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Abstract

The determinantal point process, also called the fermion process, is formulated by
Macch̀ı(1975), Shirai-Takahahi(2000), and Soshnikov(2000). It appears in various
mathematical systems such as uniform spanning trees, Schur measures, uniform
lozenge tilings, the zeros of a hyperbolic Gaussian analytic function, the eigenvalue
distribution of random matrices. It describes a natural structure of repulsive particle
systems and has been extensively studied in the last two decades.

Determinant point processes are defined both on discrete sets and on continuum
sets. Of the examples given above, the first three are point processes on discrete
sets, and the latter are point processes on continuum sets. In this paper, we prove
tail triviality, the Bernoulli property, and the Gibbs property for determinant point
processes on continuum sets.

This thesis consists of four chapters. In Chapter 1, we give a brief introduction
of this thesis. In Chapter 2, we introduce tree representation of α-determinantal
point processes. The α-determinantal point process is a 1-parameter extension of
the determinantal point process. Between µ and its tree representations, equations
of correlation functions hold (Theorem 3.3.1). roughly speaking, that tree repre-
sentations preserve regional information. We prove tail triviality in the case S is
continuum from the result of the discrete case by combining tree representations
and martingale convergence. In Chapter 3, we prove isomorphism between determi-
nantal point processes with translation-invariant kernels and homogeneous Poisson
point processes in the sense of measure-preserving dynamical systems due to Orn-
stein’s theory and tree representations. In Chapter 4, we prove that for a point
process µ on Rd, the existence of logarithmic derivatives implies their Gibbs prop-
erty in a weak sense. In the case d = 1, this implies µ has continuous local density.
Due to Bufetof-Dymov-H.Osada(2019), the logarithmic derivative has calculated for
a broad class of determinantal point process on R. For example, the sine, Airy,
Bessel, and other kernels related to de Branges spaces belong to the class. From
this and our theorem, we obtain the closable of the Dirichlet form associated with
the point processes.
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Chapter 1

Introduction

1.1 Determinantal point processes

Let S be a locally compact, second countable, and Hausdorff space. Then S is a
Polish space, i.e., S is separable and have complete metrization. Denote Conf(S) by
the set of all nonnegative integer-valued Radon measures on S

Conf(S) =
{
ξ ; ξ =

∑
i

δxi
, ξ(K) <∞ for each compact K ⊂ S

}
.

We say a sequence of measures ξn ∈ Conf(S) converges to ξ vaguely if for each
f ∈ C0(S),

lim
n→∞

∫
S

fdξn =

∫
S

fdξ.

The topology thus obtained on Conf(S) is called the vague topology. Denote by
BConf(S) be the Borel σ-field. A configuration space over S is a measurable space
(Conf(S),BConf(S)). A point process on S is a probability measure on a configuration
space.

Let µ be a point process on S. Fix a Radon measure λ on S. A symmetric
function ρm on Sm is called a m-point correlation function of a point process µ with
respect to a reference measure λ if it satisfies

∫
A

k1
1 ×···×A

kj
j

ρm(x1, . . . , xm)λ
⊗m(dx) = Eµ

[ j∏
i=1

ξ(Ai)

(ξ(Ai)− ki)!

]
.

Here, A1, . . . , Aj ⊂ S are disjoint and k1, . . . , kj ∈ N such that k1 + · · ·+ kj = m. If
ξ(Ai) ≤ ki, then we set ξ(Ai)/(ξ(Ai)− ki)! = 0.
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A point process µ is called (K-)determinantal if its m-correlation functions are
given by determinants of a kernel K : S × S → C such that

ρm(x1, . . . , xm) = det[K(xi, xj)]
m
i,j=1. (1.1.1)

The determinantal point process, also called the fermion process, is formulated
by Macch̀ı[12], Shirai and Takahashi[25] and Soshnikov[24]. Let K : S × S → C be
a kernel function and denote by the same symbol the integral operator on L2(S, λ)
such that for f ∈ L2(S, λ)

Kf(x) =

∫
S

K(x, y)f(y)λ(dy).

Theorem 1.1.1 ([12, 25, 24]). Let S be a locally compact, second countable, and
Hausdorff space. Let λ be a Radon measure on S. Assume that K : S × S → C
satisfies the follows.

(A.1) K is Hermitian symmetric.

(A.2) K is locally trace class.

(A.3) The spectrum of K is contained in [0, 1].

Then there exists a unique point process of which correlation functions are given by
(1.1.1).

1.2 Tail triviality

Let S be a locally compact Hausdorff space with countable basis with metric d. Fix
a point o ∈ S as the origin. Set Sr = {x ∈ S; d(o, x) < r}. Assume that each Sr is
relatively compact. Note that this notion depends on the choice of metric d on S

For a Borel set A, we denote by πA : Conf(S) → Conf(S) the projection of
configuration such that ξ(·) 7→ ξ(· ∩ A). Denote by TailConf(S) the tail σ-field such
that

TailConf(S) =
∞∩
r=1

σ[πSc
r
].

Note that TailConf(S) is determined independently of the choice of d. We say a point
process µ on S is tail trivial if for all A ∈ TailConf(S),

µ(A) ∈ {0, 1}.
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In the case, S discrete, tail triviality for determinantal point processes was proved
by Lyons[9]. Shirai and Takahashi[27] also proved under the restrictive assumption
that the spectrum of K is contained in (0, 1). In the viewpoint of ergodicity, tail
triviality, also called the Kolmogorov property, implies strong mixing property of all
orders.

In the case S is continuum, tail triviality is conjectured by Lyons[9] and proved
by [20]. Tail triviality plays an important role in the proof of pathwise unique-
ness of solutions of infinite-dimensional stochastic differential equations related to
determinantal point processes [21].

1.3 Bernoullicity

An automorphism S of a probability space (Ω,F ,P) is a bi-measurable bijection
such that P ◦ S−1 = P. Let SG = {Sg : g ∈ G} be a group of automorphisms of
(Ω,F ,P) parametrized by a group G. A measure-preserving dynamical system of
G-action is the quadruple (Ω,F ,P, SG).

Example 1.3.1. A typical example is a Bernoulli shift. Let (S,S,P) be a probability
space. A (G-action) Bernoulli shift is a quadruple of the direct product of probability
space over a discrete group G and the canonical shift.

Example 1.3.2. In this paper, we consider translation invariant point processes on
Zd and Rd. Homogeneous Poisson point processes on Rd with intensity r > 0 are
typical ones.

We say (Ω′,F ′,P′, S′
G) is a factor of (Ω,F ,P, SG) if there exists a measurable

map ϕ : Ω → Ω′ such that

P ◦ ϕ−1 = P′, ϕ ◦ Sg(x) = S′
g ◦ ϕ(x) for each g ∈ G and a.s. x ∈ Ω.

We call ϕ the factor map. An isomorphism is a bi-measurable bijection ϕ between
Ω0 ⊂ Ω and Ω′

0 ⊂ Ω′ such that P (Ω0) = P ′(Ω′
0) = 1 and both ϕ and ϕ−1 are

factor maps . If there exists an isomorphism ϕ : Ω → Ω′, then (Ω,F ,P, SG) and
(Ω′,F ′,P′, S′

G) are said to be isomorphic. In this paper, we treat Rd- or Zd-action
systems.

We say (Ω,F ,P, SZd) is Bernoulli if (Ω,F ,P, SZd) is isomorphic to a Bernoulli
shift. We say (Ω,F ,P, SRd) is Bernoulli if its restriction to Zd-action (Ω,F ,P, SZd)
is Bernoulli.

For Zd-action systems, the Bernoulli property implies tail triviality, strong mixing
property of all orders, and ergodicity.
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The Bernoulli property is important in the isomorphism problem. Ornstein
proved any two Bernoulli shifts with the same entropy are isomorphic to each other.
For a Zd-action system (Ω,F ,P, SZd), define its Kolmogorov-Sinai entropy by

hP = sup
P

lim
n→∞

1

|Rn|
∑

A∈
∨

g∈Rn
TgP

−P(A) logP(A).

Here, Rn = {−n, . . . , 0}d ⊂ Zd and the sup is taken over all countable partition of
(Ω,F) such that ∑

A∈P

−P(A) log(P(A)) <∞.

Remark that these logs in above definitions are binary logarithms. For Rd-action
systems, define its entropy by the entropy of its restriction to Zd-action.

It is known that the entropy is isomorphism invariance. Ornstein proved the
converse holds for Bernoulli shifts.

Theorem 1.3.1 ([14, 15, 16, 17]). Any two Bernoulli shifts are isomorphic if they
have the same entropy.

As a consequence of the general isomorphism theory, Poisson point processes are
isomorphic to each other. This is a continuum version of the isomorphism theorem
of Bernoulli shifts with infinite entropy.

Theorem 1.3.2 ([14, 15, 16, 17]). Homogeneous Poison point processes on Rd are
isomorphic to each other regardless of their intensity.

For determinantal point processes on Zd with translation-invariant kernels, Lyons
and Steif [11] and Shirai and Takahashi [27] independently proved the Bernoulli
property. The latter gives a sufficient condition for the weak Bernoulli property in
the case Spec(K) ⊂ (0, 1). Remark that the weak Bernoulli property is stronger
than the Bernoulli property. The former proved the Bernoulli property in the case
Spec(K) ⊂ [0, 1].

1.4 Gibbsianness

Let µ be a point process on Rd. Let µR,m,η be a regular conditional probability given
by

µR,m,η(dξ) = µ(πBR
(·) ∈ dξ | ξ(BR) = m, πBc

R
ξ = πBc

R
η).
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Here, BR ⊂ Rd is the open ball of radius R centered at the origin and πA is the
projection of configuration on A ⊂ Rd such that ξ(·) 7→ ξ(· ∩ A). Denote by Λ the
Poisson point process with intensity 1.

A conventional definition of the canonical Gibbs measure is given by the Dobrushin-
Lanford-Ruelle equation (1.4.1) (cf. [22, 23]). Let Φ : Rd → R ∪ {∞} and
Ψ : Rd × Rd → R ∪ {∞}. For ξ =

∑
i δxi

, η =
∑

j δyj ∈ Conf(Rd) and R ∈ N,
let

HR,η(ξ) =
∑

xi∈BR

Ψ(xi) +
∑

i<j,xi,xj∈BR

Ψ(xi, xj) +
∑

xi∈BR,yj∈Bc
R

Ψ(xi, yj).

Let ΛR,m be a conditional probability given by

ΛR,m(dξ) = Λ(πR(·) ∈ dξ | ξ(BR) = m).

We say µ is a canonical Gibbs measure for a free potential Φ and an interaction
potential Ψ if µ satisfies the Dobrushin-Lanford-Ruelle equation

µR,m,η(dξ) =
1

Z
exp(−HR,η(ξ))ΛR,m(dξ) (1.4.1)

for each R,m ∈ N and µ-a.s. η.
By replacing equality by inequality in (1.4.1), the quasi-Gibbs measure is intro-

duced in [19]. For ξ =
∑

i δxi
and R ∈ N, let

HR(ξ) =
∑

xi∈BR

Ψ(xi) +
∑

i<j,xi,xj∈BR

Ψ(xi, xj).

We say µ is a quasi-Gibbs measure for a free potential Φ and an interaction potential
Ψ if µ satisfies the following inequality

Z−1
R,m,η exp(−HR(ξ))ΛR,m(dξ) ≤ µR,m,η(dξ) ≤ ZR,m,η exp(−HR(ξ))ΛR,m(dξ) (1.4.2)

for each R,m ∈ N and µ-a.s. η.
Remark that the difference between (1.4.1) and (1.4.2) are not only equality and

inequality but also parameter dependencies of normalizing constants and Hamilto-
nians.

We say µ is Gibbsian if, for each R,m ∈ N and µ-a.s. η, µR,m,η is absolutely
continuous with respect to ΛR,m.

Let um : (Rd)m → Conf(Rd) be the delabeling map given by (x1, . . . , xm) 7→∑m
i=1 δxi

. Define the symmetric measure µ̌R,m,η on (BR)
m by the relation

µ̌R,m,η ◦ u−1
m = µR,m,η.



6 Chapter 1: Introduction

Then µ̌R,m,η is a probability measure by construction.
Remark that µ is Gibbsian if, for each R,m ∈ N and µ-a.s. η, µ̌R,m,η is absolutely

continuous with respect to the Lebesgue measure on (BR)
m.

Our formulation of the Gibbs measure is weaker than the canonical Gibbs mea-
sure and the quasi Gibbs measure. However, due to remarks in Georgii-Yoo [6],
existence of the Papangelou intensity is said to be Gibbsian in a general sense. On
the other hand, for Gibbsian point processes, the continuity of Radon-Nikodym den-
sities gives a sufficient condition for the closability of associated symmetric forms.

1.5 Dirichlet forms associated with point processes

For R ∈ N and m ∈ N ∪ {0}, set

Conf(Rd)R,m = {ξ ∈ Conf(Rd); ξ(BR) = m}.

Let lR,m : Conf(Rd)R,m → (BR)
m be a map such that

lR,m(ξ) = (l1R,m(ξ), l
2
R,m(ξ), . . . , l

m
R,m(ξ))

and ξR =
∑m

n=1 δlnR,m(ξ).

A function ϕ : Conf(Rd) → R is called local if there exists a compact set K ⊂ Rd

such that ϕ is σ[πK ]-measurable. For a local function ϕ such that σ[πR]-measurable,
we define symmetric functions ϕR,m : (BR)

m → R by the relation

ϕR,m(lR,m(ξ)) = ϕ(ξ), ξ ∈ Conf(Rd)R,m. (1.5.1)

Remark that ϕR,m is unique and ϕ(ξ) =
∑∞

m=0 ϕR,m(lR,m(ξ)). Furthermore, ϕR,m is
independent of the choice of R such that ϕ is σ[πR]-measurable.

A local function ϕ is said to be smooth if ϕR,m is smooth for each R > Q and
m ∈ N. Here, Q is a positive number such that ϕ is σ[πQ]-measurable. Clearly, ϕ is
smooth if ϕR,m is smooth for some R > Q and each m ∈ N.

Let D◦ denote the space of all bounded local smooth functions on Conf(Rd).
Denote for m ∈ N ∪ {∞}

Dm[f, g](x) =
1

2

m∑
n=1

d∑
i=1

∂i,nf(x)∂i,ng(x).

Set Conf(Rd)m = {ξ ∈ Conf(Rd); ξ(Rd) = m} for m ∈ N ∪ {∞}. For ϕ, ψ ∈ D◦, we
set D[ϕ, ψ] : Conf(Rd) → R by

D[ϕ, ψ](ξ) = Dm[ϕm(lm(ξ)), ψm(lm(ξ))] if ξ ∈ Conf(Rd)m ,m ∈ N ∪ {∞}
= 0 if ξ(Rd) = 0.
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Here ϕm is defined in (1.5.1) and lm : Conf(Rd)m → (Rd)m is a map such that
lm(ξ) = (l1m(ξ), l

2
m(ξ), . . . , l

m
m(ξ)) and ξ =

∑m
n=1 δlnm(ξ). Set (E ,D) = (Eµ,Dµ) by

E(ϕ, ψ) =
∫
Conf(Rd)

D[ϕ, ψ](ξ)µ(dξ),

D = {ϕ ∈ D◦ ∩ L2(Conf(Rd), µ); E(ϕ, ϕ) <∞}.

Let um : (Rd)m → Conf(Rd) be the delabeling map given by (x1, . . . , xm) 7→∑m
i=1 δxi

. Define the symmetric measure µ̌R,m,η on (BR)
m by the relation

µ̌R,m,η ◦ u−1
m = µR,m,η.

Theorem 1.5.1 ([18]). Let µ be a point process on Rd. Let

ER,m,η(f, g) =

∫
(BR)m

Dm[f, g](x)µ̌R,m,η(dx).

Assume that, for eachm,R ∈ N, (ER,m,η, C
∞
b ((BR)

m) is closable on L2((BR)
m, µ̌R,m,η)

for µ-a.s. η. Then (E ,D) is closable on L2(Conf(Rd), µ).





Chapter 2

Tree representations of
α-determinantal point processes

In this chapter, we introduce tree representations for α-determinantal point pro-
cesses. The α-determinantal point processes is introduced in [26] as a one parame-
ter extension of the determinantal point process. As its application, we prove tail
triviality for determinantal point processes on continuum spaces.

