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Preface

The classical isoperimetric problem asks the minimizer of the area functional among
all closed surfaces enclosing the same volume. The answer is a sphere and this gives
a mathematical model of a soap bubble since its surface tension is isotropic, i.e., inde-
pendent of directions. On the other hand, the shape of a small crystal is the minimizer
of the total surface free energy associated to the media subject to a volume constraint
condition. In order to model these objects, J. W. Gibbs (1839-1903) introduced an
anisotropic surface energy which is the integral of an energy density that depends on
the surface normal ([43], [44]). There exists the unique minimizer of the anisotropic en-
ergy among all hypersurfaces enclosing the same volume and the minimizer is called the
Wulff shape [40]. Moreover, equilibrium hypersurfaces under a volume-constraint con-
dition are characterized by constant anisotropic mean curvature (CAMC) hypersurfaces
[24].

In Chapter 1, we prove non-uniqueness results of CAMC hypersurfaces by giving
examples (Theorem 1.1.1, Theorem 1.1.2), i.e., there exists an energy such that there
exists a CAMC hypersurface in Rn+1 which is not theWulff shape. Our results show that
Alexandrov-type theorem and Hopf-type theorem for CAMC hypersurfaces cannot hold
in general if we don’t assume the convexity of the energy density function. Moreover, we
will show that there exist non-trivial self-similar shrinking solutions for the anisotropic
mean curvature flow as an application (Theorem 1.1.4).

In Chapter 2, we will develop a theory of discrete curves and surfaces based on
the (anisotropic) isoperimetric problem. Here, we mainly focus on discrete objects
themselves, not approximation or convergence problems. Such a research field called
discrete differential geometry is an active research field because of the interaction among
the theory, the algorithm and the visualization on the computer, e.g. [10], [21], [34], [36],
[37] ,[38]. Surprisingly, a basic differential geometric treatment of discrete planar curves
by using variational methods is not well understood. Therefore we first treat the planar
curve case, and our basic tool here is a “discrete curvature vector” on a vertex extracted
from the first variation formula. We show that this vector can be used effectively for
an unifed interpretation well-known discrete curvature notions, the second variation
and stability criteria. Since there is no universal definition of the discrete curvature
and our main interest is CAMC curves and surfaces, we define discrete CAMC curves
and surfaces without defining the curvature itself. Our definition is inspired by the
definition in [37] and we visualize them on the software JavaView.
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Chapter 1

Non-uniqueness of closed embedded
non-smooth hypersurfaces with
constant anisotropic mean
curvature

Abstract

In this chapter, we will show that there exist an anisotropic energy density function
such that there exist closed embedded equilibrium surfaces with genus zero in R3 each of
which is not (any homothety and translation of) the Wulff shape. We also give nontrivial
self-similar shrinking solutions of anisotropic mean curvature flow. These results are
generalized to hypersurfaces in Rn+1. The contents of this chapter is contained in [20].

1.1 Introduction

In this chapter, we consider the geometry of equilibrium surfaces for the isoperimetric
problem with respect to the anisotropic energy. Let γ : Sn → R>0 be a positive-
valued continuous function on the unit sphere Sn = {ν ∈ Rn+1 | ∥ν∥ = 1} in the
(n + 1)-dimensional Euclidean space Rn+1 and this function gives an energy density.
Sometimes we assume that γ is defined on an open set in Sn. When we study variational
problems of such an energy, it is natural to consider not only smooth surfaces but also
surfaces with edges since the energy minimizer may have some singularities as shown
in the figure 1.1. And so let M be an n-dimensional oriented connected compact C∞

manifold and X : M = ∪iMi → Rn+1 be a piecewise-C2 immersion (the definition of
piecewise-C2 weak immersion will be given in the section 1.2). Let S(X) be the set of
singularities of X and ν = νX : M \ S(X) → Sn be the unit normal vector field along
X. We define the anisotropic energy Fγ(X) of X by

Fγ(X) :=
∑
i

∫
Mi

γ(ν) dA =

∫
M

γ(ν) dA,
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(a) γ ≡ 1 (b) γ(ν) = (ν81 + ν82 + ν83)
1/8 (c) γ(ν) = |ν1|+ |ν2|+ |ν3|

Figure 1.1: Figures of the energy minimizer (n = 2 case)

where dA is the n-dimensional volume form of M induced by X. If the integrand γ is
defined on an open set Ω ⊂ Sn, we only consider immersions that the image of the unit
normal is contained in Ω. In this case, the immersion is said to be compatible with the
energy density γ.

If γ ≡ 1, Fγ(X) is the usual n-dimensional volume of the hypersurface X. For any
positive number V > 0, there exists a unique (up to translations in Rn+1) minimizer
W (V ) of the energy Fγ among all closed hypersurfaces in Rn+1 enclosing the same (n+
1)-dimensional volume V ([40]). Here a closed hypersurface means that the boundary
(having tangent space almost everywhere) of a set of positive Lebesgue measure. The
minimizer W (V0) for V0 = (n+1)−1

∫
Sn γ(ν) dS

n is called the Wulff shape for γ and we
denote it by Wγ. The Wulff shape Wγ is the boundary of the convex set∩

ν∈Sn

{x ∈ Rn+1 | ⟨x, ν⟩ ≤ γ(ν)}.

When γ ≡ 1, Wγ is the unit sphere.
A piecewise-C2 weak immersion X : M → Rn+1 is a critical point of Fγ for all

variations that preserve the enclosed (n + 1)-dimensional volume (we will call such a
variation a volume-preserving variation) if and only if the anisotropic mean curvature
of X is constant and X has a certain condition on its singular points (cf. [24]). Here
the anisotropic mean curvature Λ of X is defined at each regular point of X as Λ :=
(1/n)(−divMDγ + nHγ), where Dγ is the gradient of γ on Sn and H is the mean
curvature of X (cf. [39], [25], [24]). We call such X a CAMC (constant anisotropic mean
curvature) hypersurface. When γ ≡ 1, Λ coincides with H and CAMC hypersurfaces
are CMC (constant mean curvature) hypersurfaces (of Cω class).

A natural question here is

“is any closed CAMC hypersurface X homothetic to the Wulff shape?”

The answer is not affirmative even in the case where γ ≡ 1 ([42], [22], [23]). However,
it is expected that, if X satisfies one of the following additional conditions (I)-(III), the
image of X is a homothety of the Wulff shape :

(I) n = 2 and the genus g(M) of M is 0. (II) X is an embedding. (III) X is stable.
If we assume that the Wulff shape Wγ is a smooth strictly convex hypersurface, any
closed CAMC hypersurface X is also smooth and the above expectation is correct,
which was proved by [2], [4], [18] for γ ≡ 1, and by [16], [31], [26] and [3] for general
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Energy density n = 2 and g(M) = 0 X is embedded X is stable

(1) γ ≡ 1 (isotropic) true ([18]) true ([2]) true ([4])
(2) γ ∈ C∞ and strictly convex true ([26]) true ([16]) true ([31])
(3) γ ∈ C2 and convex ? ? true ([24])
(4) γ ∈ C2 false ([20]) false ([20]) ?

