{j^{\prime}+m+1}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m+1}}}^{2} d s\right] } \\
\leq C(1 & \left.+T)\left\{E\left[\prod_{j=1}^{m} \sup _{0 \leq t \leq T}\left\|\nabla^{\alpha_{j+1}} Y_{t}\right\|_{H^{\otimes \alpha_{j+1}}}^{4}\right]\right\}\right\}^{\frac{1}{2}} \\
& \times \prod_{j^{\prime}=1}^{r}\left\{E\left[\left(\int_{0}^{T}\left\|\nabla^{\alpha_{j^{\prime}+m+1}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m+1}}}^{2} d s\right)^{2}\right]\right\}^{\frac{1}{2}}
\end{aligned}
$$

where, to see in the fourth inequality, we use $r \leq 1$. And for each term of the

$$
\begin{aligned}
E\left[\int_{0}^{T}\left(I_{3}^{m, r, \alpha}(u)\right)^{2} d u\right] \leq E & {\left[\int_{0}^{T} d u \int_{0}^{T}\left\|D_{u} \nabla^{\alpha_{1}-1} Y_{s}\right\|_{H^{\otimes\left(\alpha_{1}-1\right)}}^{2} d s\right.} \\
& \left.\times \int_{0}^{T} \prod_{j=2}^{m}\left\|\nabla^{\alpha_{j}} Y_{s}\right\|_{H^{\otimes \alpha_{j}}}^{2} \prod_{j^{\prime}=1}^{r}\left\|\nabla^{\alpha_{j^{\prime}+m}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m}}}^{2} d s\right] \\
\leq E[& \int_{0}^{T}\left\|\nabla^{\alpha_{1}} Y_{t}\right\|_{H^{\otimes \alpha_{1}}}^{2} d s \\
& \left.\times \int_{0}^{T} \prod_{j=2}^{m}\left\|\nabla^{\alpha_{j}} Y_{s}\right\|_{H^{\otimes \alpha_{j}}}^{2} \prod_{j^{\prime}=1}^{r}\left\|\nabla^{\alpha_{j^{\prime}+m}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m}}}^{2} d s\right] \\
\leq(1+ & T)\left\{E\left[\prod_{j=0}^{m} \sup _{0 \leq t \leq T}\left\|\nabla^{\alpha_{j}} Y_{t}\right\|_{H^{\otimes \alpha_{j}}}^{4}\right]\right\}^{\frac{1}{2}} \\
& \times \prod_{j^{\prime}=1}^{r}\left\{E\left[\left(\int_{0}^{T}\left\|\nabla^{\alpha_{j^{\prime}+m}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m}}}^{2} d s\right)^{2}\right]\right\}^{\frac{1}{2}}
\end{aligned}
$$

where, to see in the third inequality, we also use $r \leq 1$. Hence, in the same manner as (3.17), we obtain

$$
\sum_{1} E\left[\int_{0}^{T}\left(I_{1}^{m, r, \alpha}(u)\right)^{2} d u\right]+\sum_{3} E\left[\int_{0}^{T}\left(I_{3}^{m, r, \alpha}(u)\right)^{2} d u\right]<\infty
$$

For each term of the summation \sum_{2} in (3.19), we see by Schwarz inequality,

$$
\begin{aligned}
& E\left[\int_{0}^{T}\left(I_{2}^{m, \alpha}(u)\right)^{2} d u\right] \leq E {\left[\int _ { 0 } ^ { T } d u \left(\int_{0}^{T}\left\|D_{u} \nabla^{\alpha_{1}-1} \partial_{y}^{m} \partial_{z}^{2} f\left(s, Y_{s}, Z_{s}\right)\right\|_{H^{\otimes\left(\alpha_{1}-1\right)}}\left\|\nabla^{\alpha_{2+m}} Z_{s}\right\|_{H^{\otimes \alpha_{2+m}}}\right.\right.} \\
&\left.\left.\times \prod_{j=1}^{m}\left\|\nabla^{\alpha_{j+1}} Y_{s}\right\|_{H^{\otimes \alpha_{j}}}\left\|\nabla^{\alpha_{3+m}} Z_{s}\right\|_{H^{\otimes \alpha_{3+m}}} d s\right)^{2}\right] \\
& \leq E {\left[\int_{0}^{T} d u \int_{0}^{T}\left\|D_{u} \nabla^{\alpha_{1}-1} \partial_{y}^{m} \partial_{z}^{r} f\left(s, Y_{s}, Z_{s}\right)\right\|_{H^{\otimes\left(\alpha_{1}-1\right)}}^{2}\left\|\nabla^{\alpha_{2+m}} Z_{s}\right\|_{H^{\otimes \alpha_{2+m}}}^{2} d s\right.} \\
&\left.\times \int_{0}^{T} \prod_{j=1}^{m}\left\|\nabla^{\alpha_{j+1}} Y_{s}\right\|_{H^{\otimes \alpha_{j+1}}}^{2}\left\|\nabla^{\alpha_{3+m}} Z_{s}\right\|_{H^{\otimes \alpha_{3+m}}}^{2} d s\right] \\
& \leq E {\left[\int_{0}^{T}\left\|\nabla^{\alpha_{1}} \partial_{y}^{m} \partial_{z}^{2} f\left(s, Y_{s}, Z_{s}\right)\right\|_{H^{\otimes \alpha_{1}}}^{2}\left\|\nabla^{\alpha_{2+m}} Z_{s}\right\|_{H^{\otimes \alpha_{2+m}}}^{2} d s\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\quad \times \int_{0}^{T} \prod_{j=1}^{m}\left\|\nabla^{\alpha_{j+1}} Y_{s}\right\|_{H^{\otimes \alpha_{j+1}}}^{2}\left\|\nabla^{\alpha_{3+m}} Z_{s}\right\|_{H^{\otimes \alpha_{3+m}}}^{2} d s\right] \\
& \leq C E\left[\prod_{j=1}^{m} \sup _{0 \leq t \leq T}\left\|\nabla^{\alpha_{j+1}} Y_{t}\right\|_{H^{\otimes \alpha_{j+1}}}^{2} \prod_{j^{\prime}=1}^{2} \int_{0}^{T}\left\|\nabla^{\alpha_{j^{\prime}+m+1}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m+1}}}^{2} d s\right] \\
& \leq C\left\{E\left[\prod_{j=1}^{m} \sup _{0 \leq t \leq T}\left\|\nabla^{\alpha_{j+1}} Y_{t}\right\|_{H^{\otimes \alpha_{j+1}}}^{4}\right]\right\}^{\frac{1}{2}} \\
& \quad \times\left\{E\left[\prod_{j^{\prime}=1}^{2}\left(\int_{0}^{T}\left\|\nabla^{\alpha_{j^{\prime}+m+1}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m+1}}}^{2} d s\right)^{2}\right]\right\}^{\frac{1}{2}} \\
& <\infty .
\end{aligned}
$$

And for each term of the summation \sum_{4} in (3.19), we get

$$
\begin{aligned}
& E\left[\int_{0}^{T}\left(I_{4}^{m, \alpha}(u)\right)^{2} d u\right] \leq E\left[\int _ { 0 } ^ { T } d u \left(\int_{0}^{T}\left\|D_{u} \nabla^{\alpha_{1}-1} Y_{s}\right\|_{H^{\otimes\left(\alpha_{1}-1\right)}}\left\|\nabla^{\alpha_{1+m}} Z_{s}\right\|_{H^{\otimes \alpha_{1+m}}}\right.\right. \\
&\left.\left.\times \prod_{j=2}^{m}\left\|\nabla^{\alpha_{j}} Y_{s}\right\|_{H^{\otimes \alpha_{j}}}\left\|\nabla^{\alpha_{2+m}} Z_{s}\right\|_{H^{\otimes \alpha_{2+m}}} d s\right)^{2}\right] \\
& \leq E {\left[\int_{0}^{T} d u \int_{0}^{T}\left\|D_{u} \nabla^{\alpha_{1}-1} Y_{s}\right\|_{H^{\otimes\left(\alpha_{1}-1\right)}}^{2}\left\|\nabla^{\alpha_{1+m}} Z_{s}\right\|_{H^{\otimes \alpha_{1+m}}}^{2} d s\right.} \\
&\left.\times \int_{0}^{T} \prod_{j=2}^{m}\left\|\nabla^{\alpha_{j}} Y_{s}\right\|_{H^{\otimes \alpha_{j}}}^{2}\left\|\nabla^{\alpha_{2+m}} Z_{s}\right\|_{H^{\otimes \alpha_{2+m}}}^{2} d s\right] \\
& \leq E\left[\int_{0}^{T}\left\|\nabla^{\alpha_{1}} Y_{s}\right\|_{H^{\otimes \alpha_{1}}}^{2}\left\|\nabla^{\alpha_{1+m}} Z_{s}\right\|_{H^{\otimes \alpha_{1}+m}}^{2} d s\right. \\
& \leq\left.\times\left[\prod_{j=1}^{m} \prod_{0 \leq t \leq T}^{m}\left\|\nabla^{\alpha_{j}} Y_{s}\right\|_{H^{\otimes \alpha_{j}}}^{2}\left\|\nabla^{\alpha_{2+m}} Z_{s}\right\|_{H^{\otimes \alpha_{2+m}}}^{2} d s\right] \nabla^{\alpha_{j}} Y_{t}\left\|_{H^{\otimes \alpha_{j}}}^{2} \prod_{j^{\prime}=1}^{2} \int_{0}^{T}\right\| \nabla^{\alpha_{j^{\prime}+m}} Z_{s} \|_{H^{\otimes \alpha_{j^{\prime}+m}}}^{2} d s\right] \\
& \leq\left\{E\left[\prod_{j=1}^{m} \sup _{0 \leq t \leq T}\left\|\nabla^{\alpha_{j}} Y_{t}\right\|_{H^{\otimes \alpha_{j}}}^{4}\right]\right\}^{\frac{1}{2}} \\
& \times\left\{E\left[\prod_{j^{\prime}=1}^{2}\left(\int_{0}^{T}\left\|\nabla^{\alpha_{j^{\prime}+m}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m}}}^{2} d s\right)^{2}\right]\right\}^{\frac{1}{2}}
\end{aligned}
$$

$$
<\infty
$$

Thus, we get

$$
\sum_{2} E\left[\int_{0}^{T}\left(I_{2}^{m, \alpha}(u)\right)^{2} d u\right]+\sum_{4} E\left[\int_{0}^{T}\left(I_{4}^{m, \alpha}(u)\right)^{2} d u\right]<\infty
$$

For each term of the summation \sum_{5} in (3.19), we get

$$
\begin{aligned}
& E\left[\int_{0}^{T}\left(I_{5}^{m, r, \alpha}(u)\right)^{2} d u\right] \leq E\left[\int_{0}^{T} d u \int_{0}^{T}\left\|D_{u} \nabla^{\alpha_{1+m}-1} Z_{s}\right\|_{H^{\otimes\left(\alpha_{1+m}-1\right)}}^{2} d s\right. \\
&\left.\times \int_{0}^{T} \prod_{j=1}^{m}\left\|\nabla^{\alpha_{j}} Y_{s}\right\|_{H^{\otimes \alpha_{j}}}^{2} \prod_{j^{\prime}=2}^{r}\left\|\nabla^{\alpha_{j^{\prime}+m}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m}}}^{2} d s\right] \\
& \leq E[\int_{0}^{T}\left\|\nabla^{\alpha_{1+m}} Z_{s}\right\|_{H^{\otimes \alpha_{1+m}}}^{2} d s \\
&\left.\times \int_{0}^{T} \prod_{j=1}^{m}\left\|\nabla^{\alpha_{j}} Y_{s}\right\|_{H^{\otimes \alpha_{j}}}^{2} \prod_{j^{\prime}=2}^{r}\left\|\nabla^{\alpha_{j^{\prime}+m}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m}}}^{2} d s\right] \\
& \leq E\left[\prod_{j=1}^{m} \sup _{0 \leq t \leq T}\left\|\nabla^{\alpha_{j}} Y_{t}\right\|_{H^{\otimes \alpha_{j}}}^{2} \prod_{j^{\prime}=1}^{r} \int_{0}^{T}\left\|\nabla^{\alpha_{j^{\prime}+m}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m}}}^{2} d s\right] \\
& \leq\left\{E\left[\prod_{j=1}^{m} \sup _{0 \leq t \leq T}\left\|\nabla^{\alpha_{j}} Y_{t}\right\|_{H^{\otimes \alpha_{j}}}^{4}\right]\right\}^{\frac{1}{2}} \\
&\left.\times\left\{E\left[\prod_{j^{\prime}=1}^{r}\left(\int_{0}^{T}\left\|\nabla^{\alpha_{j^{\prime}+m}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m}}}^{2} d s\right)^{2}\right]\right\}\right\}^{\frac{1}{2}} \\
&< \infty .
\end{aligned}
$$

Then, we see

$$
\sum_{5} E\left[\int_{0}^{T}\left(I_{5}^{m, r, \alpha}(u)\right)^{2} d u\right]<\infty
$$

From the above results, we obtain

$$
E\left[\int_{0}^{T}\left(\int_{0}^{T}\left\|\tilde{K}_{u} A_{s}^{k}\right\|_{H^{\otimes(k-1)}} d s\right)^{2} d u\right]<\infty
$$

which implies (A2)'-8). Thus, by Theorem 3.2.5, we get $\left(D \cdot \nabla^{k-1} Y, D \cdot \nabla^{k-1} Z\right) \in$ $\mathscr{S}_{r c}^{2}\left(H^{\otimes(k-1)}, \bar{P}\right) \times \mathscr{H}^{2}\left(H^{\otimes(k-1)}, \bar{P}\right)$ and $D_{t} \nabla^{k-1} Y_{t}=\nabla^{k-1} Z_{t}$ for almost all $t \in$ $[0, T]$. Claim 2 is proved.

Remark 3.4.3. The key point of the proof of Theorem 3.4.1 is seen in the estimation of (3.17) and (3.19). The degree of the integrand in \mathscr{H}^{p}-norm is two and we have no tools to estimate integrals in which the degree of the integrands are greater than two; for example, $E\left[\left(\int_{0}^{T}\left\|\nabla^{k} Z_{s}\right\|^{3} d s\right)^{p}\right], E\left[\left(\int_{0}^{T}\left\|\nabla^{k} Z_{s}\right\|^{4} d s\right)^{p}\right]$ and so on. Thus, if (3.19) contains derivatives of Z more than two, we fail to estimate $E\left[\left(\int_{0}^{T}\left\|\nabla A_{s}\right\| d s\right)^{p}\right]$. (A4)-3) assures that there appears at most two derivatives of Z in (3.19); $r \leq 2$.

3.4.2 Under Boundedness Assumption of Z

In this subsection, we consider higher order Malliavin differentiability of solutions assuming boundedness of the first derivative of Z.

We introduce the assumption (A5) by the following:

1) $\xi \in \mathbb{D}^{\infty}\left(\mathbb{R}^{d}\right)$ and for each $k \geq 1, \sup _{(u, \omega) \in \bar{\Omega}^{(k)}}\left|D_{u}^{k} \xi(\omega)\right|<\infty$,
2) for any $p \geq 2, E\left[\left(\int_{0}^{T}|f(s, 0,0)| d s\right)^{p}\right]<\infty$,
3) for each $(t, \omega) \in[0, T] \times \Omega, f(t, \omega, \cdot, \cdot) \in C_{b}^{\infty}\left(\mathbb{R}^{d} \times \mathbb{R}^{n \times d}, \mathbb{R}^{d}\right)$ and for any $|\beta| \geq 1$,

$$
\underset{t, \omega, y, z}{\operatorname{ess} . \sup }\left|\partial^{\beta} f(t, \omega, y, z)\right|<\infty
$$

4) for each $\beta \in \mathbb{Z}_{+}^{d+n d}$ and $(y, z) \in \mathbb{R}^{d} \times \mathbb{R}^{n \times d}$, $\partial^{\beta} f(\cdot, y, z) \in \mathbb{L}_{\infty}^{a}\left(\mathbb{R}^{d}\right)$, the version of the Malliavin derivative is denoted by $\nabla^{k} \partial^{\beta} f(t, y, z)$ for $k \geq 1$,
5) for each $k \geq 1, \beta \in \mathbb{Z}_{+}^{d+n d}$ and $(t, \omega) \in[0, T] \times \Omega, \nabla^{k} \partial^{\beta} f(t, \omega, \cdot, \cdot) \in$ $C_{b}^{\infty}\left(\mathbb{R}^{d} \times \mathbb{R}^{n \times d}, H^{\otimes k} \otimes \mathbb{R}^{d}\right)$ and

$$
\sup _{\substack{t, \omega, y, z \\ 1 \leq i \leq d \\ 1 \leq j \leq n}}\left(\left\|\partial_{y^{i}} \nabla^{k} \partial^{\beta} f(t, \omega, y, z)\right\|_{H^{\otimes k \otimes \mathbb{R}^{d}}}+\left\|\partial_{z^{j i}} \nabla^{k} \partial^{\beta} f(t, \omega, y, z)\right\|_{H^{\otimes k \otimes \mathbb{R}^{d}}}\right)<\infty,
$$

6) for each $k \geq 1$ and $\beta \in \mathbb{Z}_{+}^{d+n d}$,

$$
\sup _{\substack{t, y, z \\(u, \omega) \in \bar{\Omega}^{(k)}}}\left|D_{u}^{k} \partial^{\beta} f(t, \omega, y, z)\right|<\infty .
$$

Theorem 3.4.4. Suppose (A5) holds. Let $(Y, Z) \in \mathscr{S}^{\infty}\left(\mathbb{R}^{d}\right) \times \mathscr{H}^{\infty}\left(\mathbb{R}^{n \times d}\right)$ be a unique solution to the $B S D E$ (3.1). If $\sup _{u, t, \omega}\left|D_{u} Z_{t}(\omega)\right|<\infty$, then (Y, Z) belongs to $\mathbb{L}_{\infty}^{a}\left(\mathbb{R}^{d}\right) \times \mathbb{L}_{\infty}^{a}\left(\mathbb{R}^{n \times d}\right)$.

Moreover, for each $k \geq 0,\left(D . \nabla^{k} Y, D . \nabla^{k} Z\right) \in \mathscr{S}_{r c}^{\infty}\left(\left(H^{\otimes k} \otimes \mathbb{R}^{d}\right)^{n}, \bar{P}\right) \times \mathscr{H}{ }^{\infty}\left(\left(H^{\otimes k} \otimes\right.\right.$ $\left.\left.\mathbb{R}^{n \times d}\right)^{n}, \bar{P}\right)$ and $D_{t} \nabla^{k} Y_{t}=\nabla^{k} Z_{t}$ for almost all $t \in[0, T]$.

We introduce some examples on Theorem 3.4.4.
Example 3.4.5. Let $\left(W_{t}\right)_{0 \leq t \leq T}$ be a one-dimensional Brownian motion and a function $g:[0, T] \times \mathbb{R} \ni(t, x) \mapsto g(t, x) \in \mathbb{R}$ belong to $C^{1,2}([0, T] \times \mathbb{R})$. Set $Y_{t}=g\left(t, W_{t}\right)$ and $Z_{t}=\frac{\partial g}{\partial x}\left(t, W_{t}\right)$. Then (Y, Z) is a solution to the BSDE;

$$
Y_{t}=g\left(T, W_{T}\right)-\int_{t}^{T}\left(\frac{\partial g}{\partial t}+\frac{1}{2} \frac{\partial^{2} g}{\partial x^{2}}\right)\left(s, W_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}
$$

and it holds

$$
D_{u} Z_{t}=\frac{\partial^{2} g}{\partial x^{2}}\left(t, W_{t}\right) \mathbf{1}_{[0, t]}(u)
$$

We now can construct some examples satisfying the assumptions (A4) or (A5) by above formulae.
(1) Let $g(t, x)=t \sin x$. Then, (Y, Z), defined as above, is a unique solution to the BSDE;

$$
Y_{t}=T \sin W_{T}+\int_{t}^{T}\left(-\sin W_{t}+\frac{Y_{t}}{2}\right) d s-\int_{t}^{T} Z_{s} d W_{s}
$$

which satisfies (A5) and $\sup _{u, t, \omega}\left|D_{u} Z_{t}(\omega)\right|<\infty$ as well as (A4).
(2) Let $g(t, x)=x \arctan (2 x)-\frac{1}{4} \log \left(1+4 x^{2}\right)$. Then, (Y, Z), defined as above, is a unique solution to the BSDE ;

$$
Y_{t}=W_{T} \arctan \left(2 W_{T}\right)-\frac{1}{4} \log \left(1+4 W_{T}^{2}\right)-\int_{t}^{T} \cos ^{2} Z_{s} d s-\int_{t}^{T} Z_{s} d W_{s}
$$

(A4)-3) is not satisfied but (A5) and $\sup _{u, t, \omega}\left|D_{u} Z_{t}(\omega)\right|<\infty$ are satisfied since

$$
D_{u} Z_{t}=\frac{4}{1+4 W_{t}^{2}} \mathbf{1}_{[0, t]}(u)
$$

First, we introduce the following lemma given by extracting the argument of the result of Zhen et al. [26, Proposition 2].

Lemma 3.4.6. Let (Y, Z) be an L^{2} solution to the BSDE (3.1) and suppose

$$
y \cdot f(t, y, z) \leq y \cdot a_{t}+b_{t}|y|^{2}+c_{t}|y||z|, \quad(t, y, z) \in[0, T] \times \mathbb{R}^{d} \times \mathbb{R}^{n \times d}
$$

where $\left(a_{t}\right)_{0 \leq \leq T}$ is a \mathbb{R}^{d}-valued progressively measurable process satisfying $E\left[\int_{0}^{T}\left|a_{s}\right|^{2} d s\right]<$ ∞, and $\left(b_{t}\right)_{0 \leq t \leq T}$ and $\left(c_{t}\right)_{0 \leq t \leq T}$ are real progressively measurable processes satisfying $\sup _{t, \omega}\left(\left|b_{t}(\omega)\right|+\left|c_{t}(\omega)\right|\right)<\infty$. Then, there exists a $\gamma>0$ such that
$\left|Y_{t}\right|^{2} e^{\gamma t}+\frac{1}{2} E\left[\int_{t}^{T} e^{\gamma s}\left|Z_{s}\right|^{2} d s \mid \mathcal{F}_{t}\right] \leq E\left[|\xi|^{2} e^{\gamma T}+\int_{t}^{T} e^{\gamma s}\left|a_{s}\right|^{2} d s \mid \mathcal{F}_{t}\right], \quad 0 \leq t \leq T$.