2.1 α-determinantal point processes

Our aim is to introduce tree representations for α-determinantal point processes (also
called the α-permanental point processes). Let S be a locally compact Hausdorff
space with countable basis. We equip S with a Radon measure λ such that λ(O) > 0
for any non-empty open set O in S. Let S be the configuration space over S (see
(2.2.1) for definition). S is a Polish space equipped with the vague topology.

An α-determinantal point process µ on S is a probability measure on (S,B(S))
for which the m-point correlation function ρm with respect to λ is given by

ρm(x) = detα[K(xi, xj)]
m
i,j=1. (2.1.1)

Here K :S × S→C is a measurable kernel, x = (x1, . . . , xm), and for m×m matrix
A = (ai,j)

m
i,j=1

detαA =
∑
σ∈Sm

αm−ν(σ)

m∏
i=1

ai,σ(i), (2.1.2)

where α is a real number, the summation is taken over the symmetric group Sm,
the set of permutations of {1, 2, . . . ,m}, and ν(σ) is the number of cycles of the
permutation σ. µ is said to be α-determinantal point process associated with (K, λ).

9
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The quantity (2.1.2) is called the α-determinant in [26] and also called the α-
permanent in [29, 30]. For α = −1, det−1A is the usual determinant detA and µ
is called a determinantal point process (also called a fermion point process). For
α = 1, det1A is the permanent perA and µ is called a permanental point process
(also called a boson point process). Letting α tend to 0, one obtain the Poisson point
processes. Hence the α-determinantal point process is an one parameter extension
of the determinantal point process.

We set Kf(x) =
∫
S
K(x, y)f(y)λ(dy). We regard K as an operator on L2(S, λ)

and denote it by the same symbol. We say K is of locally trace class if

KAf(x) =

∫
1A(x)K(x, y)1A(y)f(y)λ(dy)

is a trace class operator on L2(S, λ) for any compact set A. Throughout this paper,
we assume:

(A1) α ∈ { 2
m
;m ∈ N}∪{−1

m
;m ∈ N}. K is Hermitian symmetric and of locally trace

class and Spec(K) ⊂ [0,∞) . If α < 0, Spec(K) ⊂ [0,− 1
α
].

From (A1) we deduce that the associated α-determinantal point process µ =
µK,λ,α exists and is unique [26].

A λ-partition ∆ = {Ai}i∈I of S is a countable collection of disjoint relatively
compact, measurable subsets of S such that ∪iAi = S and that λ(Ai) > 0 for all
i ∈ I. For two partitions ∆ = {Ai}i∈I and Γ = {Bj}j∈J , we write ∆ ≺ Γ if for each
j ∈ J there exists i ∈ I such that Bj ⊂ Ai. We assume:

(A2) There exists a sequence of λ-partitions {∆(ℓ)}ℓ∈N satisfying (2.1.3)–(2.1.5).

∆(ℓ) ≺ ∆(ℓ+ 1) for all ℓ ∈ N, (2.1.3)

σ[
∪
ℓ∈N

Fℓ] = B(S), (2.1.4)

#{j;Aℓ+1,j ⊂ Aℓ,i} = 2 for all i ∈ I(ℓ) and ℓ ∈ N, (2.1.5)

where we set ∆(ℓ) = {Aℓ,i}i∈I(ℓ) and Fℓ := F∆(ℓ) = σ[Aℓ,i; i ∈ I(ℓ)].

Condition (2.1.5) is just for simplicity. This condition implies that the sequence
{∆(ℓ)}ℓ∈N has a binary tree-like structure. We remark that (A2) is a mild assump-
tion and, indeed, satisfied if S is an open set in Rd and λ has positive density with
respect to the Lebesgue measure.

Let Gℓ be the sub-σ-field of B(S) given by

Gℓ = σ[{s ∈ S; s(Aℓ,i) = n}; i ∈ I(ℓ), n ∈ N]. (2.1.6)

Combining (2.1.3) and (2.1.4) with (2.1.6), we obtain

Gℓ ⊂ Gℓ+1, σ[Gℓ; ℓ ∈ N] = B(S).
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Let µ(·|Gℓ) be the regular conditional probability of µ with respect to Gℓ.
We can naturally regard ∆(ℓ) = {Aℓ,i}i∈I(ℓ) as a discrete, countable set with the

interpretation that each element Aℓ,i is a point. Thus, µ(·|Gℓ) can be regarded as a
point process on the discrete set ∆(ℓ).

In Section 2.2 we introduce a sequence of fiber bundle-like sets I(ℓ) (ℓ ∈ N) with
base space ∆(ℓ) with fiber consisting of a set of binary trees. We further expand
I(ℓ) to Ω(ℓ) in (2.2.27), which has a fiber whose element is a product of a tree i and
a component Bℓ,i of partitions. See notation after Theorem 2.2.1.

Let µ|Gℓ
denote the restriction of µ on Gℓ. By construction µ|Gℓ

(A) = µ(A|Gℓ)
for all A ∈ Gℓ. In Theorem 2.2.1 and Theorem 2.2.2, we construct a lift νF(ℓ) ⋄ λF(ℓ)
of µ|Gℓ

on the fiber bundle Ω(ℓ) in (2.2.27).
The key point of the construction of the lift νF(ℓ) ⋄ λF(ℓ) is that we construct a

consistent family of orthonormal bases F(ℓ) = {fℓ,i}i∈I(ℓ) in (2.2.14) and (2.2.15),
and introduce the kernel KF(ℓ) on I(ℓ) in (2.2.20) such that

KF(ℓ)(i, j) =

∫
S×S

K(x, y)fℓ,i(x)fℓ,j(y)λ(dx)λ(dy). (2.2.20)

We shall prove in Lemma 2.3.2 that KF(ℓ) is an α-determinantal kernel on I(ℓ), and
present νF(ℓ) as the associated α-determinantal point process on I(ℓ). To some extent,
νF(ℓ) is a Fourier transform of µ|Gℓ

through the orthonormal basis F(ℓ) = {fℓ,i}i∈I(ℓ).
We shall prove in Theorem 2.2.1 that their correlation functions ρmGℓ

and ρmF(ℓ) satisfy
a kind of Parseval’s identity:∫

A
ρmGℓ

(x)λm(dx) =
∑

i∈Iℓ(A)

ρmF(ℓ)(i), (2.2.26)

which is a key to construct the lift νF(ℓ) ⋄ λF(ℓ).
Vere-Jones [29, 30] introduced α-permanent (we call it α-determinant as refereed

in [26]) as the coefficients which arise in expanding fractional powers of the character-
istic polynomial of a matrix. Shirai-Takahashi [26] introduced the α-determinantal
point processes. Their correlation functions are given by α-determinants of a kernel
function. In the case α = −1, the associated point process is the determinantal point
processes [7, 9, 10, 24, 26, 27]. The condition (A1) is a part sufficient condition for
the existence and uniqueness of α-determinantal point process in [26].

In [20], we introduced the tree representations for determinantal point processes
on a continuum space under the assumption (A1) in the case α = −1 and proved
tail triviality by applying it. In this paper, we prove that the tree representations
work for the α-determinantal point processes. Most statements in this paper are
then the same as [20] except for the range of α. In particular, Lemma 2.3.1 and
Lemma 2.3.3 correspond to Lemma 1 and Lemma 3 in [20], respectively.
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The key idea is that KF(ℓ) in (2.2.20) is given by a unitary operator U : L2(S, λ) →
L2(I(ℓ), λI(ℓ)) such that K = UKF(ℓ)U

−1. Hence KF(ℓ) has the same spectrum of K
and satisfies (A1).

The organization of the paper is as follows. In Section 2.2, we give definitions
and concepts and state the main theorems (Theorems 2.2.1–2.2.3). We give tree
representations of µ. In Section 2.3, we prove Theorem 2.2.1. In Section 2.4, we
prove Theorem 2.2.2 and Theorem 2.2.3.

2.2 Tree representations

In this section, we recall various essentials and present the main theorems Theo-
rem 2.2.1–Theorem 2.2.3.

A configuration space S over S is a set consisting of configurations on S such
that

S = {s ; s =
∑
i

δsi , si ∈ S, s(K) <∞ for any compact K}. (2.2.1)

A probability measure µ on (S,B(S)) is called a point process, also called random
point field. A symmetric function ρm on Sm is called them-point correlation function
of a point process µ with respect to a Radon measure λ if it satisfies∫

S

j∏
i=1

s(Ai)!

(s(Ai)− ki)!
µ(ds) =

∫
A

k1
1 ×···×A

kj
j

ρm(x)λm(dx). (2.2.2)

Here A1, . . . , Aj ∈ B(S) are disjoint and k1, . . . , kj ∈ N such that k1 + · · ·+ kj = m.
If s(Ai)− ki ≤ 0, we set s(Ai)!/(s(Ai)− ki)! = 0.

Let ∆(ℓ) = {Aℓ,i}i∈I(ℓ) be as in (A2), where ℓ ∈ N. We set ∆ = {Ai}i∈I such
that

∆ = ∆(1), Ai = A1,i I = I(1).

In consequence of (2.1.5), we assume without loss of generality that each element i
of the parameter set I(ℓ) is of the form

I(ℓ) = I × {0, 1}ℓ−1. (2.2.3)

That is, each i ∈ I(ℓ) is of the form i = (j1, . . . , jℓ) ∈ I × {0, 1}ℓ−1. We take a label
i ∈ ∪∞

ℓ=1I(ℓ) in such a way that, for ℓ < ℓ′, i ∈ I(ℓ), and i′ ∈ I(ℓ′),

Aℓ,i ⊃ Aℓ′,i′ ⇔ i = (j1, . . . , jℓ) and i
′ = (j1, . . . , jℓ, . . . , jℓ′).
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We denote by Ĩ the set of all such parameters:

Ĩ =
∞∑
ℓ=1

I(ℓ) =
∞∑
ℓ=1

I × {0, 1}ℓ−1. (2.2.4)

We can regard Ĩ as a collection of binary trees and I is the set of their roots.
For i = (j1, . . . , jℓ) ∈ Ĩ, we set rank(i) = ℓ. For i with rank(i) = ℓ, we set

Bi =

{
A1,i ℓ = 1,

Aℓ−1,i− ℓ ≥ 2,
(2.2.5)

where i− = (j1, . . . , jℓ−1) for i = (j1, . . . , jℓ) ∈ I(ℓ). Let I ⊂ Ĩ such that

I = I +
∞∑
ℓ=2

{i ∈ I(ℓ); jℓ = 0}, (2.2.6)

where i = (j1, . . . , jℓ) ∈ I(ℓ).
Let F = {fi}i∈I be an orthonormal basis of L2(S, λ) satisfying

σ[fi; i ∈ I, rank(i) = ℓ] = Fℓ for each ℓ ∈ N, (2.2.7)

supp(fi) = Bi for each i ∈ I, (2.2.8)

fi(x) = 1Ai
(x)/

√
λ(Ai) for rank(i) = 1. (2.2.9)

For a given sequence of λ-partitions satisfying (A2), such an orthonormal basis
exists. We present here an example.

Example 2.2.1 (Haar functions). Typically we can take S = R, λ(dx) = dx, and
I = Z. For i = (j1, . . . , jℓ) ∈ I(ℓ), we set J1,i = j1 and, for ℓ ≥ 2,

Jℓ,i = j1 +
ℓ−1∑
n=1

jn
2n
. (2.2.10)

We take Aℓ,i = [Jℓ,i, Jℓ,i + 2−ℓ+1).
Let i = (j1, . . . , jℓ) ∈ I. We set for, ℓ = 1 and i = (j1),

fi(x) = 1[j1,j1+1)(x)

and, for ℓ ≥ 2 and i = (j1, . . . , jℓ) ∈ I,

fi(x) = 2(ℓ−1)/2{1[Jℓ,i,Jℓ,i+2−ℓ+1)(x)− 1[Jℓ,i+2−ℓ+1,Jℓ,i+2−ℓ+2)(x)}.

We can easily see that {fi}i∈I is an orthonormal basis of L2(R, dx). We remark that
jℓ = 0 because i = (j1, . . . , jℓ) ∈ I as we set in (2.2.6).
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We next introduce the ℓ-shift of above objects such as I, Bi, and F = {fi}i∈I.
Let Ĩ(1) = Ĩ and, for ℓ ≥ 2, we set

Ĩ(ℓ) :=
∞∑
r=1

I(ℓ)× {0, 1}r−1, (2.2.11)

where I(ℓ) = I × {0, 1}ℓ−1 is as in (2.2.3). For ℓ, r ∈ N, we set θℓ−1,r : Ĩ→ Ĩ(ℓ) such
that θ0,r = id (ℓ = 1) and, for ℓ ≥ 2,

θℓ−1,r((j1, . . . , jℓ+r−1)) = (jℓ, jℓ+1, . . . , jℓ+r−1) ∈ I(ℓ)× {0, 1}r−1, (2.2.12)

where jℓ = (j1, . . . , jℓ) ∈ I(ℓ). For ℓ = 1, we set I(1) = I. For ℓ ≥ 2, we set

I(ℓ) = I(ℓ) +
∞∑
r=2

θℓ−1,r(I). (2.2.13)

We set rank(i) = r for i ∈ I(ℓ) × {0, 1}r−1. By construction rank(i) = r for

i ∈ θℓ−1,r (̃I). Let F(ℓ) = {fℓ,i}i∈I(ℓ) such that, for r = rank(i),

fℓ,i(x) = 1Aℓ,i
(x)/

√
λ(Aℓ,i) for r = 1, (2.2.14)

fℓ,i(x) = fθ−1
ℓ−1,r(i)

(x) for r ≥ 2, (2.2.15)

where ∆(ℓ) = {Aℓ,i}i∈I(ℓ) is given in (A2). Then F(ℓ) = {fℓ,i}i∈I(ℓ) is an orthonormal
basis of L2(S, λ). This follows from assumptions (2.2.14) and (2.2.15) and the fact
that F = {fi}i∈I is an orthonormal basis.

Remark 2.2.1. (1) We note that fℓ,i ∈ F(ℓ) is a newly defined function if rank(i) =
1, whereas fℓ,i ∈ F(ℓ) is an element of F if rank(i) ≥ 2. In particular, we see that

{fℓ,i}i∈I(ℓ), rank(i)≥2 ⊂ {fi}i∈I, rank(i)≥2. (2.2.16)

(2) Let j = (j1, . . . , jℓ+r−1) ∈ I and i = (jℓ, jℓ+1, . . . , jℓ+r−1) ∈ I(ℓ). Then

j = θ−1
ℓ−1,r(i).

Furthermore, fℓ,i ∈ F(ℓ) and fj ∈ F satisfy fℓ,i = fj for r = rank(i) ≥ 2.
(3) By construction, we see that

σ[fℓ,i; i ∈ I(ℓ), rank(i) = r] = Fℓ−1+r for each ℓ, r ∈ N, (2.2.17)

supp(fℓ,i) = Bℓ,i for all i ∈ I(ℓ), (2.2.18)

where we set, for j = θ−1
ℓ−1,r(i) such that rank(i) = r,

Bℓ,i = Bj. (2.2.19)
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Using the orthonormal basis F(ℓ) = {fℓ,i}i∈I(ℓ), we set KF(ℓ) on I(ℓ) by

KF(ℓ)(i, j) =

∫
S×S

K(x, y)fℓ,i(x)fℓ,j(y)λ(dx)λ(dy). (2.2.20)

Let λI(ℓ) be the counting measure on I(ℓ). We shall prove in Lemma 2.3.2 that
(KF(ℓ), λI(ℓ)) satisfies (A1). Hence we obtain the associated α-determinantal point
process νF(ℓ) on I(ℓ) from general theory [26].

For i ∈ I(ℓ), let λfℓ,i(dx) be the probability measure on S such that

λfℓ,i(dx) = |fℓ,i(x)|2λ(dx). (2.2.21)

For i = (in)
m
n=1 ∈ I(ℓ)m and x = (xn)

m
n=1, where m ∈ N ∪ {∞}, we set

λf
ℓ,i
(dx) =

m∏
n=1

|fℓ,in(xn)|2λ(dxn). (2.2.22)

By (2.2.15) λf
ℓ,i

is a probability measure on Sm. By (2.2.18), we have

λf
ℓ,i
(

m∏
n=1

Bℓ,in) = 1. (2.2.23)

Let Fm
ℓ = σ[Al,i1 × · · ·×Al,im ; in ∈ I(ℓ), n = 1, . . . ,m]. Let Gℓ be the sub-σ-field

as in (2.1.6). An Fm
ℓ -measurable symmetric function ρmGℓ

on Sm is called the m-point
correlation function of µ|Gℓ

with respect to λ if it satisfies∫
S

j∏
i=1

s(Ai)!