Table 1.1: Summarization of known results and our results

γ satisfying a strong convexity condition (Table 1.1 summarizes the results). Here a
CAMC hypersurface is said to be stable if the second variation of the energy Fγ for any
volume-preserving variation is nonnegative. If γ has less regularity or less convexity,
the Wulff shape and CAMC hypersurfaces can have “edges”. In the planar case, Frank
Morgan [30] proved that every closed equilibrium curve for the anisotropic energy is
the (possibly multiple of) Wulff shape for any continuous γ satisfying the convexity
condition.

However, the situation is not the same for non-convex γ. In this chapter, we will
prove the following non-uniqueness results for CAMC hypersurfaces:

Theorem 1.1.1 ([20]). There exists a C∞ function γ : Sn → R>0 which is not a convex
integrand such that there exist closed embedded CAMC hypersurfaces in Rn+1 for γ
each of which is not (any homothety or translation of) the Wulff shape.

Theorem 1.1.2 ([20]). There exists a C∞ function γ : S2 → R>0 which is not a convex
integrand such that there exist closed embedded CAMC surfaces in R3 with genus zero
for γ each of which is not (any homothety or translation of) the Wulff shape.

This shows that the Alexandrov-type theorem for embedded CAMC hypersurfaces
and the Hopf-type theorem for genus zero surfaces cannot hold unless we assume the
convexity of γ. These results are proved by giving examples (see section 1.4, 1.5, 1.6).

The same examples will be applied to the anisotropic mean curvature flow. In order
to give the precise statement, we recall that the Cahn-Hoffman map ξγ for γ is the
mapping ξγ : Sn → Rn+1 defined as

ξγ(ν) = Dγ|ν + γ(ν)ν, ν ∈ Sn,

here the tangent space Tν(S
n) of Sn at ν ∈ Sn is naturally identified with the n-

dimensional linear subspace of Rn+1. Let Xt : M → Rn+1 be one-parameter family of
piecewise-C2 weak immersions with anisotropic mean curvature Λt. Assume that the
Cahn-Hoffman field ξ̃t along Xt is defined on M . If Xt satisfies

∂Xt/∂t = Λtξ̃t,

it is called an anisotropic mean curvature flow, which diminishes the anisotropic energy
if Λt ̸≡ 0. By a simple observation we show the following.
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Theorem 1.1.3 ([20]). Let c be a positive constant. Set

Xt :=
√

2(c− t) ξγ, t ≤ c.

Then Xt is a self-similar shrinking solution of the anisotropic mean curvature flow for
γ, that is

(1) ∂Xt/∂t = Λtξ̃t, and

(2) Xt is homothetic to ξγ and it shrinks as t increases.

By using this result and by giving examples, we prove the following result (see
section 1.4, 1.5, 1.7).

Theorem 1.1.4 ([20]). There exists a C∞ function γ : Sn → R>0 which is not a convex
integrand such that there exist closed embedded self-similar shrinking solutions in Rn+1

for γ each of which is homeomorphic to Sn and is not (any homothety or translation
of) the Wulff shape.

In contrast with this result, the round sphere is the only closed embedded self-similar
shrinking solution of mean curvature flow in R3 with genus zero ([7]).

Finally we give two conjetures about the uniqueness problems studied in Theorems
1.1.1, 1.1.2, and 1.1.3.

Conjecture 1. Assume that γ : Sn → R>0 is of C2. Let X : M → Rn+1 be a closed
CAMC hypersurface. We assume that the j-th anisotropic mean curvature of X for γ
is integrable for j = 1, . . . , n. Then, if X satisfies at least one of the conditions (I), (II),
(III) above, X(M) is a subset of a homothety of the image ξγ(S

n) of the Cahn-Hoffman
map ξγ.

Conjecture 2. Assume that γ : S2 → R>0 is of C2. Then any closed embedded self-
similar shrinking solution of the anisotropic mean curvature flow for γ in R3 with genus
zero is a subset of a homothety of ξγ(S

2).

1.2 Preliminaries

1.2.1 Piecewise-Ck weak immersion and its anisotropic energy

First we recall the definition of a piecewise-Cr weak immersion, (r ∈ N), defined in [24].
LetM =

∪k
i=1Mi be an n-dimensional oriented compact connected C∞ manifold, where

each Mi is an n-dimensional connected compact submanifold of M with boundary, and
Mi ∩Mj = ∂Mi ∩ ∂Mj, (i, j ∈ {1, · · · , k}, i ̸= j). We call a map X : M → Rn+1 a
piecewise-Cr weak immersion (or a piecewise-Cr weakly immersed hypersurface) if X
satisfies the following conditions (A1), (A2), and (A3) (i ∈ {1, · · · , k}).

(A1) X is continuous, and each Xi := X|Mi
:Mi → Rn+1 is of Cr.
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(A2) The restriction X|IntMi
of X to the interior IntMi of Mi is a C

r-immersion.
(A3) The unit normal vector field νi : IntMi → Sn along Xi|IntMi

can be extended
to a Cr−1-mapping νi : Mi → Sn. Here, if (u1, · · · , un) is a local coordinate system in
Mi, {νi, ∂/∂u1, . . . , ∂/∂un} gives the canonical orientation in Rn+1.

The anisotropic energy of a piecewise-C1 weak immersion X :M → Rn+1 is defined
as follows. Assume that γ : Sn → R≥0 is a nonnegative continuous function. Let
ν : M \ S(X) → Sn be the unit normal vector field along X|M\S(X). The anisotropic
energy Fγ(X) of X is defined as

Fγ(X) :=

∫
M

γ(ν) dA :=
k∑

i=1

∫
Mi

γ(νi) dA. (2.1)

If γ ≡ 1, Fγ(X) is the usual n-dimensional volume of the hypersurface X (that is the
n-dimensional volume of M with the metric induced by X).

1.2.2 Wulff shapes and convex functions

Next we discuss about the Wulff shape and convex functions briefly (see [24] for details).
As we remarked in the preface, for an energy density γ : Sn → R>0 the minimizer of
the anisotropic energy Fγ among all hypersurfaces in Rn+1 enclosing the same volume
is (up to translation and homothety) the Wulff shape Wγ for γ. Moreover the Wulff
shape can be written as

Wγ := ∂
∩
ν∈Sn

{x ∈ Rn+1 | ⟨x, ν⟩ ≤ γ(ν)}.

Every function γ : Sn → R>0 determines its Wulff shape uniquely. In addition, if we
denote

Ŵγ :=
∩
ν∈Sn

{x ∈ Rn+1 | ⟨x, ν⟩ ≤ γ(ν)}.

the set Ŵγ is always a convex body, i.e., Ŵγ is compact, convex and has non-empty

interior 0 ∈ Int Ŵγ.

Remark . The set Ŵγ is also called the Wulff shape for γ. In the following we will

identify Wγ and Ŵγ, and use the same notation Wγ if it is clear from the context.

Conversely, for any convex body W with 0 ∈ IntW , we can construct a function
γW : Sn → R>0 as its support function:

γW (ν) := max
x∈W

⟨x, ν⟩, ν ∈ Sn.

We can check that γW is continuous and the Wulff shape for γW coincides with W .
However, such a function is NOT unique in general.
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Example 1.2.1. Let W = [−1, 1]× [−1, 1] ⊂ R2 be a cube. Obviously W is a convex
body with 0 ∈ IntW and we can show

γW (ν1, ν2) = |ν1|+ |ν2|

by some calculation. However, the function γ(ν1, ν2) = (|ν1|+ |ν2|)2 also gives the same
Wulff shape W . □

This problem naturally leads to the notion of the convexity for functions. Let us
recall the basic facts from the convex geometry.