Proof. Applying the Itô formula to the function $[0, T] \times \mathbb{R}^{d} \ni(t, y) \mapsto|y|^{2} e^{\gamma t} \in \mathbb{R}$ with $y=Y_{t}$ and (3.1) yields that for any $\gamma>0$,

$$
\begin{aligned}
\left|Y_{t}\right|^{2} e^{\gamma t}+\int_{t}^{T} e^{\gamma s} & \left(\gamma\left|Y_{s}\right|^{2}+\left|Z_{s}\right|^{2}\right) d s \\
& =|\xi|^{2} e^{\gamma T}+\int_{t}^{T} 2 e^{\gamma s} Y_{s} \cdot f\left(s, Y_{s}, Z_{s}\right) d s-2 \int_{t}^{T} e^{\gamma s} Y_{s} \cdot Z_{s} d W_{s}
\end{aligned}
$$

By the identities $2 a b \leq a^{2}+b^{2}$ and $2 a b \leq 2 a^{2}+\frac{1}{2} b^{2}$, we get

$$
\begin{aligned}
2 Y_{s} \cdot f\left(s, Y_{s}, Z_{s}\right) & \leq 2 Y_{s} \cdot a_{s}+2 b_{s}\left|Y_{s}\right|^{2}+2 c_{s}\left|Y_{s}\right|\left|Z_{s}\right| \\
& \leq 2\left|Y_{s}\right|\left|a_{s}\right|+2\left|b_{s}\right|\left|Y_{s}\right|^{2}+2\left|c_{s}\right|\left|Y_{s}\right|\left|Z_{s}\right| \\
& \leq\left|Y_{s}\right|^{2}+\left|a_{s}\right|^{2}+2\|b\|_{\infty}\left|Y_{s}\right|^{2}+2\|c\|_{\infty}^{2}\left|Y_{s}\right|^{2}+\frac{1}{2}\left|Z_{s}\right|^{2}
\end{aligned}
$$

where $\|\cdot\|_{\infty}$ represents the supremum with respect to $(s, \omega) \in[0, T] \times \Omega$. Then, we obtain

$$
\begin{aligned}
&\left|Y_{t}\right|^{2} e^{\gamma t}+\int_{t}^{T} e^{\gamma s}\left\{\left(\gamma-2\|b\|_{\infty}-2\|c\|_{\infty}^{2}-1\right)\left|Y_{s}\right|^{2}+\frac{1}{2}\left|Z_{s}\right|^{2}\right\} d s \\
& \leq|\xi|^{2} e^{\gamma T}+\int_{t}^{T} e^{\gamma s}\left|a_{s}\right|^{2} d s-2 \int_{t}^{T} e^{\gamma s} Y_{s} \cdot Z_{s} d W_{s}
\end{aligned}
$$

By choosing $\gamma \geq 2\|b\|_{\infty}+2\|c\|_{\infty}^{2}+1$ and taking the conditional expectation, we get

$$
\left|Y_{t}\right|^{2} e^{\gamma t}+\frac{1}{2} E\left[\int_{t}^{T} e^{\gamma s}\left|Z_{s}\right|^{2} d s \mid \mathcal{F}_{t}\right] \leq E\left[|\xi|^{2} e^{\gamma T}+\int_{t}^{T} e^{\gamma s}\left|a_{s}\right|^{2} d s \mid \mathcal{F}_{t}\right]
$$

Proof of Theorem 3.4.4. For simplicity of notation, we give the proof in the case $d=n=1$. In the proof, notation C represents a positive constant which may change from place to place.

Let $(Y, Z) \in \mathscr{S}^{\infty}(\mathbb{R}) \times \mathscr{H}^{\infty}(\mathbb{R})$ be a unique solution to the BSDE (3.1).
Step 1: We show that for any $p \geq 2$,
i) $(Y, Z) \in \mathbb{L}_{1, p}^{a}(\mathbb{R}) \times \mathbb{L}_{1, p}^{a}(\mathbb{R})$ and $(\nabla Y, \nabla Z) \in \mathscr{S}^{p}(H) \times \mathscr{H}^{p}(H)$,
ii) $(D . Y, D . Z) \in \mathscr{S}_{r c}^{2}(\mathbb{R}, \bar{P}) \times \mathscr{H}^{2}(\mathbb{R}, \bar{P})$ and for almost all $0 \leq u, t \leq T$,

$$
\left|D_{u} Y_{t}\right|+E\left[\int_{t}^{T}\left|D_{u} Z_{s}\right|^{2} d s \mid \mathcal{F}_{t}\right]+\left\|\nabla Y_{t}\right\|_{H}+\left|Z_{t}\right| \leq C
$$

iii) $(D . Y, D . Z) \in \mathscr{S}_{r c}^{p}(\mathbb{R}, \bar{P}) \times \mathscr{H}^{p}(\mathbb{R}, \bar{P})$.

Let $p \geq 2$. (A5) implies (A3)'. Hence, by Corollary 3.1.3, i) holds.
We show ii). $(\nabla Y, \nabla Z) \in \mathscr{S}^{p}(H) \times \mathscr{H}^{p}(H)$ solves (3.2). (D.Y, D.Z) belongs to $\mathscr{S}_{r c}^{2}(\mathbb{R}, \bar{P}) \times \mathscr{H}^{2}(\mathbb{R}, \bar{P})$ and solves

$$
\begin{align*}
& D_{u} Y_{t}=D_{u} \xi-\mathbf{1}_{(t, T]}(u) Z_{u} \\
& +\int_{t}^{T}\left\{D_{u} f\left(s, Y_{s}, Z_{s}\right)+\partial_{y} f\left(s, Y_{s}, Z_{s}\right) D_{u} Y_{s}+\partial_{z} f\left(s, Y_{s}, Z_{s}\right) D_{u} Z_{s}\right\} d s \\
& -\int_{t}^{T} D_{u} Z_{s} d W_{s}, \quad 0 \leq t \leq T, \quad \text { a.e. } u \in[0, T] . \tag{3.20}
\end{align*}
$$

Take $u \in[0, T]$ satisfying (3.20). Then, $\left(D_{u} Y, D_{u} Z\right) \in \mathscr{S}_{r c}^{2}(\mathbb{R}) \times \mathscr{H}^{2}(\mathbb{R})$ solves

$$
\begin{aligned}
& D_{u} Y_{t}=D_{u} \xi \\
& +\int_{t}^{T}\left\{D_{u} f\left(s, Y_{s}, Z_{s}\right)+\partial_{y} f\left(s, Y_{s}, Z_{s}\right) D_{u} Y_{s}+\partial_{z} f\left(s, Y_{s}, Z_{s}\right) D_{u} Z_{s}\right\} d s \\
& -\int_{t}^{T} D_{u} Z_{s} d W_{s}, \quad u \leq t \leq T .
\end{aligned}
$$

Lemma 3.4.6 yields that there exists a $\gamma>0$ such that

$$
\begin{aligned}
\left|D_{u} Y_{t}\right|^{2} e^{\gamma t}+\frac{1}{2} & E\left[\int_{t}^{T} e^{\gamma s}\left|D_{u} Z_{s}\right|^{2} d s \mid \mathcal{F}_{t}\right] \\
& \leq E\left[\left|D_{u} \xi\right|^{2} e^{\gamma T}+\int_{t}^{T} e^{\gamma s}\left|D_{u} f\left(s, Y_{s}, Z_{s}\right)\right| d s \mid \mathcal{F}_{t}\right], \quad u \leq t \leq T
\end{aligned}
$$

By (A5)-1),6), we obtain

$$
\left|D_{u} Y_{t}\right|^{2}+E\left[\int_{t}^{T}\left|D_{u} Z_{s}\right|^{2} d s \mid \mathcal{F}_{t}\right] \leq C, \quad u \leq t \leq T
$$

If $0 \leq t<u$, then $D_{u} Y_{t}=D_{u} Z_{t}=0$ and

$$
\begin{aligned}
E\left[\int_{t}^{T}\left|D_{u} Z_{s}\right|^{2} d s \mid \mathcal{F}_{t}\right] & =E\left[\int_{u}^{T}\left|D_{u} Z_{s}\right|^{2} d s \mid \mathcal{F}_{t}\right] \\
& =E\left[E\left[\int_{u}^{T}\left|D_{u} Z_{s}\right|^{2} d s \mid \mathcal{F}_{u}\right] \mid \mathcal{F}_{t}\right]
\end{aligned}
$$

Thus, we get

$$
\begin{equation*}
\left|D_{u} Y_{t}\right|^{2}+E\left[\int_{t}^{T}\left|D_{u} Z_{s}\right|^{2} d s \mid \mathcal{F}_{t}\right] \leq C, \quad 0 \leq t \leq T \tag{3.21}
\end{equation*}
$$

By taking integrals with respect to u, we obtain

$$
\left\|\nabla Y_{t}\right\|_{H}^{2} \leq C, \quad 0 \leq t \leq T
$$

Since $D_{t} Y_{t}=Z_{t}$ for almost all $t \in[0, T]$ and by (3.21), $\left|Z_{t}\right| \leq C$ for almost all $t \in[0, T]$. Thus, we get for almost all $u, t \in[0, T]$,

$$
\left|D_{u} Y_{t}\right|+E\left[\int_{t}^{T}\left|D_{u} Z_{s}\right|^{2} d s \mid \mathcal{F}_{t}\right]+\left\|\nabla Y_{t}\right\|_{H}+\left|Z_{t}\right| \leq C
$$

We will show iii). By ii), $(D . Y, D . Z) \in \mathscr{S}_{r c}^{2}(\mathbb{R}, \bar{P}) \times \mathscr{H}^{2}(\mathbb{R}, \bar{P})$ is a unique solution to the BSDE (3.20). Namely, putting $\bar{Y}_{t}^{1}(u)=D_{u} Y_{t}-\mathbf{1}_{[0, t]}(u) Z_{u}$, $\left(\bar{Y}^{1}(\cdot), D . Z\right) \in \mathscr{S}^{2}(\mathbb{R}, \bar{P}) \times \mathscr{H}^{2}(\mathbb{R}, \bar{P})$ is a unique solution to the BSDE;

$$
\begin{aligned}
& \bar{Y}_{t}^{1}(u)=D_{u} \xi-Z_{u}+\int_{t}^{T}\left\{D_{u} f\left(s, Y_{s}, Z_{s}\right)+\partial_{y} f\left(s, Y_{s}, Z_{s}\right) \mathbf{1}_{[0, s]}(u) Z_{u}\right. \\
&\left.+\partial_{y} f\left(s, Y_{s}, Z_{s}\right) \bar{Y}_{s}^{1}(u)+\partial_{z} f\left(s, Y_{s}, Z_{s}\right) D_{u} Z_{s}\right\} d s \\
& \quad-\int_{t}^{T} D_{u} Z_{s} d W_{s}, \quad 0 \leq t \leq T, \quad \text { a.e. } u \in[0, T]
\end{aligned}
$$

Let $p \geq 2$. By ii) and (A5)-3),6), we get

$$
\begin{aligned}
& E\left[\int_{0}^{T}\left(\int_{0}^{T}\left|D_{u} f\left(s, Y_{s}, Z_{s}\right)+\partial_{y} f\left(s, Y_{s}, Z_{s}\right) \mathbf{1}_{[0, s]}(u) Z_{u}\right| d s\right)^{p} d u\right]<\infty \\
& E\left[\int_{0}^{T} \sup _{0 \leq t \leq T}\left|\mathbf{1}_{[0, t]}(u) Z_{u}\right|^{p} d u\right]<\infty .
\end{aligned}
$$

Thus, we obtain $(D . Y, D . Z) \in \mathscr{S}_{r c}^{p}(\mathbb{R}, \bar{P}) \times \mathscr{H}^{p}(\mathbb{R}, \bar{P})$.
Step 2: We show the following Claims 1-4 for $k \geq 2$ by induction:
Claim 1 Let $p \geq 2$. Then, $\left(\nabla^{k-1} Y, \nabla^{k-1} Z\right) \in \mathbb{L}_{1, p}^{a}\left(H^{\otimes(k-1)}\right) \times \mathbb{L}_{1, p}^{a}\left(H^{\otimes(k-1)}\right)$ and $\left(\nabla^{k} Y, \nabla^{k} Z\right) \in \mathscr{S}^{p}\left(H^{\otimes k}\right) \times \mathscr{H}^{p}\left(H^{\otimes k}\right)$ is a unique solution to the BSDE;

$$
\begin{aligned}
\nabla^{k} Y_{t}= & \nabla^{k} \xi-\sum_{i=0}^{k-1} \nabla^{i}\left(\int_{\cdot \wedge t} \nabla^{k-1-i} Z_{s} d s\right) \\
& +\int_{t}^{T}\left\{A_{s}^{k}+B_{s}^{k} \nabla^{k} Y_{s}+\Gamma_{s}^{k} \nabla^{k} Z_{s}\right\} d s-\int_{t}^{T} \nabla^{k} Z_{s} d W_{s}, \quad 0 \leq t \leq T
\end{aligned}
$$

where $B_{t}^{k}=\partial_{y} f\left(t, Y_{t}, Z_{t}\right), \Gamma_{t}^{k}=\partial_{z} f\left(t, Y_{t}, Z_{t}\right)$ and A^{k} is defined inductively as

$$
\begin{aligned}
& A_{t}^{1}=\nabla f\left(t, Y_{t}, Z_{t}\right), \\
& A_{t}^{k}=\nabla A_{t}^{k-1}+{ }^{\nabla} B_{t}^{k-1} \nabla^{k-1} Y_{t}+{ }^{\nabla} \Gamma_{t}^{k-1} \nabla^{k-1} Z_{t}, \quad k \geq 2
\end{aligned}
$$

Moreover, it holds that

$$
\begin{align*}
A_{t}^{k}= & \nabla^{k} f\left(t, Y_{t}, Z_{t}\right) \\
& +\sum_{1, k}\left(\nabla^{\alpha_{1}} Y_{t} \otimes \cdots \otimes \nabla^{\alpha_{m-1-r}} Y_{t}\right. \\
& \left.\otimes \nabla^{\beta_{1}} Z_{t} \otimes \cdots \otimes \nabla^{\beta_{r}} Z_{t} \otimes \nabla^{\gamma} \partial_{y}^{m-1-r} \partial_{z}^{r} f\left(t, Y_{t}, Z_{t}\right)\right)^{\Sigma} \\
& +\sum_{2, k} \partial_{y}^{m-r} \partial_{z}^{r} f\left(t, Y_{t}, Z_{t}\right) \\
& \quad \times\left(\nabla^{\alpha_{1}} Y_{t} \otimes \cdots \otimes \nabla^{\alpha_{m-r}} Y_{t} \otimes \nabla^{\beta_{1}} Z_{t} \otimes \cdots \otimes \nabla^{\beta_{r}} Z_{t}\right)^{\Sigma} \tag{3.22}
\end{align*}
$$

where the notations of summation represent

$$
\sum_{1, k}:=\sum_{m=2}^{k} \sum_{r=0}^{m-1} \sum_{\substack{\alpha \in \mathbb{N}_{N D}^{m-1-r} \\ \beta \in \mathbb{N}^{N} \\ \gamma \in \mathbb{N} \\|\alpha|+|\beta|+\gamma=k}}, \quad \sum_{2, k}:=\sum_{m=2}^{k} \sum_{r=0}^{m} \sum_{\substack{\alpha \in \mathbb{N}^{m D} \\ \beta \in \mathbb{N}_{\mathrm{ND}} \\|\alpha|+|\beta|=k}},
$$

$\mathbb{N}_{\mathrm{ND}}^{k}$ and the superscript Σ represent the same as in the proof of Theorem 3.4.1.

Claim 2 The following holds;

$$
E\left[\int_{0}^{T}\left(\int_{0}^{T}\left\|\tilde{K}_{u} A_{s}^{k}\right\|_{H^{\otimes(k-1)}} d s\right)^{2} d u\right]<\infty
$$

In addition, $\left(D . \nabla^{k-1} Y, D . \nabla^{k-1} Z\right) \in \mathscr{S}_{r c}^{2}\left(H^{\otimes(k-1)}, \bar{P}\right) \times \mathscr{H}^{2}\left(H^{\otimes(k-1)}, \bar{P}\right)$ and $D_{t} \nabla^{k-1} Y_{t}=\nabla^{k-1} Z_{t}$ for almost all $t \in[0, T]$.

Claim 3 For almost all $0 \leq t \leq T, u \in[0, T]^{k}$ and $v \in[0, T]^{k-1}$,

$$
\left|D_{u}^{k} Y_{t}\right|+E\left[\int_{t}^{T}\left|D_{u}^{k} Z_{s}\right|^{2} d s \mid \mathcal{F}_{t}\right]+\left|D_{v}^{k-1} Z_{t}\right|+\left\|\nabla^{k} Y_{t}\right\|_{H^{\otimes k}}+\left\|\nabla^{k-1} Z_{t}\right\|_{H^{\otimes(k-1)}} \leq C
$$

Claim $4\left(D . \nabla^{k-1} Y, D . \nabla^{k-1} Z\right) \in \mathscr{S}_{r c}^{\infty}\left(H^{\otimes(k-1)}, \bar{P}\right) \times \mathscr{H}^{\infty}\left(H^{\otimes(k-1)}, \bar{P}\right)$.
We show the case when $k=2$. Let $p \geq 2$. By Corollary 3.3.2, $\left(\nabla^{2} Y, \nabla^{2} Z\right) \in$ $\mathscr{S}^{p}\left(H^{\otimes 2}\right) \times \mathscr{H}^{p}\left(H^{\otimes 2}\right)$ solves (3.11). Then, Claim 1 holds. As in the proof of Theorem 3.4.1, Claim 2 holds. We will show Claim 3 and 4.

We now prove Claim 3. For a.e. $(u, v) \in[0, T]^{2},\left(D_{u, v}^{2} Y, D_{u, v}^{2} Z\right) \in \mathscr{S}^{2}(\mathbb{R}) \times$ $\mathscr{H}^{2}(\mathbb{R})$ solves

$$
D_{u, v}^{2} Y_{t}=D_{u, v}^{2} \xi+\int_{t}^{T}\left\{\tilde{K}_{u, v}^{2} A_{s}^{2}+\partial_{y} f\left(s, Y_{s}, Z_{s}\right) D_{u, v}^{2} Y_{s}+\partial_{z} f\left(s, Y_{s}, Z_{s}\right) D_{u, v}^{2} Z_{s}\right\} d s
$$

$$
-\int_{t}^{T} D_{u, v}^{2} Z_{s} d W_{s}, \quad u \vee v \leq t \leq T
$$

where

$$
\begin{aligned}
\tilde{K}_{u, v}^{2} A_{s}^{2}= & D_{u, v}^{2} f\left(s, Y_{s}, Z_{s}\right)+D_{u} Y_{s} D_{v} \partial_{y} f\left(s, Y_{s}, Z_{s}\right)+D_{u} Z_{s} D_{v} \partial_{z} f\left(s, Y_{s}, Z_{s}\right) \\
& +D_{u} \partial_{y} f\left(s, Y_{s}, Z_{s}\right) D_{v} Y_{s}+D_{u} \partial_{z} f\left(s, Y_{s}, Z_{s}\right) D_{v} Z_{s} \\
& +\partial_{y}^{2} f\left(s, Y_{s}, Z_{s}\right) D_{u} Y_{s} D_{v} Y_{s}+\partial_{y} \partial_{z} f\left(s, Y_{s}, Z_{s}\right) D_{u} Y_{s} D_{v} Z_{s} \\
& +\partial_{z} \partial_{y} f\left(s, Y_{s}, Z_{s}\right) D_{u} Z_{s} D_{v} Y_{s}+\partial_{z}^{2} f\left(s, Y_{s}, Z_{s}\right) D_{u} Z_{s} D_{v} Z_{s}
\end{aligned}
$$

Fix a.e. $(u, v) \in[0, T]^{2}$ as above. By Lemma 3.4.6, there exists a $\gamma_{2}>0$ such that

$$
\begin{align*}
& \left|D_{u, v}^{2} Y_{t}\right|^{2} e^{\gamma_{2} t}+\frac{1}{2} E\left[\int_{t}^{T} e^{\gamma_{2} s}\left|D_{u, v}^{2} Z_{s}\right|^{2} d s \mid \mathcal{F}_{t}\right] \\
& \quad \leq E\left[\left|D_{u, v}^{2} \xi\right|^{2} e^{\gamma_{2} T}+\int_{t}^{T} e^{\gamma_{2} s}\left|\tilde{K}_{u, v}^{2} A_{s}^{2}\right|^{2} d s \mid \mathcal{F}_{t}\right], \quad u \vee v \leq t \leq T \tag{3.23}
\end{align*}
$$

Since $\sup _{u, t, \omega}\left|D_{u} Z_{t}(\omega)\right|<\infty$, by (A5)-3),5),6) and Step 1-ii), we see for almost all $s \in[0, T]$,

$$
\left|\tilde{K}_{u, v}^{2} A_{s}^{2}\right|^{2} \leq C
$$

Hence, we get

$$
E\left[\int_{t}^{T}\left|\tilde{K}_{u, v}^{2} A_{s}^{2}\right|^{2} d s \mid \mathcal{F}_{t}\right] \leq C
$$

By Step 1-ii), (A5)-1) and (3.23), we see

$$
\left|D_{u, v}^{2} Y_{t}\right|+E\left[\int_{t}^{T}\left|D_{u, v}^{2} Z_{s}\right|^{2} d s \mid \mathcal{F}_{t}\right] \leq C, \quad u \vee v \leq t \leq T
$$

Thus, in the same manner as Step 1-ii), we obtain for almost all $u, v, t \in[0, T]$,

$$
\left|D_{u, v}^{2} Y_{t}\right|+E\left[\int_{t}^{T}\left|D_{u, v}^{2} Z_{s}\right|^{2} d s \mid \mathcal{F}_{t}\right] \leq C
$$

And then, for almost all $v, t \in[0, T]$, we get

$$
\left|D_{v} Z_{t}\right|=\left|D_{v} D_{t} Y_{t}\right| \leq C
$$

Integration of $\left|D_{u, v}^{2} Y_{t}\right|^{2}$ and $\left|D_{v} Z_{t}\right|^{2}$ with respect to u and v yield also that

$$
\left\|\nabla^{2} Y_{t}\right\|_{H^{\otimes 2}}+\left\|\nabla Z_{t}\right\|_{H} \leq C .
$$ Claim 3 is proved.

We now prove Claim 4. $(D . \nabla Y, D . \nabla Z) \in \mathscr{S}_{r c}^{2}(H, \bar{P}) \times \mathscr{H}^{2}(H, \bar{P})$ is a unique solution to the BSDE;

$$
\begin{aligned}
D_{u} \nabla Y_{t}= & D_{u} \nabla \xi-D_{u}\left(\int_{\cdot \wedge t} Z_{s} d s\right)-\mathbf{1}_{(t, T]}(u) \nabla Z_{u} \\
& +\int_{t}^{T}\left\{\tilde{K}_{u} A_{s}^{2}+\partial_{y} f\left(s, Y_{s}, Z_{s}\right) D_{u} \nabla Y_{s}+\partial_{z} f\left(s, Y_{s}, Z_{s}\right) D_{u} \nabla Z_{s}\right\} d s \\
& \quad-\int_{t}^{T} D_{u} \nabla Z_{s} d W_{s}, \quad 0 \leq t \leq T, \quad d u \otimes d P-\text { a.e. }
\end{aligned}
$$

Namely, putting $\bar{Y}_{t}^{2}(u)=D_{u} \nabla Y_{t}-D_{u}\left(\int_{0}^{\wedge t} Z_{s} d s\right)-\mathbf{1}_{[0, t]}(u) \nabla Z_{u},\left(\bar{Y}^{2}(\cdot), D_{u} \nabla Z\right) \in$ $\mathscr{S}^{2}(H, \bar{P}) \times \mathscr{H}^{2}(H, \bar{P})$ is a unique solution to the BSDE;

$$
\begin{aligned}
\bar{Y}_{t}^{2}(u)=D_{u} \nabla \xi-D_{u}(& \left(\int_{0} Z_{s} d s\right)-\nabla Z_{u} \\
+ & \int_{t}^{T}\left\{\tilde{K}_{u} A_{s}^{2}+\partial_{y} f\left(s, Y_{S}, Z_{s}\right)\left(D_{u}\left(\int_{0}^{\cdot \wedge s} Z_{r} d r\right)+\mathbf{1}_{[0, s]}(u) \nabla Z_{u}\right)\right. \\
& \left.\quad+\partial_{y} f\left(s, Y_{s}, Z_{s}\right) \bar{Y}_{s}^{2}(u)+\partial_{z} f\left(s, Y_{s}, Z_{s}\right) D_{u} \nabla Z_{s}\right\} d s \\
& \quad-\int_{t}^{T} D_{u} \nabla Z_{s} d W_{s}, \quad 0 \leq t \leq T, \quad d u \otimes d P \text {-a.e. }
\end{aligned}
$$

Let $p \geq 2$. Since $\left\|D_{u}\left(\int_{0}^{\wedge s} Z_{r} d r\right)\right\|_{H}^{2}=\int_{0}^{s}\left|D_{u} Z_{r}\right|^{2} d r$ and by Claim 3 and (A5)3),5),6), we see

$$
\begin{aligned}
& E\left[\int_{0}^{T}\left(\int_{0}^{T}\left\|\tilde{K}_{u} A_{s}^{2}+\partial_{y} f\left(s, Y_{S}, Z_{s}\right)\left(D_{u}\left(\int_{0}^{\cdot \wedge s} Z_{r} d r\right)+\mathbf{1}_{[0, s]}(u) \nabla Z_{u}\right)\right\|_{H} d s\right)^{p} d u\right] \\
& \leq C\left(1+E\left[\int_{0}^{T}\left\{\sup _{0 \leq t \leq T}\left|D_{u} Y_{t}\right|^{p}+\left(\int_{0}^{T}\left|D_{u} Z_{s}\right|^{2} d s\right)^{\frac{p}{2}}\right\} d u\right]\right)<\infty \\
& E\left[\int_{0}^{T} \sup _{0 \leq t \leq T}\left\|D_{u}\left(\int_{0}^{\cdot \wedge t} Z_{s} d s\right)+\mathbf{1}_{[0, t]}(u) \nabla Z_{u}\right\|_{H}^{p} d u\right]<\infty .
\end{aligned}
$$

Thus, we obtain $(D . \nabla Y, D . \nabla Z) \in \mathscr{S}_{r c}^{p}(H, \bar{P}) \times \mathscr{H}^{p}(H, \bar{P})$. The proofs of Claims 1-4 for $k=2$ completes.

Next, assume $k>2$ and Claims 1-4 for $2,3, \ldots, k-1$ hold.
We will show Claim 1. Let $p \geq 2$. By the inductive assumption, $\left(\nabla^{k-1} Y, \nabla^{k-1} Z\right) \in$ $\mathscr{S}^{2 p}\left(H^{\otimes(k-1)}\right) \times \mathscr{H}^{2 p}\left(H^{\otimes(k-1)}\right)$ is a unique solution to the BSDE;
$\nabla^{k-1} Y_{t}=\nabla^{k-1} \xi-\sum_{i=0}^{k-2} \nabla^{i}\left(\int_{. \wedge t} \nabla^{k-2-i} Z_{s} d s\right)$

$$
\begin{equation*}
+\int_{t}^{T}\left\{A_{s}^{k-1}+B_{s}^{k-1} \nabla^{k-1} Y_{s}+\Gamma_{s}^{k-1} \nabla^{k-1} Z_{s}\right\} d s-\int_{t}^{T} \nabla^{k-1} Z_{s} d W_{s}, \quad 0 \leq t \leq T \tag{3.24}
\end{equation*}
$$

where $B_{t}^{k-1}=\partial_{y} f\left(t, Y_{t}, Z_{t}\right), \Gamma_{t}^{k-1}=\partial_{z} f\left(t, Y_{t}, Z_{t}\right)$,

$$
\begin{aligned}
& A_{t}^{k-1}=\nabla^{k} f(t,\left.Y_{t}, Z_{t}\right) \\
&+\sum_{1, k-1}\left(\nabla^{\alpha_{1}} Y_{t} \otimes \cdots \otimes \nabla^{\alpha_{m-1-r}} Y_{t}\right. \\
&\left.\quad \otimes \nabla^{\beta_{1}} Z_{t} \otimes \cdots \otimes \nabla^{\beta_{r}} Z_{t} \otimes \nabla^{\gamma} \partial_{y}^{m-1-r} \partial_{z}^{r} f\left(t, Y_{t}, Z_{t}\right)\right)^{\Sigma} \\
& \quad+\sum_{2, k-1} \partial_{y}^{m-r} \partial_{z}^{r} f\left(t, Y_{t}, Z_{t}\right) \\
& \quad \quad \times\left(\nabla^{\alpha_{1}} Y_{t} \otimes \cdots \otimes \nabla^{\alpha_{m-r}} Y_{t} \otimes \nabla^{\beta_{1}} Z_{t} \otimes \cdots \otimes \nabla^{\beta_{r}} Z_{t}\right)^{\Sigma}
\end{aligned}
$$

We show $\left(\nabla^{k-1} Y, \nabla^{k-1} Z\right) \in \mathbb{L}_{1, p}^{a}\left(H^{\otimes(k-1)}\right) \times \mathbb{L}_{1, p}^{a}\left(H^{\otimes(k-1)}\right)$ by applying Theorem 3.2.5. By (3.24) and (A5)-5), we see (A2)-3) is satisfied. The correspondence to (3.6) is as follows;

$$
\begin{aligned}
\xi & =\nabla^{k-1} \xi \\
\zeta_{t} & =\sum_{i=0}^{k-2} \nabla^{i}\left(\int_{0}^{\cdot \wedge t} \nabla^{k-2-i} Z_{s} d s\right),
\end{aligned}
$$

which satisfy (A2)-1),4). We see that for any $F, G \in H^{\otimes(k-1)}$,
${ }^{\nabla} B_{t}^{k-1} F=\nabla \partial_{y} f\left(t, Y_{t}, Z_{t}\right) \otimes F+\partial_{y}^{2} f\left(t, Y_{t}, Z_{t}\right) \nabla Y_{t} \otimes F+\partial_{z} \partial_{y} f\left(t, Y_{t}, Z_{t}\right) \nabla Z_{t} \otimes F$, $\tilde{B}_{t}^{k-1}=\partial_{y} f\left(t, Y_{t}, Z_{t}\right)$,
${ }^{\nabla} \Gamma_{t}^{k-1} G=\nabla \partial_{z} f\left(t, Y_{t}, Z_{t}\right) \otimes G+\partial_{y} \partial_{z} f\left(t, Y_{t}, Z_{t}\right) \nabla Y_{t} \otimes G+\partial_{z}^{2} f\left(t, Y_{t}, Z_{t}\right) \nabla Z_{t} \otimes G$, $\tilde{\Gamma}_{t}^{k-1}=\partial_{z} f\left(t, Y_{t}, Z_{t}\right)$.

Hence, (A2)-6) is satisfied.
By messy but not difficult calculation, we obtain that $\nabla A_{t}^{k-1}+{ }^{\nabla} B_{t}^{k-1} \nabla^{k-1} Y_{t}+$ ${ }^{\nabla} \Gamma_{t}^{k-1} \nabla^{k-1} Z_{t}$ is equal to the right-hand side of (3.22). Then by (A5)-3),5),6), we get

$$
\begin{aligned}
& E\left[\left(\int_{0}^{T}\left\|\nabla A_{s}^{k-1}\right\|_{H^{\otimes k}} d s\right)^{p}\right] \\
& \leq C\left\{1+\sum_{\substack{m, r \in \mathbb{Z}_{+} \\
1 \leq m+r \leq 2}} \sum_{\substack{\alpha \in\left(\mathbb{Z}_{+} \cap[1, k-1]\right)^{m+r} \\
m+r \leq|\alpha| \leq k}} E\left[\left(\int_{0}^{T} \prod_{j=1}^{m}\left\|\nabla^{\alpha_{j}} Y_{s}\right\|_{H^{\otimes \alpha_{j}}} \prod_{j^{\prime}=1}^{r}\left\|\nabla^{\alpha_{j^{\prime}+m}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m}}} d s\right)^{p}\right]\right.
\end{aligned}
$$

$$
\begin{equation*}
\left.+\sum_{\substack{m, r \in \mathbb{Z}_{+} \\ 3 \leq m+r \leq k}} \sum_{\substack{\alpha \in\left(\mathbb{Z}_{+} \cap[1, k-2]\right)^{m+r} \\ m+r \leq|\alpha| \leq k}} E\left[\left(\int_{0}^{T} \prod_{j=1}^{m}\left\|\nabla^{\alpha_{j}} Y_{s}\right\|_{H^{\otimes \alpha_{j}}} \prod_{j^{\prime}=1}^{r}\left\|\nabla^{\alpha_{j^{\prime}+m}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m}}} d s\right)^{p}\right]\right\} \tag{3.25}
\end{equation*}
$$

where the products in (3.25) are defined to take 1 when $m=0$ or $r=0$. By the Hölder inequality, for each term of the first summation in (3.25), we see

$$
\begin{aligned}
& E\left[\left(\int_{0}^{T} \prod_{j=1}^{m}\left\|\nabla^{\alpha_{j}} Y_{t}\right\|_{H^{* \alpha_{j}}} \prod_{j^{\prime}=1}^{r}\left\|\nabla^{\alpha_{j^{\prime}+m}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m}}} d s\right)^{p}\right] \\
& \leq\left\{E\left[\sup _{0 \leq t \leq T} \prod_{j=1}^{m}\left\|\nabla^{\alpha_{j}} Y_{t}\right\|_{H^{\otimes \alpha_{j}}}^{2 p}\right]\right\}^{\frac{1}{2}}\left\{E\left[\left(\int_{0}^{T} \prod_{j^{\prime}=1}^{r}\left\|\nabla^{\alpha_{j^{\prime}+m}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m}}} d s\right)^{2 p}\right]\right\}^{\frac{1}{2}} \\
& \leq\left(1+T^{\frac{p}{2}}\right) \prod_{j=1}^{m}\left\|\nabla^{\alpha_{j}} Y\right\|_{\mathscr{S}^{2 p_{j}}\left(H^{\otimes \alpha_{j}}\right)}^{p} \prod_{j^{\prime}=1}^{r}\left\|\nabla^{\alpha_{j^{\prime}+m}} Z\right\|_{\mathscr{H}^{2 q_{j^{\prime}}\left(H^{\left.\otimes \alpha_{j^{\prime}+m}\right)}\right.}}^{p} \\
& <\infty
\end{aligned}
$$

where $1 / p=\sum_{j=1}^{m} 1 / p_{j}=\sum_{j^{\prime}=1}^{r} 1 / q_{j^{\prime}}$. By the inductive assumption Claim 3, all $\left\|\nabla^{\alpha_{j}} Y_{s}\right\|_{H^{\otimes \alpha_{j}}}$ and $\left\|\nabla^{\alpha_{j^{\prime}+m}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m}}}$ in the second summation in (3.25) are bounded; because for each $1 \leq i \leq m+r, \alpha_{i} \leq k-2$. Therefore, the second summation in (3.25) is bounded. Thus, we get

$$
E\left[\left(\int_{0}^{T}\left\|\nabla A_{s}^{k-1}\right\|_{H^{\otimes k}} d s\right)^{p}\right]<\infty
$$

(A2)-5) is satisfied.
Now, we see that (A2)-2),3) are satisfied because the properties corresponding to them are shown in previous k on (A2)-7) and Claim 2.

From the above results, applying Theorem 3.2 .5 yields that $\left(\nabla^{k-1} Y, \nabla^{k-1} Z\right) \in$ $\mathbb{L}_{1, p}^{a}\left(H^{\otimes(k-1)}\right) \times \mathbb{L}_{1, p}^{a}\left(H^{\otimes(k-1)}\right)$ and that $\left(\nabla^{k} Y, \nabla^{k} Z\right) \in \mathscr{S}^{p}\left(H^{\otimes k}\right) \times \mathscr{H}^{p}\left(H^{\otimes k}\right)$ is a unique solution to the BSDE;

$$
\begin{aligned}
& \nabla^{k} Y_{t}=\nabla^{k} \xi-\sum_{i=0}^{k-1} \nabla^{i}\left(\int_{\cdot \wedge t} \nabla^{k-1-i} Z_{s} d s\right) \\
& +\int_{t}^{T}\left\{\nabla A_{s}^{k-1}+{ }^{\nabla} B^{k-1} \nabla^{k-1} Y_{s}+{ }^{\nabla} \Gamma^{k-1} \nabla^{k-1} Z_{s}+\tilde{B}_{s}^{k-1} \nabla^{k} Y_{s}+\tilde{\Gamma}_{s}^{k-1} \nabla^{k} Z_{s}\right\} d s \\
& -\int_{t}^{T} \nabla^{k} Z_{s} d W_{s}, \quad 0 \leq t \leq T
\end{aligned}
$$

Define $A_{t}^{k}=\nabla A_{t}^{k-1}+{ }^{\nabla} B_{t}^{k-1} \nabla^{k-1} Y_{t}+{ }^{\nabla} \Gamma_{t}^{k-1} \nabla^{k-1} Z_{t}$. As mentioned above, A_{t}^{k} is written as (3.22). Claim 1 is proved.

We show Claim 2. By (3.22) and (A5)-3),5),6), we get

$$
\begin{align*}
& E\left[\int_{0}^{T}\left(\int_{0}^{T}\left\|\tilde{K}_{u} A_{s}^{k}\right\|_{H^{\otimes(k-1)}} d s\right)^{2} d u\right] \\
& \leq C\left\{1+\sum_{1.1} E\left[\int_{0}^{T}\left(I_{1}^{m, r, \alpha}(u)\right)^{2} d u\right]+\sum_{1.2} E\left[\int_{0}^{T}\left(I_{1}^{m, r, \alpha}(u)\right)^{2} d u\right]\right. \\
& \left.\quad+\sum_{2.1} E\left[\int_{0}^{T}\left(I_{2}^{m, r, \alpha}(u)\right)^{2} d u\right]+\sum_{2.2} E\left[\int_{0}^{T}\left(I_{2}^{m, r, \alpha}(u)\right)^{2} d u\right]\right\} \tag{3.26}
\end{align*}
$$

where

$$
\begin{aligned}
& I_{1}^{m, r, \alpha}(u)=\int_{0}^{T}\left\|D_{u} \nabla^{\alpha_{1}-1} Y_{s}\right\|_{H^{\otimes\left(\alpha_{1}-1\right)}} \prod_{j=2}^{m}\left\|\nabla^{\alpha_{j}} Y_{s}\right\|_{H^{\otimes \alpha_{j}}} \prod_{j^{\prime}=1}^{r}\left\|\nabla^{\alpha_{j^{\prime}+m}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m}}} d s, \\
& \sum_{1.1}=\sum_{\substack{m, r \in \mathbb{Z}_{+} \\
m \geq 1 \\
1 \leq m+r \leq 2}} \sum_{\substack{\alpha \in\left(\mathbb{Z}_{+} \cap[1, k-1]\right)^{m+r} \\
m+r \leq|\alpha| \leq k}}, \quad \sum_{1.2}=\sum_{\substack{m, r \in \mathbb{Z}_{+} \\
m \geq 1 \\
3 \leq m+r \leq k}} \sum_{\substack{\alpha \in\left(\mathbb{Z}_{+} \cap[1, k-2]\right)^{m+r} \\
m+r \leq|\alpha| \leq k}}, \\
& I_{2}^{m, r, \alpha}(u)=\int_{0}^{T}\left\|D_{u} \nabla^{\alpha_{1+m}-1} Z_{s}\right\|_{H^{\otimes\left(\alpha_{1+m}-1\right)}} \prod_{j=1}^{m}\left\|\nabla^{\alpha_{j}} Y_{s}\right\|_{H^{\otimes \alpha_{j}}} \prod_{j^{\prime}=2}^{r}\left\|\nabla^{\alpha_{j^{\prime}+m}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m}}} d s, \\
& \sum_{2.1}=\sum_{\substack{m, r \in \mathbb{Z}_{+} \\
r \geq 1 \\
1 \leq m+r \leq 2}} \sum_{\substack{\alpha \in\left(\mathbb{Z}_{+} \cap[1, k-1]\right)^{m+r} \\
m+r \leq|\alpha| \leq k}}, \quad \sum_{2.2}=\sum_{\substack{m, r \in \mathbb{Z}_{+} \\
r \geq 1 \\
3 \leq m+r \leq k}} \sum_{\substack{\alpha \in\left(\mathbb{Z}_{+} \cap[1, k-2]\right]^{m+r} \\
m+r \leq|\alpha| \leq k}},
\end{aligned}
$$

defining a product $\prod_{j=a}^{b} x_{j}=1$ if $b<a$.
If $m, r \in \mathbb{Z}_{+}, m \geq 1,1 \leq m+r \leq 2$ and $\alpha \in\left(Z_{+} \cap[1, k-1]\right)^{m+r}, m+r \leq$ $|\alpha| \leq k$, then by the Schwarz inequality and the inductive assumption (1),

$$
\begin{aligned}
E\left[\int_{0}^{T}\left(I_{1}^{m, r, \alpha}(u)\right)^{2} d u\right] \leq E[& \int_{0}^{T} d u \int_{0}^{T}\left\|D_{u} \nabla^{\alpha_{1}-1} Y_{s}\right\|_{H^{\otimes\left(\alpha_{1}-1\right)}}^{2} d s \\
& \left.\times \int_{0}^{T} \prod_{j=2}^{m}\left\|\nabla^{\alpha_{j}} Y_{s}\right\|_{H^{\otimes \alpha_{j}}}^{2} \prod_{j^{\prime}=1}^{r}\left\|\nabla^{\alpha_{j^{\prime}+m}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m}}}^{2} d s\right] \\
\leq & \left(T+T^{2}\right) E\left[\prod_{j=1}^{m} \sup _{0 \leq t \leq T}\left\|\nabla^{\alpha_{j}} Y_{s}\right\|_{H^{\otimes \alpha_{j}}}^{2} \int_{0}^{T} \prod_{j^{\prime}=1}^{r}\left\|\nabla^{\alpha_{j^{\prime}+m}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m}}}^{2} d s\right] \\
\leq & \left(T+T^{2}\right)\left\{E\left[\prod_{j=1}^{m} \sup _{0 \leq t \leq T}\left\|\nabla^{\alpha_{j}} Y_{s}\right\|_{H^{\otimes \alpha_{j}}}^{4}\right]\right\}^{\frac{1}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \quad \times\left\{E\left[\left(\int_{0}^{T} \prod_{j^{\prime}=1}^{r}\left\|\nabla^{\alpha_{j^{\prime}+m}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m}}}^{2} d s\right)^{2}\right]\right\}^{\frac{1}{2}} \\
& \leq\left(T+T^{2}\right) \prod_{j=1}^{m}\left\|\nabla^{\alpha_{j}} Y\right\|_{\mathscr{S}^{2 p_{j}}\left(H^{\otimes \alpha_{j}}\right)}^{2} \prod_{j^{\prime}=1}^{r}\left\|\nabla^{\alpha_{j^{\prime}+m}} Z\right\|_{\mathscr{H}^{4}\left(H^{\left.\otimes \alpha_{j^{\prime}+m}\right)}\right.}^{2} \\
& <\infty
\end{aligned}
$$

where, to see in the fourth inequality above, $r \leq 1$ is used, and $1 / 2=\sum_{j=1}^{m} 1 / p_{j}$. Hence, we get

$$
\sum_{1.1} E\left[\int_{0}^{T}\left(I_{1}^{m, r, \alpha}(u)\right)^{2} d u\right]<\infty
$$

If $m, r \in \mathbb{Z}_{+}, r \geq 1,1 \leq m+r \leq 2$ and $\alpha \in\left(\mathbb{Z}_{+} \cap[1, k-1]\right)^{m+r}, m+r \leq|\alpha| \leq k$, then by the inductive assumption Claim 1,

$$
\begin{aligned}
E\left[\int_{0}^{T}\left(I_{2}^{m, r, \alpha}(u)\right)^{2} d u\right] \leq & E\left[\int_{0}^{T} d u \int_{0}^{T}\left\|D_{u} \nabla^{\alpha_{1+m}-1} Z_{s}\right\|_{H^{\otimes\left(\alpha_{1+m}-1\right)}}^{2} d s\right. \\
& \left.\times \int_{0}^{T} \prod_{j=1}^{m}\left\|\nabla^{\alpha_{j}} Y_{s}\right\|_{H^{\otimes \alpha_{j}}}^{2} \prod_{j^{\prime}=2}^{r}\left\|\nabla^{\alpha_{j^{\prime}+m}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m}}}^{2} d s\right] \\
\leq & E\left[\int_{0}^{T}\left\|\nabla^{\alpha_{1+m}} Z_{s}\right\|_{H^{\otimes \alpha_{1+m}}}^{2} d s\right. \\
& \left.\times \int_{0}^{T} \prod_{j=1}^{m}\left\|\nabla^{\alpha_{j}} Y_{s}\right\|_{H^{\otimes \alpha_{j}}}^{2} \prod_{j^{\prime}=2}^{r}\left\|\nabla^{\alpha_{j^{\prime}+m}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m}}}^{2} d s\right] \\
\leq & (1+T)\left\{E\left[\left(\int_{0}^{T}\left\|\nabla^{\alpha_{1+m}} Z_{s}\right\|_{H^{\otimes \alpha_{1+m}}}^{2} d s\right)^{2}\right]\right\}^{\frac{1}{2}} \\
& \times\left\{E\left[\prod_{j=1}^{m} \sup _{0 \leq t \leq T}\left\|\nabla^{\alpha_{j}} Y_{s}\right\|_{H^{\otimes \alpha_{j}}}^{4}\left(\int_{0}^{T} \prod_{j^{\prime}=2}^{r}\left\|\nabla^{\alpha_{j^{\prime}+m}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m}}}^{2} d s\right)^{2}\right]\right\}^{\frac{1}{2}} \\
\leq & (1+T) \prod_{j=1}^{m}\left\|\nabla^{\alpha_{j}} Y\right\|_{\mathscr{S}^{4}\left(H^{\otimes \alpha_{j}}\right)}^{2} \prod_{j^{\prime}=1}^{r}\left\|\nabla^{\alpha_{j^{\prime}+m}} Z\right\|_{\mathscr{H}^{4}\left(H^{\left.\otimes \alpha_{j^{\prime}+m}\right)}\right.} \\
< & \infty .
\end{aligned}
$$

Thus, we get

$$
\sum_{2.1} E\left[\int_{0}^{T}\left(I_{2}^{m, r, \alpha}(u)\right)^{2} d u\right]<\infty
$$

If $\alpha_{i} \leq k-2$ for $1 \leq i \leq m+r$, then by the inductive assumption Claim 3, $\left\|\nabla^{\alpha_{j}} Y_{s}\right\|_{H^{\otimes \alpha_{j}}}$ and $\left\|\nabla^{\alpha_{j^{\prime}+m}} Z_{s}\right\|_{H^{\otimes \alpha_{j^{\prime}+m}}}$ are bounded. Then, we see

$$
\sum_{1.2} E\left[\int_{0}^{T}\left(I_{1}^{m, r, \alpha}(u)\right)^{2} d u\right]+\sum_{2.2} E\left[\int_{0}^{T}\left(I_{2}^{m, r, \alpha}(u)\right)^{2} d u\right]<\infty
$$

Hence, we obtain

$$
E\left[\int_{0}^{T}\left(\int_{0}^{T}\left\|\tilde{K}_{u} A_{s}^{k}\right\| d s\right)^{2} d u\right]<\infty
$$

which implies (A2)'-8). Thus, by Theorem 3.3.1, we get $\left(D . \nabla^{k-1} Y, D . \nabla^{k-1} Z\right) \in$ $\mathscr{S}_{r c}^{2}\left(H^{\otimes(k-1)}, \bar{P}\right) \times \mathscr{H}^{2}\left(H^{\otimes(k-1)}, \bar{P}\right)$ and $D_{t} \nabla^{k-1} Y_{t}=\sum_{i=1}^{k-1} D_{t} \nabla^{i-1}\left(\int_{0}^{\cdot \wedge t} \nabla^{k-1-i} Z_{s} d s\right)+$ $\nabla^{k-1} Z_{t}$. Since for $1 \leq i \leq k-1$,

$$
\left\|D_{u} \nabla^{i-1}\left(\int_{0}^{\cdot \wedge t} \nabla^{k-1-i} Z_{s} d s\right)\right\|_{H^{\otimes(k-1)}}^{2}= \begin{cases}0, & t \leq u \\ \int_{u}^{t}\left\|D_{u} \nabla^{k-2} Z_{s}\right\|_{H^{\otimes(k-2)}}^{2} d s, & u<t\end{cases}
$$

we obtain $D_{t} \nabla^{k-1} Y_{t}=\nabla^{k-1} Z_{t}$ for almost all $t \in[0, T]$. Claim 2 is proved.
We prove Claim 3. For a.e. $u=\left(u_{1}, \ldots, u_{k}\right) \in[0, T]^{k},\left(D_{u}^{k} Y, D_{u}^{k} Z\right) \in \mathscr{S}_{r c}^{2}(\mathbb{R}) \times$ $\mathscr{H}^{2}(\mathbb{R})$ solves

$$
\begin{aligned}
D_{u}^{k} Y_{t}=D_{u}^{k} \xi+\int_{t}^{T}\left\{\tilde{K}_{u}^{k} A_{s}^{k}+\partial_{y} f\left(s, Y_{s}, Z_{s}\right) D_{u}^{k} Y_{s}\right. & \left.+\partial_{z} f\left(s, Y_{s}, Z_{s}\right) D_{u}^{k} Z_{s}\right\} d s \\
& -\int_{t}^{T} D_{u}^{k} Z_{s} d W_{s}, \quad \bar{u} \leq t \leq T
\end{aligned}
$$

where $\bar{u}=\max \left\{u_{1}, \ldots, u_{k}\right\}$. By Lemma 3.4.6, there exists a $\gamma_{k}>0$ such that

$$
\begin{align*}
\left|D_{u}^{k} Y_{t}\right|^{2} e^{\gamma_{k} t}+ & \frac{1}{2} E\left[\int_{t}^{T} e^{\gamma_{k} s}\left|D_{u}^{k} Z_{s}\right|^{2} d s \mid \mathcal{F}_{t}\right] \\
& \leq E\left[\left|D_{u}^{k} \xi\right|^{2} e^{\gamma_{k} T}+\int_{t}^{T} e^{\gamma_{k} s}\left|\tilde{K}_{u}^{k} A_{s}^{k}\right|^{2} d s \mid \mathcal{F}_{t}\right], \quad \bar{u} \leq t \leq T \tag{3.27}
\end{align*}
$$

By (3.22), we see

$$
\begin{equation*}
\left|\tilde{K}_{u}^{k} A_{s}^{k}\right|^{2} \leq C\left\{1+\sum_{1, k} \sum_{\sigma \in S_{k}} J_{u}^{1, m, r, \alpha, \beta, \sigma}(s)+\sum_{2, k} \sum_{\sigma \in S_{k}} J_{u}^{2, m, r, \alpha, \beta, \sigma}(s)\right\} \tag{3.28}
\end{equation*}
$$

where S_{k} represents the symmetric group of degree k and

$$
J_{u}^{1, m, r, \alpha, \beta, \sigma}(s)=\prod_{j=1}^{m-1-r}\left|D_{u_{j}^{\sigma, \alpha}}^{\alpha_{j}} Y_{s}\right|^{2} \prod_{j^{\prime}=1}^{r}\left|D_{u_{j^{\prime}}^{\sigma}}^{\beta_{j^{\prime}, \beta}} Z_{s}\right|^{2}\left|D_{u^{\sigma, \gamma}}^{\gamma} \partial_{y}^{m-1-r} \partial_{z}^{r} f\left(t, Y_{t}, Z_{t}\right)\right|^{2}
$$

$$
\begin{aligned}
& J_{u}^{2, m, r, \alpha, \beta, \sigma}(s)=\prod_{j=1}^{m-r}\left|D_{u_{j}^{\sigma, \alpha}}^{\alpha_{j}} Y_{s}\right|^{2} \prod_{j^{\prime}=1}^{r}\left|D_{u_{j^{\prime}}^{\beta_{j}}}^{\beta_{j^{\prime}}} Z_{s}\right|^{2} \\
& \alpha_{0}=1, \beta_{0}=1, \\
& u_{j}^{\sigma, \alpha}=\left(u_{\sigma\left(\sum_{i=1}^{j} \alpha_{i-1}\right)}, u_{\sigma\left(\sum_{i=1}^{j} \alpha_{i-1}+1\right)}, \ldots, u_{\sigma\left(\sum_{i=1}^{j} \alpha_{i-1}+\alpha_{j}-1\right)}\right), \\
& u_{j^{\prime}}^{\sigma, \beta}=\left(u_{\sigma\left(|\alpha|+\sum_{i=1}^{j^{\prime}} \beta_{i-1}\right)}, u_{\sigma\left(|\alpha|+\sum_{i=1}^{j^{\prime}} \beta_{i-1}+1\right)}, \ldots, u_{\sigma\left(|\alpha|+\sum_{i=1}^{j^{\prime}} \beta_{i-1}+\beta_{j^{\prime}}-1\right)}\right) \\
& u^{\sigma, \gamma}=\left(u_{\sigma(|\alpha|+|\beta|+1)}, u_{\sigma(|\alpha|+|\beta|+2)}, \ldots, u_{\sigma(|\alpha|+|\beta|+\gamma)}\right) .
\end{aligned}
$$

We divide the first summation of (3.28) into three ones;

$$
\sum_{1, k} \sum_{\sigma \in S_{k}} J_{u}^{1}(s)=\sum_{\substack{1, k \\ r=0}} \sum_{\sigma \in S_{k}} J_{u}^{1, m, r, \alpha, \beta, \sigma}(s)+\sum_{\substack{1, k \\ r=1}} \sum_{\sigma \in S_{k}} J_{u}^{1, m, r, \alpha, \beta, \sigma}(s)+\sum_{\substack{1, k \\ r \geq 2}} \sum_{\sigma \in S_{k}} J_{u}^{1, m, r, \alpha, \beta, \sigma}(s)
$$

If $r=0$, derivatives of Z do not appear in $J_{u}^{1, m, r, \alpha, \beta, \sigma}(s)$ and each $\alpha_{j} \leq k-1$. By the inductive assumption and (A5)-6), we get

$$
\sum_{\substack{1, k \\ r=0}} \sum_{\sigma \in S_{k}} E\left[\int_{t}^{T} J_{u}^{1, m, r, \alpha, \beta, \sigma}(s) d s \mid \mathcal{F}_{t}\right] \leq C
$$

If $r=1, \beta \in \mathbb{N}$ and $\beta_{1} \leq k-1$. By the inductive assumption and (A5)-6), we get

$$
\begin{aligned}
\sum_{\substack{1, k \\
r=1}} \sum_{\sigma \in S_{k}} E\left[\int_{t}^{T} J_{u}^{1, m, r, \alpha, \beta, \sigma}(s) d s \mid \mathcal{F}_{t}\right] & \leq C \sum_{\substack{1, k \\
r=0}} \sum_{\sigma \in S_{k}} E\left[\int_{t}^{T}\left|D_{u_{1}^{\sigma, \beta}}^{\beta_{1}} Z_{s}\right|^{2} d s \mid \mathcal{F}_{t}\right] \\
& \leq C
\end{aligned}
$$

If $r \geq 2$, each $\beta_{j^{\prime}} \leq k-2$. By the inductive assumption and (A5)-6), we get

$$
\sum_{\substack{1, k \\ r \geq 2}} \sum_{\sigma \in S_{k}} E\left[\int_{t}^{T} J_{u}^{1, m, r, \alpha, \beta, \sigma}(s) d s \mid \mathcal{F}_{t}\right] \leq C
$$

In the same manner as above, we can obtain

$$
\sum_{2, k} \sum_{\sigma \in S_{k}} E\left[\int_{t}^{T} J_{u}^{2, m, r, \alpha, \beta, \sigma}(s) d s \mid \mathcal{F}_{t}\right] \leq C
$$

Thus by (3.28), we get

$$
E\left[\int_{t}^{T}\left|\tilde{K}_{u}^{k} A_{s}^{k}\right|^{2} d s \mid \mathcal{F}_{t}\right] \leq C
$$

Hence by (3.27) and (A5)-1), we obtain

$$
\left|D_{u}^{k} Y_{t}\right|^{2}+E\left[\int_{t}^{T}\left|D_{u}^{k} Z_{s}\right|^{2} d s \mid \mathcal{F}_{t}\right] \leq C, \quad \bar{u} \leq t \leq T
$$

In the same manner as Step 1-ii), we see

$$
\left|D_{u}^{k} Y_{t}\right|^{2}+E\left[\int_{t}^{T}\left|D_{u}^{k} Z_{s}\right|^{2} d s \mid \mathcal{F}_{t}\right] \leq C, \quad 0 \leq t \leq T
$$

And then, for almost all $(v, t) \in[0, T]^{k-1} \times[0, T]$, we get

$$
\left|D_{v}^{k-1} Z_{t}\right|=\left|D_{v}^{k-1} D_{t} Y_{t}\right| \leq C .
$$

Integration of $\left|D_{u}^{k} Y_{t}\right|^{2}$ and $\left|D_{v}^{k-1} Z_{t}\right|^{2}$ with respect to u and v yield also that

$$
\left\|\nabla^{k} Y_{t}\right\|_{H^{\otimes k}}^{2}+\left\|\nabla^{k-1} Z_{t}\right\|_{H^{\otimes(k-1)}}^{2} \leq C .
$$

Claim 3 is now proved.
We show Claim 4. $\left(D . \nabla^{k-1} Y, D . \nabla^{k-1} Z\right) \in \mathscr{S}_{r c}^{2}\left(H^{\otimes(k-1)}, \bar{P}\right) \times \mathscr{H}^{2}\left(H^{\otimes(k-1)}, \bar{P}\right)$ is a unique solution to the BSDE;

$$
\begin{aligned}
& D_{u} \nabla^{k-1} Y_{t}=D_{u} \nabla^{k-1} \xi-\zeta_{T}(u)+\zeta_{t}(u) \\
& \quad+\int_{t}^{T}\left\{\tilde{K}_{u} A_{s}^{k}+\partial_{y} f\left(s, Y_{s}, Z_{s}\right) D_{u} \nabla^{k-1} Y_{s}+\partial_{z} f\left(s, Y_{s}, Z_{s}\right) D_{u} \nabla^{k-1} Z_{s}\right\} d s \\
& \quad-\int_{t}^{T} D_{u} \nabla^{k-1} Z_{s} d W_{s}, \quad 0 \leq t \leq T, \quad d u \otimes d P \text {-a.e. }
\end{aligned}
$$

where $\zeta_{t}(u)=\sum_{i=1}^{k-1} D_{u} \nabla^{i-1}\left(\int_{0}^{\wedge \lambda t} \nabla^{k-1-i} Z_{s} d s\right)+\mathbf{1}_{[0, t]}(u) \nabla^{k-1} Z_{u}$. Namely, putting $\bar{Y}_{t}^{k}(u)=D_{u} \nabla^{k-1} Y_{t}-\zeta_{t}(u),\left(\bar{Y}^{2}(\cdot), D_{u} \nabla Z\right) \in \mathscr{S}^{2}\left(H^{\otimes(k-1)}, \bar{P}\right) \times \mathscr{H}^{2}\left(H^{\otimes(k-1)}, \bar{P}\right)$ is a unique solution to the BSDE;

$$
\begin{aligned}
& \bar{Y}_{t}^{k}(u)=D_{u} \nabla^{k-1} \xi-\zeta_{T}(u) \\
& \quad+\int_{t}^{T}\left\{\tilde{K}_{u} A_{s}^{k}+\partial_{y} f\left(s, Y_{S}, Z_{s}\right) \zeta_{s}(u)\right. \\
& \left.\quad+\partial_{y} f\left(s, Y_{s}, Z_{s}\right) \bar{Y}_{s}^{k}(u)+\partial_{z} f\left(s, Y_{s}, Z_{s}\right) D_{u} \nabla^{k-1} Z_{s}\right\} d s \\
& \quad-\int_{t}^{T} D_{u} \nabla^{k-1} Z_{s} d W_{s}, \quad 0 \leq t \leq T, \quad d u \otimes d P \text {-a.e. }
\end{aligned}
$$

Let $p \geq 2$. By Claim 2, we get $D_{u} \nabla^{k-2} Z_{s}=D_{u} D_{s} \nabla^{k-2} Y_{s}$ and by Claim 3,

$$
E\left[\int_{0}^{T} \sup _{0 \leq t \leq T}\left\|\zeta_{t}(u)\right\|_{H^{\otimes(k-1)}}^{p} d u\right]
$$

$$
\begin{aligned}
& \text { CHAPTER 3. MALLIAVIN DIRREFENTIABILITY OF SOLUTIONS } \\
\leq & C E\left[\int_{0}^{T}\left\{\left(\int_{0}^{T}\left\|D_{u} \nabla^{k-2} Z_{s}\right\|_{H^{\otimes(k-2)}}^{2} d s\right)^{\frac{p}{2}}+\left\|\nabla^{k-1} Z_{u}\right\|_{H \otimes(k-1)}^{p}\right\} d u\right] \\
< & \infty .
\end{aligned}
$$

Thus in the same manner as (3.26) and (A5)-3)-6), we get
$E\left[\int_{0}^{T}\left(\int_{0}^{T}\left\|\tilde{K}_{u} A_{s}^{k}+\partial_{y} f\left(s, Y_{S}, Z_{s}\right) \zeta_{s}(u)\right\|_{H^{\otimes(k-1)}} d s\right)^{p} d u\right]$
$\leq C\left(1+\sum_{\alpha=0}^{k-2} E\left[\int_{0}^{T}\left\{\sup _{0 \leq t \leq T}\left\|D_{u} \nabla^{\alpha} Y_{t}\right\|_{H^{\otimes \alpha}}^{2 p}+\left(\int_{0}^{T}\left\|D_{u} \nabla^{\alpha} Z_{s}\right\|_{H^{\otimes \alpha}}^{2} d s\right)^{p}\right\} d u\right]\right)<\infty$.
Hence, we obtain $\left(D . \nabla^{k-1} Y, D . \nabla^{k-1} Z\right) \in \mathscr{S}_{r c}^{p}\left(H^{\otimes(k-1)}, \bar{P}\right) \times \mathscr{H}^{p}\left(H^{\otimes(k-1)}, \bar{P}\right)$.

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Professor Setsuo Taniguchi, for his patience and persistent guidance on me throughout my Ph.D period of time. I am profoundly grateful to him for all of the help, encouragement, and suggestions. Furthermore, his rigorous and uncompromised attitudes toward mathematics told me a lot of importance in studying mathematical problems. Without his valuable suggestions and contributions, it is not possible for me to achieve these results.

Bibliography

[1] O. Aboura and S. Bourguin, Density estimates for solutions to one dimensional backward SDE's, Potential Anal., 2013, 38, 573-587.
[2] F. Antonelli and A. Kohatsu-Higa, Densities of One-Dimensional Backward SDEs, Potential Anal., 2005, 22, 263-287.
[3] P. Briand and F. Confortola, Differentiability of Backward Stochastic Differential Equations in Hilbert Spaces with Monotone Generetors, Appl. Math. Optim., 2008, 57, 149-176.
[4] P. Briand, B. Delyon, Y. Hu, E. Pardoux and L. Stoica, L^{p} solutions of backward stochastic differential equations, Stochastic Process. Appl., 2003, 108, 109-129.
[5] P. Briand and C. Labart, Simulation of BSDEs By Wiener Chaos Expansion, Ann. Appl. Probab., 2014, 24, No. 3, 1129-1171.
[6] S. Chen, L^{p} solutions of one-dimensional backward stochastic differential equations with continuous coefficients, Stoch. Anal. Appl., 2010, 28, 820841.
[7] N. El Karoui, S. Peng, and M.C. Quenez, Backward stochastic differential equations in finance, Math. Finance, 1997, 7, 1-71.
[8] S. J. Fan and L. Jiang, $L^{p}(p>1)$ solutions for one-dimensional BSDEs with linear-growth generators, J. Appl. Math. Comput., 2012, 38, Issue 1, 295-304.
[9] M. Fuhrman and G. Tessitore, Nonlinear Kolmogorov Equations in Infinite Dimensional Spaces: The Backward Stochastic Differential Equations Approach and Applications to Optimal Control, Ann. Probab., 2002, 30, No. 3, 1397-1465.
[10] M. Fuhrman and G. Tessitore, Infinite Horizon Backward Stochastic Differential Equations and Elliptic Equations in Hilbert Spaces, Ann. Probab., 2004, 32, No. 1, 607-660.
[11] M. Fuhrman and G. Tessitore, Generalized Directional Gradients, Backward Stochastic Differential Equations and Mild Solutions of Semilinear Parabolic Equations, Appl. Math. Optim, 2005, 51, 279-332.
[12] G. Guatteri, On a Class of Forward-Backward Stochastic Differential Systems in Infinite Dimensions, Journal of Applied Mathematics and Stochastic Analysis, 2007, Aarticle ID 42640.
[13] Y. Hu, D. Nualart and X. Zhong, Malliavin Calculus for Backward Stochastic Differential Equations and Application to Numerical Solutions, Ann. Appl. Probab., 2011, 21, No. 6, 2379-2423.
[14] N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, 2nd ed., 1989, Kodansha.
[15] Y. Izumi, The L^{p} Cauchy sequence for one-dimensional BSDEs with linear growth generators, Stat. Probabil. Lett., 2013, 83, 1588-1594.
[16] Y. Izumi, Higher order differentiability of solutions to backward stochastic differential equations, Stochastics, 2018, 90, No. 1, 102-150.
[17] J. P. Lepeltier and J. San Martin, Backward stochastic differential equations with continuous coefficient. Statist. Probab. Lett., 1997, 32, 425-430.
[18] Q. Lin, Malliavin Derivatives of Solutions for BSDE, Chinese J. Appl. Probab. Statist., 2000, 16, No. 3, 285-294.
[19] P. Malliavin, Stochastic Analysis, 1997, Springer-Verlag.
[20] T. Mastrolia, D. Possamaï and Réveillac, Density Analysis of BSDEs. To appears in the Annals of Probability, arXiv:1402.4416, 2014.
[21] T. Mastrolia, D. Possamaï and Réveillac, On the Malliavin differentiability of BSDEs, arXiv:1404.1026, 2015.
[22] D. Nualart, The Malliavin Calculus and Related Topics, 2nd ed., 2006, Probability and Its Applications, Springer-Verlag.
[23] E. Pardoux and S. Peng, Adapted Solutions of a Backward Stochastic Differential Equation, Systems Control Lett., 1990, 14, 55-61.
[24] E. Pardoux and S. Peng, Backward Stochastic Differential Equations and Quasilinear Parabolic Partial Differential Equations, Lecture Notes in CIS, vol. 176. Springer-Verlag, 200-217.
[25] I. Shigekawa, Stochastic Analysis, 2004, Translations of Mathematical Monographs, American Mathematical Society.
[26] W. Zhen, Y. Zhiyong, Backward stochastic viability and related properties on Z for BSDEs with applications, J. Syst. Sci. Complex, 2012, 25, 675-690.