(s(Ai)− ki)!
µ(ds) =

∫
A

k1
1 ×···×A

kj
j

ρmGℓ
(x)λm(dx). (2.2.24)

Here A1, . . . , Aj ∈ Fℓ are disjoint and k1, . . . , kj ∈ N such that k1 + · · ·+ kj = m. If
s(Ai)− ki ≤ 0, we set s(Ai)!/(s(Ai)− ki)! = 0.

Let νF(ℓ) be the α-determinantal point process associated to (KF(ℓ), λI(ℓ)) as before.
Let ρmGℓ

and ρmF(ℓ) be the m-point correlation functions of µ|Gℓ
and νF(ℓ) with respect

to λ and λI(ℓ), respectively. We now state one of our main theorems:

Theorem 2.2.1. Let Iℓ(A) = {i ∈ I(ℓ) ; Bℓ,i ⊂ A}. For A = A1 × · · · ×Am, we set

Iℓ(A) = Iℓ(A1)× · · · × Iℓ(Am). (2.2.25)

Assume that An ∈ ∆(ℓ) for all n = 1, . . . ,m. Then∫
A
ρmGℓ

(x)λm(dx) =
∑

i∈Iℓ(A)

ρmF(ℓ)(i). (2.2.26)
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Let I(ℓ) be the configuration space over I(ℓ). Let

Ω(ℓ) :=
∪

i∈I(ℓ)

{i} × Bℓ,i. (2.2.27)

Let Ω(ℓ) be the configuration space over Ω(ℓ). Then by definition each element
ω ∈ Ω(ℓ) is of the form ω =

∑
n δ(in,sn) such that sn ∈ Bℓ,in . Hence

Ω(ℓ) = {ω =
∑
n

δ(in,sn) ; i =
∑
n

δin ∈ I(ℓ), sn ∈ Bℓ,in}. (2.2.28)

We exclude the zero measure from Ω(ℓ).
Let λfℓ,i be as in (2.2.21). We set

λF(ℓ) =
∏
i∈I(ℓ)

λfℓ,i , λfℓ,i =
∏
n

λfℓ,in . (2.2.29)

Remark 2.2.2. (1) A configuration i ∈ I(ℓ) can be represented as i =
∑

n δin and
this may have multiple points.

(2) Let i ∈ I(ℓ). Suppose that for some m ∈ N∪{∞}, i has plural representations
such as

i =
m∑

n=1

δin =
m∑

n=1

δjn .

Then
∏m

n=1 Bℓ,in and
∏m

n=1 Bℓ,jn can be different subsets of Sm. However, the product
probability spaces (

∏m
n=1 Bℓ,in , λfℓ,i) and (

∏m
n=1 Bℓ,jn , λfℓ,i) are the same under the

identification such that

m∏
n=1

Bℓ,in ∋ (xn)
m
n=1 7→ (xσ(n))

m
n=1 ∈

m∏
n=1

Bℓ,jn .

Here, σ is the permutation such that iσ(n) = jn. They do not depend on the repre-
sentations of i under this identification.

We set ιℓ :Ω(ℓ)→ I(ℓ) such that
∑

n δ(in,sn) 7→
∑

n δin . For i ∈ I(ℓ), let

κℓ,i :{ω ∈ Ω(ℓ); ιℓ(ω) = i}→
∏
n

Bℓ,in

such that
∑

n δ(in,sn) 7→ (sn). Let νF(ℓ) ⋄ λF(ℓ) be the probability measure on Ω(ℓ)
given by the disintegration made of

(νF(ℓ) ⋄ λF(ℓ)) ◦ ι−1
ℓ (di) = νF(ℓ)(di), (2.2.30)

νF(ℓ) ⋄ λF(ℓ)(κℓ,i(ω) ∈ ds|ιℓ(ω) = i) = λfℓ,i(ds), s = (sn) for i =
∑
n

δin .

(2.2.31)



17

Remark 2.2.3. (1) We can naturally regard the probability measures in (2.2.31) as
a point process on

∏
n Bℓ,in supported on the set of configurations with exactly one

particle configuration s = δs on
∏

n Bℓ,in, that is, s = (sn) is such that sn ∈ Bℓ,in.
(2) We can regard νF(ℓ)⋄λF(ℓ) as a marked point process as follows: The configuration
i is distributed according to νF(ℓ), while the marks are independent and for each i the
mark s is distributed according to λfℓ,i. Thus the space of marks depends on i.

Theorem 2.2.2. Let uℓ : Ω(ℓ) → S be such that uℓ(ω) =
∑

n δsn, where ω =∑
n δ(in,sn). Then

µ|Gℓ
= (νF(ℓ) ⋄ λF(ℓ)) ◦ u−1

ℓ |Gℓ
. (2.2.32)

Remark 2.2.4. Theorem 2.2.2 implies that νF(ℓ) ⋄ λF(ℓ) is a lift of µ|Gℓ
onto Ω(ℓ).

We can naturally regard Ĩ(ℓ) as binary trees. Hence we call νF(ℓ) ⋄ λF(ℓ) a tree repre-
sentation of µ of level ℓ.

We present a decomposition of µ|Gℓ
, which follows from Theorem 2.2.2 imme-

diately. Let λufℓ,i = λfℓ,i ◦ u−1
ℓ,i , where uℓ,i :

∏
n Bℓ,in → S is the unlabel map such

that

uℓ,i((sn)) =
∑
n

δsn . (2.2.33)

Theorem 2.2.3. For each A ∈ Gℓ,

µ(A) =

∫
I(ℓ)

νF(ℓ)(di)λ
u
fℓ,i
(A). (2.2.34)

We remark that µ|Gℓ
is not an α-determinantal point process. Hence we exploit

νF(ℓ) ⋄ λF(ℓ) instead of µ|Gℓ
. As we have seen in Theorem 2.2.2, νF(ℓ) ⋄ λF(ℓ) is a lift

of µ|Gℓ
in the sense of (2.2.32), from which we can deduce nice properties of µ|Gℓ

.
Indeed, an application of Theorem 2.2.2 is tail triviality of µ in the case α = −1
[20].

2.3 Proof of Theorem 2.2.1

The purpose of this section is to prove Theorem 2.2.1. In Lemma 2.3.1, we present
a kind of Parseval’s identity of kernels K and KF(ℓ) using the orthonormal basis F(ℓ),
where KF(ℓ) is the kernel given by (2.2.20) and F(ℓ) is as in (2.2.14) and (2.2.15). In
Lemma 2.3.2, we prove (KF(ℓ), λI(ℓ)) is a determinantal kernel and the associated α-
determinantal point process νF(ℓ) exists. We will lift the Parseval’s identity between
K and KF(ℓ) to that of correlation functions of µ|Gℓ

and νF(ℓ) in Theorem 2.2.1.
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By definition F(ℓ) = {fℓ,i}i∈I(ℓ) satisfies∫
S

|fℓ,i(x)|2λ(dx) = 1 for all i ∈ I(ℓ), (2.3.1)∫
S

fℓ,i(x)fℓ,j(x)λ(dx) = 0 for all i ̸= j ∈ I(ℓ). (2.3.2)

Lemma 2.3.1. (1) Let P (x) =
∑

i p(i)fℓ,i(x) and Q(y) =
∑

j q(j)fℓ,j(y). Suppose
that the supports of p and q are finite sets. Then∫

S×S

K(x, y)P (x)Q(y)λ(dx)λ(dy) =
∑
i,j

KF(ℓ)(i, j)p(i)q(j). (2.3.3)

(2) We have an expansion of K in L2
loc(S × S, λ× λ) such that

K(x, y) =
∑

i,j∈I(ℓ)

KF(ℓ)(i, j)fℓ,i(x)fℓ,j(y). (2.3.4)

(3) Let I(ℓ;R) = {i ∈ I(ℓ); rank(i) ≤ R}, where rank(i) is defined before (2.2.14).
Let

KR(x, y) =
∑

i,j∈I(ℓ;R)

KF(ℓ)(i, j)fℓ,i(x)fℓ,j(y). (2.3.5)

We set A = A1 × · · · × Am. Assume that An ∈ ∆(ℓ) for n = 1, . . . ,m. Then for
σ ∈ Sm,

lim
R→∞

∫
A

m∏
n=1

KR(xn, xσ(n))λ
m(dx) =

∫
A

m∏
n=1

K(xn, xσ(n))λ
m(dx). (2.3.6)

Proof. From (2.2.20) we deduce that∫
S×S

K(x, y)P (x)Q(y)λ(dx)λ(dy) (2.3.7)

=

∫
S×S

K(x, y)
∑
i

p(i)fℓ,i(x)
∑
j

q(j)fℓ,j(y)λ(dx)λ(dy)

=
∑
i,j

∫
S×S

K(x, y)fℓ,i(x)fℓ,j(y)λ(dx)λ(dy)p(i)q(j)

=
∑
i,j

KF(ℓ)(i, j)p(i)q(j).
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This yields (2.3.3). We have thus proved (1). By a direct calculation, we have∫
S

P (x)fℓ,i(x)λ(dx) =

∫
S

∑
j

p(j)fℓ,j(x)fℓ,i(x)λ(dx) = p(i), (2.3.8)∫
S

Q(y)fℓ,j(y)λ(dy) =

∫
S

∑
i

q(i)fℓ,i(y)fℓ,j(y)λ(dy) = q(j).

Combining (2.3.7) and (2.3.8) yields∫
S×S

K(x, y)P (x)Q(y)λ(dx)λ(dy) =∫
S×S

∑
i,j

KF(ℓ)(i, j)fℓ,i(x)fℓ,j(y)P (x)Q(y)λ(dx)λ(dy).

This implies (2.3.4).
Without loss of generality, we can assume σ is a cyclic permutation. We prove

(2.3.6) only for σ = (1, 2, . . . ,m). Let An ∈ ∆(ℓ) for n ≥ 0. Let A = A(m) =
A0 × · · · × Am. For 0 ≤ n ≤ m, we set

KA,n(x, y) =

∫
A1×···×An−1

n∏
p=1

K(xp−1, xp)λ(dx1) · · ·λ(dxn−1), (2.3.9)

KA,n
R (x, y) =

∫
Am−(n−1)×···×Am−1

n∏
p=1

KR(xp−1, xp)λ(dx1) · · ·λ(dxn). (2.3.10)

where x0 = x, xn = y, KA,0(x, y) = KA,0
R (x, y) = δx(y), K

A,1(x, y) = K(x, y), and
KA,1

R (x, y) = KR(x, y). By assumption K is a trace class operator on L2(B, λ) for a
relatively compact set B such that

∪m
p=1 Ap ⊂ B. Then KA,n is also a trace class

operator on L2(B, λ) for each n ∈ {1, . . . ,m}. In particular, KA,n is a Hilbert-
Schmidt operator on L2(B, λ) and satisfies∫

B2

|KA,n(x, y)|2λ(dx)λ(dy) <∞. (2.3.11)

We set for k, n ≥ 0 such that k + n = m,

LA,k,nR (x, y) =

∫
Ak

KA,k(x, z)KA,n
R (z, y)λ(dz). (2.3.12)

We shall prove the following by induction for m : for all k, n ≥ 0 such that k+n = m
and for any A = A0 × · · · × Am such that Ap ∈ ∆(ℓ) for p = 0, . . . ,m

lim
R→∞

∫
A0×Am

|LA,k,nR (x, y)− KA,m(x, y)|2λ(dx)λ(dy) = 0, (2.3.13)

sup
R

∫
A0×Am

|LA,k,nR (x, y)|2λ(dx)λ(dy) <∞. (2.3.14)
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Letm = 1. For (k, n) = (0, 1), Lemma 2.3.1 (2) implies (2.3.13) and (2.3.14). For
(k, n) = (1, 0), LA,1,0R (x, y) = KA,1(x, y) by the definition in (2.3.12). Then (2.3.13)
and (2.3.14) hold for (k, n) = (1, 0). Hence (2.3.13) and (2.3.14) holds for m = 1.

Suppose (2.3.13) and (2.3.14) hold for 1, . . . ,m − 1. Let k + n = m − 1 and
A = A0 × · · · × Am. By a straightforward calculation,

LA,k,n+1
R (x, y)− LA,k+1,n

R (x, y)

=

∫
Ak

KA,k(x, z)KA,n+1
R (z, y)λ(dz)−

∫
Ak+1

KA,k+1(x,w)KA,n
R (w, y)λ(dw)

=

∫
Ak×Ak+1

KA,k(x, z)KR(z, w)K
A,n
R (w, y)− KA,k(x, z)K(z, w)KA,n

R (w, y)λ(dz)λ(dw)

=

∫
Ak×Ak+1

KA,k(x, z)KA,n
R (w, y)

(
KR(z, w)− K(z, w)

)
λ(dz)λ(dw).

By the Schwartz inequality for the last term, we have∣∣∣LA,k,n+1
R (x, y)− LA,k+1,n

R (x, y)
∣∣∣2

≤
∫
Ak×Ak+1

|KA,k(x, z)KA,n
R (w, y)|2λ(dz)λ(dw)

∫
Ak×Ak+1

|KR(z, w)− K(z, w)|2λ(dz)λ(dw).

Hence, ∫
A0×Am

∣∣∣LA,k,n+1
R (x, y)− LA,k+1,n

R (x, y)
∣∣∣2λ(dx)λ(dy) (2.3.15)

≤
∫
A0×Ak

|KA,k(x, z)|2λ(dx)λ(dz)
∫
Ak+1×Am

|KA,n
R (w, y)|2λ(dw)λ(dy)

×
∫
Ak×Ak+1

|KR(z, w)− K(z, w)|2λ(dz)λ(dw).

Recall that k + n = m − 1. Then 0 ≤ n ≤ m − 1. Let A′ = Ak+1 × · · · × Am and
(k′, n′) be such that k′ + n′ = n. Then by replacing m by n in (2.3.14) we have

sup
R

∫
Ak+1×Am

|LA
′,k′,n′

R (w, y)|2λ(dw)λ(dy) <∞. (2.3.16)

Take (k′, n′) = (0, n). Then LA
′,0,n

R (x, y) = KA,n
R (x, y) by (2.3.12). Hence from

(2.3.16)

sup
R

∫
Ak+1×Am

|KA,n
R (w, y)|2λ(dw)λ(dy) <∞.
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From this, (2.3.11), and Lemma 2.3.1 (2), the last term in (2.3.15) goes to zero as
R → ∞. Therefore, we see that(∫

A0×Am

∣∣∣LA,k,n+1
R (x, y)− KA,m(x, y)

∣∣∣2λ(dx)λ(dy)) 1
2

≤
n∑

p=0

(∫
A0×Am

∣∣∣LA,k+p,n+1−p
R (x, y)− LA,k+p+1,n−p

R (x, y)
∣∣∣2 λ(dx)λ(dy)) 1

2

→0 as R → ∞.

Hence (2.3.13) holds for m.
We deduce (2.3.14) for m from (2.3.13) for m immediately.
We now apply (2.3.14) to obtain (3). Let σ = (1, 2, . . . ,m).∫

A

{ m∏
p=1

KR(xp, xσ(p))−
m∏
p=1

K(xp, xσ(p))
}
λm(dx) (2.3.17)

=
m−1∑
k=0

∫
Am

{
LA,k,m−k
R (x, x)− LA,k+1,m−k−1

R (x, x)
}
λ(dx).

Let k + n = m and n ≥ 1. Then∫
Am

{
LA,k,nR (x, x)− LA,k+1,n−1

R (x, x)
}
λ(dx)

=

∫
Am

(∫
Ak×Ak+1

{
KA,k(x, z)KR(z, w)K

A,n−1
R (w, x)

− KA,k(x, z)K(z, w)KA,n−1
R (w, x)

}
λ(dz)λ(dw)

)
λ(dx)

=

∫
Ak×Ak+1

∫
Am

KA,k(x, z)KA,n−1
R (w, x)λ(dx)

(
KR(z, w)− K(z, w)

)
λ(dz)λ(dw).