For an energy density γ : Sn → R≥0 we define the homogeneous extension of γ as

γ : Rn+1 → R≥0, γ(rν) := rγ(ν), r ≥ 0, ν ∈ Sn.

Then we can easily check the following well-known fact:

Lemma 1.2.2. The following conditions are equivalent:

(1) γ is a convex function on Rn+1, i.e., γ satisfies the triangle inequality : γ(x+y) ≤
γ(x) + γ(y) for all x, y ∈ Rn+1.

(2) The set Fγ := {x ∈ Rn+1 | γ(x) ≤ 1} is a convex set in Rn+1. Fγ is sometimes
called the Frank shape or the dual Wulff shape.

We say γ : Sn → R≥0 to be convex if its homogeneous extension γ satisfies an either
condition in the lemma. The second condition in the lemma gives a visual interpretation
of the convexity (see the figure)

(a) Frank shape for γ(ν) = |ν1|+ |ν2| (b) Frank shape for γ(ν) = (|ν1|+ |ν2|)2

In particular, for a convex body W with 0 ∈ IntW , the function γW is convex.
Moreover, this is the unique convex function among all continuous functions γ : Sn →
R>0 which satisfies Wγ = W . For this reason, the function γW is sometimes called the
convex integrand.

1.2.3 Cahn-Hoffman map and anisotropic mean curvature

From now on we assume that γ : Sn → R>0 is a positive-valued C2 function. We define
the map which parametrizes the Wulff shape. The map defined by

ξγ : Sn → Rn+1, ξγ(ν) := Dγ(ν) + γ(ν)ν, ν ∈ Sn,

is called the Cahn-Hoffman map on Sn. Here Dγ denotes the gradient of γ on Sn and
we identify it as a vector in Rn+1. We put W̃γ := ξγ(S

n)

14



Remark . Let γ : Rn+1 → R≥0 be the homogeneous extension of γ. Then the Cahn-
Hoffman map ξγ can be expressed as

ξγ(ν) = ∇γ|ν , ν ∈ Sn, (2.2)

where ∇ is the gradient on Rn+1. To see this, we take any x ∈ Rn+1 and v ∈ TxRn+1 ≃
Rn+1, and we have

⟨∇γ, v⟩Rn+1 = dγ(v) = γ · d(|x|)(v) + |x| · dγ(v)
= γ⟨∇|x|, v⟩+ |x|⟨∇γ, v⟩ = ⟨Dγ · |x|+ γ · (x/|x|), v⟩.

By taking x ∈ Sn we have the desired result.

The convexity condition is also naturally appeared in this situation since we have
the following fact:

Proposition 1.2.3 ([24], Theorem 4.1, (ii)). The image of the Cahn-Hoffman map W̃γ

coincides with the Wulff shape Wγ if and only if the funtion γ is the convex integrand.

Now we define the anisotropic mean curvature for piecewise-C2 hypersurfaces.

Definition 1.2.4 ([39], [25]). Let X : M =
∪k

i=1Mi → Rn+1 be a piecewise-C2 weak
immersion and S(X) be its singularities. For the unit normal vector field ν = νX along

X, we define the anisotropic Gauss map ξ̃γ : M \ S(X) → Rn+1 by ξ̃γ := ξγ ◦ νX . If
γ ≡ 1, this is the usual Gauss map of X.

We call the differential −dξ̃γ the anisotropic shape operator and the anisotropic
mean curvature Λ of X is defined as

Λ = Λγ :=
1

n
trace(−dξ̃γ) =

1

n
(nHγ − divMDγ),

where H is the usual mean curvature of X.

Remark . The eigenvalues of the anisotropic shape operator −dξ̃γ are called the
anisotropic principal curvatures and we denote them as κγ1 , . . . , κ

γ
n. The j-th mean

curvature Hγ
j of X is defined as(

n

j

)
Hγ

j :=
∑

1≤i1<···<ij≤n

κγi1 · · · κ
γ
ij
.

By using the above notation, we have Λ = Hγ
1 .

Example 1.2.5. Let us consider the planar (n = 1) case. Assume that the energy
density γ : S1 → R>0 is of class C2, and denote γ(θ) := γ(cos θ, sin θ). Then, the
Cahn-Hoffman map ξγ(θ) := ξγ(cos θ, sin θ) and its differential ξ′γ(θ) can be represented
as follows:

ξγ(θ) = γ′(θ)(− sin θ, cos θ) + γ(θ)(cos θ, sin θ), ξ′γ(θ) = (γ′′(θ) + γ(θ))(− sin θ, cos θ)

15



For an arclength parametrized regular curve X : I ⊂ R → R2, we denote the unit
normal of X as ν(s) = (cos θ(s), sin θ(s)). Then the curvature of X is characterized by
κ = −dθ/ds (note that we take the outward-pointing unit normal) and the differential
d(ξγ ◦ ν) can be computed as follows:

dξγ

(
− sin θ(s)
cos θ(s)

)
= (γθθ + γ)(θ(s)) · θs(s)

(
− sin θ(s)
cos θ(s)

)
.

Therefore we have Λγ(s) = (γθθ+γ)(θ(s)) ·κ(s). On the other hand, a basic calculation
shows the curvature of the Cahn-Hoffman map ξγ(θ) is κξγ (θ) = −1/(γ′′(θ) + γ(θ)) at
the point satisfying γ′′(θ)+γ(θ) ̸= 0. Note that the image of the Cahn-Hoffman map is
convex where γ′′+γ > 0, concave where γ′′+γ < 0 with respect to the outward-pointing
unit normal, and the curvature diverges at the point satisfying γ′′ + γ = 0. Therefore
we have

Λγ(s) = −κ(s)/κξγ (θ(s)), where γθθ(θ(s)) + γ(θ(s)) ̸= 0.

In particular, the Cahn-Hoffman map ξγ has constant anisotropic curvature −1. Con-
versely, if we assume the curve X has constant anisotropic curvature Λ(s) ≡ −1, then

κ(s) = κξγ (θ(s)) where γθθ(θ(s)) + γ(θ(s)) ̸= 0.

Therefore, by the fundamental theorem for plane curves, X must be equal to a part
of the Cahn-Hoffman map ξγ (up to translation), where γθθ(θ(s)) + γ(θ(s)) ̸= 0. In
particular, if γ′′ + γ > 0 on S1, X is equal to the Wulff shape with integer multiplicity.
Note that this fact holds in more general settings [30]. □

1.3 The first variation formula of the anisotropic

energy

Assume that γ : Sn → R>0 is of class C2. Let M is a oriented connected compact
n-dimensional C∞ manifold with smooth boundary ∂M and X : M → Rn+1 be a C2

mapping. We assume that following conditions:

(1) X|IntM is a C2-immersion.

(2) The unit normal vector field ν : IntM → Sn along IntM can be extended to a
C1-mapping ν :M → Sn. Here, if (u1, . . . , un) is a local coordinate system in M ,
{ν, ∂/∂u1, . . . , ∂/∂un} gives the canonical orientation in Rn+1.

We consider a C2 variation

Xt :M → Rn+1, Xt = X + t(ψν + η) +O(t2),

where ψν, η are the normal and tangential components of the variational vector field
respectively (hence these are of C1):

δX :=
dXt

dt |t=0
= ψν + η.
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With these notations we have the following proposition:

Proposition 1.3.1 (First variation formula of Fγ, [32] for n = 2, [24] for general n).

δFγ =

∫
M

ψ(divMDγ − nHγ) dAX +

∫
∂M

⟨δX,−R(P (ξ))⟩ ds̃

= −n
∫
M

Λ⟨δX, ν⟩ dAX +

∫
∂M

⟨δX,−R(P (ξ))⟩ ds̃

where N is the outer unit conormal of X along ∂M , ds̃ is the (n − 1)-dimensional
volume form of ∂M induced by X and R is the π/2-rotation in (N, ν)-plane.

Remark . We will discuss about the discrete curves and surfaces and these can be
considered as a special case of the piecewise weak immersions. For example, in the
triangulated surface case, each piece Mi is a flat triangle and therefore we only have
the boundary terms. However, if we consider these as a discrete objects, the “boundary
terms” are not necessarily the boundary. Therefore the discrete differential geometry
developed in the next chapter always lies in between the smooth and discrete objects,
and its importance is the following viewpoint : how to extract the discrete curvature
information from the “boundary terms” of the first variation formula.

Recall that S(X) is the set of all singular points of X. For any p ∈ Mi \ S(X), we

may write ξ̃(p) := ξ̃γ(p) := ξ̃i(p).

Theorem 1.3.2 (Euler-Lagrange equations, Koiso [24]. For n = 2, see B. Palmer [32]).
A piecewise-C2 weak immersion X : M =

∪k
i=1Mi → Rn+1 is a critical point of the

anisotropic energy Fγ(X) =
∫
M
γ(ν) dA for volume-preserving variations if and only if

(1) The anisotropic mean curvature Λ of X is constant on M \ S(X), and

(2) ξ̃i(ζ) − ξ̃j(ζ) ∈ TζMi ∩ TζMj = Tζ(∂Mi ∩ ∂Mj) holds at any ζ ∈ ∂Mi ∩ ∂Mj,
where a tangent space of a submanifold of Rn+1 is naturally identified with a
linear subspace of Rn+1.

Example 1.3.3. Let us continue Example 1.2.5. When n = 1, the condition (2) in the

above theorem is equivalent to ξ̃i(ζ) = ξ̃j(ζ) at the meeting point of the curves X(Mi)
and X(Mj). Therefore, we have the following statement:

Proposition 1.3.4. Let γ : S1 → R>0 be of class C2 and γ′′ + γ = 0 only on the set
Sγ ⊂ S1, where Sγ = {θ1, . . . , θm} is a set of finite points. Then a closed piecewise
C2-smooth curve X : I ⊂ R → R2 which is a critical point of the anisotropic energy
Fγ with Λ = −1 coincides with a part of the Cahn-Hoffman map ξγ up to translation
with integer multiplicity. In particular, if γ′′ + γ > 0 on S1 \ Sγ, then X coincides with
the Wulff shape up to translation with integer multiplicity.

Remark . The last statement is a special case of the result of Morgan [30].
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Proof. We already saw that the regular part of such a curve X(s) coincides with the
Cahn-Hoffman map ξγ except for the points satisfying θ(s) = θj for some j ∈ {1, . . . ,m},
where θ(s) is defined by the unit normal vector field ν(s) = (cos θ(s), sin θ(s)). By the
assumption, such points s ∈ I are finite and must lie on the boundaries of each piece
since such points correspond to the singularities of the Cahn-Hoffman map ξγ. By the
condition of (2) in Theorem 1.3.2, each piece must glue together. □

1.4 An example of dimension 1

We give an example which will be used to prove Theorems 1.1.1, 1.1.2, and 1.1.3 in the
following sections. Throughout this section γ : S1 → R>0 is the function defined by

γ(eiθ) := cos6 θ + sin6 θ, (4.1)

where R2 is identified with C.

Lemma 1.4.1. The Cahn-Hoffman map ξγ : S1 → R2 for γ is represented as follows.

ξγ(e
iθ) =

(
(cos θ)(cos6 θ + 6 cos4 θ sin2 θ − 5 sin6 θ),

(sin θ)(−5 cos6 θ + 6 cos4 θ sin2 θ + sin6 θ)
)

(4.2)

In other words, we have

ξγ(ν) =
(
ν1(ν

6
1 + 6ν41ν

2
2 − 5ν62), ν2(−5ν61 + 6ν21ν

4
2 + ν62)

)
, ν = (ν1, ν2) ∈ S1. (4.3)

Set ν2 = ±
√

1− ν21 . Then

ξγ(ν) =

(
−ν1(9ν41 − 15ν21 + 5),∓

√
1− ν21(9ν

4
1 − 3ν21 − 1)

)
(4.4)

=
(
−(9 cos4 θ − 15 cos2 θ + 5) cos θ,−(9 cos4 θ − 3 cos2 θ − 1) sin θ

)
(4.5)

holds.

Proof. We use the formula (2.2), that is

ξγ(ν) = ∇γ|ν , ν ∈ Sn.

where γ is given by

γ(ν1, ν2) =
ν61 + ν62

(ν21 + ν22)
5/2
. (4.6)

Hence, we have

γν1 =
ν1(ν

6
1 + 6ν41ν

2
2 − 5ν62)

(ν21 + ν22)
7/2

, (4.7)

γν2 =
ν2(−5ν61 + 6ν21ν

4
2 + ν62)

(ν21 + ν22)
7/2

. (4.8)
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(2.2) with (4.2) and (4.8) gives

ξγ(ν) =
(
ν1(ν

6
1 + 6ν41ν

2
2 − 5ν62), ν2(−5ν61 + 6ν21ν

4
2 + ν62)

)
, ν = (ν1, ν2) ∈ S1, (4.9)

which gives the desired formulas (4.2), (4.3). Inserting ν2 = ±
√

1− ν21 to (4.3), we
obtain (4.4), (4.5). □ □

The image ξγ(S
1) of the Cahn-Hoffman map ξγ and the Wulff shape Wγ are shown

in Figure 1.4. Lemma 1.4.3 below gives rigorous explanations of these shapes. Now we

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-0.3 -0.2 -0.1 0.1 0.2 0.3

-0.3

-0.2

-0.1

0.1

0.2

0.3

Figure 1.3: The image ξγ(S
1) of the Cahn-Hoffman map (left) and the Wulff shape Wγ

(right) for γ defined by (4.1). Wγ is a subset of ξγ(S
1).

study the singular points of ξγ.

Lemma 1.4.2. (i) The the set S(ξγ) of all singular points of ξγ is given by

S(ξγ) =

{
p1 :=

(√
5 + 1

2
√
3
,

√
5− 1

2
√
3

)
, p2 :=

(√
5− 1

2
√
3
,

√
5 + 1

2
√
3

)
,

p3 :=

(
−
√
5− 1

2
√
3
,

√
5 + 1

2
√
3

)
, p4 :=

(
−
√
5 + 1

2
√
3
,

√
5− 1

2
√
3

)
,

p5 :=

(
−
√
5 + 1

2
√
3
,−

√
5− 1

2
√
3

)
, p6 :=

(
−
√
5− 1

2
√
3
,−

√
5 + 1

2
√
3

)
,

p7 :=

(√
5− 1

2
√
3
,−

√
5 + 1

2
√
3

)
, p8 :=

(√
5 + 1

2
√
3
,−

√
5− 1

2
√
3

)}
. (4.10)

(ii) Set

pj = (cos θj, sin θj), j = 1, . . . , 8,

where θ1 is chosen so that 0 < θ1 < π/2 holds. Then, by choosing suitable principal
values for θ1, · · · , θ8, one can write

θ2 = π/2− θ1, θ3 = π/2 + θ1, θ4 = π − θ1, θ5 = π + θ1, (4.11)

θ6 = 3π/2− θ1, θ7 = 3π/2 + θ1, θ8 = −θ1. (4.12)
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(iii)

ξγ(p8) = ξγ(p3) =
2√
3
(1, 1), ξγ(p2) = ξγ(p5) =

2√
3
(−1, 1), (4.13)

ξγ(p4) = ξγ(p7) =
2√
3
(−1,−1), ξγ(p6) = ξγ(p1) =

2√
3
(1,−1) (4.14)

holds.

Remark . Choose the principal value for θ1 so that 0 < θ1 < π/2 is satisfied. Then,
by computation using Mathematica ver.11.2.0.0, we get

θ1 ≈ 0.1161397636π. (4.15)

Proof of Lemma 1.4.2. Using (4.4), we obtain

ξ′γ(ν1) =

(
−5(9ν41 − 9ν21 + 1), ± 5ν1√

1− ν21
(9ν41 − 9ν21 + 1)

)
. (4.16)

Hence, (ν1, ν2) ∈ S1 is a singular point of ξγ if and only if

9ν41 − 9ν21 + 1 = 0 (4.17)

holds. (4.17) is equivalent to

ν1 =

√
5± 1

2
√
3
, −

√
5± 1

2
√
3
, (4.18)

which proves (i).
(ii) is a consequence of (i).
(iii) is obtained by inserting (4.10) to (4.4). □

Set
ξγ(θ) = ((ξγ)x(θ), (ξγ)y(θ)) := ξγ(e

iθ).

Lemma 1.4.3. Increase and decrease of (ξγ)x(θ), (ξγ)y(θ), and the sign of A = D2γ+γ·1
are given by the following table.

θ θ8 0 θ1 θ2 π/2 θ3 θ4
(ξγ)

′
x(θ) 0 − 0 + 0 − 0 + 5 + 0 − 0

(ξγ)
′
y(θ) 0 − −5 − 0 + 0 − 0 + 0 − 0

(ξγ)x(θ) 2/
√
3 ↘ 1 ↗ 2/

√
3 ↘ −2/

√
3 ↗ 0 ↗ 2/

√
3 ↘ −2/

√
3

(ξγ)y(θ) 2/
√
3 ↘ 0 ↘ −2/

√
3 ↗ 2/

√
3 ↘ 1 ↗ 2/

√
3 ↘ −2/

√
3

A = D2γ + γ · 1 0 − − − 0 + 0 − − − 0 + 0
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θ θ4 π θ5 θ6 3π/2 θ7 θ8 + 2π
(ξγ)

′
x(θ) 0 + 0 − 0 + 0 − −5 − 0 + 0

(ξγ)
′
y(θ) 0 + 5 + 0 − 0 + 0 − 0 + 0

(ξγ)x(θ) −2/
√
3 ↗ −1 ↘ −2/

√
3 ↗ 2/

√
3 ↘ 0 ↘ −2/

√
3 ↗ 2/

√
3

(ξγ)y(θ) −2/
√
3 ↗ 0 ↗ 2/

√
3 ↘ −2/

√
3 ↗ −1 ↘ −2/

√
3 ↗ 2/

√
3

A = D2γ + γ · 1 0 − − − 0 + 0 − − − 0 + 0

Proof. Using (4.5), we obtain

ξ′γ(θ) = ((ξγ)
′
x(θ), (ξγ)

′
y(θ))

=
(
5(9 cos4 θ − 9 cos2 θ + 1) sin θ, −5(9 cos4 θ − 9 cos2 θ + 1) cos θ

)
. (4.19)

For γ(θ) := γ(eiθ) = cos6 θ + sin6 θ, we compute

γ′(θ) = −6 cos5 θ sin θ + 6 sin5 θ cos θ,

γ′′(θ) = 6(5 cos2 θ sin2 θ − cos6 θ − sin6 θ),

and hence

A = γ′′(θ) + γ(θ) = −5(9 cos4 θ − 9 cos2 θ + 1) = −(ξγ)
′
x(θ) · (sin θ)−1 (4.20)

holds, here the last equality is valid only when sin θ ̸= 0. These observations with
Lemmas 1.4.1, 1.4.2 give the desired result. □

Using Lemma 1.4.1, by simple calculations, we obtain the following result.

Lemma 1.4.4. Let ρ1, ρ2 ∈ (0, π/2) be the solutions of

cos ρ1 =

√
1 +

√
5

6
, cos ρ2 =

√
5−

√
5

6
, (4.21)

respectively. Then
(i) The inequality

0 < θ1 < ρ1 < π/4 < ρ2 < θ2 < π/2 (4.22)

holds.
(ii) Set

α :=

√
2 + 2

√
5

3
(
√
5− 2). (4.23)

The “inner self-intersection points” of ξγ are the following four points.

Q1 := (α, 0) = ξγ(ρ1) = ξγ(ρ2 + 3π/2), Q2 := (0, α) = ξγ(ρ2) = ξγ(ρ1 + π/2),

Q3 := (−α, 0) = ξγ(ρ1 + π) = ξγ(ρ2 + π/2), Q4 := (0,−α) = ξγ(ρ2 + π) = ξγ(ρ1 + 3π/2).

Q1, Q2, Q3, Q4 are the vertices of Wγ (Figure 1.4, right).
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Remark . By computation using Mathematica ver.11.2.0.0, we get

ρ1 ≈ 0.2374632441π, ρ2 = π/2− ρ1 ≈ 0.2625367559π, α ≈ 0.3467370642. (4.24)

By using the previous lemmas 1.4.1, 1.4.2, 1.4.3, and 1.4.4 with Fact ?? (i), we
obtain the following:

Proposition 1.4.5. Let γ : S1 → R>0 be the function defined by

γ(eiθ) := cos6 θ + sin6 θ. (4.25)

Let θ1, θ2 be the constants defined in Lemma 1.4.2, and let ρ1, ρ2 be the constants
defined in Lemma1.4.4.

(i) The Cahn-Hoffman map ξγ : S1 → R2 is represented as

ξγ(e
iθ) =

(
(cos θ)(cos6 θ + 6 cos4 θ sin2 θ − 5 sin6 θ),

(sin θ)(−5 cos6 θ + 6 cos4 θ sin2 θ + sin6 θ)
)

(4.26)

(Figure 1.4).
(ii) The Wulff shape Wγ is given by

Wγ = ξγ

(
{ρ1 ≤ θ ≤ ρ2} ∪ {ρ1 + π/2 ≤ θ ≤ ρ2 + π/2}

∪ {ρ1 + π ≤ θ ≤ ρ2 + π} ∪ {ρ1 + 3π/2 ≤ θ ≤ ρ2 + 3π/2}
)

(4.27)

(Figure 1.4a).
(iii) The following four closed curves which are subsets of ξγ(S

1) are closed piecewise-
C∞ CAMC curves (Figures 1.4b, 1.4c, 1.4d, 1.4e).

(Cγ)1 := ξγ ({θ2 ≤ θ ≤ θ3} ∪ {θ4 ≤ θ ≤ θ5} ∪ {θ6 ≤ θ ≤ θ7} ∪ {θ8 ≤ θ ≤ θ1}) , (4.28)

(Cγ)2 := ξγ ({θ1 ≤ θ ≤ θ2} ∪ {θ5 ≤ θ ≤ θ6}) , (4.29)

(Cγ)3 := ξγ ({θ8 ≤ θ ≤ θ1} ∪ {θ3 ≤ θ ≤ ρ2 + π/2} ∪ {ρ1 + π ≤ θ ≤ θ6}) , (4.30)

(Cγ)4 := ξγ

(
{θ1 ≤ θ ≤ ρ1} ∪ {ρ2 ≤ θ ≤ θ2} ∪ {θ3 ≤ θ ≤ ρ1 + π/2}

∪ {ρ2 + π/2 ≤ θ ≤ θ4} ∪ {θ5 ≤ θ ≤ ρ1 + π} ∪ {ρ2 + π ≤ θ ≤ θ6}

∪ {θ7 ≤ θ ≤ ρ1 + 3π/2} ∪ {ρ2 + 3π/2 ≤ θ ≤ θ8 + 2π}
)
. (4.31)

The anisotropic (mean) curvature for the outward-pointing normal is −1.
(iv) The following closed curve which is a subset of ξγ(S

1) is a closed piecewise-C∞

curve (Figure 1.4f).

(Cγ)5 := ξγ

(
{−ρ1 ≤ θ ≤ ρ1}

)
. (4.32)
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Its anisotropic (mean) curvature is not constant, because, for the outward-pointing
normal, it is −1 at each point in the solid curve:

ξγ

(
{θ8 ≤ θ ≤ θ1}

)
, (4.33)

while it is 1 at each point in the dashed curves:

ξγ

(
{−ρ1 ≤ θ ≤ θ8} ∪ {θ1 ≤ θ ≤ ρ1}

)
. (4.34)

(a) Wulff shape Wγ (b) CAMC curve (Cγ)1 (c) CAMC curve (Cγ)2

(d) CAMC curve (Cγ)3 (e) CAMC curve (Cγ)4 (f) curve (Cγ)5. not CAMC

Figure 1.4: Some of the closed curves which are subsets of ξγ(S
1) for γ defined by

(4.1) (cf. Figure 1.4). (a), (b), (c), (d), (e) : The anisotropic (mean) curvature for the
outward-pointing normal is −1. (f) : For the outward-pointing normal, the anisotropic
(mean) curvature is −1 at each point in the solid curve, while it is 1 at each point in
the dashed curves. Hence, this curve is not CAMC.

Remark . Proposition 1.4.5 proves Theorem 1.1.1 for n = 1.

Remark . In Proposition 1.4.5, we gave six closed piecewise-C∞ curves which are
subsets of ξγ(S

1). Five of them were CAMC and the other one was not CAMC. We
should remark that there are more piecewise-C∞ CAMC closed curves and non-CAMC
closed curves. Figure 1.5 gives all of the other closed CAMC curves included in ξγ(S

1)
(up to congruence in R2).

1.5 Higher dimensional examples

In this section we give two higher dimensional examples by rotating γ which was defined
by (4.1) and studied in the section 1.4 details.

Regarding (4.6), we consider the function

γ01(ν1, ν3) =
ν61 + ν63

(ν21 + ν23)
5/2
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(a) CAMC curve (b) CAMC curve (c) CAMC curve (d) CAMC curve

(e) CAMC curve (f) CAMC curve (g) CAMC curve (h) CAMC curve

Figure 1.5: Closed CAMC curves which are subsets of ξγ(S
1) for γ defined by (4.1)

(cf. Figure 1.4). For all of these eight curves, the anisotropic (mean) curvature for the
outward-pointing normal is −1. They and the five curves in Figures 1.4a, 1.4b, 1.4c,
1.4d, 1.4e give all closed CAMC curves included in ξγ(S

1) (up to congruence in R2

defined on the (ν1, ν3)-plane. We denote the restriction of γ01 to S1 by γ01 . Then, by
Lemma 1.4.1, the Cahn-Hoffman map ξγ0

1
: S1 → R2 for γ01 is represented as follows

(Figure 1.6a).

ξγ0
1
(ν) =

(
ν1(ν

6
1 + 6ν41ν

2
3 − 5ν63), ν3(−5ν61 + 6ν21ν

4
3 + ν63)

)
(5.1)

=
(
(cos θ)(cos6 θ + 6 cos4 θ sin2 θ − 5 sin6 θ),

(sin θ)(−5 cos6 θ + 6 cos4 θ sin2 θ + sin6 θ)
)
. (5.2)

(ν = (ν1, ν3) = (cos θ, sin θ) ∈ S1). The higher dimensional example obtained by
rotating γ01 around the ν3-axis is given by

γ1(ν1, ν2, ν3) =
(ν21 + ν22)

3 + ν63
(ν21 + ν22 + ν23)

5/2
, (ν1, ν2, ν3) ∈ R3. (5.3)

The corresponding Cahn-Hoffman map ξγ1 : S
2 → R3 is given as follows (Figure 1.6b).

ξγ1(ν) =
(
(cos θ)(cos6 θ + 6 cos4 θ sin2 θ − 5 sin6 θ)(cos ρ),

(cos θ)(cos6 θ + 6 cos4 θ sin2 θ − 5 sin6 θ)(sin ρ),

(sin θ)(−5 cos6 θ + 6 cos4 θ sin2 θ + sin6 θ)
)
, (5.4)

(ν = (cos θ cos ρ, cos θ sin ρ, sin θ) ∈ S2).
By the same way as in the section 1.4, we get closed piecewise-C∞ CAMC surfaces

and closed piecewise-C∞ non-CAMC surfaces for γ1 which are subsets of ξγ1(S
2) and

which are not the Wulff shape Wγ1 (up to homothety and translation). In fact, we have
the following:
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Proposition 1.5.1. Consider γ1 : S
2 → R>0 defined by

γ1(ν1, ν2, ν3) = (ν21 + ν22)
3 + ν63 , (ν1, ν2, ν3) ∈ S2. (5.5)

The Wulff shape Wγ1 is the surface of revolution (Figure 1.7a) given by rotating Wγ0
1

(Figure 1.4a) around the vertical axis. The two piecewise-C∞ closed surfaces (Figures
1.7b, 1.7c) given by rotating the closed curves (Cγ)1, (Cγ)4 (Figures 1.4b, 1.4e) around
the vertical axis are CAMC. The piecewise-C∞ closed surface (Figures 1.7d) given by
rotating the closed curve (Cγ)5 (Figure 1.4f) is not CAMC.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

(a) The image of ξγ0
1

(b) The image of ξγ1

Figure 1.6: (a): The image of the Cahn-Hoffman map ξγ0
1
: S1 → R2 for γ01 : S1 → R>0.

(b): The image of the Cahn-Hoffman map ξγ1 : S
2 → R3 for γ1 : S

2 → R>0.

(a) Wulff shape Wγ1 (b) CAMC surface (c) CAMC surface (d) not CAMC

Figure 1.7: Some of the closed surfaces which are subsets of ξγ1(S
2) for γ1 defined by

(5.5) (Figure 1.6b). They are surfaces given by rotating the curves Wγ, (Cγ)1, (Cγ)4,
(Cγ)5, respectively. (a), (b), (c): The anisotropic mean curvature for the outward-
pointing normal is −1. (d) : The anisotropic mean curvature is −1 on the ‘outer part’,
while it is 1 on the ‘inner part’. Hence, this surface is not CAMC.

Let us give another example. We rotate γ01 around the origin by π/4 and obtain the
following example.

γ02(ν1, ν3) =
ν61 + 15ν41ν

2
3 + 15ν21ν

4
3 + ν63

4(ν21 + ν23)
5/2

(5.6)

defined on the (ν1, ν3)-plane. We denote the restriction of γ02 to S1 by γ02 . The Cahn-
Hoffman map ξγ0

2
: S1 → R2 for γ02 is obtained by rotating ξγ0

1
around the origin by
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π/4, and so it is represented as follows (Figure 1.8a).

ξγ0
2
(ν) =

1

4

(
ν1(ν

6
1 − 9ν41ν

2
3 + 15ν21ν

4
3 + 25ν63), ν3(25ν

6
1 + 15ν41ν

2
3 − 9ν21ν

4
3 + ν63)

)
(5.7)

=
1

4

(
(cos θ)(cos6 θ − 9 cos4 θ sin2 θ + 15 cos2 θ sin4 θ + 25 sin6 θ),

(sin θ)(25 cos6 θ + 15 cos4 θ sin2 θ − 9 cos2 θ sin4 θ + sin6 θ)
)
. (5.8)

(ν = (ν1, ν3) = (cos θ, sin θ) ∈ S1). The higher dimensional example obtained by
rotating γ02 around the ν3-axis is given by

γ2(ν1, ν2, ν3) =
(ν21 + ν22)

3 + 15(ν21 + ν22)
2ν23 + 15(ν21 + ν22)ν

4
3 + ν63

4(ν21 + ν22 + ν23)
5/2

, (ν1, ν2, ν3) ∈ R3.

(5.9)
The restriction γ2 of γ2 : R3 → R≥0 to S2 can be written as

γ2(ν1, ν2, ν3) = (ν21+ν
2
2)

3+15(ν21+ν
2
2)

2ν23+15(ν21+ν
2
2)ν

4
3+ν

6
3 , (ν1, ν2, ν3) ∈ S2. (5.10)

The corresponding Cahn-Hoffman map ξγ2 : S
2 → R3 is given as follows (Figure 1.8b).

ξγ2(ν) =
1

4

(
(cos θ)(cos6 θ − 9 cos4 θ sin2 θ + 15 cos2 θ sin4 θ + 25 sin6 θ)(cos ρ),

(cos θ)(cos6 θ − 9 cos4 θ sin2 θ + 15 cos2 θ sin4 θ + 25 sin6 θ)(sin ρ),

(sin θ)(25 cos6 θ + 15 cos4 θ sin2 θ − 9 cos2 θ sin4 θ + sin6 θ)
)
, (5.11)

(ν = (cos θ cos ρ, cos θ sin ρ, sin θ) ∈ S2).
By the same way as above, we get closed piecewise-C∞ CAMC surfaces (Figure 1.9)

and closed piecewise-C∞ non-CAMC surfaces for γ2 which are subsets of ξγ2(S
2) and

which are not the Wulff shape Wγ2 (up to homothety and translation).

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.5

1.0

1.5

(a) The image of ξγ0
2

(b) The image of ξγ2

Figure 1.8: (a): The image of the Cahn-Hoffman map ξγ0
2
: S1 → R2 for γ02 : S1 → R>0.

(b): The image of the Cahn-Hoffman map ξγ2 : S
2 → R3 for γ2 : S

2 → R>0.

1.6 Proofs of Theorems 1.1.1, 1.1.2

The functions γ01 : S1 → R>0, γ
0
2 : S1 → R>0 and their rotations around the vertical

axis give examples which prove Theorems 1.1.1, 1.1.2. In fact, Propositions 1.4.5, 1.5.1
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(a) Wulff shape Wγ2 (b) CAMC surface for γ2 (c) CAMC surface for γ2

Figure 1.9: Some of the closed surfaces which are subsets of ξγ2(S
2) for γ2 defined by

(5.10) (Figure 1.8b). The anisotropic mean curvature for the outward-pointing normal
is −1.

give suitable examples for n = 1, 2, respectively. Also, higher dimensional examples are
obtained by the method given in the section 1.5.

1.7 Applications to anisotropic mean curvature flow:

proofs of Theorems 1.1.4, 1.1.3

Let γ : Sn → R>0 be of C2 with Cahn-Hoffman map ξγ. Let Xt : M → Rn+1 be
one-parameter family of embedded piecewise-C2 hypersurfaces with anisotropic mean
curvature Λt. Assume that the Cahn-Hoffman field ξ̃t along Xt is defined on M . If Xt

satisfies ∂Xt/∂t = Λtξ̃t, it is called an anisotropic mean curvature flow, which diminishes
the anisotropic energy if Λt ̸≡ 0. In fact,

dFγ(Xt)

dt
= −

∫
M

nΛt

⟨
∂Xt

∂t
, νt

⟩
dAt = −

∫
M

nΛ2
t ⟨Dγ + γ(νt)νt, νt⟩ dAt

= −
∫
M

nΛ2
tγ(νt) dAt < 0 (7.1)

holds.

Proof of Theorem 1.1.4. Since the anisotropic mean curvature of ξγ is−1, Λt = −1/
√

2(c− t)

holds. On the other hand, ξ̃t = ξγ holds. These two facts imply that (i) and (ii) hold.
□

Proof of Theorem 1.1.3. Examples stated in Propositions 1.4.5, 1.5.1 give the desired
result. □
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Chapter 2

A discretization of the anisotropic
energy for curves and surfaces

Abstract

In this chapter, we study discrete curves and surfaces from the variational problem for
the anisotropic energy. For the planar curve case, by extracting a notion of discrete
curvature vector, we show that this vector can be used effectively for an unified inter-
pretation of various discrete curvature notions, Steiner-type formula and the stability
problem of critical points of the length functional. Moreover, we formulate discrete
CAMC curves and give an application. For the surface case, we derive a generalization
of the cotangent formula obtained in [34] and formulate discrete CAMC surfaces. We
also visualize some examples and derive a stability problem which is a generalization
of the result in [37].

2.1 Introduction

Discrete differential geometry is an active research field because of the interaction among
the theory, the algorithm and the visualization on the computer. In this chapter, we
mainly focus on discrete objects themselves, not approximation problems of smooth
objects or convergence problems. In this field, from the theoretical point of view, one
approach is based on the variational methods and the other focus on the integrability
of equations. We take the former approach in this chapter and try to develop a the-
ory of discrete curves and simplicial surfaces based on the variational problem for the
anisotropic energy as we discussed in Chapter 1. One of the benefit of this approach
is that we can consider not only a surface itself but also vector fields on the surface,
thus it has many applications (see e.g. [35], [21], [36], [38]). Moreover, this approach
with the anisotropic energy gives an unified formulation of discrete CMC surfaces in the
Euclidean space, the Lorentz-Minkowski space and the isotropic space (see Appendix).
On the other hand, a discrete surface theory using the integrable systems is originated
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from [6]. The study of the relation between the integrable system approach and the
variational approach has just begun recently, see e.g. [27].

In §2.2, we recall some basic notions from the (combinatorial) simplicial complexes
and its geometric realization [35]. By a discrete curve or surface we mean a geometric
realization of a combinatorial simplicial curve or surface, respectively. We first derive
the first variation formula for the anisotropic energy and extract the vector from the
formula which should be called “discrete curvature vector” in §2.3.1. In §2.3.2, by using
this curvature vector, we show an unifed interpretation which derive various kinds of
discrete curvature notions defined in [19], [15]. The important viewpoint here is that
there is no natural notion of the line element on the vertices. In §2.3.3, we derive
the Steiner-type formula for parallel curves by using the “vertex normal” constructed
from the curvature vector derived in §2.3.1. Since there is no universal definition of
the discrete curvature and our main interest is CAMC curves and surfaces, we will
define discrete CAMC curves and surfaces without defining the curvature itself. Our
definitions of discrete CAMC curves and surfaces are inspired by discrete CMC surfaces
defined in [37]. In §2.3.4, we characterize closed discrete constant curvature curves as
regular polygons which are possibly non-convex. In §2.3.5, we formulate discrete CAMC
curves and derive the conservation law for the Euler-Lagrange equation defining the
discrete CAMC curve. Then, as an application of the conservation law, we give another
proof for the Chakerian-Lange theorem [8]. In §2.3.6, we will consider the stability
problem of the discrete CAMC curves. For the isotropic case, we derive the second
variation formula similar to the smooth case by decomposing the variation vectors into
the vertex normal directions introduced in §2.3.3 and “tangential” directions. Moreover
we show the instability for the non-convex regular polygons in §2.3.7 by using the normal
variation and discrete Wirtinger’s inequality [12].

Then, as one interpretation of this conservation law, we give another proof for the
Chakerian-Lange theorem [8]. Moreover, we will give a “non-uniqueness example” for
the discrete CAMC curves as in the Chapter 1. In §2.3.6, we will consider the stability
problem of the discrete CAMC curves. We derive a simple criteria for the instability
for the discrete CAMC curves and visualize its energy descent deformation for some
cases. In the isotropic case, we can derive the second variation formula similar to the
smooth case by decomposing the variation vector field to the “normal” and “tangential”
directions derived in the section. Moreover, we show the instability for the non-convex
regular polygons by using the second variation formula for “normal” variations and
discrete Wirtinger’s inequality [12] in §2.3.7.

From §2.4, we treat the surface case. We first derive the first variation formula
of the anisotropic energy for simplicial surfaces (Theorem 2.4.1) which generalizes the
cotangent formula obtained in [34]. Then we define the discrete CAMC surfaces as in the
curve case. In §2.4.3, we give many examples of discrete CAMC surfaces from various
point of view. In §2.4.4, we derive the second variation formula for the anisotropic
energy and prove the stability of the very small part of the discrete CAMC surfaces
if the energy density is of class C2 and convex (Corollary 2.4.16). This result is a
generalization of the result obtained in [37].
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2.2 Preliminaries

We will develop a discretization theory for the anisotropic energy by using simplicial
complexes. To do so, we need to recall basic notions from simplicial complexes (cf.
[35]).

2.2.1 Abstract simplicial complexes

Definition 2.2.1 (abstract simplex). Let V = {v0, . . . , vm} be a set, where vj are not
necessarily in the Euclidean space. Then we call the ordered set [v0, . . . , vm] be an
abstract m-simplex or simply abstract simplex. The number m is called the dimension
of the abstract simplex. For the completeness, we admit the empty set ∅.

Remark . An abstract simplex is defined just as a set. For example, we consider a
triangle T = (p, q, r) in R2. This is the convex hull of 3 vertices {p, q, r}, and the edges
and faces can be reconstructed from the vertices, i.e., these can be considered as an
element of the powered set of vertices. For example, the edge pq corresponds to a set
{p, q} ⊂ {p, q, r}.

Definition 2.2.2 (face). Let σ = [v0, . . . , vm] be an abstract m-simplex. Then we call
the subsimplex consists of (k+1) points [vi0 , . . . , vlk ] the k-face of σ. An (m−1)-face of
σ is called proper. For completeness, we consider the empty set ∅ = [] and the simplex
itself as a face of σ.

Remark . Every abstract m-simplex has 2m+1 faces up to the order.

Example 2.2.3 (triangle (2-simplex)). An 2-simplex [v0, v1, v2] has 8 faces, that is,
three 0-simplices (vertices) [v0], [v1], [v2], three 1-simplices (edges) [v0, v1], [v1, v2], [v2, v0],
the empty set [] and the triangle itself [v0, v1, v2].

Definition 2.2.4 ((abstract) simplicial complex). Let V = {v1, v2, . . .} be an abstract
point set. An (abstract) simplicial complex K = K(V ) = {σ, τ, . . .} is a set of simplices
formed by finite subset of V and satisfies the following condition : if σ ∈ K is a simplex,
then any face τ of σ is also an element of K.

If two simplices inK share a common non-empty face, then they are called neighbors.
The boundary of K is formed by any proper face that belongs to only one simplex, and
its faes. The boundary is also an abstract simplicial complex.

Example 2.2.5. Let us consider the simplest case. Let V = {v0, v1} be a set. Then
K1 := {[v0], [v0, v1]} is not a simplicial complex since the face [v1] ⊂ [v0, v1] does not
belong to K1. If we consider K := K1 ∪ {[v1]}, we have a simplicial complex.

2.2.2 Subsimplex, star and link

Definition 2.2.6 (subsimplex). Let K be a simplicial complex. Then a subset L ⊂ K
is called the subcomplex of K if L itself is a simplicial complex.
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Definition 2.2.7 (p-skelton). We denote the set of all p-dimensional simplices by K(p)

and call the p-skelton of K.

Example 2.2.8. For a simplicial complex K, K(0) is the set of vertices and K(2) is the
set of triangles.

Definition 2.2.9 (star, link). Let K be an simplicial complex and σ ∈ K be a simplex.
Then the star of σ and the link of σ is defined as follows:

star (σ) := {η ∈ K | σ includes η and every face of η},
link(σ) := {η ∈ star (σ) | η ∩ σ = ∅}.

2.2.3 Simplicial map

Definition 2.2.10 (simplicial map). Let K, L be simplicial complexes. Then a map
φ : K → L is said to be the simplicial map if φ satisfies the following conditions:

(1) φ|K0 : K(0) → L(0), i.e, each vertex of K is mapped to a vertex of L.

(2) For any simplex σ = [v0, . . . , vk] ∈ K, the image φ(σ) = [φ(v0), . . . , φ(vk)], which
can be degenerate, is a simplex in L.

A simplicial map φ : K → L is said to be simplicial isomorphism if the map φ|K(p) :
K(p) → L(p) is bijective for every p. In this case K and L are called simplicially
isomorphic.

2.2.4 Simplicial curves, simplicial surfaces

Definition 2.2.11 (path, closed curve). Let n be a non-negative integer. A standard
n-path is a simplicial complex formed by

(1) (n+ 1) abstract points : V = {v0, . . . , vn}.

(2) the set of n edges ek = [vk, vk+1], k = 0, . . . , n− 1.

A standard n-circle is the union of a standard n-path and the “final” edge en = [vn, v0].
We sometimes call a standard n-path (or standad n-circle) a simplicial curve and denote
it by G. