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Abstract

The determinantal point process, also called the fermion process, is formulated by
Macchi(1975), Shirai-Takahahi(2000), and Soshnikov(2000). It appears in various
mathematical systems such as uniform spanning trees, Schur measures, uniform
lozenge tilings, the zeros of a hyperbolic Gaussian analytic function, the eigenvalue
distribution of random matrices. It describes a natural structure of repulsive particle
systems and has been extensively studied in the last two decades.

Determinant point processes are defined both on discrete sets and on continuum
sets. Of the examples given above, the first three are point processes on discrete
sets, and the latter are point processes on continuum sets. In this paper, we prove
tail triviality, the Bernoulli property, and the Gibbs property for determinant point
processes on continuum sets.

This thesis consists of four chapters. In Chapter 1, we give a brief introduction
of this thesis. In Chapter 2, we introduce tree representation of a-determinantal
point processes. The a-determinantal point process is a l1-parameter extension of
the determinantal point process. Between p and its tree representations, equations
of correlation functions hold (Theorem 3.3.1). roughly speaking, that tree repre-
sentations preserve regional information. We prove tail triviality in the case S is
continuum from the result of the discrete case by combining tree representations
and martingale convergence. In Chapter 3, we prove isomorphism between determi-
nantal point processes with translation-invariant kernels and homogeneous Poisson
point processes in the sense of measure-preserving dynamical systems due to Orn-
stein’s theory and tree representations. In Chapter 4, we prove that for a point
process i on R, the existence of logarithmic derivatives implies their Gibbs prop-
erty in a weak sense. In the case d = 1, this implies p has continuous local density.
Due to Bufetof-Dymov-H.Osada(2019), the logarithmic derivative has calculated for
a broad class of determinantal point process on R. For example, the sine, Airy,
Bessel, and other kernels related to de Branges spaces belong to the class. From
this and our theorem, we obtain the closable of the Dirichlet form associated with
the point processes.
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Chapter 1

Introduction

1.1 Determinantal point processes

Let S be a locally compact, second countable, and Hausdorff space. Then S is a
Polish space, i.e., S is separable and have complete metrization. Denote Conf(S) by
the set of all nonnegative integer-valued Radon measures on S

Conf(S) = {{;f = Z5sz ¢(K) < oo for each compact K C S'}.

We say a sequence of measures &, € Conf(S) converges to £ vaguely if for each

f € C(](S),

lim [ fd¢, = / fde.
The topology thus obtained on Conf(S) is called the vague topology. Denote by
Beonf(s) be the Borel o-field. A configuration space over S is a measurable space
(Conf(S), Beont(s))- A point process on S is a probability measure on a configuration
space.

Let p be a point process on S. Fix a Radon measure A on S. A symmetric
function p™ on S™ is called a m-point correlation function of a point process p with
respect to a reference measure \ if it satisfies

/AI;IX“_XA?_ P (21, ) AP (d) = EP Di]l %] .

Here, Ay,...,A; C S are disjoint and kq,...,k; € Nsuch that ky +---+k; =m. If
£(A;) < ki, then we set £(A;)/(E(A;) — ki) = 0.

1



2 Chapter 1: Introduction

A point process p is called (K-)determinantal if its m-correlation functions are
given by determinants of a kernel K : S x S — C such that

P (1, .. Ty) = det[K (z;, ;)| (1.1.1)

ij=1"

The determinantal point process, also called the fermion process, is formulated
by Macchi[12], Shirai and Takahashi[25] and Soshnikov([24]. Let K : S x S — C be
a kernel function and denote by the same symbol the integral operator on L%(S, \)
such that for f € L*(S,\)

Kf(z) = / K (2, 9) £ (9)Mdy).

Theorem 1.1.1 ([12, 25, 24]). Let S be a locally compact, second countable, and
Hausdorff space. Let A be a Radon measure on S. Assume that K : S x S — C
satisfies the follows.

(A.1) K is Hermitian symmetric.
(A.2) K is locally trace class.
(A.3) The spectrum of K is contained in [0, 1].

Then there exists a unique point process of which correlation functions are given by
(1.1.1).

1.2 Tail triviality

Let S be a locally compact Hausdorff space with countable basis with metric d. Fix
a point o € S as the origin. Set S, = {z € S;d(o,z) < r}. Assume that each S, is
relatively compact. Note that this notion depends on the choice of metric d on S

For a Borel set A, we denote by w4 : Conf(S) — Conf(S) the projection of
configuration such that £(-) — &(- N A). Denote by Tailcons(s) the tail o-field such
that

Ta”conf(g) = ﬂ 0'[7'('579].
r=1

Note that Tailconf(s) is determined independently of the choice of d. We say a point
process p on S is tail trivial if for all A € Tailconf(s),

u(A) € {0,1}.



In the case, S discrete, tail triviality for determinantal point processes was proved
by Lyons[9]. Shirai and Takahashi[27] also proved under the restrictive assumption
that the spectrum of K is contained in (0,1). In the viewpoint of ergodicity, tail
triviality, also called the Kolmogorov property, implies strong mixing property of all
orders.

In the case S is continuum, tail triviality is conjectured by Lyons[9] and proved
by [20]. Tail triviality plays an important role in the proof of pathwise unique-
ness of solutions of infinite-dimensional stochastic differential equations related to
determinantal point processes [21].

1.3 Bernoullicity

An automorphism S of a probability space (2, F,P) is a bi-measurable bijection
such that Po S™' = P. Let Sg¢ = {S, : ¢ € G} be a group of automorphisms of
(Q, F,P) parametrized by a group G. A measure-preserving dynamical system of
G-action is the quadruple (Q, F,P,Sq).

Example 1.3.1. A typical example is a Bernoulli shift. Let (S,S,P) be a probability
space. A (G-action) Bernoulli shift is a quadruple of the direct product of probability
space over a discrete group G and the canonical shift.

Example 1.3.2. In this paper, we consider translation invariant point processes on
74 and R?. Homogeneous Poisson point processes on R with intensity r > 0 are
typical ones.

We say (QV, F',P".S¢) is a factor of (2, F,[P,Ss) if there exists a measurable
map ¢ : Q — € such that

Pog ' =P, ¢oS,(z)=5,0¢(z) for each g € G and a.s. = € Q.

We call ¢ the factor map. An isomorphism is a bi-measurable bijection ¢ between
Oy C Q and ) C  such that P(€g) = P'(€)) = 1 and both ¢ and ¢~! are
factor maps . If there exists an isomorphism ¢ : Q — Q' then (2, F,P,Ss) and
(Y, F', ", S'5) are said to be isomorphic. In this paper, we treat R%- or Z%action
systems.

We say (2, F,P,Szq) is Bernoulli if (2, F,P,Sza) is isomorphic to a Bernoulli
shift. We say (Q, F,P,Sga) is Bernoulli if its restriction to Z%action (Q, F,P,Sza)
is Bernoulli.

For Z®-action systems, the Bernoulli property implies tail triviality, strong mixing
property of all orders, and ergodicity.
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The Bernoulli property is important in the isomorphism problem. Ornstein
proved any two Bernoulli shifts with the same entropy are isomorphic to each other.
For a Z4-action system (9, F,P,S;q), define its Kolmogorov-Sinai entropy by

1
hp = lim — —IP(A)logP(A).

A€V g, TP

Here, R, = {—n,...,0}¢ C Z% and the sup is taken over all countable partition of
(Q, F) such that

Z —P(A)log(P(A)) < oo.

AeP

Remark that these logs in above definitions are binary logarithms. For R%-action
systems, define its entropy by the entropy of its restriction to Z%-action.

It is known that the entropy is isomorphism invariance. Ornstein proved the
converse holds for Bernoulli shifts.

Theorem 1.3.1 ([14, 15, 16, 17]). Any two Bernoulli shifts are isomorphic if they
have the same entropy.

As a consequence of the general isomorphism theory, Poisson point processes are
isomorphic to each other. This is a continuum version of the isomorphism theorem
of Bernoulli shifts with infinite entropy.

Theorem 1.3.2 ([14, 15, 16, 17]). Homogeneous Poison point processes on R? are
isomorphic to each other regardless of their intensity.

For determinantal point processes on Z? with translation-invariant kernels, Lyons
and Steif [11] and Shirai and Takahashi [27] independently proved the Bernoulli
property. The latter gives a sufficient condition for the weak Bernoulli property in
the case Spec(K) C (0,1). Remark that the weak Bernoulli property is stronger
than the Bernoulli property. The former proved the Bernoulli property in the case
Spec(K) C [0, 1].

1.4 Gibbsianness

Let p be a point process on R Let pig,,, be a regular conditional probability given
by

rma(dE) = (e, () € dE|E(Br) = m, Tpg& = mpen).



Here, B C R? is the open ball of radius R centered at the origin and 74 is the
projection of configuration on A C R? such that £(+) — &(- N A). Denote by A the
Poisson point process with intensity 1.

A conventional definition of the canonical Gibbs measure is given by the Dobrushin-
Lanford-Ruelle equation (1.4.1) (cf. [22, 23]). Let ® : R?* — R U {oo} and
U RYx RT = RU{oo}. For & = 37,0,,m = 3,0, € Conf(R?) and R € N,
let

Hry(§) = Z W(z;) + Z (i, x5) + Z (s, y;)-

z;,€BR 1<j,x;,2jEBR z,€BR,y;€Bg

Let AR, be a conditional probability given by
Apm(d§) = A(mr(:) € d§&(Br) = m).

We say p is a canonical Gibbs measure for a free potential ® and an interaction
potential W if u satisfies the Dobrushin-Lanford-Ruelle equation

1
[iRm.n (dE) = A exp(—Hpy(§))Arm(d€) (1.4.1)
for each R,m € N and p-a.s. 7.
By replacing equality by inequality in (1.4.1), the quasi-Gibbs measure is intro-
duced in [19]. For £ =), d,, and R € N, let

He(€) = Y Ulx)+ Y V().

z;,€BR i<j,ri,1'j€BR

We say p is a quasi-Gibbs measure for a free potential ® and an interaction potential
U if p satisfies the following inequality

Z i P (=HR(E) AR (dE) < pirmn(dE) < Zpmy exp(—Hr(€))Arm(dE) (1.4.2)

for each R,m € N and p-a.s. 7.

Remark that the difference between (1.4.1) and (1.4.2) are not only equality and
inequality but also parameter dependencies of normalizing constants and Hamilto-
nians.

We say p is Gibbsian if, for each R,m € N and p-a.s. 7, ptrm, is absolutely
continuous with respect to Ag .

Let u, : (RY)™ — Conf(R%) be the delabeling map given by (z1,...,7,)
> 0g;. Define the symmetric measure fig ., on (Bgr)™ by the relation

. -1
ILLRvmvn o um = /J/R7m7’r]'
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Then fig m, is a probability measure by construction.

Remark that 1 is Gibbsian if, for each R, m € N and p-a.s. 1, figm,, is absolutely
continuous with respect to the Lebesgue measure on (Bg)™.

Our formulation of the Gibbs measure is weaker than the canonical Gibbs mea-
sure and the quasi Gibbs measure. However, due to remarks in Georgii-Yoo [6],
existence of the Papangelou intensity is said to be Gibbsian in a general sense. On
the other hand, for Gibbsian point processes, the continuity of Radon-Nikodym den-
sities gives a sufficient condition for the closability of associated symmetric forms.

1.5 Dirichlet forms associated with point processes

For R € N and m € NU {0}, set
Conf(R?) g = {€ € Conf(R?); £(Bg) = m}.
Let Ig,, : Conf(RY)g,,, — (Br)™ be a map such that
(R (€) = (&), Gom (€D, R (6))

and {p = 3200 Oy (o)

A function ¢ : Conf(R%) — R is called local if there exists a compact set K C R¢
such that ¢ is o[mk]-measurable. For a local function ¢ such that o[rg]-measurable,
we define symmetric functions ¢g ., : (Br)™ — R by the relation

QbR,m([R,m(f)) - ¢(f)7 5 € Conf(Rd)R,m~ (1'5'1)

Remark that ¢g,, is unique and ¢(§) = > °_, drm(lpm(§)). Furthermore, ¢g, is
independent of the choice of R such that ¢ is o[rg|-measurable.

A local function ¢ is said to be smooth if ¢g,, is smooth for each R > () and
m € N. Here, @) is a positive number such that ¢ is o[mg|-measurable. Clearly, ¢ is
smooth if ¢p ., is smooth for some R > () and each m € N.

Let D, denote the space of all bounded local smooth functions on Conf(R9).
Denote for m € NU {co}

-
M=

Il
—

n i=1

Set Conf(R?),, = {¢ € Conf(RY); £(RY) = m} for m € NU {oo}. For ¢,¢ € D,, we
set D¢, ] : Conf(RY) — R by

D[, ¥](€) = Dunldm (1 (&), ¥ (1n(€))]  if & € Conf(R?),,,m € NU {oo}
=0 if ¢(RY) =0.