By the Schwarz inequality,∣∣∣ ∫
Am

{
LA,k,nR (x, x)− LA,k+1,n−1

R (x, x)
}
λ(dx)

∣∣∣
≤
(∫

Ak×Ak+1

∣∣∣∫
Am

KA,k(x, z)KA,n−1
R (w, x)λ(dx)

∣∣∣2λ(dz)λ(dw)) 1
2

×
(∫

Ak×Ak+1

|KR(z, w)− K(z, w)|2λ(dz)λ(dw)
) 1

2
.

Recall that k + n = m. Then k + n − 1 = m − 1. From (2.3.14) for m − 1 and
Lemma 2.3.1 (2), the last term goes to zero as R → ∞. This combined with (2.3.17)
implies (2.3.6).
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Let λI(ℓ) be the counting measure on I(ℓ) as before. We can regard KF(ℓ) as an
operator on L2(I(ℓ), λI(ℓ)) such that KF(ℓ)p(i) =

∑
j∈I(ℓ) KF(ℓ)(i, j)p(j). We now prove

that the (KF(ℓ), λI(ℓ))-determinantal point process νF(ℓ) exists.

Lemma 2.3.2. Let Spec(KF(ℓ)) be the spectrum of KF(ℓ). Then

Spec(KF(ℓ)) ⊂ [0,∞). (2.3.18)

If α < 0,

Spec(KF(ℓ)) ⊂ [0,− 1

α
]. (2.3.19)

In particular, there exists a unique, α-determinantal point process νF(ℓ) on I(ℓ) as-
sociated with (KF(ℓ), λI(ℓ)).

Proof. Recall that F(ℓ) = {fℓ,i}i∈I(ℓ) is an orthonormal basis of L2(S, λ). Let U :
L2(S, λ) → L2(I(ℓ), λI(ℓ)) be the unitary operator such that U(fℓ,i) = eℓ,i, where
{eℓ,i}i∈I(ℓ) is the canonical orthonormal basis of L2(I(ℓ), λI(ℓ)). Then by Lemma 2.3.1
we see that KF(ℓ) = UKU−1. Hence KF(ℓ) and K have the same spectrum. We thus
obtain (2.3.18) and (2.3.19) from (A1). Because KF(ℓ) is Hermitian symmetric, the
second claim is clear from (2.3.18), (2.3.19), (A1), and Theorem 1.2 of [26].

Lemma 2.3.3. Let Bℓ,i = supp(fℓ,i) be as in (2.2.18). Then, for i, j ∈ I(ℓ) and
A ∈ Fℓ, ∫

A
fℓ,i(x)fℓ,j(x)λ(dx) =

{
1 (i = j, Bℓ,i ⊂ A)

0 (otherwise)
. (2.3.20)

Proof. We recall that Bℓ,i is the support of fℓ,i by (2.2.18). Suppose i = j and
Bℓ,i ⊂ A. Then from (2.3.1) we obtain∫

A
fℓ,i(x)fℓ,j(x)λ(dx) =

∫
S

fℓ,i(x)fℓ,i(x)λ(dx) = 1. (2.3.21)

Suppose that i = j and that Bℓ,i ̸⊂ A. Then, using A ∈ Fℓ, (2.2.5), and (2.2.19), we
deduce that Bℓ,i ∩ A = ∅. Because Bℓ,i = supp(fℓ,i), we obtain∫

A
fℓ,i(x)fℓ,j(x)λ(dx) = 0. (2.3.22)

Finally, suppose i ̸= j. Because A ∈ Fℓ, we see that Bℓ,i ⊂ A or Bℓ,i ∩ A = ∅. The
same also holds for Bℓ,j. In any case, we obtain (2.3.22) from (2.3.2). From (2.3.21)
and (2.3.22), we obtain (2.3.20).
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Proof of Theorem 2.2.1. Let A = A1×· · ·×Am as in Theorem 2.2.1. Then, because
An ∈ ∆(ℓ) for all n = 1, . . . ,m, we deduce from (2.2.24), (2.2.2), and (2.1.1) that∫

A
ρmGℓ

(x)λm(dx) =

∫
A
detα[K(xp, xq)]

m
p,q=1λ

m(dx), (2.3.23)

where x = (x1, . . . , xm). From a straightforward calculation and Lemma 2.3.1, we
obtain ∫

A
detα[K(xp, xq)]

m
p,q=1λ

m(dx) (2.3.24)

=

∫
A

∑
σ∈Sm

αm−ν(σ)

m∏
p=1

K(xp, xσ(p))λ
m(dx)

=
∑
σ∈Sm

αm−ν(σ)

∫
A

m∏
p=1

K(xp, xσ(p))λ
m(dx)

=
∑
σ∈Sm

αm−ν(σ) lim
R→∞

∫
A

m∏
p=1

KR(xp, xσ(p))λ
m(dx),

where KR is defined by (2.3.5). We note that ∪m
i=1Ai is relatively compact. Hence

the last line in (2.3.24) follows from Lemma 2.3.1 (3).∫
A

m∏
p=1

KR(xp, xσ(p))λ
m(dx) (2.3.25)

=

∫
A

m∏
p=1

( ∑
ip∈I(ℓ;R)

KF(ℓ)(ip, jp)fℓ,ip(xp)fℓ,jp(xσ(p))
)
λm(dx)

=

∫
A

( ∑
i,j∈I(ℓ;R)m

m∏
p=1

KF(ℓ)(ip, jp)fℓ,ip(xp)fℓ,jp(xσ(p))
)
λm(dx) =: J(R)

Here, i = (i1, . . . , im), j = (j1, . . . , jm) ∈ I(ℓ)m. From Lemma 2.3.3,

J(R) =

∫
A

( ∑
i,j∈I(ℓ;R)m

m∏
p=1

KF(ℓ)(ip, jp)fℓ,ip(xp)fℓ,jσ−1(p)
(xp)

)
λm(dx) (2.3.26)

=

∫
A

( ∑
i∈I(ℓ;R)m∩I(ℓ)(A)

m∏
p=1

KF(ℓ)(ip, iσ(p))|fℓ,ip(xp)|2
)
λm(dx)

=
∑

i∈I(ℓ;R)m∩Iℓ(A)

m∏
p=1

KF(ℓ)(ip, iσ(p)) →
∑

i∈Iℓ(A)

m∏
p=1

KF(ℓ)(ip, iσ(p)) as R → ∞.
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The convergence in the last line follows from Lemma 2.3.1 (2) and the Schwarz
inequality. Multiplying αm−ν(σ) and summing over σ ∈ Sm in the last term, we see
that ∑

σ∈Sm

αm−ν(σ)
∑

i∈Iℓ(A)

m∏
p=1

KF(ℓ)(ip, iσ(p)) (2.3.27)

=
∑

i∈Iℓ(A)

∑
σ∈Sm

αm−ν(σ)

m∏
p=1

KF(ℓ)(ip, iσ(p))

=
∑

i∈Iℓ(A)

detα[KF(ℓ)(ip, iq)]
m
p,q=1

=
∑

i∈Iℓ(A)

ρmF(ℓ)(i).

Combining (2.3.23)–(2.3.27) we deduce (2.2.26), which completes the proof.

2.4 Proof of Theorem 2.2.2 and Theorem 2.2.3

2.4.1 Proof of Theorem 2.2.2

Let ϱm be the m-point correlation function of (νF(ℓ) ⋄ λfℓ) ◦ u−1
ℓ |Gℓ

. Then it suffices
for (2.2.32) to prove

ρmGℓ
(x) = ϱm(x). (2.4.1)

From (2.1.6) and Fℓ = σ[Aℓ,i; i ∈ I(ℓ)], we see that ρmGℓ
and ϱm are Fm

ℓ -measurable.
Let m = m1 + · · ·+mk. Let A = Am1

1 × · · · × Amk
k ∈ ∆(ℓ)m such that Ap ∩Aq = ∅

if p ̸= q. Let i = (in)
m
n=1 = (i1, . . . , ik) ∈ I(ℓ)m such that in ∈ I(ℓ)mn . From

Theorem 2.2.1, we see that∫
A
ρmGℓ

(x)λm(dx) =
∑

i∈Iℓ(A)

ρmF(ℓ)(i). (2.4.2)

By the definition of correlation functions, (2.2.30), and (2.2.31), we see that∑
i∈Iℓ(A)

ρmF(ℓ)(i) =

∫
I(ℓ)

k∏
n=1

i(Iℓ(An))!

(i(Iℓ(An))−mn)!
νF(ℓ)(di) (2.4.3)

=

∫
S

k∏
n=1

s(An)!

(s(An)−mn)!
(νF(ℓ) ⋄ λfℓ) ◦ u−1

ℓ |Gℓ
(ds)

=

∫
A
ϱm(x)λm(dx).
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Combining (2.4.2) and (2.4.3), we deduce that∫
A
ρmGℓ

(x)λm(dx) =
∑

i∈Iℓ(A)

ρmF(ℓ)(i) =

∫
A
ϱm(x)λm(dx). (2.4.4)

From (2.4.4), we obtain (2.4.1). This completes the proof of Theorem 2.2.2.

2.4.2 Proof of Theorem 2.2.3

Let A ∈ Gℓ. From Theorem 2.2.2 and regular conditional probability of νF(ℓ) ⋄ λF(ℓ)
with respect to σ[ιℓ], we see that

µ|Gℓ
(A) =(νF(ℓ) ⋄ λF(ℓ)) ◦ u−1

ℓ |Gℓ
(A) (2.4.5)

=

∫
I(ℓ)

(νF(ℓ) ⋄ λF(ℓ)) ◦ ι−1
ℓ (di) νF(ℓ) ⋄ λF(ℓ)(u−1

ℓ (A)|ιℓ(ω) = i)

=

∫
I(ℓ)

(νF(ℓ) ⋄ λF(ℓ)) ◦ ι−1
ℓ (di) νF(ℓ) ⋄ λF(ℓ)(κ−1

ℓ,i ◦ u
−1
ℓ,i (A)|ιℓ(ω) = i)

=

∫
I(ℓ)

νF(ℓ)(di)λfℓ,i ◦ u−1
ℓ,i (A)

=

∫
I(ℓ)

νF(ℓ)(di)λ
u
fℓ,i
(A).

Here the forth line in (2.4.5) follows from the fact uℓ(ω) = uℓ,i(κℓ,i(ω)) for each
ω ∈ Ω(ℓ) with ιℓ(ω) = i. From (2.4.5), we obtain Theorem 2.2.3.

2.5 Tail triviality of determinantal point processes

Let S be a locally compact Hausdorff space with countable basis with metric d. Fix
a point o ∈ S as the origin. Set Sr = {x ∈ S; d(o, x) < r}. Assume that each Sr is
relatively compact. Note that this notion depends on the choice of metric d on S.

Denote S by the configuration space over S. For a Borel set A, we denote by
πA : S → S the projection of configuration such that s(·) 7→ s(· ∩ A). Denote by
Tail(S) the tail σ-field such that

Tail(S) =
∞∩
r=1

σ[πSc
r
].

Note that Tail(S) is determined independently of the choice of d.

Theorem 2.5.1. Assume (A1) and (A2). Let µ be the (K,m)-determinantal point
process on S. Then µ is tail trivial. That is, µ(A) ∈ {0, 1} for all A ∈ Tail(S).
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Proof. Let ∆(ℓ) = {Aℓ,i}i∈I(ℓ) be partitions of S satisfying (A2). Define new parti-
tions ∆(l; r) = {Aℓ,i; i ∈ Ir(l)} by

∆(ℓ; r) = {Aℓ,i ; Aℓ,i ∩ Sr = ∅}.

Then for fixed r ∈ N, ∆(ℓ; r) ≺ ∆(ℓ+1; r) for each ℓ ∈ N. Let G(ℓ, r) be sub-σ-fields
on S by ∆(ℓ; r) such that

G(ℓ, r) = σ[{s(A) = m};A ∈ ∆(ℓ, r),m ∈ N].

Then for each r, G(ℓ, r) is increasing in ℓ and we have

σ[πSc
r
] = σ[

∪
ℓ∈N

G(ℓ, r)].

Hence for any A ∈ σ[πc
r], martingale convergence theorem implies that

lim
ℓ→∞

µ(A |G(ℓ, r)) = 1A in L1(S, µ). (2.5.1)

Let A ∈ Tail(S). Then from (2.5.1) we can take an increasing sequence {ℓr}r∈N such
that

lim
r→∞

µ(A |G(ℓr, r)) = 1A in L1(S, µ).

Hence

A ∈
∩
q∈N

σ[
∪
r≥q

G(ℓr, r)]. (2.5.2)

Let ∆̃(t) = {Ãk,i}i∈N be partitions of S generated by ∆(ℓr, r) such that r ≥ t.

Then ∆̃(t) ≻ ∆̃(t + 1) for each t ∈ N. Define decreasing sub-σ-fields on S by ∆̃(t)
such that

H(t) = σ[{s(Ã) = m}; Ã ∈ ∆̃(t),m ∈ N].

Then H(t) is decreasing in t ∈ N. By (2.5.2), we have A ∈ H(t) for each t ∈ N.
Hence backward martingale theorem implies that

lim
t→∞

µ(A | H(t)) = 1A in L1(S, µ). (2.5.3)

For each t ∈ N, set Dc
t ⊂ S such that

Dc
t = S\

∪
A∈∆(ℓt,t)

A.
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Let ∆̃(k; t) be partitions on S generated by ∆(lt + k; t). Then {∆̃(k; t); k ∈ N}
satisfies (A2) as m-partitions on Dc

t . Let µt be the restriction of µ on σ[πDc
t
]. Denote

by I(t) the collection of indexes of partitions {∆̃(k; t); k ∈ N} defined in (??). Let
F(t) be the associated orthonormal basis satisfying (??)–(??). Then by Lemma 2
in Part I, we can define (KF(t), λI(t))-determinantal point process on νF(t). Denote
by I(t) the configuration space over I(t). Let Πt : I(t) → πSc

r
(S) be a projection

that sends each atom of ω =
∑

n δin ∈ Conf(I(t)) to the center of the support of

the orthonormal function fin . By definition, ∆̃(t) ≺ ∆̃(k; t) for each k ∈ N. Hence
Theorem 2.2 in Part I implies that for B ∈ H(t)

νF(t) ◦ Πt(B) = µt(B).

Because Π−1
t

(∩
s≥t H(s)

)
⊂ Tail(I(t)), Theorem 7.15 in [9] implies that

µt(A) ∈ {0, 1}.

From this together with (2.5.3), we obtain the claim.





Chapter 3

Bernoulli property of
determinantal point processes

We prove the Bernoulli property for determinantal point processes on Rd with
translation-invariant kernels. For the determinantal point processes on Zd with
translation-invariant kernels, the Bernoulli property was proved by Lyons and Steif
[11] and Shirai and Takahashi [27]. As its continuum version, we prove an isomor-
phism between the translation-invariant determinantal point processes on Rd with
translation-invariant kernels and homogeneous Poisson point processes. For this
purpose, we also prove the Bernoulli property for the tree representations of the
determinantal point processes.

3.1 Main statement: Bernoulli property of deter-

minantal point processes

We consider an isomorphism problem of measure-preserving dynamical systems
among translation-invariant point processes on Rd such as the homogeneous Pois-
son point processes and the determinantal point processes with translation-invariant
kernel functions.

The homogeneous Poisson point process is a point process in which numbers of
particles on disjoint subsets obey independently Poisson distributions. It is param-
eterized using intensity r > 0. From the general theory of Ornstein and Weiss [17],
homogeneous Poisson point processes are isomorphic to each other regardless of the
value of r.

The determinantal point process is a point process for which the determinants
of its kernel function give its correlation functions. It describes a repulsive particle
system and appears in various mathematical systems such as uniform spanning trees,

29
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the zeros of a hyperbolic Gaussian analytic function with a Bergman kernel, and
the eigenvalue distribution of random matrices.

These two classes of point processes have different properties in correlations
among particles. For example, determinantal point processes have negative asso-
ciations [9]. The sine point process is a typical example of a translation-invariant
determinantal point process that has number rigidity [5]. In contrast, Poisson point
processes do not have this property because the particles are regionally independent.
Nevertheless, we prove they are isomorphic to each other.

We start by recalling the isomorphism theory.
An automorphism S of a probability space (Ω,F ,P) is a bi-measurable bijection

such that P ◦ S−1 = P. Let SG = {Sg : g ∈ G} be a group of automorphisms of
(Ω,F ,P) parametrized by a group G. A measure-preserving dynamical system of
G-action is the quadruple (Ω,F ,P, SG). We call (Ω,F ,P, SG) the G-action system
for short.

Let (Ω,F ,P, SG) and (Ω′,F ′,P′, S′
G) be G-action systems. A factor map is a

measurable map ϕ : Ω → Ω′ such that

P ◦ ϕ−1 = P′, ϕ ◦ Sg(x) = S′
g ◦ ϕ(x) for each g ∈ G and a.s. x ∈ Ω.

In this case, we call (Ω′,F ′,P′, S′
G) the ϕ-factor of (Ω,F ,P, SG) or simply a factor

of (Ω,F ,P, SG). An isomorphism is a bi-measurable bijection ϕ : Ω → Ω′ such that
both ϕ and ϕ−1 are factor maps. If there exists an isomorphism ϕ : Ω → Ω′, then
(Ω,F ,P, SG) and (Ω′,F ′,P′, S′

G) are said to be isomorphic.
Let (Ω,F ,P, SG) be a G-action system with a measurable map ϕ from (Ω,F)

to (Ω′,F ′). Then (Ω′,Fϕ,Pϕ, S
ϕ
G) is a G-action system. Here, (Ω′,Fϕ,Pϕ) is the

completion of (Ω′, σ[ϕ],P ◦ ϕ−1), and Sϕ
G = {ϕ ◦ Sg ◦ ϕ−1 : g ∈ G}. We also call the

G-action system (Ω′,Fϕ,Pϕ, S
ϕ
G) the ϕ-factor of (Ω,F ,P, SG).

A typical system with a discrete group action is a Bernoulli shift. A G-action
Bernoulli shift is a system formed from the direct product of a probability space
over G and the canonical shift. Ornstein [14, 15] proved that the Z-action Bernoulli
shifts with equal entropy are isomorphic to each other. We call a system (Ω,F ,P, SG)
Bernoulli if (Ω,F ,P, SG) is isomorphic to a Bernoulli shift. Ornstein and Weiss [17]
extended the isomorphism theory to amenable group actions. As a consequence of
the general theory, all the homogeneous Poisson point processes on Rd are isomorphic
to each other regardless of their intensity.

Let X be a locally compact Hausdorff space with countable basis. We denote
by Conf(Rd) the set of all nonnegative integer-valued Radon measures on X. We
equip Conf(Rd) with the vague topology, under which Conf(Rd) is a Polish space.
We call a Borel probability measure µ on Conf(Rd) a point process on X. We say µ
is simple when ξ({x}) ∈ {0, 1} for each x ∈ X for a.s. ξ ∈ Conf(Rd).

Let µ be a point process on X. Throughout this paper, we write the comple-
tion of µ by the same symbol. We also write (Conf(Rd), µ,TG) as the G-action
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system made of the completion of (Conf(Rd),B(Conf(Rd)), µ) and a G-action group
of automorphisms TG.

A homogeneous Poisson point process with intensity r > 0 is the point process
on Rd satisfying:
(1) ξ(A) has a Poisson distribution with mean r|A| for each A ∈ B(Rd).
(2) ξ(A1), . . . , ξ(Ak) are independent for any disjoint subsets A1, . . . , Ak ∈ B(Rd).
Here, ξ(A) is the number of particles on A for ξ ∈ Conf(Rd) and |A| is the Lebesgue
measure of A.

A determinantal point process µ on X is a point process associated with a kernel
function K : X × X → C and a Radon measure λ on X, for which the n-point
correlation function with respect to λ is given by

ρn(x1, . . . , xn) = det[K(xi, xj)]
n
i,j=1 (3.1.1)

for each n ∈ N. See Definition 3.4.1 for the definition of the n-point correlation
function. We call µ a (K,λ)-determinantal point process. If the context is clear,
we omit λ calling µ a K-determinantal point process. Throughout this paper, we
assume that λ is the Lebesgue measure if X = Rd.

Now, we state the main theorem:

Theorem 3.1.1. Let K̂ ∈ L1(Rd) such that K̂(t) ∈ [0, 1] for a.e. t ∈ Rd. Let µK be
a determinantal point process on Rd with translation-invariant kernel K such that

K(x, y) =

∫
Rd

K̂(t)e2πi(x−y)·tdt. (3.1.2)

Then (Conf(Rd), µK ,TRd) is isomorphic to a Poisson point process. Here, Ta :∑
i δxi

7→
∑

i δxi+a for a ∈ Rd and TRd = {Ta : a ∈ Rd}.

We remark that the assumption for K in Theorem 3.1.1 implies the following
condition (1)–(4) with X = Rd and the Lebesgue measure λ.
(1) K : X ×X → C is Hermitian symmetric.
(2) For each compact set A ⊂ X, the integral operator K on L2(A, λ) is of trace
class.
(3) SpecK ⊂ [0, 1].
(4) K(x, y) = K(x− y, 0).
Under assumptions (1)–(3), there exists a unique (K,λ)-determinantal point process
µ with the kernel function K [24, 26].

The K-determinantal point process µ satisfying (1)–(4) above is translation in-
variant because its n-correlation functions are translation invariant.

For determinantal point processes on Zd with translation-invariant kernel and the
counting measure, Lyons and Steif [11] and Shirai and Takahashi [27] independently
proved the Bernoulli property, the latter giving a sufficient condition for the weak
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Bernoulli property under the assumption K : Zd × Zd → C satisfying (1), (2),
Spec(K) ⊂ (0, 1), and (4). We recall that the weak Bernoulli property is stronger
than the Bernoulli property. Lyons and Steif [11] proved the Bernoulli property for
the case K satisfying (1)–(4). Theorem 3.1.1 is its continuum version.

One of the ideas in [11] is using the dbar distance, which is a metric on the set
of Zd-action systems; the Bernoulli property is closed under this metric [16, 17, 28].
However, the dbar distance does not work for systems with infinite entropy because
entropy is continuous with respect to the dbar distance. In general, a translation-
invariant point process on Rd has infinite entropy. Therefore, we cannot apply the
dbar distance to our case. Therefore, we construct point processes on a discrete set
that approximate the determinantal point process on Rd. We prove the Bernoulli
property of the discrete point processes. In turn, we can prove the isomorphism of
the determinantal point process on Rd and the Poisson point process via the tree
representation [20].

To prove Theorem 3.1.1, we apply the general theory given by Ornstein and
Weiss [17]. We quote them in the form applicable to the Rd- and Zd-actions. We
also refer to [16] for the Z- and R-actions, and [28] for the Zd-action.

The outline of this paper is as follows. In Section 3.2, we recall notions related
to the Bernoulli property. In Section 3.3, we introduce the kernel functions that
approximate the determinantal kernelK in Theorem 3.1.1 uniformly on any compact
set on Rd. In Section 3.4, we introduce the tree representations of the determinantal
point processes on Rd. We combine these representations with the kernels introduced
in Section 3.3. The tree representations are determinantal point processes on Zd×N
and are translation invariant with respect to the first coordinate. In Section 3.5,
we prove the Bernoulli property of the tree representation using the properties of
the dbar distance introduced in Section 3.2. In Section 3.6, we prove Theorem 3.1.1
using the Bernoulli property of the tree representations.

3.2 Notions related to the Bernoulli property

In this section, we collect properties of point processes without determinantal struc-
ture and notions related to the Bernoulli property.

We first recall the notion of monotone coupling. For ζ i = {ζ iz}z∈Zd ∈ {0, 1}Zd

(i = 1, 2), we write ζ1 ≤ ζ2 if ζ1z ≤ ζ2z for each z ∈ Zd. We equip {0, 1}Zd
with

the product topology. We call a continuous function f : {0, 1}Zd → R a monotone
function on {0, 1}Zd

if ζ1 ≤ ζ2 implies f(ζ1) ≤ f(ζ2). Let B be the Borel σ-field of
{0, 1}Zd

. For probability measures µ and ν on ({0, 1}Zd
,B), we write µ ≤ ν if for
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each monotone function f , ∫
{0,1}Zd

fdµ ≤
∫
{0,1}Zd

fdν.

Let ν1 and ν2 be probability measures on {0, 1}Zd
. We say a probability measure γ

on {0, 1}Zd × {0, 1}Zd
is a monotone coupling of ν1 and ν2 if the following hold:

(1) γ(A× {0, 1}Zd
) = ν1(A) for A ∈ B.

(2) γ({0, 1}Zd × B) = ν2(B) for B ∈ B.
(3) γ({(ζ1, ζ2) ∈ {0, 1}Zd × {0, 1}Zd

; ζ1 ≤ ζ2}) = 1.

Lemma 3.2.1 (e.g. [8]). For probability measures µ and ν on {0, 1}Zd
, the following

statements are equivalent:
(1) µ ≤ ν.
(2) There exists a monotone coupling of µ and ν.

We naturally regard a simple point process µ on Zd×N as a probability measure
on {0, 1}Zd×N, denoted by the same symbol µ. We write µ ≤ ν for simple point
processes µ and ν if the corresponding probability measures on {0, 1}Zd×N satisfy
µ ≤ ν. We introduce the notion of monotone coupling for simple point processes
on Zd × N from that of the corresponding probability measures on {0, 1}Zd×N in an
obvious fashion.

Fix N ∈ N. We set [N ] = {1, . . . , N}. Let QN = {QN
z,l : (z, l) ∈ Zd × [N ]} be a

partition of Zd × N such that

QN
z,l =

{
{(z, l)} for l ∈ [N − 1]

{(z,m) ∈ Zd × N;m ≥ l} for l = N
(3.2.1)

for each (z, l) ∈ Zd × [N ]. For ξ ∈ Conf(Zd × N), we set

ωN
z,l(ξ) = 1{ξ(QN

z,l)≥1}.

Let ϖN : Conf(Zd × N) → {0, 1}Zd×[N ] denote the map

ξ 7→ {ωN
z,l(ξ)}(z,l)∈Zd×[N ]. (3.2.2)

We denote the image measure ν ◦ϖ−1
N by νN for a point process ν on Zd × N.

Proposition 3.2.2. Let µ and ν be simple point processes on Zd × N. Assume
µ ≤ ν. Then µN ≤ νN .
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Proof. By assumption and Lemma 3.2.1, there exists a monotone coupling γ of µ
and ν. Let γN(ξ, η) = γ ◦ (ϖN(ξ), ϖN(η))

−1. Then for A ∈ B({0, 1}Zd×[N ]),

γN(A× {0, 1}Zd×[N ]) =γ
(
{(ξ, η); (ϖN(ξ), ϖN(η)) ∈ A× {0, 1}Zd×[N ]}

)
=γ

(
ϖ−1

N (A)× Conf(Zd × N)
)

=µ
(
ϖ−1

N (A)
)

=µN

(
A
)
.

The third equation follows from the fact that γ is a coupling of µ and ν. Because
the same is true for {0, 1}Zd×[N ] × A, we find

γN({0, 1}Z
d×[N ] × A) = νN(A).

Moreover, by γN(ξ, η) = γ ◦ (ϖN(ξ), ϖN(η))
−1

γN({(ζ, ω) ∈ {0, 1}Zd×[N ] × {0, 1}Zd×[N ]; ζ ≤ ω})
=γ({(ξ, η) ∈ Conf(Zd × N)× Conf(Zd × N);ϖN(ξ) ≤ ϖN(η)})
=1.

The last equation follows from the fact that γ is a monotone coupling of µ and ν.
Hence γN is a monotone coupling of µN and νN . From this and Lemma 3.2.1, we
prove the claim.

We recall the notion of being finitely dependent, which is a sufficient condition
for the Bernoulli property. See, e.g., [11].

Definition 3.2.3. Let Ω be a countable set.
(1) A probability measure ν on ΩZd

is called r-dependent if, for each R,S ⊂ Zd,

inf{d(z, w); z ∈ R,w ∈ S} ≥ r ⇒ σ[πR] and σ[πS] are independent.

Here, d(z, w) is the graph distance on Zd and πR : ΩZd → ΩR is the projection given
by {ωz}z∈Zd 7→ {ωz}z∈R.
(2) ν is called finitely dependent if ν is r-dependent for some r ∈ N.

Let Pinv(M) be the set of translation-invariant probability measures on [M ]Z
d
.

For x, y ∈ Zd, define x < y if xi < yi for i = min{j = 1, . . . , d;xj ̸= yj}. For
P,Q ⊂ Zd, we set P < Q if x < y for all x ∈ P and y ∈ Q .
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Definition 3.2.4 (Very weak Bernoulli). We call ν ∈ Pinv(M) very weak Bernoulli
if for each ϵ > 0, there is a rectangle R ⊂ Zd such that if, for any finite set Q =
{x1, . . . , xm} < R, there exists an A ⊂ σ[πQ] satisfying (3.2.3) and (3.2.4):

ν(
∪
A∈A

A) > 1− ϵ. (3.2.3)

inf
γ∈Γ(ν|R,νA|R)

Eγ[
1

#R

∑
z∈R

1{Xz ̸=Yz}] < ϵ for A ∈ A. (3.2.4)

Here νA denotes the conditional probability measure under A, ν|R = ν ◦ π−1
R , and

νA|R = νA ◦ π−1
R . Furthermore, Γ(ν|R, νA|R) is the collection of the couplings of ν|R

and νA|R, and ((Xz)z∈R, (Yz)z∈R) ∈ [M ]R × [M ]R.

Lemma 3.2.5 (e.g. [11]). If ν ∈ Pinv(M) is finitely dependent, then ν is very weak
Bernoulli.

Proof. By definition, there exists a r0 such that ν is r0-dependent. For ϵ > 0, let
R ⊂ Zd be a rectangle such that (r0)

d/#R < ϵ. Let Q = {z1, . . . , zm} ⊂ Zd be a
finite set such that Q < R. We set

Qr0 = {w ∈ Zd; d(z, w) ≤ r0 for some z ∈ Q}.

Then #R∩Qr0 ≤ (r0)
d. By r0-dependence, σ[πQ] and σ[πQc

r0
] are independent under

ν. Hence for each A ∈ σ[πQ], ν = νA on σ[πQc
r0
]. Let γA be the coupling of ν ◦ π−1

R

and νA ◦ π−1
R such that Xz = Yz for z ∈ R ∩Qc

r0
and Xz ⊥ Yz for z ∈ R ∩Qr0 under

γA. Then

EγA [
1

#R

∑
z∈R

1{Xz ̸=Yz}] ≤
(r0)

d

#R
< ϵ.

This proves the claim.

The very weak Bernoulli property is equivalent to the Bernoulli property for
elements of Pinv(M):

Lemma 3.2.6 ([16, 17, 28]). For ν ∈ Pinv(M), the following statements are equiv-
alent:
(1) ν is very weak Bernoulli.
(2) ν is isomorphic to a Bernoulli shift.

From Lemma 3.2.5 and Lemma 3.2.6, we obtain:

Proposition 3.2.7 (e.g. [11]). If ν ∈ Pinv(M) is finitely dependent, then ν is iso-
morphic to a Bernoulli shift.
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Let µ and ν ∈ Pinv(M). Define d̄ : Pinv(M)× Pinv(M) → [0, 1] by

d̄(µ, ν) = inf
γ∈Γ(µ,ν)

γ({(ζ, ω) ∈ [M ]Z
d × [M ]Z

d

; ζ0 ̸= ω0}). (3.2.5)

Then d̄ gives a metric on Pinv(M). The Bernoulli property is closed under d̄:

Lemma 3.2.8 ([16, 17, 28]). Let ν and {νn : n ∈ N} be elements of Pinv(M).
Suppose that limn→∞ d̄(νn, ν) = 0 and that each νn is isomorphic to a Bernoulli
shift. Then ν is isomorphic to a Bernoulli shift.

We quote Theorem 5 in III.6 in [17]:

Lemma 3.2.9 ([16, 17]). Let (Ω,F ,P, SZd) be an ergodic system. Let {Fn : n ∈ N}
be an increasing sequence of SZd-invariant sub-σ-fields. Let

∨
n∈N Fn be the comple-

tion of σ[
∪

n∈N Fn]. Assume that {Fn : n ∈ N} satisfies (3.2.6) and (3.2.7):∨
n∈N

Fn = F . (3.2.6)

Fn-factor is isomorphic to a Bernoulli shift for each n. (3.2.7)

Then (Ω,F ,P, SZd) is isomorphic to a Bernoulli shift.

Proposition 3.2.10. Let (Conf(Zd×N), ν,TZd) be ergodic. Let ν be simple. Suppose
that there exists a sequence {νr : r ∈ N} of point processes on Zd × N such that

νr,N is isomorphic to a Bernoulli shift for each r and N ∈ N, (3.2.8)

lim
r→∞

d̄(νr,N , νN) = 0 for each N ∈ N. (3.2.9)

Here, νr,N = νr ◦ϖ−1
N and νN = ν ◦ϖ−1

N . Then, ν is isomorphic to a Bernoulli shift.

Proof. Recall that QN = {QN
z,l : (z, l) ∈ Zd× [N ]} is a partition of Zd×N. Here, QN

z,l

is defined in (3.2.1). Then QN becomes finer as N → ∞ and
∨

N∈NQ
N separates

points of Zd × N by construction. Here,
∨

N∈NQ
N is the refinement of partitions

{QN}N∈N. From this, we obtain that {σ[ϖN ]}N∈N is increasing and
∨

N∈N σ[ϖN ]
separates points of Conf(Zd × N). Hence {σ[ϖN ]}N∈N satisfies (3.2.6).

From the assumptions (3.2.8) and (3.2.9) and Lemma 3.2.8, νN is isomorphic to
a Bernoulli shift. Hence {σ[ϖN ]}N∈N satisfies (3.2.7).

From the above and Lemma 3.2.9, the claim holds.
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3.3 Approximations of the determinantal kernel

In this section, we introduce three approximations of the kernel K introduced in
(3.1.2).

For r > 0, let wr : Rd → R be the product of the tent function such that

wr(x) =
d∏

j=1

(1− |xj|/r)1{|xj |<r}(x).

We denote by ŵr its Fourier transform

ŵr(t) =

∫
Rd

wr(x)e
2πix·tdx = r−d

d∏
j=1

(sin πrtj
πtj

)2
.

Let K̂ ∈ L1(Rd) such that K̂(t) ∈ [0, 1] for a.s. t ∈ Rd. Set K̂r(t) = K̂ ∗ ŵr(t). Then
K̂r(t) ∈ [0, 1] for a.e. t ∈ Rd. Let

Kr(x, y) =

∫
Rd

(
K̂r(t) ∧ K̂(t)

)
e2πi(x−y)·tdt, (3.3.1)

Kr(x, y) =

∫
Rd

K̂r(t)e
2πi(x−y)·tdt, (3.3.2)

Kr(x, y) =

∫
Rd

(
K̂r(t) ∨ K̂(t)

)
e2πi(x−y)·tdt. (3.3.3)

Here, a ∧ b = max{a, b} and a ∨ b = min{a, b} for a, b ∈ R, respectively. Then
Kr, Kr, and Kr satisfy (1)–(4) before Theorem 3.1.1.

For K : X×X 7→ C, we denote O ≤ K if K is nonnegative definite as an integral
operator on L2(Rd) and K1 ≤ K2 if K2 −K1 is nonnegative definite.

Lemma 3.3.1. Let Kr, Kr, and Kr be as (3.3.1), (3.3.2), and (3.3.3), respectively.
Then

Kr ≤ K ≤ Kr, (3.3.4)

Kr ≤ Kr ≤ Kr. (3.3.5)

Proof. By construction, we see

K̂r(t) ∧ K̂(t) ≤ K̂(t) ≤ K̂r(t) ∨ K̂(t)

K̂r(t) ∧ K̂(t) ≤ K̂r(t) ≤ K̂r(t) ∨ K̂(t).

From (3.3.1)-(3.3.3) combined with the above inequalities, we obtain (3.3.4) and
(3.3.5).
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3.4 Tree representations of determinantal point

processes

In this section, we introduce the tree representations of determinantal point pro-
cesses on Rd. Then we apply it to the determinantal point processes associated with
the kernels introduced in Section 3.3. Before doing so, we recall the definition and
well-known facts about determinantal point processes.

Let µ be a point process on X. A locally integrable symmetric function ρn :
Xn → [0,∞) is called the n-point correlation function of µ (with respect to a Radon
measure λ on X ) if

Eµ
[ k∏
i=1

ξ(Ai)!

(ξ(Ai)− ni)!

]
=

∫
A

n1
1 ×···×A

nk
k

ρn(x1, . . . , xn)λ(dx1) · · ·λ(dxn) (3.4.1)

for any disjoint Borel subsets A1, . . . , Ak and for any ni ∈ N, i = 1, . . . , k such that∑k
i=1 ni = n. Let K : X × X → C. We call µ a determinantal point process with

kernel K and Radon measure λ if the n-point correlation function ρn of µ with
respect to λ satisfies (3.1.1) for each n.

Assume K : X ×X → C satisfies:

K(x, y) = K(y, x). (3.4.2)

Spec(K) ⊂ [0, 1]. (3.4.3)

KA is trace class for any compact A ⊂ X. (3.4.4)

Here,K in (3.4.3) is an integral operator on L2(X,λ) such thatKf(x) =
∫
X
K(x, y)λ(dy)

and KA in (3.4.4) is its restriction on L2(A, λ). Then there exists a unique determi-
nantal point process on X with kernel function K.

Next, we introduce the tree representations of the determinantal point processes.
Let µK be the determinantal point process on Rd with kernel function K satisfying
(3.4.2)–(3.4.4). First, we introduce a partition of Rd and the associated orthonormal
basis on L2(Rd). Let P = {Pz : z ∈ Zd} be a partition of Rd such that each Pz is
relatively compact and

Pz+w = Pz + w for z, w ∈ Zd.

Here, A+ x = {a+ x; a ∈ A} for A ⊂ Rd and x ∈ Rd. Let Φ = ΦP = {ϕz,l}(z,l)∈Zd×N
be an orthonormal basis on L2(Rd) such that suppϕz,l ⊂ Pz and

ϕz+w,l(x) = ϕz,l(x− w). (3.4.5)

For the kernel function K above, let KΦ : (Zd × N)× (Zd × N) → C such that

KΦ(z, l;w,m) =

∫
Rd×Rd

ϕz,l(x)K(x, y)ϕw,m(y)dxdy. (3.4.6)
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Lemma 3.4.1. Assume that K satisfies (3.4.2)–(3.4.4) with respect to L2(Rd). Then
KΦ satisfies (3.4.2)–(3.4.4) with respect to the counting measure on Zd × N.

Proof. By assumption and (3.4.6), KΦ satisfies (3.4.2) and (3.4.4). (3.4.3) follows
from Lemma 2 in p.430 of [20].

From Lemma 3.4.1 and the general theory in [24, 26], there exists a determi-
nantal point process νK,Φ on Zd × N associated with KΦ. We call νK,Φ the tree
representation of µK with respect to Φ.

Lemma 3.4.2 ([20]). Let π : Conf(Zd × N) → Conf(Zd) such that

η 7→ π(η) =
∑
z∈Zd

η({z} × N)δz.

Then for A ∈ σ[{ξ ∈ Conf(Zd × N); ξ(Pz) = n}; z ∈ Zd, n ∈ N],

νK,Φ ◦ π−1(A) = µK(A).

Proof. From Theorem 2 on p.427 of [20], we easily obtain the claim.

We apply the tree representations for the translation-invariant kernels on Rd

introduces in Section 3.3.

Assume that K is given by (3.1.2). Then K is translation invariant. Hence by
constructionKΦ is translation invariant with respect to the first coordinate Zd. From
this we see that νK,Φ is translation invariant with respect to the first coordinate.

Define KΦ
r , K

Φ
r , and K

Φ

r similarly as (3.4.6) with replacement of K with Kr, Kr,
and Kr in (3.3.1)–(3.3.3), respectively. By construction, Kr, Kr, and Kr satisfies

(3.4.2)–(3.4.4). Hence KΦ
r , K

Φ
r , and K

Φ

r satisfy (3.4.2)–(3.4.4) with respect to the

counting measure on Zd × N by Lemma 3.4.2. Furthermore, KΦ
r , K

Φ
r , and K

Φ

r are
translation invariant with respect to the first coordinate Zd.

Let νK,Φ
r , νK,Φ

r , and νK,Φ
r be KΦ

r -, K
Φ
r - and K

Φ

r -determinantal point process,
respectively. We remark that a determinantal point process ν on Zd has no multiple
points with probability 1. Hence we can regard ν as a probability measure on
{0, 1}Zd

. We quote:

Lemma 3.4.3 ([9]). Let Ki : Zd × Zd → C satisfying (3.4.2)–(3.4.4) (i = 1, 2).
Assume that K1 ≤ K2. Let νK1 and νK2 be the determinantal point processes with
K1 and K2, respectively. Then there exists a monotone coupling of νK1 and νK2.

Applying Lemma 3.4.3, we obtain the following:
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Lemma 3.4.4. Let νK,Φ
r , νK,Φ, νK,Φ

r , and νK,Φ
r be determinantal point processes on

Zd × N as above. Then

νK,Φ
r ≤ νK,Φ ≤ νK,Φ

r , (3.4.7)

νK,Φ
r ≤ νK,Φ

r ≤ νK,Φ
r . (3.4.8)

Proof. Recall that Φ is the orthonormal basis of L2(Rd) given in (3.4.5). Let U :
L2(Rd) → L2(Zd × N) be the unitary operator such that U(ϕz,n) = ez,n, where
{ez,n}(z,n)∈Zd×N is the canonical orthonormal basis of L2(Zd × N). Then by Lemma
1 in Section 3 of [20], we see that KΦ = UKU−1. From this and Lemma 3.3.1, we
obtain

KΦ
r ≤ KΦ ≤ K

Φ

r , (3.4.9)

KΦ
r ≤ KΦ

r ≤ K
Φ

r . (3.4.10)

From (3.4.9) and (3.4.10) combined with Lemma 3.4.3, we conclude (3.4.7) and
(3.4.8).

Recall that KΦ
r , K

Φ
r , and K

Φ

r are translation invariant with respect to the first
coordinate. Hence νK,Φ

r , νK,Φ
r , and νK,Φ

r are also translation invariant with respect to
the first coordinate. We regard TZd = {Ta : a ∈ Zd} as a translation on Conf(Zd×N)
such that

Ta :
∑
i

δ(zi,li) 7→
∑
i

δ(zi+a,li) for a ∈ Zd.

Then (Conf(Zd×N), νK,Φ
r ,TZd), (Conf(Zd×N), νK,Φ,TZd), (Conf(Zd×N), νK,Φ

r ,TZd),
and (Conf(Zd × N), νK,Φ

r ,TZd) are Zd-action systems.

3.5 Bernoulli property of tree representations

We continue the setting of Section 3.4. Let KΦ be the kernel defined by (3.4.6). Let
νK,Φ be the KΦ-determinantal point process as before. The purpose of this section
is to prove the Bernoulli property for (Conf(Zd × N), νK,Φ,TZd).

Let ϖN be the map defined by (3.2.2). Let ({0, 1}Zd×[N ], νK,Φ
r,N ,TZd) denote the

ϖN -factor of (Conf(Zd × N), νK,Φ
r ,TZd). Here, TZd in ({0, 1}Zd×[N ], νK,Φ

r,N ,TZd) is the

shift of {0, 1}Zd×[N ] such that for each a ∈ Zd

Ta : ω = {ωz,l}(z,l)∈Zd×[N ] 7→ {ωz+a,l}(z,l)∈Zd×[N ].

We also denote ϖN -factors of (Conf(Zd × N), νK,Φ
r ,TZd), (Conf(Zd × N), νK,Φ

r ,TZd),
and (Conf(Zd × N), νK,Φ

r ,TZd) by ({0, 1}Zd×[N ], νK,Φ
r,N ,TZd), ({0, 1}Zd×[N ], νK,Φ

r,N ,TZd),

and ({0, 1}Zd×[N ], νK,Φ
r,N ,TZd), respectively. We shall prove that ({0, 1}Zd×[N ], νK,Φ

N ,TZd)
is isomorphic to a Bernoulli shift.
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Lemma 3.5.1.

νK,Φ
r,N ≤ νK,Φ

N ≤ νK,Φ
r,N ,

νK,Φ
r,N ≤ νK,Φ

r,N ≤ νK,Φ
r,N .

Proof. From Proposition 3.2.2 and Lemma 3.4.4, we obtain the claim.

Lemma 3.5.2. ({0, 1}Zd×[N ], νK,Φ
r,N ,TZd) is isomorphic to a Bernoulli shift.

Proof. We identify {0, 1}Zd×[N ] with [2N ]Z
d
and νK,Φ

r,N with an element of Pinv(2
N),

respectively. We shall prove that νK,Φ
r,N is finitely dependent. For this it only remains

to prove that νK,Φ
r is finitely dependent because ({0, 1}Zd×[N ], νK,Φ

r,N ,TZd) is the ϖN -

factor of (Conf(Zd × N), νK,Φ
r ,TZd).

Let d be the graph distance as before. Let r0 > 0 such that for each z, w ∈ Zd,

d(z, w) ≥ r0 ⇒ inf{|zi − wi|; i = 1, . . . , d} ≥ r.

For P,Q ⊂ Zd × N, we define a pseudo-distance by

d(P,Q) = inf{d(z, w); (z, l) ∈ P, (w,m) ∈ Q}.

Let P,Q ⊂ Zd × N be finite sets such that d(P,Q) ≥ r0. Then

KΦ
r (z, l;w,m) = 0 for (z, l) ∈ P , (w,m) ∈ Q . (3.5.1)

For P ⊂ Zd × N, we define a cylinder set by

1P = {ω ∈ Conf(Zd × N);ω({(z, l)}) = 1 for all (z, l) ∈ P}.

By construction, 1P ∩ 1Q = 1P∪Q. Therefore

νK,Φ
r (1P ∩ 1Q) =νK,Φ

r (1P∪Q)

=det[KΦ
r (z, l;w,m)](z,l),(w,m)∈P∪Q

=det[KΦ
r (z, l;w,m)](z,l),(w,m)∈P det[KΦ

r (z, l;w,m)](z,l),(w,m)∈Q

=νK,Φ
r (1P )νK,Φ

r (1Q). (3.5.2)

The third equality follows from (3.5.1).
Let R,S ⊂ Zd such that d(R×N, S×N) ≥ r0. From (3.5.2) and the π-λ theorem,

νK,Φ
r (A ∩ B) = νK,Φ

r (A)νK,Φ
r (B)

for each A ∈ σ[πR×N] and B ∈ σ[πS×R]. Hence ν
K,Φ
r,N is r0-dependent.