Here ¢, is defined in (1.5.1) and [, : Conf(R%),, — (R%)™ is a map such that
[ () = (6,(€), ,.(8), ... [1(8)) and € = 3770 O (¢)- Set (€,D) = (E#,D*) by
f@.0) = [ Dbulen)
Conf(R?)
D = {¢ € D, N L*(Conf(R?), 11); E(¢, ) < o0}.

Let u,, : (RY)™ — Conf(R%) be the delabeling map given by (z1,...,7,)

>, 0z, Define the symmetric measure fig ., on (Bg)™ by the relation

:aR,m,n o u;Ll = URmm-
Theorem 1.5.1 ([18]). Let u be a point process on R, Let
Ermal£.9)= [ Dulf.gl@iinns(do)
(Br)™

Assume that, for eachm, R € N, (Egmn, Ci°((Br)™) is closable on L*((Br)™, firm.n)
for u-a.s. m. Then (€, D) is closable on L*(Conf(R?), ).






Chapter 2

Tree representations of
a-determinantal point processes

In this chapter, we introduce tree representations for a-determinantal point pro-
cesses. The a-determinantal point processes is introduced in [26] as a one parame-
ter extension of the determinantal point process. As its application, we prove tail
triviality for determinantal point processes on continuum spaces.

2.1 a-determinantal point processes

Our aim is to introduce tree representations for a-determinantal point processes (also
called the a-permanental point processes). Let S be a locally compact Hausdorff
space with countable basis. We equip S with a Radon measure A such that A(O) > 0
for any non-empty open set @ in S. Let S be the configuration space over S (see
(2.2.1) for definition). S is a Polish space equipped with the vague topology.

An a-determinantal point process p on S is a probability measure on (S, B(S))
for which the m-point correlation function p™ with respect to A is given by

p"(x) = deta [K(2s, 7))y (2.1.1)

Here K: S x S —C is a measurable kernel, x = (x1,...,2,,), and for m X m matrix
A= (aij)=

det, A = Z am™ V(o) ﬁai,g(i), (2.1.2)
i=1

ceGm,

where « is a real number, the summation is taken over the symmetric group G,,,
the set of permutations of {1,2,...,m}, and v(o) is the number of cycles of the
permutation o. p is said to be a-determinantal point process associated with (K, ).

9



10 Chapter 2: Tree representations of a-determinantal point processes

The quantity (2.1.2) is called the a-determinant in [26] and also called the a-
permanent in [29, 30]. For « = —1, det_; A is the usual determinant det A and u
is called a determinantal point process (also called a fermion point process). For
a = 1, det; A is the permanent perA and p is called a permanental point process
(also called a boson point process). Letting a tend to 0, one obtain the Poisson point
processes. Hence the a-determinantal point process is an one parameter extension
of the determinantal point process.

We set Kf(z) = [¢K(z,y)f(y)A(dy). We regard K as an operator on L*(S, \)
and denote it by the same symbol. We say K is of locally trace class if

Kaf(x) = / La(2)K (2, ) La(y) f () \(dy)

is a trace class operator on L?(S, \) for any compact set A. Throughout this paper,
we assume:

(A1) @ € {2;m € N}U{=};m € N}. K is Hermitian symmetric and of locally trace
class and Spec(K) C [0,00) . If a < 0, Spec(K) C [0, —1].

From (A1) we deduce that the associated a-determinantal point process p =
KAo exists and is unique [26].

A A-partition A = {A;}ier of S is a countable collection of disjoint relatively
compact, measurable subsets of S such that U;A; = S and that A\(A4;) > 0 for all
i € I. For two partitions A = {A4;};c; and I' = {B,};es, we write A < I if for each
J € J there exists ¢ € I such that B; C A;. We assume:

(A2) There exists a sequence of A-partitions {A(¢)}sen satisfying (2.1.3)—(2.1.5).

I

Al) < A(l+1) forall/eN, (2.1.3)

o[l & =B(9). (2.1.4)
¢eN

#{j; Aps1; C Ag;i} =2forallie I({) and ¢ € N, (2.1.5)

where we set A(¢) = {Ag;i}icr and §¢ := Faw) = o[ Asisi € I(0))].

Condition (2.1.5) is just for simplicity. This condition implies that the sequence
{A(€) }sen has a binary tree-like structure. We remark that (A2) is a mild assump-
tion and, indeed, satisfied if S is an open set in R and A has positive density with

respect to the Lebesgue measure.
Let &, be the sub-o-field of B(S) given by

&, =o[{s € S;s(Ap;) =n};i € I(¢),n € N]. (2.1.6)
Combining (2.1.3) and (2.1.4) with (2.1.6), we obtain
&, C (’5@+1, 0[®g;€ € N] = ‘B(S)
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Let u(:|®,) be the regular conditional probability of p with respect to &,.

We can naturally regard A(¢) = {Ay;}icre) as a discrete, countable set with the
interpretation that each element Ay, is a point. Thus, u(-|®,) can be regarded as a
point process on the discrete set A(?).

In Section 2.2 we introduce a sequence of fiber bundle-like sets 1(¢) (¢ € N) with
base space A({) with fiber consisting of a set of binary trees. We further expand
I(¢) to Q(¢) in (2.2.27), which has a fiber whose element is a product of a tree i and
a component B, ; of partitions. See notation after Theorem 2.2.1.

Let p|e, denote the restriction of p on &,. By construction plg,(A) = u(A|Sy)
for all A € &,. In Theorem 2.2.1 and Theorem 2.2.2, we construct a lift vp() © Ap(y)
of y1|s, on the fiber bundle Q(¢) in (2.2.27).

The key point of the construction of the lift vp() © Ag(s) is that we construct a
consistent family of orthonormal bases F(¢) = {fi;}icie) in (2.2.14) and (2.2.15),
and introduce the kernel Kg) on I(€) in (2.2.20) such that

Ke(o (i, ) = / Kl ) fiso) fog (N ) ). (2.2.20)

We shall prove in Lemma 2.3.2 that Kg() is an a-determinantal kernel on I(¢), and
present Vg as the associated a-determinantal point process on I(¢). To some extent,
Vr(e) is a Fourier transform of 41|, through the orthonormal basis F(¢) = { f; }icu(e)-
We shall prove in Theorem 2.2.1 that their correlation functions pi, and PR(e) satisfy
a kind of Parseval’s identity:

/Ap@[( X)A™(dx) = > pi (2.2.26)

7;6]14 A)

which is a key to construct the lift vp(r) © Ag()

Vere-Jones [29, 30] introduced a-permanent (we call it a-determinant as refereed
in [26]) as the coefficients which arise in expanding fractional powers of the character-
istic polynomial of a matrix. Shirai-Takahashi [26] introduced the a-determinantal
point processes. Their correlation functions are given by a-determinants of a kernel
function. In the case a = —1, the associated point process is the determinantal point
processes [7, 9, 10, 24, 26, 27]. The condition (A1) is a part sufficient condition for
the existence and uniqueness of a-determinantal point process in [26].

In [20], we introduced the tree representations for determinantal point processes
on a continuum space under the assumption (A1) in the case @« = —1 and proved
tail triviality by applying it. In this paper, we prove that the tree representations
work for the a-determinantal point processes. Most statements in this paper are
then the same as [20] except for the range of a. In particular, Lemma 2.3.1 and
Lemma 2.3.3 correspond to Lemma 1 and Lemma 3 in [20], respectively.
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The key idea is that K in (2.2.20) is given by a unitary operator U : L*(S, \) —
L*(I(£), Aygy) such that K = UKgU™'. Hence Kg(y has the same spectrum of K
and satisfies (A1).

The organization of the paper is as follows. In Section 2.2, we give definitions
and concepts and state the main theorems (Theorems 2.2.1-2.2.3). We give tree
representations of . In Section 2.3, we prove Theorem 2.2.1. In Section 2.4, we
prove Theorem 2.2.2 and Theorem 2.2.3.

2.2 Tree representations

In this section, we recall various essentials and present the main theorems Theo-
rem 2.2.1-Theorem 2.2.3.

A configuration space S over S is a set consisting of configurations on S such
that

S={s;s= Z(Ssi, s; €5, s(K) < oo for any compact K}. (2.2.1)
A probability measure p on (S,9(S)) is called a point process, also called random

point field. A symmetric function p™ on S™ is called the m-point correlation function
of a point process p with respect to a Radon measure A if it satisfies

[T = [, oo @2

Here Ay, ..., A; € B(S) are disjoint and /{;1, ..., k; € Nsuch that ky +-- -+ k; = m.
If s(A;) — k; <0, we set s(A;)!/(s(4;) — )':0

Let A(0) = {Asi}icr) be as in (A2), where £ € N. We set A = {A;};c; such
that

In consequence of (2.1.5), we assume without loss of generality that each element ¢
of the parameter set I({) is of the form

I(0) =1 x {0, 1} 1. (2.2.3)

That is, each 7 € I(¢) is of the form i = (jy,...,j,) € I x {0,1}*~. We take a label
i€ UR I(¢) in such a way that, for ¢ < ¢, i € I(¢), and i' € I({),

Af,i D) AZ’,i’ S i= (jla--wj@) and i’ = (jlw"ajfa"'ajf/)-



13

We denote by T the set of all such parameters:

[e.9]

I= i I(6) =Y T x {0,1}"". (2.2.4)
/=1

(=1

We can regard Tasa collection of binary trees and [ is the set of their roots.
For i = (j1,...,je) € I, we set rank(i) = £. For i with rank(i) = ¢, we set

A l= ]-7
B; = A (2.2.5)
A@—l,i* 14 Z 27

where i~ = (j1, ..., je1) for i = (j1, ..., je) € I(£). Let I C I such that
I=1+> {i€l(t);jo=0}, (2.2.6)
=2

where i = (j1,...,j¢) € I({).
Let F = {fi}sc1 be an orthonormal basis of L?(S, \) satisfying

olfi;i €1, rank(i) = £] = §s for each ¢ € N, (2.2.7)
supp(fi) = B; for each i € 1, (2.2.8)
fi(x) = 14,(z)//ANA) for rank(i) = 1. (2.2.9)

For a given sequence of A-partitions satisfying (A2), such an orthonormal basis
exists. We present here an example.

Example 2.2.1 (Haar functions). Typically we can take S = R, A\(dz) = dz, and
I=7. Fori=(ji,...,J¢) € I({), we set J1; = j1 and, for { > 2,

-1
Joi=h+) ‘;—Z (2.2.10)
n=1
We take Ag; = [Jos, Joi + 27F0).
Leti= (j1,...,j0) € I. We set for, £ =1 and i = (j1),
i) = 1, e ()
and, for ¢ > 2 and i = (j1,...,70) €1,
fi(w) = 2702 0y, gy e (2) = L ra-ein g aa-evy (7))

We can easily see that { f;}ic1 is an orthonormal basis of L*(R,dx). We remark that
Je =0 because i = (j1,...,J¢) €1 as we set in (2.2.6).



14 Chapter 2: Tree representations of a-determinantal point processes

We next introduce the ¢-shift of above objects such as I, B;, and F = {f;};cr1.
Let I(1) =T and, for ¢ > 2, we set

0() =Y " 1(0) x {0, 1}, (2.2.11)
r=1
where I(¢) = I x {0,1}*"! is as in (2.2.3). For £,r € N, we set 0,_, :1—I(£) such
that 6y, =id (¢ = 1) and, for ¢ > 2,

9871,1“((].17 SR 7j€+r71)) = (jbj@Jrla SR 7j€+r71) S [<€) X {07 1}7‘—17 (2212)

where 3, = (j1,...,7e) € I(£). For £ =1, we set [(1) = L. For ¢ > 2, we set
I(0) = I(0) + Y 6p—1,(I). (2.2.13)
r=2

We set rank(i) = r for i € I(¢) x {0,1}""'. By construction rank(i) = r for
i € 0p_1,(I). Let F(¢) = {fi;}icuey such that, for r = rank(i),

fei(x) = 1a,,(2)/\/A(Aci) for r =1, (2.2.14)
fei(@) = for (@) for r > 2, (2.2.15)

where A(€) = {Au;}icr(e) is given in (A2). Then F(¢) = {fi,i }ici(e) is an orthonormal
basis of L?(S, ). This follows from assumptions (2.2.14) and (2.2.15) and the fact
that ' = {f; }ier is an orthonormal basis.

Remark 2.2.1. (1) We note that f;; € F(¢) is a newly defined function if rank(i) =
1, whereas f;; € F(£) is an element of F if rank(i) > 2. In particular, we see that

{fei}icn), rank(iy>2 C { fi}ier, rank(i)>2- (2.2.16)
(2) Let j = (ji,-- -5 Jesr—1) € L and i = (Jy, Jor1s - -5 Jear—1) € I(E). Then
j = ef_jl,r(l)

Furthermore, fo; € F(0) and f; € F satisfy f,; = f; for r = rank(i) > 2.
(3) By construction, we see that

o[ fes; 1 € 1(0), rank(i) = 7] = Fo—14+ for each €,r € N, (2.2.17)
supp(fei) = B, for all i € 1(0), (2.2.18)

where we set, for j = 9[_11770(2') such that rank(i) = r,
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Using the orthonormal basis F(¢) = { fy;}iciqr), we set Kg(g) on I(¢) by

Keo (i,7) = /S SK(x>y)ff,i<$)fz,j(y))\(div))\(dy). (2.2.20)

Let Ay be the counting measure on I(¢). We shall prove in Lemma 2.3.2 that
(Kr(e), Aiey) satisfies (Al). Hence we obtain the associated a-determinantal point
process Vp(g) on I(€) from general theory [26].

For i € I({), let Ay, ,(dz) be the probability measure on .S such that

A (dr) = [ fos() PA(da). (2.2.21)

For ¢ = (i,), € I({)™ and x = (x,)7,, where m € NU {oo}, we set
— ) 2
Ay, ; (dx) = H | e (20) PA(dy). (2.2.22)

By (2.2.15) As i is a probability measure on S™. By (2.2.18), we have

L,

Afm.(H1 Byi,) = 1. (2.2.23)

Let 7' = o[ A, X -+ X Ay i € I(€),n=1,...,m]. Let & be the sub-o-field
asin (2.1.6). An §'-measurable symmetric function pg, on S™ is called the m-point
correlation function of p|g, with respect to A if it satisfies

/H ,u(ds) /Akl A]p@[( x)\"(dx). (2.2.24)

1

Here Ay,..., A; € §, are disjoint and kzl, ...,k; € Nsuch that ky +---+k; =m. If
s(A;) — k; <0, we set s(A;)!/(s(A4;) — )‘—0

Let vp(e) be the a-determinantal point process associated to (K]m), )\W)) as before.
Let pg, and PR(e) be the m-point correlation functions of y|e, and vp(,) with respect
to A and Ay, respectively. We now state one of our main theorems:

Theorem 2.2.1. Let I)(A) = {i € 1({); By; C A}. For A=Ay x --- x A, we set
L(A) =T(Ay) x -+ x T(Ap). (2.2.25)

Assume that A,, € A(C) for alln =1,...,m. Then

/ o, (X" (dx) = > pity, (2.2.26)
A

'LGHZ )
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Let 1(¢) be the configuration space over I(¢). Let

= (J{i} x Bu. (2.2.27)

1€1(0)

Let ©Q(¢) be the configuration space over 2(¢). Then by definition each element
w € Q) is of the form w = )", 6, s, such that s, € By;,. Hence

7Jn sn

Q) ={w=> S(iunii= D 0, €IL), 50 € Byy,}. (2.2.28)

We exclude the zero measure from Q(¢).
Let As,, be as in (2.2.21). We set

F(0) = H Moiw Aj = HAM. (2.2.29)

i€l(¢

Remark 2.2.2. (1) 4 conﬁgumtwn i € 1(€) can be represented asi =Y 0;, and
this may have multiple points.

(2) Leti € I(¢). Suppose that for some m € NU{oo}, i has plural representations
such as

=> 6, =Y 6
n=1 n=1

Then 17, Bei, and [[_, Bej, can be different subsets of S™. However, the product
probability spaces (I1,—y Bei,, Ag,) and (11— Bej., As,) are the same under the
identification such that

T2 (s - o € [

Here, o is the permutation such that iz, = j,. They do not depend on the repre-
sentations of i under this identification.

We set 1,:Q(¢) = 1(¢) such that > 0

(%n,Sn)

Kei:{w € Q0); |}_>HB£zn

)y D04, Fori€1(f), let

such that Y 0, ..) — (). Let vpe) © Age) be the probability measure on §(¢)
given by the disintegration made of

(Vr(e) © Ar() © 1 (di) = vy (di), (2.2.30)
V(o) © Aoy (Kei(w) € dsug(w) =) = Ay, (ds), s =(s,) fori=>) &,

" (2231
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Remark 2.2.3. (1) We can naturally regard the probability measures in (2.2.31) as
a point process on [, By, supported on the set of configurations with exactly one
particle configuration s = ds on ], B, that is, s = (s,,) is such that s, € By, .
(2) We can regard vpeyo () as a marked point process as follows: The configuration
i is distributed according to vr), while the marks are independent and for each i the
mark s is distributed according to Ay, ;. Thus the space of marks depends on i.

Theorem 2.2.2. Let u, : Q(¢) — S be such that w(w) = > 6., where w =
Zné(imsn)' Then

ple, = (Ve © Meey) o 17 e, - (2.2.32)

Remark 2.2.4. Theorem 2.2.2 implies that vg@) © Apy is a lift of p|e, onto Q(¢).

We can naturally regard ﬁ(ﬁ) as binary trees. Hence we call vpg) © Ap(e) a tree repre-
sentation of u of level £.

We present a decomposition of pulg,, which follows from Theorem 2.2.2 imme-
diately. Let Ay = Ag, o uZEI , where ug; : [[, By, — S is the unlabel map such
that

ui((sn) = ) 0, (2.2.33)
Theorem 2.2.3. For each A € &,
H(A) = /( o)X (A) (2.2.34)

We remark that p|g, is not an a-determinantal point process. Hence we exploit
V() © Ar(e) instead of e, As we have seen in Theorem 2.2.2, Vr(e) © Ar(e) 1s a lift
of ple, in the sense of (2.2.32), from which we can deduce nice properties of pg,.
Indeed, an application of Theorem 2.2.2 is tail triviality of p in the case a = —1
20].

2.3 Proof of Theorem 2.2.1

The purpose of this section is to prove Theorem 2.2.1. In Lemma 2.3.1, we present
a kind of Parseval’s identity of kernels K and Ky using the orthonormal basis F(¢),
where K is the kernel given by (2.2.20) and F(¢) is as in (2.2.14) and (2.2.15). In
Lemma 2.3.2, we prove (Kg(), Ar(e)) is a determinantal kernel and the associated a-
determinantal point process vp(y) exists. We will lift the Parseval’s identity between
K and K to that of correlation functions of p|e, and v in Theorem 2.2.1.
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By definition F(¢) = { fi}icu(e) satisfies

/S\fe,i(-l")\?)\(dx) =1 foralliel(l), (2.3.1)

/S Foil@) fos(@)\da) = 0 for all i £ j € 1(0). (2.3.2)

Lemma 2.3.1. (1) Let P(x) = >, p(i) fei(z) and Q(y) = >_;q(j) fe;(y). Suppose
that the supports of p and q are finite sets. Then

| K@ PERuAdIN) = 3 K00 (233)
(2) We have an expansion of K in L2 (S x S, A\ x \) such that
Kz,y) = Y Kew(i, ) fes(x) fo;(y)- (2.34)
ijel(e)

(3) Let I(4; R) = {i € I(¢);rank(i) < R}, where rank(i) is defined before (2.2.14).
Let

Ke(z.y) = Y Ke(i:j) fei(@) fes(9)- (2.3.5)

i,J€1(4;R)

We set A = Ay x - x A,,. Assume that A, € A(l) forn =1,...,m. Then for
o€ G,

lim /A [ Ke(n, o) A" (dx) = /A [ K@, 2o@m)A™ (dx). (2.3.6)

R—o0

Proof. From (2.2.20) we deduce that
| K PEmA@n) (2:3.7)
[ KX pli)fosl) 0l s A )

:;j/SxS K(z,y) fei(z) foi(y)A(dx)A(dy)p(i)q())
:Z Ko (i, 5)p(i)q(5)-
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This yields (2.3.3). We have thus proved (1). By a direct calculation, we have

| P i) /Zp Ve (@) feal@)A(de) = (D), (2:38)
/Q ) fos (A (dy) = /Z i) o) fea(0)N(dy) = a()).

Combining (2.3.7) and (2.3.8) yields
| Ky PEQuAEAE) -
SxS
/S SZ Ko (i, ) fea(2) foy () PEQy)Ada) A(dy).

This implies (2.3.4).

Without loss of generality, we can assume o is a cyclic permutation. We prove
(2.3.6) only for ¢ = (1,2,...,m). Let A, € A({) for n > 0. Let A = A(m) =
Ag X -+ x A,,,. For 0 <n <m, we set

KA (2, y) = /A H K(zp_1,zp)A(dz1) - - - Adxp—1), (2.3.9)

XX Ap— 1p=1

K™ (x,y) = / H Kr(zp—1, 2p)A(dxy) - - - N(dxy,). (2.3.10)
A~ (n—1) X+ X Am— 1p=1

where To = Ty, Tn = Y, KAO('T y) - KAO(;E y) - 6 ( ) KA’l('Tvy) = K(ﬁ,y), and

Kl (z,y) = KR(x y). By assumption K is a trace class operator on L?(B,\) for a

relatlvely compact set B such that U;n:1 A, C B. Then K" is also a trace class

operator on L?(B,\) for each n € {1,...,m}. In particular, K" is a Hilbert-

Schmidt operator on L?(B,\) and satisfies

KA (2, )P A(dz) M(dy) < oo. (2.3.11)
B2
We set for k,n > 0 such that kK +n =m
L™ (x,y) = /A KAF (2, )K" (2, ) A(d2). (2.3.12)
k

We shall prove the following by induction for m : for all k,n > 0 such that k+n =m
and for any A = Ay x -+ x A, such that A, € A({) for p=0,...,m

lim L7 (2, y) — KE™ (2, ) PA(dz) M(dy) = 0, (2.3.13)

R—o0 AO X Am

sup/ L™ (2, ) PA(dx) A (dy) < oc. (2.3.14)
R AoXAm
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Let m = 1. For (k,n) = (0, 1), Lemma 2.3.1 (2) implies (2.3.13) and (2.3.14). For
(k,n) = (1,0), Ly"(z,y) = K‘M(x y) by the definition in (2.3.12). Then (2.3.13)
and (2.3.14) hold for (k,n) = (1,0). Hence (2.3.13) and (2.3.14) holds for m = 1.

Suppose (2.3.13) and (2.3.14) hold for 1,...,m — 1. Let k+n = m — 1 and
A=Ay x---x A,. By a straightforward calculation,

Ak Ak+1n
LR +1($ay)_LR i (I,y)

= [ KM R ) — [ K K () A )

Ay, Akt1
= /A ) K& (2, 2)K g (2, w)KE™ (w, y) — KA* (2, 2)K (2, w)KS" (w, y) A (d2)A(dw)
_ / KA, 2) K5 (0, ) (K2, w) = K (2, w) ) A(d2)Aduw).

A X Ag41

By the Schwartz inequality for the last term, we have

2
‘ L?}’kﬂﬁ_l (ZB, y) _ Lﬁ,k’-‘rl,n (33, y) ‘

< /J4 e K& (2, 2)KE" (w, y) PA(d2) A(dw) /A e Kr(z, w) — K(z, w)|2A(d2)\(dw).

Hence,
2
/ L5 y) = L @) | M)A (dy) (23.15)
.A0><.Am
<[ KRN [ K )P E)
Ao x Ayg App1xAm
« / K2 w) — K(2, w)[2A(d2)A(dw).
AkX.A}H_l

Recall that k+n=m —1. Then 0 <n <m — 1. Let A’ = Ay, x --- x A, and
(k’,n’) be such that &' +n’ = n. Then by replacing m by n in (2.3.14) we have

sup / L (w, ) PA(dw) Mdy) < oo, (2.3.16)
R Ak+1 ><.Am

Take (k',n') = (0,n). Then Lg’o’n(m,y) — K&"™(z,y) by (2.3.12). Hence from
(2.3.16)

sup / IKA™ (w0, ) PA (dw)A(dy) < oo
R Ak+1><Am
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From this, (2.3.11), and Lemma 2.3.1 (2), the last term in (2.3.15) goes to zero as
R — oo. Therefore, we see that

1

(), I =] M)

sg(/A

—0 as R — oo.

2 1

LG T ) = L P (e, )| M)A (dy))

z,y)

0><-Am

Hence (2.3.13) holds for m.
We deduce (2.3.14) for m from (2.3.13) for m immediately.
We now apply (2.3.14) to obtain (3). Let 0 = (1,2,...,m).

m

{H Ki(@ps o) — [ K(@ps 2oty )}/\m(dx) (2.3.17)

p=1

mz:/ {LAkm k (x,x) — L?;’kﬂ’m_k_l(x,x)})\(dx).
k=0

Let k+n=m and n > 1. Then

/A {L‘g’k’"(m, x) — LF = (g, :r;)})\(d:v)

:/Am </AkXAkH{KA’k(x,z)KR(z,w)K?%’”_l(w,w)
—KAE (g, z)K(z,w)K?}’"_l(w,x)}A(dz)A(dw))A(dw)
:/ / KA’k(x,Z)K%n_l(w,x))\(dx)(KR(z,w) - K(z,w)))\(dz)/\(dw).
Apx A1 J A
By the Schwarz inequality,

’ Am{Lgkﬁn(m,x) - Lé’kﬂ,n—l(x,x)})\(dx)’

g(/A » )/m K& (2, 2) K™ (w, 2)\(d)
X (/A . |KR(z,w)—K(z,w)|2)\(dz)/\(dw)>5.

1

QA(dz)A(dw)) :

Recall that £ +n = m. Then k+n —1 = m — 1. From (2.3.14) for m — 1 and
Lemma 2.3.1 (2), the last term goes to zero as R — oo. This combined with (2.3.17)
implies (2.3.6). O
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Let Ay be the counting measure on I(¢) as before. We can regard Kg(,) as an
operator on L?(I(£), Ayg)) such that Kgp(i) = > jeiqe) Keo (¢, 7)p(j). We now prove
that the (Kg(), A1) )-determinantal point process vp() exists.

Lemma 2.3.2. Let Spec(Kg)) be the spectrum of K. Then

Spec(Kr) C [0,00). (2.3.18)
If a <0,
1
Spec(Kg() C [0, —a]. (2.3.19)

In particular, there exists a unique, a-determinantal point process Ve on I({) as-
sociated with (Kg(), Aie))-

Proof. Recall that F(¢) = {fi;}icr) is an orthonormal basis of L*(S,\). Let U :
L*(S,\) = L*(I(¢), Aipy) be the unitary operator such that U(fy;) = es;, where
{eq,i}ien is the canonical orthonormal basis of L*(I(£), Ayg)). Then by Lemma 2.3.1
we see that Kpy = UKU ~1. Hence Kr) and K have the same spectrum. We thus
obtain (2.3.18) and (2.3.19) from (Al). Because Kg( is Hermitian symmetric, the
second claim is clear from (2.3.18), (2.3.19), (A1), and Theorem 1.2 of [26]. O

Lemma 2.3.3. Let By; = supp(fei) be as in (2.2.18). Then, for i,5 € I({) and
Ac Sé;

/Afﬁ,i(ﬂ?)fﬁ,j($))\(dx) = {1 (=4, Bc A (2.3.20)

0 (otherwise)

Proof. We recall that By, is the support of f,; by (2.2.18). Suppose i = j and
B C A. Then from (2.3.1) we obtain

[ de@s@ns) = [ g fte N = 1 (2:3.21)
A S

Suppose that ¢ = j and that B,; ¢ A. Then, using A € §,, (2.2.5), and (2.2.19), we
deduce that By; N A = (). Because B,; = supp(fs;), we obtain

/A fei(z) foj(x)A(dx) = 0. (2.3.22)

Finally, suppose i # j. Because A € §,, we see that By; C A or B,; N A= (). The
same also holds for B, ;. In any case, we obtain (2.3.22) from (2.3.2). From (2.3.21)
and (2.3.22), we obtain (2.3.20). O
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Proof of Theorem 2.2.1. Let A = A; x---xA,, as in Theorem 2.2.1. Then, because
A, € A(l) for all n =1,...,m, we deduce from (2.2.24), (2.2.2), and (2.1.1) that

/Ap@e(x))\m(dx) :/Adeta[K(xp,a:q)];?q1)\m(dx), (2.3.23)
where x = (z1,...,2,,). From a straightforward calculation and Lemma 2.3.1, we
obtain

/ deta[K(@p, )] A" (d) (2.3.24)
/ Z a™ ”)HK Tp, To(p)) A" (dX)
Ueem
= Z a™ ”)/HK Tp, To(p)) A" (dX)
c€Gm,
= 3 @) i /A HKR(xp,xU(p)))\m(dX),
c€Gm, p=1

where Kpg is defined by (2.3.5). We note that U!",A; is relatively compact. Hence
the last line in (2.3.24) follows from Lemma 2.3.1 (3).

/AH Kr(2p, To(p))A™ (dX) (2.3.25)

= JTIC S Kol o) o)) "9

p=1 i,€l((;R)
[ TR0 oy o) )V a30) = IR
Ay, Jel;rym p=1

Here, @ = (i1,...,im),J = (J1,-- ., Jm) € L(£)™. From Lemma 2.3.3,

s = (X TRl i) oo (o) e, )W) (2326)

2, Jel(e;Rym P=1

_ / (5 TIKeolin ivon) o )P ) N7

2el(4;R) mﬁH(Z)(A yp=1

- Z H Ke(o) (ip: Lo (p)) Z H Kr) (ip, lo(p)) as R — oo.

2€l(6;R)™NL,(A) P= 1€l (A) P=
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The convergence in the last line follows from Lemma 2.3.1 (2) and the Schwarz
inequality. Multiplying ™ () and summing over o € &,, in the last term, we see
that

Z ™) Z HK]F ) (ips To(p) (2.3.27)

o€6m 1€l (A) P=1

_ Z Z am’“(")HKF(e)(ipaia(p))
p=1

2€l,(A) 9ECm

Z deto K (ip, @ )]pq 1

1€, (A)

= Z Pﬂz)(i)-

Combining (2.3.23)—(2.3.27) we deduce (2.2.26), which completes the proof. O

2.4 Proof of Theorem 2.2.2 and Theorem 2.2.3

2.4.1 Proof of Theorem 2.2.2

Let o™ be the m-point correlation function of (v © Ay,) © u[1|@e. Then it suffices
for (2.2.32) to prove

pe,(x) = 0™ (x). (2.4.1)

From (2.1.6) and §¢ = o[ Ay;;7 € I(£)], we see that pjg, and o™ are F}*-measurable.

Let m=my + -+ +my. Let A= A7 x - x A" € A()™ such that A,N.A, =0

if p#q Let i = (ip), = (¢1,...,%) € [({)™ such that i, € I({)™. From
Theorem 2.2.1, we see that

/Ap@ x)A™(dx) Z Pii(e) (2 (2.4.2)

/LEH[
By the definition of correlation functions, (2.2.30), and (2.2.31), we see that
k :
P :/ . VR (dl) (243)
Z:F 0= Jo LGy =mao

Zeﬂg

k
s(A,)! B
- /s g (s(A,) — my)! (Vr@e) © Ag,) oy e, (ds)

5Awwvwn
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Combining (2.4.2) and (2.4.3), we deduce that

/ P (X)A™ (dx) Z PR / () A (dx). (2.4.4)
A ’I,e]lg
From (2.4.4), we obtain (2.4.1). This completes the proof of Theorem 2.2.2. O

2.4.2 Proof of Theorem 2.2.3

Let A € &,. From Theorem 2.2.2 and regular conditional probability of v © Ap()
with respect to i, we see that

ple, (A) =(Vr@) © Mr(ry) © 1 s, (A) (2.4.5)
= / (Vo) © Arey) © 7t (di) vy © Ao (g (A)|ee(w) = )
10

= [ (vmy 0 Met0) o ) vty Ae ! 035} A)elw) = )
1(¢)

= / v (di) Ag,, 0 g (A)
I(6)

= / V]F(g) (dl) /\1}47i (A)
1(£)

Here the forth line in (2.4.5) follows from the fact u,(w) = ugi(kei(w)) for each
w € Q) with t(w) =i. From (2.4.5), we obtain Theorem 2.2.3. O

2.5 Tail triviality of determinantal point processes

Let S be a locally compact Hausdorff space with countable basis with metric d. Fix
a point o € S as the origin. Set S, = {z € S;d(o,z) < r}. Assume that each S, is
relatively compact. Note that this notion depends on the choice of metric d on S.

Denote S by the configuration space over S. For a Borel set A, we denote by
w4 S — S the projection of configuration such that s(-) — s(- N A). Denote by
Tail(S) the tail o-field such that

Tail(S) = () olmse].

Note that Tail(S) is determined independently of the choice of d.

Theorem 2.5.1. Assume (Al) and (A2). Let u be the (K, m)-determinantal point
process on S. Then  is tail trivial. That is, u(A) € {0,1} for all A € Tail(S).
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Proof. Let A(¢) = {A¢;}icie) be partitions of S satisfying (A2). Define new parti-
tions A(l;r) = {Agi;i € 1.(1)} by

All;r) = {Aei; A NS, = 0}.

Then for fixed r € N, A(¢;r) < A(£+1;r) for each ¢ € N. Let &(¢,r) be sub-o-fields
on S by A(¢;r) such that

&, r)=0o[{s(A) =m};Ae A(l,r),m € N|.
Then for each r, &(¢,r) is increasing in ¢ and we have

olrse] = U[U &4, r)).

Hence for any A € o[r¢], martingale convergence theorem implies that
Jim (A&l r)) =14 in LY(S, p). (2.5.1)
—00

Let A € Tail(S). Then from (2.5.1) we can take an increasing sequence {, },cn such
that

lim pu(A|&(,,7)) =14 in LY(S, u).

r—00
Hence
Ae (ol s, (2.5.2)
geN  r>q
Let ﬁ(t) = {.Zm}ieN be partitions of S generated by A({,,r) such that r > t.
Then A(t) = A(t + 1) for each t € N. Define decreasing sub-o-fields on S by A(t)
such that

9(t) = o[{s(A) = m}; A € A(t),m € N].

Then $(t) is decreasing in ¢t € N. By (2.5.2), we have A € $(t) for each t € N.
Hence backward martingale theorem implies that

lim p(A] (1)) =14 in LY(S, ). (2.5.3)
—00
For each t € N, set Dy C S such that

Di=5\ |J A

AEA(lyt)
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Let A(k;t) be partitions on S generated by A(l, + k;t). Then {A(k;t);k € N}
satisfies (A2) as m-partitions on Df. Let p; be the restriction of y on o[mpe]. Denote
by I(t) the collection of indexes of partitions {A(k;t): k € N} defined in (??). Let
F(t) be the associated orthonormal basis satisfying (?7)—(??). Then by Lemma 2
in Part I, we can define (KF(t), )\H(t))—determinantal point process on vp(;). Denote
by I(t) the configuration space over I(¢). Let II; : I(t) = 7g(S) be a projection
that sends each atom of w = >’ §;, € Conf(I(¢)) to the center of the support of

the orthonormal function f;,. By definition, A() < A(k; ) for each k € N. Hence
Theorem 2.2 in Part I implies that for B € $(t)

I/]F(t) (©] Ht(B) == Mt(B)
Because IT, (ﬂsZtﬁ(s)) C Tail(l(t)), Theorem 7.15 in [9] implies that
() € {0,1}.

From this together with (2.5.3), we obtain the claim. O






Chapter 3

Bernoulli property of
determinantal point processes

We prove the Bernoulli property for determinantal point processes on R? with
translation-invariant kernels. For the determinantal point processes on Z? with
translation-invariant kernels, the Bernoulli property was proved by Lyons and Steif
[11] and Shirai and Takahashi [27]. As its continuum version, we prove an isomor-
phism between the translation-invariant determinantal point processes on R¢ with
translation-invariant kernels and homogeneous Poisson point processes. For this
purpose, we also prove the Bernoulli property for the tree representations of the
determinantal point processes.

3.1 Main statement: Bernoulli property of deter-
minantal point processes

We consider an isomorphism problem of measure-preserving dynamical systems
among translation-invariant point processes on R¢ such as the homogeneous Pois-
son point processes and the determinantal point processes with translation-invariant
kernel functions.

The homogeneous Poisson point process is a point process in which numbers of
particles on disjoint subsets obey independently Poisson distributions. It is param-
eterized using intensity r > 0. From the general theory of Ornstein and Weiss [17],
homogeneous Poisson point processes are isomorphic to each other regardless of the
value of r.

The determinantal point process is a point process for which the determinants
of its kernel function give its correlation functions. It describes a repulsive particle
system and appears in various mathematical systems such as uniform spanning trees,

29



30 Chapter 3: Bernoulli property of determinantal point processes

the zeros of a hyperbolic Gaussian analytic function with a Bergman kernel, and
the eigenvalue distribution of random matrices.

These two classes of point processes have different properties in correlations
among particles. For example, determinantal point processes have negative asso-
ciations [9]. The sine point process is a typical example of a translation-invariant
determinantal point process that has number rigidity [5]. In contrast, Poisson point
processes do not have this property because the particles are regionally independent.
Nevertheless, we prove they are isomorphic to each other.

We start by recalling the isomorphism theory.

An automorphism S of a probability space (£2, F,P) is a bi-measurable bijection
such that Po S™' = P. Let Sg¢ = {S, : ¢ € G} be a group of automorphisms of
(Q, F,P) parametrized by a group G. A measure-preserving dynamical system of
G-action is the quadruple (2, F,P,Ss). We call (2, F,P,S¢) the G-action system
for short.

Let (92, F,P,Sg) and (', F,P',S¢) be G-action systems. A factor map is a
measurable map ¢ : 2 — ' such that

Pogp ' =P, ¢oS,(x)=5,0d¢(z) for each g € G and a.s. z € Q.

In this case, we call (@', F',[",S') the ¢-factor of (2, F,P,S¢) or simply a factor
of (2, F,P,S¢). An isomorphism is a bi-measurable bijection ¢ :  — Q' such that
both ¢ and ¢~! are factor maps. If there exists an isomorphism ¢ : Q — €', then
(Q, F,P,Sg) and (', F',P',S) are said to be isomorphic.

Let (2, F,P,Sg) be a G-action system with a measurable map ¢ from (Q,F)
to (2, F’). Then (Q’,]—},I%,Sg) is a G-action system. Here, (', Fy,Py) is the
completion of (€, o[¢],Po¢t), and S = {po0S, 04" : g € G}. We also call the
G-action system (€, Fy, Py, Sg) the ¢-factor of (Q, F,P,S¢).

A typical system with a discrete group action is a Bernoulli shift. A G-action
Bernoulli shift is a system formed from the direct product of a probability space
over G and the canonical shift. Ornstein [14, 15] proved that the Z-action Bernoulli
shifts with equal entropy are isomorphic to each other. We call a system (2, F, P, S¢;)
Bernoulli if (Q, F,P,S¢) is isomorphic to a Bernoulli shift. Ornstein and Weiss [17]
extended the isomorphism theory to amenable group actions. As a consequence of
the general theory, all the homogeneous Poisson point processes on R? are isomorphic
to each other regardless of their intensity.

Let X be a locally compact Hausdorff space with countable basis. We denote
by Conf(R%) the set of all nonnegative integer-valued Radon measures on X. We
equip Conf(R?) with the vague topology, under which Conf(R?) is a Polish space.
We call a Borel probability measure p on Conf(R?) a point process on X. We say u
is simple when £({z}) € {0,1} for each x € X for a.s. £ € Conf(R?).

Let i be a point process on X. Throughout this paper, we write the comple-
tion of y by the same symbol. We also write (Conf(R%), u, Tg) as the G-action
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system made of the completion of (Conf(R%), B(Conf(R%)), 1) and a G-action group
of automorphisms Tg.

A homogeneous Poisson point process with intensity r > 0 is the point process
on R? satisfying:
(1) £(A) has a Poisson distribution with mean r|A| for each A € B(R?).
(2) £(Ay),...,E(Ag) are independent for any disjoint subsets Ay, ..., A, € B(RY).
Here, £(A) is the number of particles on A for £ € Conf(R?) and |A| is the Lebesgue
measure of A.

A determinantal point process p on X is a point process associated with a kernel
function K : X x X — C and a Radon measure A on X, for which the n-point
correlation function with respect to A is given by

pn(T1,. . 2y) = det[ K (x;, z;)] (3.1.1)

n
4,j=1

for each n € N. See Definition 3.4.1 for the definition of the n-point correlation
function. We call p a (K, \)-determinantal point process. If the context is clear,
we omit A calling p a K-determinantal point process. Throughout this paper, we
assume that A is the Lebesgue measure if X = R

Now, we state the main theorem:

Theorem 3.1.1. Let K € LY(R?) such that K(t) € [0,1] for a.e. t € R, Let ™ be
a determinantal point process on R? with translation-invariant kernel K such that

K(z,y)= [ K(@t)e*™ =9, (3.1.2)
R4
Then (Conf(R4), u Tga) is isomorphic to a Poisson point process. Here, T, :
>0z 2 > 0pita for a € RY and Tga = {T, : a € R},

We remark that the assumption for K in Theorem 3.1.1 implies the following
condition (1)—(4) with X = R? and the Lebesgue measure \.
(1) K : X x X — C is Hermitian symmetric.
(2) For each compact set A C X, the integral operator K on L*(A,\) is of trace
class.
(3) SpecK C [0,1].
(4) K(z, ) = K(z — 3,0),
Under assumptions (1)—(3), there exists a unique (K, A)-determinantal point process
p with the kernel function K [24, 26].

The K-determinantal point process u satisfying (1)—(4) above is translation in-
variant because its n-correlation functions are translation invariant.

For determinantal point processes on Z? with translation-invariant kernel and the
counting measure, Lyons and Steif [11] and Shirai and Takahashi [27] independently
proved the Bernoulli property, the latter giving a sufficient condition for the weak
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Bernoulli property under the assumption K : Z? x Z? — C satisfying (1), (2),
Spec(K) C (0,1), and (4). We recall that the weak Bernoulli property is stronger
than the Bernoulli property. Lyons and Steif [11] proved the Bernoulli property for
the case K satisfying (1)-(4). Theorem 3.1.1 is its continuum version.

One of the ideas in [11] is using the dbar distance, which is a metric on the set
of Z%-action systems; the Bernoulli property is closed under this metric [16, 17, 28].
However, the dbar distance does not work for systems with infinite entropy because
entropy is continuous with respect to the dbar distance. In general, a translation-
invariant point process on R? has infinite entropy. Therefore, we cannot apply the
dbar distance to our case. Therefore, we construct point processes on a discrete set
that approximate the determinantal point process on R?. We prove the Bernoulli
property of the discrete point processes. In turn, we can prove the isomorphism of
the determinantal point process on R?% and the Poisson point process via the tree
representation [20].

To prove Theorem 3.1.1, we apply the general theory given by Ornstein and
Weiss [17]. We quote them in the form applicable to the R?- and Z%actions. We
also refer to [16] for the Z- and R-actions, and [28] for the Z%-action.

The outline of this paper is as follows. In Section 3.2, we recall notions related
to the Bernoulli property. In Section 3.3, we introduce the kernel functions that
approximate the determinantal kernel K in Theorem 3.1.1 uniformly on any compact
set on R%. In Section 3.4, we introduce the tree representations of the determinantal
point processes on R%. We combine these representations with the kernels introduced
in Section 3.3. The tree representations are determinantal point processes on Z¢ x N
and are translation invariant with respect to the first coordinate. In Section 3.5,
we prove the Bernoulli property of the tree representation using the properties of
the dbar distance introduced in Section 3.2. In Section 3.6, we prove Theorem 3.1.1
using the Bernoulli property of the tree representations.

3.2 Notions related to the Bernoulli property

In this section, we collect properties of point processes without determinantal struc-
ture and notions related to the Bernoulli property.

We first recall the notion of monotone coupling. For ¢ = {¢i},cza € {0, 1}
(i = 1,2), we write ¢! < ¢ if ¢! < (2 for each z € Z%. We equip {0,1}*" with
the product topology. We call a continuous function f : {0, 1}Zd — R a monotone
function on {0, 1}2" if ¢! < ¢2 implies f(¢!) < f(¢2). Let B be the Borel o-field of
{0,1}%". For probability measures p and v on ({0,1}2", B), we write u < v if for
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each monotone function f,

/ fdus/ fdv.
{0,132 {0,132¢

Let v; and v, be probability measures on {0, 1}Zd. We say a probability measure -y
on {0, 1} x {0,1}%" is a monotone coupling of v, and v, if the following hold:

(1) (A x {0,1}%") = 11 (A) for A € B.

(2) 7({0,1}2" x B) = 1y(B) for B € B.

(3) v({(¢",¢*) € {0, 1% x {0, 1}*;¢" < ¢*}) = 1.

Lemma 3.2.1 (e.g. [8]). For probability measures j1 and v on {0, 1}Zd, the following
statements are equivalent:

(1) p<w.

(2) There exists a monotone coupling of p and v.

We naturally regard a simple point process 1 on Z? x N as a probability measure
on {0,1}2N_denoted by the same symbol p. We write g < v for simple point
processes p and v if the corresponding probability measures on {0, 1}ZdXN satisfy
1 < v. We introduce the notion of monotone coupling for simple point processes
on Z% x N from that of the corresponding probability measures on {0, l}ZdXN in an
obvious fashion.

Fix N € N. We set [N] = {1,...,N}. Let Q¥ = {QF, : (2,1) € Z* x [N]} be a
partition of Z¢ x N such that

N {(z,0)} for [ € [N —1]
2l = {{(Z,m)EZdXN;mZZ} for [ — N (3.2.1)
for each (z,1) € Z* x [N]. For ¢ € Conf(Z? x N), we set
w(€) = Lig@z1y-
Let wy : Conf(Z% x N) — {0, 1}2"*IN] denote the map
£ {wi\,[l@)}(z,l)eZdX[Ny (3.2.2)

We denote the image measure v o wy' by vy for a point process v on Z¢ x N.

Proposition 3.2.2. Let p and v be simple point processes on Z¢ x N. Assume
w<v. Then uy < vy.
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Proof. By assumption and Lemma 3.2.1, there exists a monotone coupling vy of
and v. Let yv(£,m) =70 (wn(§), wn(n)) "', Then for A € B({0, 1}2*IM),

The third equation follows from the fact that v is a coupling of p and v. Because
the same is true for {0, 1}2*N x A, we find

({0, 12N s A) = wy(A).

Moreover, by yn(&,1) = v o (wn(€), @y (n)) !

n({(C w) € {0, 1IN {0, 13N ¢ < w}
=7({(&,m) € Conf(Z? x N) x Conf(Z? x N);wn(£) < wn(n)})
=1.

The last equation follows from the fact that v is a monotone coupling of x and v.
Hence vy is a monotone coupling of uy and vy. From this and Lemma 3.2.1, we
prove the claim. O

We recall the notion of being finitely dependent, which is a sufficient condition
for the Bernoulli property. See, e.g., [11].

Definition 3.2.3. Let ) be a countable set.
(1) A probability measure v on 0% s called r-dependent if, for each R, S C 77,

inf{d(z,w);z € R,w € S} > r = o[ng| and o[rg| are independent.

Here, d(z,w) is the graph distance on Z% and 7y : O — QR is the projection given
by {w:}.eza > {w:}er-
(2) v is called finitely dependent if v is r-dependent for some r € N.

Let Pino(M) be the set of translation-invariant probability measures on [M ]Zd.
For z,y € Z% define x < y if z; < y; for i = min{j = 1,...,d;z; # y;}. For
PQcCZ% weset P<Qifx<yforallz € Pandy € Q .
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Definition 3.2.4 (Very weak Bernoulli). We call v € Py, (M) very weak Bernoulli
if for each € > 0, there is a rectangle R C Z¢ such that if, for any finite set Q =
{z1,...,2m} < R, there exists an A C o[ng| satisfying (3.2.3) and (3.2.4):

v(JA)>1-e (3.2.3)
AcA
1

ryo D lixepvyl <efor A€ A (3.2.4)

zER

E”
El

1mn
vel(v|r,valr

Here vy denotes the conditional probability measure under A, v|gp = v o 7T]_{1, and
ValrR =vao0 7r;21. Furthermore, I'(v|gr,va|r) is the collection of the couplings of v|gr
and valgr, and ((X.).er, (YV2).cr) € [M]% x [M]E.

Lemma 3.2.5 (e.g.[11]). If v € Pin(M) is finitely dependent, then v is very weak
Bernoulli.

Proof. By definition, there exists a rg such that v is rg-dependent. For € > 0, let
R C Z% be a rectangle such that (ro)?/#R < e. Let Q = {21,...,2m} C Z? be a
finite set such that @ < R. We set

Qr, = {w € Zd;d(z,w) < ry for some z € Q}.

Then #RNQ,, < (r¢)%. By ro-dependence, o[mg] and o[mqe | are independent under
v. Hence for each A € omq], v = v4 on ofmqe |. Let 74 be the coupling of v o TR

and vy o ng such that X, =Y, for z € RNQ;, and X, LY, for z € RNQ,, under
va. Then

1 d
E“%Z Lix.zvy] < (;)])% <e

zER

This proves the claim. O]

The very weak Bernoulli property is equivalent to the Bernoulli property for
elements of Py, (M):

Lemma 3.2.6 ([16, 17, 28]). For v € P, (M), the following statements are equiv-
alent:

(1) v is very weak Bernoulli.

(2) v is isomorphic to a Bernoulli shift.

From Lemma 3.2.5 and Lemma 3.2.6, we obtain:

Proposition 3.2.7 (e.g.[11]). If v € Py, (M) is finitely dependent, then v is iso-
morphic to a Bernoulli shift.
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Let p and v € P, (M). Define d : Py (M) X Pipo(M) — [0,1] by

d

d(p,v) = inf y({(¢w) € [ME x [M]*; ¢ # wo}). (3.2.5)

vel(p,v)

Then d gives a metric on Pj,,(M). The Bernoulli property is closed under d:

Lemma 3.2.8 ([16, 17, 28]). Let v and {v, : n € N} be elements of Pi,(M).

Suppose that lim,,_, d(v,,v) = 0 and that each v, is isomorphic to a Bernoulli
shift. Then v is isomorphic to a Bernoulli shift.

We quote Theorem 5 in II1.6 in [17]:
Lemma 3.2.9 ([16, 17]). Let (2, F,P,Sza) be an ergodic system. Let {F, : n € N}

be an increasing sequence of Sza-invariant sub-o-fields. Let \/, . F, be the comple-

tion of o[U,en Fnl- Assume that {F, : n € N} satisfies (3.2.6) and (3.2.7):

\ F.=F (3.2.6)
neN
Fn-factor is isomorphic to a Bernoulli shift for each n. (3.2.7)

Then (2, F,P,Sza) is isomorphic to a Bernoulli shift.

Proposition 3.2.10. Let (Conf(Z?xN), v, Ty4) be ergodic. Let v be simple. Suppose
that there exists a sequence {v, : v € N} of point processes on Z% x N such that

vrn 1S isomorphic to a Bernoulli shift for each r and N € N, (3.2.8)
lim d(v,n,vy) = 0 for each N € N.
r—r00

Here, v, n = yrowx,l and vy = Vowx,l.

Then, v is isomorphic to a Bernoulli shift.
Proof. Recall that QY = {QY, : (2,1) € Z? x [N]} is a partition of Z? x N. Here, Q7
is defined in (3.2.1). Then QY becomes finer as N — oo and \/ oy Q" separates
points of Z? x N by construction. Here, \/ NeN Q" is the refinement of partitions
{Q"}nen. From this, we obtain that {o[wy]}yen is increasing and \/ y yolwn]
separates points of Conf(Z? x N). Hence {o[wn]}yen satisfies (3.2.6).

From the assumptions (3.2.8) and (3.2.9) and Lemma 3.2.8, vy is isomorphic to
a Bernoulli shift. Hence {o[wy]}nen satisfies (3.2.7).

From the above and Lemma 3.2.9, the claim holds. O
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3.3 Approximations of the determinantal kernel

In this section, we introduce three approximations of the kernel K introduced in
(3.1.2).
For r > 0, let w, : R? — R be the product of the tent function such that

d

we(@) = [T = |21/r) ey 1<y ()

j=1
We denote by w, its Fourier transform
4 sinrt,
’UA)r(t) :/ wr($)€2ﬂzx.td$:7"_dn(—])2.
R4

mt;
j=1 J

Let K € L'(R?) such that K(t) € [0,1] for a.s. t € R%. Set K, (t) = K %,(t). Then
K.(t) € [0,1] for a.e. t € R Let

K. (2,y) = / (K. (t) A K (1)) 20, (3.3.1)
R4

K.(z,y) = | K, (t)e™@)qt, (3.3.2)
Rd

K. (z,y) = / (K, (t) V K(t))e*™vtgs, (3.3.3)
Rd

Here, a A b = max{a,b} and a V b = min{a, b} for a,b € R, respectively. Then
K, K,, and K, satisfy (1)-(4) before Theorem 3.1.1.

For K : X x X — C, we denote O < K if K is nonnegative definite as an integral
operator on L?(R%) and K; < K, if K, — K is nonnegative definite.

Lemma 3.3.1. Let K, K,, and K, be as (3.3.1), (3.3.2), and (3.3.3), respectively.
Then

Proof. By construction, we see
K.(t) ANK(t) < K(t) < K, (t)V K(t)
K. (t) AK(t) < K. (t) < K.(t) vV K(t).

From (3.3.1)-(3.3.3) combined with the above inequalities, we obtain (3.3.4) and
(3.3.5). O
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3.4 Tree representations of determinantal point
processes

In this section, we introduce the tree representations of determinantal point pro-
cesses on R?. Then we apply it to the determinantal point processes associated with
the kernels introduced in Section 3.3. Before doing so, we recall the definition and
well-known facts about determinantal point processes.

Let pu be a point process on X. A locally integrable symmetric function p"
X" — [0,00) is called the n-point correlation function of p (with respect to a Radon
measure A on X ) if

il (f(Ai)—ni)!} _/Anlx,_xAnkp (@1, ..., wn)A(dzy) - - - Alday) (3.4.1)

=1 1

for any disjoint Borel subsets Aq,..., Ay and for any n; € N, i = 1,..., k such that
Zle n;=mn. Let K: X x X — C. We call u a determinantal point process with
kernel K and Radon measure A if the n-point correlation function p™ of p with
respect to A satisfies (3.1.1) for each n.

Assume K : X x X — C satisfies:

K(z,y) = K(y,z). (3.4.2)
Spec(K) C [0, 1]. (3.4.3)
K4 is trace class for any compact A C X. (3 4. 4)

Here, K in (3.4.3) is an integral operator on L*(X, \) such that K f(z) = [, K
and K4 in (3.4.4) is its restriction on L?(A, \). Then there exists a umque determl-
nantal point process on X with kernel function K.

Next, we introduce the tree representations of the determinantal point processes.
Let 1 be the determinantal point process on R? with kernel function K satisfying
(3.4.2)—(3.4.4). First, we introduce a partition of R? and the associated orthonormal
basis on L2(R%). Let P = {P, : z € Z%} be a partition of R? such that each P, is
relatively compact and

P..,=P +wforz,we VA

Here, A+x = {a+z;a € A} for ACR?and v € R% Let & = &p = {020} pyezaxn
be an orthonormal basis on L?(R?) such that suppg,; C P, and

¢z+w l(l') = ¢z l(x - w) (345)
For the kernel function K above, let K : (Z¢ x N) x (Z¢ x N) — C such that

K®(z,l;w,m) = / O.1(2)K(x,y)w.m(y)dzdy. (3.4.6)
R xRd4

A(dy)
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Lemma 3.4.1. Assume that K satisfies (3.4.2)~(3.4.4) with respect to L*(R?). Then
K? satisfies (3.4.2)—(3.4.4) with respect to the counting measure on Z* x N,

Proof. By assumption and (3.4.6), K? satisfies (3.4.2) and (3.4.4). (3.4.3) follows
from Lemma 2 in p.430 of [20]. O

From Lemma 3.4.1 and the general theory in [24, 26|, there exists a determi-
nantal point process v*® on Z? x N associated with K®. We call v%® the tree
representation of u with respect to .

Lemma 3.4.2 ([20]). Let m : Conf(Z? x N) — Conf(Z%) such that

nw(n) =Y n({z} x N)g..

z€74

Then for A € o[{¢ € Conf(Z¢ x N);£(P,) =n};z € Z¢,n € N,

Proof. From Theorem 2 on p.427 of [20], we easily obtain the claim. ]

We apply the tree representations for the translation-invariant kernels on RY
introduces in Section 3.3.

Assume that K is given by (3.1.2). Then K is translation invariant. Hence by
construction K® is translation invariant with respect to the first coordinate Z¢. From
this we see that v*©? is translation invariant with respect to the first coordinate.

Define K*, K®, and F? similarly as (3.4.6) with replacement of K with K, K,

and K, in (3.3.1)-(3.3.3), respectively. By construction, K, K,, and K, satisfies
(3.4.2)(3.4.4). Hence K?, K®, and Ff satisfy (3.4.2)-(3.4.4) with respect to the
counting measure on Z¢ x N by Lemma 3.4.2. Furthermore, K ;b, K2, and Ff are
translation invariant with respect to the first coordinate Z¢.

Let v5® p/® and 75® be K*- K®- and Ff—determinantal point process,
respectively. We remark that a determinantal point process v on Z% has no multiple
points with probability 1. Hence we can regard v as a probability measure on

{0,1}%". We quote:
Lemma 3.4.3 ([9]). Let K; : Z¢ x Z¢ — C satisfying (3.4.2)~(3.4.4) (i = 1,2).
Assume that K < Ky. Let 51 and v%2 be the determinantal point processes with

K, and K, respectively. Then there exists a monotone coupling of v and v2.

Applying Lemma 3.4.3, we obtain the following:
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Lemma 3.4.4. Let v5% 52 K2 and v5% be determinantal point processes on
7% x N as above. Then

v < K2 < g (3.4.7)
v <R < ﬁfq’. (3.4.8)
Proof. Recall that @ is the orthonormal basis of L?(R?) given in (3.4.5). Let U :
L*(R%) — L*(Z* x N) be the unitary operator such that U(¢,,) = e,,, where
{€2n}(2n)ezixn is the canonical orthonormal basis of L?*(Z% x N). Then by Lemma

1 in Section 3 of [20], we see that K® = UKU~!. From this and Lemma 3.3.1, we
obtain

K*<K®*<TK:, (3.4.9)
K*<K®*<TK.. (3.4.10)
From (3.4.9) and (3.4.10) combined with Lemma 3.4.3, we conclude (3.4.7) and
(3.4.8). O

., and fq’ are translation invariant with respect to the first
coordinate. Hence l/K ® K2 and 75? are also translation invariant with respect to
the first coordinate. We regard Tye = {T, : a € Z%} as a translation on Conf(Z¢xN)

such that

Recall that K“I> K?®

T, : Zd(zz',li) — Zé(zz'-i-a,li) for a € Z°.

Then (Conf(Z¢x N), v5% T,4), (Conf(Z¢x N), v® Ty4), (Conf(Z? x N), v5® Tya),
and (Conf(Z* x N),v K , Tza) are Z%-action systems.

3.5 Bernoulli property of tree representations

We continue the setting of Section 3.4. Let K® be the kernel defined by (3.4.6). Let
v%? be the K®-determinantal point process as before. The purpose of this section

is to prove the Bernoulli property for (Conf(Z? x N), v5® T,a).
Let wy be the map defined by (3.2.2). Let ({0, 1}Zd N],yf(]\;b,TZd) denote the

wn-factor of (Conf(Z? x N ,v® T,4). Here, Tza in ({0, 1 ZdX[N] , Tza) is the
r r N
shift of {0, 1}ZdX[N] such that for each a € Z4

To:w={w,} (z,1)EZIX[N] {wz+az} (z,1)€Z4x[N]-
We also denote wy- factors of (Conf(Z? x N), v TZd) (Conf(Z* x N), vE* Tya),
and (Conf(Z4 x N), 7%, Tza) by ({0, 1}#'%IV, —vaTZd) ({0, 1}ZdX[N]7 Vr N ,Tzd)

and ({0, 1}2">IN 5752 TZ(Z) respectively. We shall prove that ({0, 1}2*IN p5% T,,)
is isomorphic to a Bernoulh shift.
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Lemma 3.5.1.
K,® K& _ _K&
Y.n SUNT STN
K,® K& _ _Ka&
ZT,N S VT,N S VT,N
Proof. From Proposition 3.2.2 and Lemma 3.4.4, we obtain the claim. O

Lemma 3.5.2. ({0,1}2"%IN], VTI,’(]’V@,Tzd) is isomorphic to a Bernoulli shift.

Proof. We identify {0,1}Z*IN with [2V]%" and Vf]’v@ with an element of P;,,(2V),
respectively. We shall prove that 1/7{{ ]’Vq) is finitely dependent. For this it only remains
to prove that #5:% is finitely dependent because ({0, 1}2"*[N, I/fjv(b, Tya) is the wy-
factor of (Conf(Z¢ x N), v5® T,a).

Let d be the graph distance as before. Let 7 > 0 such that for each z,w € Z¢,

d(z,w) >ro = inf{|z; —w;|;i=1,...,d} > r.
For P,Q C Z% x N, we define a pseudo-distance by
d(P,Q) = inf{d(z,w); (z,1) € P, (w,m) € Q}.
Let P,Q C Z* x N be finite sets such that d(P, Q) > ro. Then
K2®(z,l;w,m) =0 for (z,0) € P, (w,m) €Q . (3.5.1)
For P C Z¢ x N, we define a cylinder set by
17 = {w € Conf(Z? x N);w({(z,1)}) =1 for all (2,1) € P}.
By construction, 17 N 19 = 17YQ, Therefore
VER(1F (119) =y (170)
= det[ K} (2, ; 0, m)] (2 0),(wsm)ePu@

= det[Kf’(z, Lw, m)] (2.0),(w,m)ep det[Kf’(z, Lw, m)] (2,0),(w,m)e
=P (172 (19). (3.5.2)

T T

The third equality follows from (3.5.1).
Let R, S C Z% such that d(Rx N, SxN) > ry. From (3.5.2) and the 7-)\ theorem,

v oM (AN B) = v " (A (B)

T

for each A € o|mgrxn] and B € o[msxr|. Hence yf]’\? is ro-dependent.
From this and Proposition 3.2.7, the claim holds. O]
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Lemma 3.5.3. For each N,

lim d(vi'®, ij\?) = 0. (3.5.3)

=00

Proof. Because d is a metric on Pinw (M),

I e K@y o g0 K@ K@y | g K@ K@
d(vy™, VN ) <d(y.n vy )+ d(Zr,N Ve N ) (3.5.4)
T K® KO\ _ 3 K@ K\ | 7 Ko _K®

dvy " vy ) < dvy ", 78 ) +dv iy Vi )- (3.5.5)

From Lemma 3.2.1 and Lemma 3.5.1, there exists a monotone coupling vy of Zf ]’\?
and vi'®. By definition (3.2.5) of d, we deduce

AN V) < ({(wnwa) ; wi({0) x {1)) # wa({0} x {1}) for %L € [N]})
< 3 v ({(wnwa) : wi({0) x {I}) # wa({0} x {1})})

I€[N]

= > (NP @ {0} x {11) = 1) = v (@ ({0} x {1}) = 1)} (35.6)

le[N]

The last equation follows from the fact that vy is a monotone coupling of gf]’f and
va'®. Because of Lemma 3.5.1, (3.5.6) is true for (yfj’\?,uf]’vq’), (uﬁ‘b,ﬂfj’?), and

(l/qu),?fj’?). From this combined with (3.5.4) and (3.5.5), we obtain

Ay vei) < ) AT @i({0} x {1}) = 1) — 17 ({0} x {1}) = 1)}

lE[N]
= > {7 {0y x (1) = 1) — 25 (@({0} x {1}) = 1)}
le[N—1]
R (w0 ({0} x N[V]) 2 1) — 252wy ({0} x N\[N]) > 1).
(3.5.7)
The last equation follows from the definitions of 75® and v%®.
For (z,1) and (w, m),
Ky (2w, m) — K2(2, 1w, m)| (3.5.8)

{K,(z,y) — K.(2,9)}$20(%) Puo,m (y) dady

R xR4

[, Rl = Ko )@ () ey

IN

-/ Roleny) = K@) 6mi)oum(y)ldedy.  (3.59)
SUPPP2,1 XSUPPPw,m
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Because K, , K, € L2 (R x R%) and ¢.; and @,,,, are orthonormal bases on L?(R%)
with relatively compact support, the Schwarz inequality implies that

1
(359) < ( / R, (w.9) — K, (e,9)Pdwdy) (3.5.10)
SUPP®, | XSUPPPw,m

Because K, — K in LY(R%) as r — 0o, K, and K, converge to K uniformly on any
compact set. Hence RHS of (3.5.10) goes to 0 as r — oo. This implies that (3.5.8)
goes to 0 as r — oo. Hence for each compact set R C Z¢ x N,

max{]?f(z,l;w,m) — K2z, l;w,m)| 5 (2,1), (w,m) € R} — 0 as r — oo.

From this and Proposition 3.10 in [26],

i e s B weakly as r — oo. (3.5.11)

T

Finally, (3.5.7) and (3.5.11) imply (3.5.3) . O
Theorem 3.5.4. (Conf(Z? x N),v5® T,4) is isomorphic to a Bernoulli shift.
Proof. From Proposition 3.2.10, Lemma 3.5.2 and Lemma 3.5.3, the claim holds. [

3.6 Proof of Theorem 3.1.1

The purpose of this section is to complete the proof of Theorem 3.1.1.
We quote a general fact of isomorphism theory:

Lemma 3.6.1 ([16, 17]). Let (Y, F',IP",S';4) be a factor of (2, F,P,Sza). If (0, F, P, Sza)
is isomorphic to a Bernoulli shift, then (', F',P',S';4) is isomorphic to a Bernoulli
shift.

For n € N, let B, = {P,. : 2 € Z%} be a partition of R? such that

d
7 Zz‘% 1
HQn 1’2n1 ) 22(21,...,zd)€Zd_

Let IIp, : Conf(R%) — Conf(Z?) such that
£ Y E(P,2)6-.
2€Z4

Then Ilp, o T.(§) = T. o IIp,(§) for cach z € Z* and £ € Conf(R?). Let pf§ =
pX o II5'. Then (Conf(Z%), il , Tza) is the Ilp, -factor of (Conf(R?), u, Tya).
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Lemma 3.6.2. (Conf(Z%), ufs , Tza) is isomorphic to a Bernoulli shift.

Proof. Let @, = {¢7,}.ezexn be an orthonormal basis on L*(RY) such that
2 wg () = @7 (x —w) and supp @7, = P, .. Let v™® be the tree representation of

pf with respect to ®,,. Let 7 : Conf(Z? x N) — Conf(Z?) such that

new(n) =Y n({z} x N)d..

z€74

By construction, 7o T.(n) = T, om(n) for each z € Z¢ and n € Conf(Z? x N). From
Lemma 3.4.2,

S
Hence (Conf(Z?), s , Tza) is the m-factor of (Conf(Z% x N),v™® Tz4). From The-
orem 3.5.4, (Conf(Z? x N),v%® T,.) is isomorphic to a Bernoulli shift. From this
and Lemma 3.6.1, the claim holds. O]

Lemma 3.6.3. (Conf(RY), u, T4a) is isomorphic to a Bernoulli shift.

Proof. By construction, the sequence of partitions { P, : n € N} is increasingly finer
and separates the points of R?. From this, we obtain that {o[IIp,]|},cx is increasing
and \/,,cy 0[I1p,] separates the points of Conf(R?). Putting this result together with
Lemma 3.6.2 and Lemma 3.2.9 implies the claim. O

We quote Theorem 10 of II1.6. in [17]:

Lemma 3.6.4 ([17]). For an R-action system (Q, F,P,Sga), let Sza = {S, : g €
72} be the limitation on Z%-action of Sga. If (Q,F,P,Sz4) is isomorphic to a
Bernoulli shift with infinite entropy, then (2, F,P,Sga) is isomorphic to a homoge-
neous Poisson point process.

We are now ready to complete the proof of Theorem 3.1.1.

Proof of Theorem 3.1.1 . From Lemma 3.6.3, (Conf(R%), i, T44) is isomorphic to
a Bernoulli shift. Because the restriction of u on [0,1)¢ is a non-atomic prob-
ability measure, the entropy of (Conf(R?), u’ T,4) is infinite. Putting this and
Lemma 3.6.4 together implies the claim. O]



Chapter 4

Logarithmic derivative and Gibbs
property

We prove that the existence of logarithmic derivatives of point processes on R?
implies their Gibbs property. As its application, we prove that determinantal point
processes on R related to random matrices have continuous density. This implies
that the Dirichlet form associated with the point processes becomes closable.

4.1 Gibbs property

Let 41 be a point process on R?. Let yg ., be a regular conditional probability given
by

prmn(dE) = w(Tp,(-) € dE[E(Br) = m, mpp& = magn).

Here, B C R? is the open ball of radius R centered at the origin and 74 is the
projection of configuration on A C R? such that £(-) = &(- N A). Denote by A the
Poisson point process with intensity 1. Set Ag,,(d§) = A(mr(-) € d€|{(Bgr) = m).
In this paper, we say p is Gibbsian if, for each R,m € N and p-a.s. 1, pgmy is
absolutely continuous with respect to Agr,,. This formulation seems weaker than
that due to the DLR equations.

A conventional definition of the canonical Gibbs measure is given by the Dobrushin-
Lanford-Ruelle equation (4.1.1) (cf. [22, 23]). Let ® : R? — R U {oo} and
VR xR — RU {oo}. For & = 37,0,,n = 3,9, € Conf(RY) and R € N,
let

Hry(§) = Z W(z;) + Z W (x, 25) + Z (s, y;)-

z;€EBR 1<j,r;,2;E€EBR z;,€BR,y; EBE

45
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Let AR, be a conditional probability given by
Apm(d§) = A(mr(-) € d€|E(Br) = m).

We say p is a canonical Gibbs measure for a free potential ® and an interaction
potential W if u satisfies the Dobrushin-Lanford-Ruelle equation

e (46) = 7 e~ (€)) A (dE) (111)

for each R,m € N and p-a.s. . By replacing equality by inequality in (4.1.1), the
quasi-Gibbs measure is introduced in [19].

As above, our formulation of the Gibbs measure is weaker than the canonical
Gibbs measure and the quasi Gibbs measure. However, due to remarks in Georgii-
Yoo [6], existence of the Papangelou intensity is said to be Gibbsian in a general
sense. On the other hand, for Gibbsian point processes, the continuity of Radon-
Nikodym densities gives a sufficient condition for the closability of associated sym-
metric forms. For these reasons, it is essential to examine the weak Gibbs property
and the continuity of the densities. We shall prove Gibbs measure (in the weak
sense) is still useful for the construction of the dynamics if it admits the logarithmic
derivative.

The logarithmic derivative is defined as the derivative of the reduced Campbell
measure in the sense of distribution in the spatial direction. In this paper, we prove
that the Gibbs property follows from the existence of the logarithmic derivative.
Especially in the case d = 1, the density becomes continuous.

We apply this to a wide class of determinantal point processes on R? introduced
in [1]. See also [3, 4]. In particular, their kernels include 1 as their spectrum. For
determinantal point processes on discrete sets of which spectrum does not contain
1, Shirai-Takahashi [27] established the Gibb property in the DLR equations sense.
In R? case, Yoo [31] proved the Gibbs property for determinantal point processes
with translation-invariant kernels of which spectrum does not contain 1. We prove
the weaker Gibbs property for determinantal point processes on R with kernels that
admit division property [1, 3, 4]. The spectrums of the kernels contain 1.

The organization of this paper is as follows. In Section 4.2, we introduce the
Gibbs property and the logarithmic derivative and formulate our main results. Sec-
tion 4.3 and Section 4.4 are devoted to the proofs. In Section 4.5, we give an
application to a class of determinantal point processes on R with kernels admits
division property. See Assumption 2.2. for the division property.
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4.2 Main statement: Logarithmic derivative and
Gibbs property
Consider the space of nonnegative integer valued Radon measures

Conf(R?) := {¢ = Z 6z, |{x;} has no limit point in R?}.

We equip Conf(R?) with the vague topology. Conf(R¢) equipped with the Borel
o-field is called a configuration space. A Borel probability measure ;. on Conf(RR¢)
is called a point process on R?.

For A C R? we denote by 74 : Conf(R?) — Conf(R?) the projection of configu-
rations such that £(+) = £(-NA). Let Bg C R? be the open ball of radius R centered
at the origin. We set mp = mp,, and 7% = mge, respectively. We write £ = m5(§).
For R € N, m € Ny and € Conf(R?), we set the regular conditional probability by

frmn(dE) = p(mr(+) € dE|E(Br) = m, {& = 1) (4.2.1)

We denote by A the homogeneous Poisson point process on R? with intensity 1. We
set Apm(d€) = A(mr(-) € d§|E(Br) = m).

Definition 4.2.1. A point process i is called Gibbsian if for p-a.s.n, R € N and
m € No, fpmy 15 absolutely continuous with respect to Ag .

Let i be a point process on R%. A locally integrable symmetric function p" :
X" — [0,00) is called the n-point correlation function of u (with respect to the
Lebesgue measure) if

k )

=1

for any disjoint Borel subsets Ay, ..., Ax and for any n; € N, ¢« = 1,..., k such that

Zf:l N =M.

For ¢ € Conf(R?) and m € N, the factorial measure £[™ on (R%)™ is defined by

m—1

m(day - - day) = E(day)(§ = 65, ) (daa) -+ (€ = ) G0, )(d). (4.2.2)

n=1

The m-reduced Campbell measure CLm] of a point process p is a o-finite Borel mea-
sure on (R4)™ x Conf(R?) given by

m

(A x A) = B[ [ 146 =D b )6 )]

A

n=1
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for A € B((R")™) and A € B(Conf(R?)).
For R € N and m € NU {0}, set

Conf(RY) gm = {€ € Conf(R?); {(Bg) = m}.
Let g, : Conf(R%)g,, — (Br)™ be a map such that

o (€) = (L (€), (), 12 (€))

and &g = 3200, O (o)

A function ¢ : Conf(RY) — R is called local if there exists a compact set K C R¢
such that ¢ is o[mk]-measurable. For a local function ¢ such that o[rg]-measurable,
we define symmetric functions ¢g,, : (Br)™ — R by the relation

Orm(lrm(§)) = B(£), €€ Conf(Rd)R,m- (4.2.3)

Remark that ¢g ., is unique and ¢(§) = > °_, drm(lpm(€)). Furthermore, ¢g , is
independent of the choice of R such that ¢ is o[mg]-measurable.

A local function ¢ is said to be smooth if ¢p,, is smooth for each R > @ and
m € N. Here, @) is a positive number such that ¢ is o[mg|-measurable. Clearly, ¢ is
smooth if ¢g ,, is smooth for some R > () and each m € N.

Let D, denote the space of all bounded local smooth functions on Conf(R%).

Definition 4.2.2. Let y1 be a point process on R? that admits m-correlation function.
We call aﬂn] = (aﬁ’n)izl 77777 din=1,..m the m-logarithmic derivative of p if

ol e {L),.(RY)™ x Conf(R?),Clm))}dm
and, for each o(z1,...,7m,&) € C((RY)™) @ D,,

/ vd’m@dCLm]<I'1,...,xm,£) = _/ cpbgn}dci[im](xl,,xm,f)
(R4)™ x Conf (R4) (R4)™ x Conf(R4)

Here Vg, p = <ai,n <ﬂ> and 8;,, o = Op(@ 1, ,€)

) By
i=1,....di;n=1,....m Ln

Theorem 4.2.3. Let ;1 be a point process on R? that admits an m-correlation func-
tion for each m € N. Assume that there exists an m-logarithmic derivative of u for
each m € N. Then p s Gibbsian.

Assume that p admits an m-correlation function for each m € N and 1-logarithmic
derivative. Then p admits m-logarithmic derivative for each m € N of the form

OB”](xl, e T, &) = (DE](%, Z(ij + 6)):11
J#

Hence we have:
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Corollary 4.2.4. Let ;i be a point process on R? that admits m-correlation function
for each m € N. Assume that there exists a 1-logarithmic derivative of . Then
1s Gibbsian.

Next we introduce a symmetric form (€, D) on L?(Conf(R?), ;1) as in [18]. Denote
for m € NU {o0}

m d
Dolf,68) = 5 37 30 00 F(2)009()

n=1 i=1
Set Conf(RY),, = {£ € Conf(RY); £(R?) = m} for m € NU {oo}. For ¢,¢ € D,, we
set D¢, ] : Conf(RY) — R by
D[, ¥](€) = Dunldm (1 (&), ¥ (1n(€))]  if € € Conf(R?),,,m € NU {oo}
=0 if ¢(RY) =0.

Here ¢,, is defined in (4.2.3) and [,, : Conf(R%),, — (R%)™ is a map such that
[ (§) = (1,(8), (&), -, (€)) and § = 377, by (). Set (€, D) = (€, D") by

e = [ Dl vl(enae)
D = {¢ € D, N L*(Conf(R?), 11); E(¢, $) < o0}.

Theorem 4.2.5. Let j1 be a point process on R? that admits an m-correlation func-
tion for each m € N. Assume that p is Gibbsian and, for each R,m € N, the
Radon-Nikodym density djigm/dx is continuous on (Bgr)™ for p-a.s. n. Then
(€,D) is closable on L?(Conf(RY), 11).

Especially in the case d = 1, above theorem works powerfully because the exis-
tence of a 1-logarithmic derivative implies the closability of the form.

Theorem 4.2.6. Let u be a point process on R that admits an m-correlation function
for each m € N. Assume that there exists a 1-logarithmic derivative of u. Then

(€,D) is closable on L*(Conf(R), ).

4.3 Proof of Theorem 4.2.3

Lemma 4.3.1 (Lemma 3.2.10 in [13]). Let 6 be a finite Borel measure on RY.
Assume that there exists a constant C' such that for each ¢ € C$°(R?)

99

R4 al‘l

(x)df(z)| < Csup |p(z)], i=1,...,d.

zeR4

Then 0 is absolutely continuous with respect to the Lebesgue measure.
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Define the measure Pg[m](dx) and the probability measure Q™! (d¢) by disinte-
gration

Clml(Ax B) = / P (dz) QI (de). (4.3.1)
AxB

Then Pg[m} is a o-finite measure for QI (¢)-a.s. &. Set for QI (¢)-as. ¢
P (dz) = 1(pgym (2) P (d).
Then P[R} is a finite measure on (RY)™ for each R € N.

Lemma 4.3.2. Let i be a point process on RY. Assume that £™(Bg) € L'(Conf(R?),

for each R € N and there exists an m-logarithmic derivative of . Then Pg[f;;] 1S ab-
solutely continuous with respect to the Lebesque measure on (Bg)™ for p-a.s.& and

each R € N.
Proof. By Definition 4.2.2 and (4.3.7), for each f(z)g(¢) € C°((RY)™) @ Do,

/C () (/(Rd)m ai,n f(iﬁ) + f(il?) Dm]m(gj, f)PE[m} (da:))g(f)Q[m} (df) —0.

Because D, C L?(Conf(R%), 1) and D, is dense in Cy(Conf(R?)), we have for Q-
a.e.§ and each f € Cg°((RY)™),

/( ., 0 @)+ 1) 0 (o O P ) =0 (4.3.2)
R m
Hence, for any relatively compact set A C (R?)™ and any f € C§°((R%)™)

< s |7) / o (. €) P (da). (4.3.3)
By Definition 4.2.2 and Fubini’s theorem, O[M]n( &) € L (RH)™, Pg[m]). Let
— || a[m]
Cmea = ”%zn ) HLl (A,P)

Then (4.3.3) implies that for each f € C§°((R%)™)

/Aamf( ) (dx) < Crga sup |f(z)]. (4.3.4)

xe (Rd)'m

From (4.3.4) with A = Bg combined with Lemma 4.3.1, ng = 1(BR)m(l')P£[m](dl')
is absolutely continuous with respect to the Lebesgue measure. O

1)



51

For m, R € N and [ € Ny, define the probability measure (Br)™ x Conf(R%)g,
Chrp (dw dg) = Co o V() g (©)CI (dwdg).  (4.3.5)

Here, éu,m, R, is the normalizing constant. For n € Conf (R%), define the conditional
probability

i

w;R,lm

(da dg) = Cliy (d d€ | €5 = 115,). (4.3.6)
By taking [ = 0 in (4.3.6), we set the probability measure on (Bg)™
C o (dz) = CT o (d dE).

Let u, : (RY)™ — Conf(R%) be the delabeling map given by (z1,...,7,)
> i, 0z, Define the symmetric measure fig ., on (Bg)™ by the relation

- -1
MRvmvn © um = /LRva]'
Then figrm,, is a probability measure by construction.

Lemma 4.3.3. Let i be a point process on R%. For each R,m € N and u-a.s. 1,

we have
Coltom = firmn (4.3.7)

Proof. Recall that é};nl]%,om and fig ., are symmetric probability measures on (Bg)™.
Let A C (Bg)™ be a Borel set. Assume that A is symmetric. By definition,

Cm) ) (A) =p(TR(€) € wn(A) |E(Br) = m, & = n5). (4.3.8)

Here, ™ and u,, are defined in (4.2.2) and before (4.3.5), respectively.
On the other hand, by definition in (4.2.1)

firmn(A) =p(Tr(E) € un(A) [§(Br) = m, §& = 1g). (4.3.9)
From (4.3.8) and (4.3.9), we obtain (4.3.7). O

Proof of Theorem 4.2.3. Let P,Em} be defined in (4.3.7). Define a probability measure
on (Br)™ by

P o(dx) = Cp ) n sy (@) Py (da).
Here, 0%, = n(- N Bg). Then by definition,

Plo(dz) = Gl ().
From this combined with Lemma 4.3.3, for p-a.s. n € Conf(R?)

P o(dz) = fimy(dz). (4.3.10)
Then by Lemma 4.3.2 we obtain the claim. O
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4.4 Proof of Theorem 4.2.5 and Theorem 4.2.6
We modify Lemma 3.2. in [18]:

Lemma 4.4.1. Let \ be a continuous function on (Bg)™ C (R4)™. Denote \(dz) =
Az)dx. Let

&0.0)= [ Dulf gl
Dy ={f € C*((Br)™) N L*((BR)™ A); Ex(f, f) < oo}
Then (Ex,Dy) is closable on L*((Br)™, \).

Proof. Let O,, = {z € (Br)™; £ < A(z) < n} and

Exnlfog) = / D, [f. g)(x)\(dx),

Ef,9)= | Dulf,gl(z)dz.

On

Then by definition, for each f € D,

%&(f, £) < Enlfs ) <nEnlf, ).

Because O, is open, (&,,D,) is closable on L*((Bgr)™, \). Hence (Ex,, D)) is also
closable on L*((Bg)™, A). Since {(Exn, D)} is increasing sequence of closable forms,
its limit (Ey, Dy) is closable on L?((Bg)™, \). O

Lemma 4.4.2 ([18]). Let p be a point process on RY. Let

Ermn(frg) = / D, [f g)(2) i (A1),

(Br)™

Assume that, for eachm, R € N, (Eg ., Cs°((Br)™) is closable on L*((Br)™, fir.m.y)
for p-a.s. n. Then (€,D) is closable on L?(Conf(RY), 11).

Proof of Theorem 4.2.5. By assumption, fig ., is absolutely continuous with re-
spect to the Lebesgue measure. Let mpg,,, be the Radon-Nikodym density. By
assumption, mg , , is continuous on (Bg)™. Hence by Lemma 4.4.1, (£, Cy°((Bg)™)
is closable on L?*((Bg)™, \). Then by Lemma 4.4.2, we obtain the claim. O
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Proof of Theorem 4.2.6. By Theorem 4.2.3, [irm,, is absolutely continuous with re-
spect to the Lebesgue measure. Let mpg,,, be the Radon-Nikodym density. Then
by (4.3.2) and (4.3.10), for each f € C§°(R™)

[ ows@mn(e)s =~ [ fa)afi e m )
(Br)™ (Br)™

Because 0%{1(‘7’7) € LL (R™, PI"), for each = € (Bg)™ and i € {1,...,m}

Om]’n(x, n) = 0i1 log(Mpmy(T)).

Hence mpg,,,, is continuous on (Bg)™. Then by Theorem 4.2.5, we obtain the claim.
[

4.5 Application: determinantal point process on
R related to Random matrices

Let 1 be a point process on R? that admits 1-correlation function p'. A reduced
Palm measure j, of p at x € R is given by

pra(-) = pu(- — 05 [ €(x) > 1).

Set pl(dr) = p'(x)dz by the same symbol. The following assumption gives a suffi-
cient condition for the existence of logarithmic derivative.

Assumption 1
1. pl(z) € CHRY).
2. For p'(dz)-a.e. z,y € R? the reduced Palm measures j, and p, are equivalent.
Denote by R, their Radon-Nikodym derivative as
dpiy(d) = Ry (&) dpr (dS)
3. For p'(dx)-a.e. x € R? lim,,, Ry, = 1 in L'(Conf(R?), p1,.).

For a function ¢ € C5°((RY)™) @ D,, we define the function f, : R? — R? by

fole) = / R ten(€)b(z, €)dC (x, ).
R4 x Conf(R4)
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4. For any ¢ € C°((RY)™)®D,, f, admits partial derivative in € at ¢ = 0. There
exist functions 9;;R : R? x Conf(RY) — R, i = 1,...,d such that for any
¢ € C((RY)™) @ D, and each 1 < i < d, we have

9i1f4(0) = /R S 0i1R(z,&)é(x, £)dC (z,€).

Set
VR - (6717173, e ,&MR).
Due to Proposition 2.2. in [2], we have:

Proposition 4.5.1 ([2]). Let u be a point process on R? satisfying Assumption 1.

Then p'(dz)-a.e. x € RY, 1-logarithmic derivative DE] exists and has the form

ol(2,6) = Vaulog p' (z) + VR(z, €).

When d = 1, Theorem 4.2.6 combined with Proposition 4.5.1 implies the follow-
ing.
Theorem 4.5.2. Let p be a point process on R satisfying Assumption 1. Then
(€,D) is closable on L*(Conf(R), ).

Proof. By Proposition 4.5.1, o has 1-logarithmic derivative. From this, combined
with Theorem 4.2.6, we obtain the claim. O

Especially, there is a wide class of determinantal point processes on R that
satisfies Assumption 1. Here, we recall the definition of determinantal point process.

A point process p on R is called a determinantal point process associated with
a kernel K : R x R — C if its m-correlation function p™(z1, ..., x,,) is given by

P (X, Ty) = det[ K (z,y))]. (4.5.1)

Let K be a positive definite Hermitian symmetric kernel on R that admits locally
trace class operator with the spectrum between [0,1]. Then by a theorem due to
Machi[12], Shirai-Takahashi[25] and Soshnikov|24], there uniquely exists a determi-
nantal point process on R associated with K. Note that by (4.5.1), p'(z) = K(z, z).

Let p be a determinantal point process on R with kernek K.

Assumption 2
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1. The operator associated with the kernel is an orthogonal projection onto a
closed subset L C L*(R, dz).

2. For p!(dz)-a.e. © € R, if f € L satisfies f(a) = 0 then (z —a)~'f € L.
3. K(z,y) € C*(R?).

4. o lifxﬁ) dr < oco.

The property in Assumption 2.2 is called the division property (cf. [3]). Remark
that Assumption 2 is satisfied for the sine, Airy and Bessel kernel. More examples
are found in [3, 4].

Take y € R,R >> 1 and § << 1. Set the additive function S%? : Conf(R) — R
as for { =% 0., ,

2
SPO= >

n:TpEBR,|Tn—y|>d

Set
—R,§

S0 — gRo _ Ery[git).

Then results in [1] implies that, under Assumption 2, for p'(dz)-a.e. y € R, there
exists a function S, : Conf(R) — R such that

lim S —S in L*(Conf(R), 1,).

R—00,6—0 y
Due to [1], Assumption 2 implies Assumption 1 with VR = S,,.

Theorem 4.5.3 (Theorem 2.3 in [2]). Let p be a determinantal point process on
R associated with a kernel K : R x R — C satisfying Assumption 2. Then for
pt(dz)-a.e. x € R the logarithmic derivative DB] exists and has the form

d _
ol (x,€) = —logp (@) + 54(8)-
Due to Theorem 4.2.6 and Theorem 4.5.3, we obtain the follows.

Corollary 4.5.4. Let i be a determinantal point process on R that admits a kernel
K : RxR — C satisfying Assumption 2. Then (€, D) is closable on L*(Conf(R), ).
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