From this and Proposition 3.2.7, the claim holds.
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Lemma 3.5.3. For each N ,

lim
r→∞

d̄(νK,Φ
N , νK,Φ

r,N ) = 0. (3.5.3)

Proof. Because d̄ is a metric on Pinv(M),

d̄(νK,Φ
N , νK,Φ

r,N ) ≤ d̄(νK,Φ
r,N , ν

K,Φ
N ) + d̄(νK,Φ

r,N , ν
K,Φ
r,N ), (3.5.4)

d̄(νK,Φ
N , νK,Φ

r,N ) ≤ d̄(νK,Φ
N , νK,Φ

r,N ) + d̄(νK,Φ
r,N , νK,Φ

r,N ). (3.5.5)

From Lemma 3.2.1 and Lemma 3.5.1, there exists a monotone coupling γN of νK,Φ
r,N

and νK,Φ
N . By definition (3.2.5) of d̄, we deduce

d̄(νK,Φ
r,N , ν

K,Φ
N ) ≤γN

({
(ω1, ω2) ; ω1({0} × {l}) ̸= ω2({0} × {l}) for ∃l ∈ [N ]

})
≤

∑
l∈[N ]

γN
({

(ω1, ω2) ; ω1({0} × {l}) ̸= ω2({0} × {l})
})

=
∑
l∈[N ]

{
νK,Φ
N (ω1({0} × {l}) = 1)− νK,Φ

r,N (ω2({0} × {l}) = 1)
}
. (3.5.6)

The last equation follows from the fact that γN is a monotone coupling of νK,Φ
r,N and

νK,Φ
N . Because of Lemma 3.5.1, (3.5.6) is true for (νK,Φ

r,N , ν
K,Φ
r,N ), (νK,Φ

N , νK,Φ
r,N ), and

(νK,Φ
r,N , νK,Φ

r,N ). From this combined with (3.5.4) and (3.5.5), we obtain

d̄(νK,Φ
N , νK,Φ

r,N ) ≤
∑
l∈[N ]

{
νK,Φ
r,N (ω1({0} × {l}) = 1)− νK,Φ

r,N (ω2({0} × {l}) = 1)
}

=
∑

l∈[N−1]

{
νK,Φ
r (ω1({0} × {l}) = 1)− νK,Φ

r (ω2({0} × {l}) = 1)
}

+ νK,Φ
r (ω1({0} × N\[N ]) ≥ 1)− νK,Φ

r (ω2({0} × N\[N ]) ≥ 1).
(3.5.7)

The last equation follows from the definitions of νK,Φ
r and νK,Φ

r .
For (z, l) and (w,m),

|KΦ

r (z, l;w,m)−KΦ
r (z, l;w,m)| (3.5.8)

=
∣∣∣∫

Rd×Rd

{Kr(x, y)−Kr(x, y)}ϕz,l(x)ϕw,m(y)dxdy
∣∣∣

≤
∫
Rd×Rd

|Kr(x, y)−Kr(x, y)||ϕz,l(x)ϕw,m(y)|dxdy

=

∫
suppϕz,l×suppϕw,m

|Kr(x, y)−Kr(x, y)||ϕz,l(x)ϕw,m(y)|dxdy. (3.5.9)
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Because Kr , Kr ∈ L2
loc(Rd×Rd) and ϕz,l and ϕw,m are orthonormal bases on L2(Rd)

with relatively compact support, the Schwarz inequality implies that

(3.5.9) ≤
(∫

suppϕz,l×suppϕw,m

|Kr(x, y)−Kr(x, y)|2dxdy
) 1

2
(3.5.10)

Because K̂r → K̂ in L1(Rd) as r → ∞, Kr and Kr converge to K uniformly on any
compact set. Hence RHS of (3.5.10) goes to 0 as r → ∞. This implies that (3.5.8)
goes to 0 as r → ∞. Hence for each compact set R ⊂ Zd × N,

max
{
|KΦ

r (z, l;w,m)−KΦ
r (z, l;w,m)| ; (z, l), (w,m) ∈ R

}
→ 0 as r → ∞.

From this and Proposition 3.10 in [26],

νK,Φ
r , νK,Φ

r → νK,Φ weakly as r → ∞. (3.5.11)

Finally, (3.5.7) and (3.5.11) imply (3.5.3) .

Theorem 3.5.4. (Conf(Zd × N), νK,Φ,TZd) is isomorphic to a Bernoulli shift.

Proof. From Proposition 3.2.10, Lemma 3.5.2 and Lemma 3.5.3, the claim holds.

3.6 Proof of Theorem 3.1.1

The purpose of this section is to complete the proof of Theorem 3.1.1.
We quote a general fact of isomorphism theory:

Lemma 3.6.1 ([16, 17]). Let (Ω′,F ′,P′, S′
Zd) be a factor of (Ω,F ,P, SZd). If (Ω,F ,P, SZd)

is isomorphic to a Bernoulli shift, then (Ω′,F ′,P′, S′
Zd) is isomorphic to a Bernoulli

shift.

For n ∈ N, let Pn = {Pn,z : z ∈ Zd} be a partition of Rd such that

Pn,z =
d∏

i=1

[
zi

2n−1
,
zi + 1

2n−1
) , z = (z1, . . . , zd) ∈ Zd.

Let ΠPn : Conf(Rd) → Conf(Zd) such that

ξ 7→
∑
z∈Zd

ξ(Pn,z)δz.

Then ΠPn ◦ Tz(ξ) = Tz ◦ ΠPn(ξ) for each z ∈ Zd and ξ ∈ Conf(Rd). Let µK
Pn

=
µK ◦ Π−1

Pn
. Then (Conf(Zd), µK

Pn
,TZd) is the ΠPn-factor of (Conf(Rd), µK ,TZd).
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Lemma 3.6.2. (Conf(Zd), µK
Pn
,TZd) is isomorphic to a Bernoulli shift.

Proof. Let Φn = {ϕn
z,l}(z,l)∈Zd×N be an orthonormal basis on L2(Rd) such that

ϕn
z+w,l(x) = ϕn

z,l(x − w) and suppϕn
z,l = Pn,z. Let νK,Φ be the tree representation of

µK with respect to Φn. Let π : Conf(Zd × N) → Conf(Zd) such that

η 7→ π(η) =
∑
z∈Zd

η({z} × N)δz.

By construction, π ◦Tz(η) = Tz ◦ π(η) for each z ∈ Zd and η ∈ Conf(Zd ×N). From
Lemma 3.4.2,

νK,Φ ◦ π−1 = µK
Pn
.

Hence (Conf(Zd), µK
Pn
,TZd) is the π-factor of (Conf(Zd × N), νK,Φ,TZd). From The-

orem 3.5.4, (Conf(Zd × N), νK,Φ,TZd) is isomorphic to a Bernoulli shift. From this
and Lemma 3.6.1, the claim holds.

Lemma 3.6.3. (Conf(Rd), µK ,TZd) is isomorphic to a Bernoulli shift.

Proof. By construction, the sequence of partitions {Pn : n ∈ N} is increasingly finer
and separates the points of Rd. From this, we obtain that {σ[ΠPn ]}n∈N is increasing
and

∨
n∈N σ[ΠPn ] separates the points of Conf(Rd). Putting this result together with

Lemma 3.6.2 and Lemma 3.2.9 implies the claim.

We quote Theorem 10 of III.6. in [17]:

Lemma 3.6.4 ([17]). For an Rd-action system (Ω,F ,P, SRd), let SZd = {Sg : g ∈
Zd} be the limitation on Zd-action of SRd. If (Ω,F ,P, SZd) is isomorphic to a
Bernoulli shift with infinite entropy, then (Ω,F ,P, SRd) is isomorphic to a homoge-
neous Poisson point process.

We are now ready to complete the proof of Theorem 3.1.1.

Proof of Theorem 3.1.1 . From Lemma 3.6.3, (Conf(Rd), µK ,TZd) is isomorphic to
a Bernoulli shift. Because the restriction of µK on [0, 1)d is a non-atomic prob-
ability measure, the entropy of (Conf(Rd), µK ,TZd) is infinite. Putting this and
Lemma 3.6.4 together implies the claim.



Chapter 4

Logarithmic derivative and Gibbs
property

We prove that the existence of logarithmic derivatives of point processes on Rd

implies their Gibbs property. As its application, we prove that determinantal point
processes on R related to random matrices have continuous density. This implies
that the Dirichlet form associated with the point processes becomes closable.

4.1 Gibbs property

Let µ be a point process on Rd. Let µR,m,η be a regular conditional probability given
by

µR,m,η(dξ) = µ(πBR
(·) ∈ dξ | ξ(BR) = m, πBc

R
ξ = πBc

R
η).

Here, BR ⊂ Rd is the open ball of radius R centered at the origin and πA is the
projection of configuration on A ⊂ Rd such that ξ(·) 7→ ξ(· ∩ A). Denote by Λ the
Poisson point process with intensity 1. Set ΛR,m(dξ) = Λ(πR(·) ∈ dξ | ξ(BR) = m).
In this paper, we say µ is Gibbsian if, for each R,m ∈ N and µ-a.s. η, µR,m,η is
absolutely continuous with respect to ΛR,m. This formulation seems weaker than
that due to the DLR equations.

A conventional definition of the canonical Gibbs measure is given by the Dobrushin-
Lanford-Ruelle equation (4.1.1) (cf. [22, 23]). Let Φ : Rd → R ∪ {∞} and
Ψ : Rd × Rd → R ∪ {∞}. For ξ =

∑
i δxi

, η =
∑

j δyj ∈ Conf(Rd) and R ∈ N,
let

HR,η(ξ) =
∑

xi∈BR

Ψ(xi) +
∑

i<j,xi,xj∈BR

Ψ(xi, xj) +
∑

xi∈BR,yj∈Bc
R

Ψ(xi, yj).

45
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Let ΛR,m be a conditional probability given by

ΛR,m(dξ) = Λ(πR(·) ∈ dξ | ξ(BR) = m).

We say µ is a canonical Gibbs measure for a free potential Φ and an interaction
potential Ψ if µ satisfies the Dobrushin-Lanford-Ruelle equation

µR,m,η(dξ) =
1

Z
exp(−HR,η(ξ))ΛR,m(dξ) (4.1.1)

for each R,m ∈ N and µ-a.s. η. By replacing equality by inequality in (4.1.1), the
quasi-Gibbs measure is introduced in [19].

As above, our formulation of the Gibbs measure is weaker than the canonical
Gibbs measure and the quasi Gibbs measure. However, due to remarks in Georgii-
Yoo [6], existence of the Papangelou intensity is said to be Gibbsian in a general
sense. On the other hand, for Gibbsian point processes, the continuity of Radon-
Nikodym densities gives a sufficient condition for the closability of associated sym-
metric forms. For these reasons, it is essential to examine the weak Gibbs property
and the continuity of the densities. We shall prove Gibbs measure (in the weak
sense) is still useful for the construction of the dynamics if it admits the logarithmic
derivative.

The logarithmic derivative is defined as the derivative of the reduced Campbell
measure in the sense of distribution in the spatial direction. In this paper, we prove
that the Gibbs property follows from the existence of the logarithmic derivative.
Especially in the case d = 1, the density becomes continuous.

We apply this to a wide class of determinantal point processes on Rd introduced
in [1]. See also [3, 4]. In particular, their kernels include 1 as their spectrum. For
determinantal point processes on discrete sets of which spectrum does not contain
1, Shirai-Takahashi [27] established the Gibb property in the DLR equations sense.
In Rd case, Yoo [31] proved the Gibbs property for determinantal point processes
with translation-invariant kernels of which spectrum does not contain 1. We prove
the weaker Gibbs property for determinantal point processes on R with kernels that
admit division property [1, 3, 4]. The spectrums of the kernels contain 1.

The organization of this paper is as follows. In Section 4.2, we introduce the
Gibbs property and the logarithmic derivative and formulate our main results. Sec-
tion 4.3 and Section 4.4 are devoted to the proofs. In Section 4.5, we give an
application to a class of determinantal point processes on R with kernels admits
division property. See Assumption 2.2. for the division property.
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4.2 Main statement: Logarithmic derivative and

Gibbs property

Consider the space of nonnegative integer valued Radon measures

Conf(Rd) := {ξ =
∑
i

δxi
|{xi} has no limit point in Rd}.

We equip Conf(Rd) with the vague topology. Conf(Rd) equipped with the Borel
σ-field is called a configuration space. A Borel probability measure µ on Conf(Rd)
is called a point process on Rd.

For A ⊂ Rd, we denote by πA : Conf(Rd) → Conf(Rd) the projection of configu-
rations such that ξ(·) 7→ ξ(·∩A). Let BR ⊂ Rd be the open ball of radius R centered
at the origin. We set πR = πBR

and πc
R = πBc

R
, respectively. We write ξcR = πc

R(ξ).
For R ∈ N, m ∈ N0 and η ∈ Conf(Rd), we set the regular conditional probability by

µR,m,η(dξ) = µ(πR(·) ∈ dξ | ξ(BR) = m, ξcR = ηcR). (4.2.1)

We denote by Λ the homogeneous Poisson point process on Rd with intensity 1. We
set ΛR,m(dξ) = Λ(πR(·) ∈ dξ | ξ(BR) = m).

Definition 4.2.1. A point process µ is called Gibbsian if for µ-a.s. η, R ∈ N and
m ∈ N0, µR,m,η is absolutely continuous with respect to ΛR,m.

Let µ be a point process on Rd. A locally integrable symmetric function ρn :
Xn → [0,∞) is called the n-point correlation function of µ (with respect to the
Lebesgue measure) if

Eµ
[ k∏
i=1

ξ(Ai)!

(ξ(Ai)− ni)!

]
=

∫
A

n1
1 ×···×A

nk
k

ρn(x1, . . . , xn)dx1 · · · dxn

for any disjoint Borel subsets A1, . . . , Ak and for any ni ∈ N, i = 1, . . . , k such that∑k
i=1 ni = n.
For ξ ∈ Conf(Rd) and m ∈ N, the factorial measure ξ[m] on (Rd)m is defined by

ξ[m](dx1 · · · dxm) = ξ(dx1)(ξ − δx1)(dx2) · · · (ξ −
m−1∑
n=1

δxn)(dxm). (4.2.2)

The m-reduced Campbell measure C[m]
µ of a point process µ is a σ-finite Borel mea-

sure on (Rd)m × Conf(Rd) given by

C[m]
µ (A×A) = Eµ

[∫
A

1A(ξ −
m∑

n=1

δxn)ξ
[m](dx1 · · · dxm)

]



48 Chapter 4: Logarithmic derivative and Gibbs property

for A ∈ B((Rd)m) and A ∈ B(Conf(Rd)).
For R ∈ N and m ∈ N ∪ {0}, set

Conf(Rd)R,m = {ξ ∈ Conf(Rd); ξ(BR) = m}.

Let lR,m : Conf(Rd)R,m → (BR)
m be a map such that

lR,m(ξ) = (l1R,m(ξ), l
2
R,m(ξ), . . . , l

m
R,m(ξ))

and ξR =
∑m

n=1 δlnR,m(ξ).

A function ϕ : Conf(Rd) → R is called local if there exists a compact set K ⊂ Rd

such that ϕ is σ[πK ]-measurable. For a local function ϕ such that σ[πR]-measurable,
we define symmetric functions ϕR,m : (BR)

m → R by the relation

ϕR,m(lR,m(ξ)) = ϕ(ξ), ξ ∈ Conf(Rd)R,m. (4.2.3)

Remark that ϕR,m is unique and ϕ(ξ) =
∑∞

m=0 ϕR,m(lR,m(ξ)). Furthermore, ϕR,m is
independent of the choice of R such that ϕ is σ[πR]-measurable.

A local function ϕ is said to be smooth if ϕR,m is smooth for each R > Q and
m ∈ N. Here, Q is a positive number such that ϕ is σ[πQ]-measurable. Clearly, ϕ is
smooth if ϕR,m is smooth for some R > Q and each m ∈ N.

Let D◦ denote the space of all bounded local smooth functions on Conf(Rd).

Definition 4.2.2. Let µ be a point process on Rd that admits m-correlation function.
We call d

[m]
µ = ( d

[m]
µ;i,n)i=1,...,d ;n=1,...,m the m-logarithmic derivative of µ if

d[m]
µ ∈ {L1

loc((Rd)m × Conf(Rd), C[m]
µ )}dm

and, for each φ(x1, . . . , xm, ξ) ∈ C∞
0 ((Rd)m)⊗D◦,∫

(Rd)m×Conf(Rd)

∇d,m φdC[m]
µ (x1, . . . , xm, ξ) = −

∫
(Rd)m×Conf(Rd)

φ d[m]
µ dC[m]

µ (x1, . . . , xm, ξ).

Here ∇d,m φ =
(
∂i,n φ

)
i=1,...,d;n=1,...,m

and ∂i,n φ = ∂φ(x1,...,xm,ξ)
∂xi,n

.

Theorem 4.2.3. Let µ be a point process on Rd that admits an m-correlation func-
tion for each m ∈ N. Assume that there exists an m-logarithmic derivative of µ for
each m ∈ N. Then µ is Gibbsian.

Assume that µ admits anm-correlation function for eachm ∈ N and 1-logarithmic
derivative. Then µ admits m-logarithmic derivative for each m ∈ N of the form

d[m]
µ (x1, . . . , xm, ξ) =

(
d[1]µ (xi,

m∑
j ̸=i

δxj
+ ξ)

)m
i=1
.

Hence we have:
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Corollary 4.2.4. Let µ be a point process on Rd that admits m-correlation function
for each m ∈ N. Assume that there exists a 1-logarithmic derivative of µ. Then µ
is Gibbsian.

Next we introduce a symmetric form (E ,D) on L2(Conf(Rd), µ) as in [18]. Denote
for m ∈ N ∪ {∞}

Dm[f, g](x) =
1

2

m∑
n=1

d∑
i=1

∂i,nf(x)∂i,ng(x).

Set Conf(Rd)m = {ξ ∈ Conf(Rd); ξ(Rd) = m} for m ∈ N ∪ {∞}. For ϕ, ψ ∈ D◦, we
set D[ϕ, ψ] : Conf(Rd) → R by

D[ϕ, ψ](ξ) = Dm[ϕm(lm(ξ)), ψm(lm(ξ))] if ξ ∈ Conf(Rd)m ,m ∈ N ∪ {∞}
= 0 if ξ(Rd) = 0.

Here ϕm is defined in (4.2.3) and lm : Conf(Rd)m → (Rd)m is a map such that
lm(ξ) = (l1m(ξ), l

2
m(ξ), . . . , l

m
m(ξ)) and ξ =

∑m
n=1 δlnm(ξ). Set (E ,D) = (Eµ,Dµ) by

E(ϕ, ψ) =
∫
Conf(Rd)

D[ϕ, ψ](ξ)µ(dξ),

D = {ϕ ∈ D◦ ∩ L2(Conf(Rd), µ); E(ϕ, ϕ) <∞}.

Theorem 4.2.5. Let µ be a point process on Rd that admits an m-correlation func-
tion for each m ∈ N. Assume that µ is Gibbsian and, for each R,m ∈ N, the
Radon-Nikodym density dµ̌R,m,η/dx is continuous on (BR)

m for µ-a.s. η. Then
(E ,D) is closable on L2(Conf(Rd), µ).

Especially in the case d = 1, above theorem works powerfully because the exis-
tence of a 1-logarithmic derivative implies the closability of the form.

Theorem 4.2.6. Let µ be a point process on R that admits anm-correlation function
for each m ∈ N. Assume that there exists a 1-logarithmic derivative of µ. Then
(E ,D) is closable on L2(Conf(R), µ).

4.3 Proof of Theorem 4.2.3

Lemma 4.3.1 (Lemma 3.2.10 in [13]). Let θ be a finite Borel measure on Rd.
Assume that there exists a constant C such that for each ϕ ∈ C∞

0 (Rd)∣∣∣∣∫
Rd

∂ϕ

∂xi
(x)dθ(x)

∣∣∣∣ ≤ C sup
x∈Rd

|ϕ(x)|, i = 1, . . . , d.

Then θ is absolutely continuous with respect to the Lebesgue measure.
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Define the measure P
[m]
ξ (dx) and the probability measure Q[m](dξ) by disinte-

gration

C[m]
µ (A× B) =

∫
A×B

P
[m]
ξ (dx)Q[m](dξ). (4.3.1)

Then P
[m]
ξ is a σ-finite measure for Q[m](ξ)-a.s. ξ. Set for Q[m](ξ)-a.s. ξ

P
[m]
ξ,R (dx) = 1(BR)m(x)P

[m]
ξ (dx).

Then P
[m]
ξ,R is a finite measure on (Rd)m for each R ∈ N.

Lemma 4.3.2. Let µ be a point process on Rd. Assume that ξ[m](BR) ∈ L1(Conf(Rd), µ)

for each R ∈ N and there exists an m-logarithmic derivative of µ. Then P
[m]
ξ,R is ab-

solutely continuous with respect to the Lebesgue measure on (BR)
m for µ-a.s. ξ and

each R ∈ N.

Proof. By Definition 4.2.2 and (4.3.7), for each f(x)g(ξ) ∈ C∞
0 ((Rd)m)⊗D◦,∫

Conf(Rd)

(∫
(Rd)m

∂i,n f(x) + f(x) d
[m]
µ;i,n(x, ξ)P

[m]
ξ (dx)

)
g(ξ)Q[m](dξ) = 0.

Because D◦ ⊂ L2(Conf(Rd), µ) and D◦ is dense in Cb(Conf(Rd)), we have for Q[m]-
a.e. ξ and each f ∈ C∞

0 ((Rd)m),∫
(Rd)m

∂i,n f(x) + f(x) d
[m]
µ;i,n(x, ξ)P

[m]
ξ (dx) = 0. (4.3.2)

Hence, for any relatively compact set A ⊂ (Rd)m and any f ∈ C∞
0 ((Rd)m)∣∣∣∣∫

A

∂i,n f(x)P
[m]
ξ (dx)

∣∣∣∣ ≤ ∫
A

∣∣f(x)∣∣∣∣ d[m]
µ;i,n(x, ξ)

∣∣P [m]
ξ (dx)

≤ sup
x∈(Rd)m

∣∣f(x)∣∣ ∫
A

∣∣ d[m]
µ;i,n(x, ξ)

∣∣P [m]
ξ (dx). (4.3.3)

By Definition 4.2.2 and Fubini’s theorem, d
[m]
µ;i,n(·, ξ) ∈ L1

loc((Rd)m, P
[m]
ξ ). Let

Cm,ξ,A =
∥∥ d[m]

µ;i,n(·, ξ)
∥∥
L1(A,Pξ)

.

Then (4.3.3) implies that for each f ∈ C∞
0 ((Rd)m)∣∣∣∣∫

A

∂i,n f(x)P
[m]
ξ (dx)

∣∣∣∣ ≤ Cm,ξ,A sup
x∈(Rd)m

∣∣f(x)∣∣. (4.3.4)

From (4.3.4) with A = BR combined with Lemma 4.3.1, P
[m]
ξ,R = 1(BR)m(x)P

[m]
ξ (dx)

is absolutely continuous with respect to the Lebesgue measure.
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For m,R ∈ N and l ∈ N0, define the probability measure (BR)
m × Conf(Rd)R,l

C̃[m]
µ;R,l(dx dξ) = C̃−1

µ,m,R,l 1(BR)m(x) 1{ξ(BR)=l}(ξ)C[m]
µ (dx dξ). (4.3.5)

Here, C̃µ,m,R,l is the normalizing constant. For η ∈ Conf(Rd), define the conditional
probability

C̃[m]
µ;R,l,η(dx dξ) = C̃[m]

µ;R,l(dx dξ | ξ
c
R = ηcR). (4.3.6)

By taking l = 0 in (4.3.6), we set the probability measure on (BR)
m

C̃[m]
µ;R,0,η(dx) = C̃[m]

µ;R,0,η(dx dξ).

Let um : (Rd)m → Conf(Rd) be the delabeling map given by (x1, . . . , xm) 7→∑m
i=1 δxi

. Define the symmetric measure µ̌R,m,η on (BR)
m by the relation

µ̌R,m,η ◦ u−1
m = µR,m,η.

Then µ̌R,m,η is a probability measure by construction.

Lemma 4.3.3. Let µ be a point process on Rd. For each R,m ∈ N and µ-a.s. η,
we have

C̃[m]
µ;R,0,η = µ̌R,m,η. (4.3.7)

Proof. Recall that C̃[m]
µ;R,0,η and µ̌R,m,η are symmetric probability measures on (BR)

m.
Let A ⊂ (BR)

m be a Borel set. Assume that A is symmetric. By definition,

C̃[m]
µ;R,0,η(A) =µ( πR(ξ) ∈ um(A) | ξ(BR) = m, ξcR = ηcR). (4.3.8)

Here, ξ[m] and um are defined in (4.2.2) and before (4.3.5), respectively.
On the other hand, by definition in (4.2.1)

µ̌R,m,η(A) =µ( πR(ξ) ∈ um(A) | ξ(BR) = m, ξcR = ηcR). (4.3.9)

From (4.3.8) and (4.3.9), we obtain (4.3.7).

Proof of Theorem 4.2.3. Let P
[m]
η be defined in (4.3.7). Define a probability measure

on (BR)
m by

P̃
[m]
η,R,0(dx) = C−1

µ,m,η,R 1(BR)m(x)P
[m]
ηcR

(dx).

Here, ηcR = η( · ∩ Bc
R). Then by definition,

P̃
[m]
η,R,0(dx) = C̃[m]

µ;R,0,η(dx).

From this combined with Lemma 4.3.3, for µ-a.s. η ∈ Conf(Rd)

P̃
[m]
η,R,0(dx) = µ̌R,m,η(dx). (4.3.10)

Then by Lemma 4.3.2 we obtain the claim.
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4.4 Proof of Theorem 4.2.5 and Theorem 4.2.6

We modify Lemma 3.2. in [18]:

Lemma 4.4.1. Let λ be a continuous function on (BR)
m ⊂ (Rd)m. Denote λ(dx) =

λ(x)dx. Let

Eλ(f, g) =
∫
(BR)m

Dm[f, g](x)λ(dx),

Dλ = {f ∈ C∞
b ((BR)

m) ∩ L2((BR)
m, λ) ; Eλ(f, f) <∞}.

Then (Eλ,Dλ) is closable on L2((BR)
m, λ).

Proof. Let On = {x ∈ (BR)
m ; 1

n
< λ(x) < n} and

Eλ,n(f, g) =
∫
On

Dm[f, g](x)λ(dx),

En(f, g) =
∫
On

Dm[f, g](x)dx.

Then by definition, for each f ∈ Dλ

1

n
En(f, f) ≤ Eλ,n(f, f) ≤ n En(f, f).

Because On is open, (En,Dλ) is closable on L2((BR)
m, λ). Hence (Eλ,n,Dλ) is also

closable on L2((BR)
m, λ). Since {(Eλ,n,Dλ)} is increasing sequence of closable forms,

its limit (Eλ,Dλ) is closable on L2((BR)
m, λ).

Lemma 4.4.2 ([18]). Let µ be a point process on Rd. Let

ER,m,η(f, g) =

∫
(BR)m

Dm[f, g](x)µ̌R,m,η(dx).

Assume that, for eachm,R ∈ N, (ER,m,η, C
∞
b ((BR)

m) is closable on L2((BR)
m, µ̌R,m,η)

for µ-a.s. η. Then (E ,D) is closable on L2(Conf(Rd), µ).

Proof of Theorem 4.2.5. By assumption, µ̌R,m,η is absolutely continuous with re-
spect to the Lebesgue measure. Let mR,m,η be the Radon-Nikodym density. By
assumption, mR,m,η is continuous on (BR)

m. Hence by Lemma 4.4.1, (E , C∞
b ((BR)

m)
is closable on L2((BR)

m, λ). Then by Lemma 4.4.2, we obtain the claim.
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Proof of Theorem 4.2.6. By Theorem 4.2.3, µ̌R,m,η is absolutely continuous with re-
spect to the Lebesgue measure. Let mR,m,η be the Radon-Nikodym density. Then
by (4.3.2) and (4.3.10), for each f ∈ C∞

0 (Rm)∫
(BR)m

∂i,1 f(x)mR,m,η(x)dx = −
∫
(BR)m

f(x) d
[m]
µ;i,1(x, η)mR,m,η(x)dx.

Because d
[m]
µ;i,1(·, η) ∈ L1

loc(Rm, P
[m]
η ), for each x ∈ (BR)

m and i ∈ {1, . . . ,m}

d
[m]
µ;i,n(x, η) = ∂i,1 log(mR,m,η(x)).

Hence mR,m,η is continuous on (BR)
m. Then by Theorem 4.2.5, we obtain the claim.

4.5 Application: determinantal point process on

R related to Random matrices

Let µ be a point process on Rd that admits 1-correlation function ρ1. A reduced
Palm measure µx of µ at x ∈ Rd is given by

µx(·) = µ(· − δx | ξ(x) ≥ 1).

Set ρ1(dx) = ρ1(x)dx by the same symbol. The following assumption gives a suffi-
cient condition for the existence of logarithmic derivative.

Assumption 1

1. ρ1(x) ∈ C1(Rd).

2. For ρ1(dx)-a.e. x, y ∈ Rd, the reduced Palm measures µx and µy are equivalent.

Denote by Rx,y their Radon-Nikodym derivative as

dµy(dξ) = Ry,x(ξ)dµx(dξ)

3. For ρ1(dx)-a.e. x ∈ Rd, limy→x Ry,x = 1 in L1(Conf(Rd), µx).

For a function ϕ ∈ C∞
0 ((Rd)m)⊗D◦, we define the function fϕ : Rd → Rd by

fϕ(ϵ) =

∫
Rd×Conf(Rd)

Rx+ϵ,x(ξ)ϕ(x, ξ)dC[1]
µ (x, ξ).
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4. For any ϕ ∈ C∞
0 ((Rd)m)⊗D◦, fϕ admits partial derivative in ϵ at ϵ = 0. There

exist functions ∂i,1R : Rd × Conf(Rd) → R, i = 1, . . . , d such that for any
ϕ ∈ C∞

0 ((Rd)m)⊗D◦ and each 1 ≤ i ≤ d, we have

∂i,1fϕ(0) =

∫
Rd×Conf(Rd)

∂i,1R(x, ξ)ϕ(x, ξ)dC[1]
µ (x, ξ).

Set

∇R = (∂1,1R, . . . , ∂d,1R).

Due to Proposition 2.2. in [2], we have:

Proposition 4.5.1 ([2]). Let µ be a point process on Rd satisfying Assumption 1.

Then ρ1(dx)-a.e. x ∈ Rd, 1-logarithmic derivative d
[1]
µ exists and has the form

d[1]µ (x, ξ) = ∇d,1 log ρ
1(x) +∇R(x, ξ).

When d = 1, Theorem 4.2.6 combined with Proposition 4.5.1 implies the follow-
ing.

Theorem 4.5.2. Let µ be a point process on R satisfying Assumption 1. Then
(E ,D) is closable on L2(Conf(R), µ).

Proof. By Proposition 4.5.1, µ has 1-logarithmic derivative. From this, combined
with Theorem 4.2.6, we obtain the claim.

Especially, there is a wide class of determinantal point processes on R that
satisfies Assumption 1. Here, we recall the definition of determinantal point process.

A point process µ on R is called a determinantal point process associated with
a kernel K : R× R → C if its m-correlation function ρm(x1, . . . , xm) is given by

ρm(x1, . . . , xm) = det[K(x, y)]. (4.5.1)

Let K be a positive definite Hermitian symmetric kernel on R that admits locally
trace class operator with the spectrum between [0, 1]. Then by a theorem due to
Mach̀ı[12], Shirai-Takahashi[25] and Soshnikov[24], there uniquely exists a determi-
nantal point process on R associated with K. Note that by (4.5.1), ρ1(x) = K(x, x).

Let µ be a determinantal point process on R with kernek K.

Assumption 2
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1. The operator associated with the kernel is an orthogonal projection onto a
closed subset L ⊂ L2(R, dx).

2. For ρ1(dx)-a.e. x ∈ R, if f ∈ L satisfies f(a) = 0 then (x− a)−1f ∈ L.

3. K(x, y) ∈ C2(R2).

4.
∫
R

K(x,x)
1+x2 dx <∞.

The property in Assumption 2.2 is called the division property (cf. [3]). Remark
that Assumption 2 is satisfied for the sine, Airy and Bessel kernel. More examples
are found in [3, 4].

Take y ∈ R, R >> 1 and δ << 1. Set the additive function SR,δ
x : Conf(R) → R

as for ξ =
∑

n δxn ,

SR,δ
y (ξ) =

∑
n:xn∈BR,|xn−y|>δ

2

y − xn
.

Set

S
R,δ

y = SR,δ
y − Eµy [SR,δ

y ].

Then results in [1] implies that, under Assumption 2, for ρ1(dx)-a.e. y ∈ R, there
exists a function Sy : Conf(R) → R such that

lim
R→∞,δ→0

S
R,δ

y = Sy in L2(Conf(R), µy).

Due to [1], Assumption 2 implies Assumption 1 with ∇R = Sy.

Theorem 4.5.3 (Theorem 2.3 in [2]). Let µ be a determinantal point process on
R associated with a kernel K : R × R → C satisfying Assumption 2. Then for
ρ1(dx)-a.e. x ∈ R the logarithmic derivative d

[1]
µ exists and has the form

d[1]µ (x, ξ) =
d

dx
log ρ1(x) + Sx(ξ).

Due to Theorem 4.2.6 and Theorem 4.5.3, we obtain the follows.

Corollary 4.5.4. Let µ be a determinantal point process on R that admits a kernel
K : R×R → C satisfying Assumption 2. Then (E ,D) is closable on L2(Conf(R), µ).
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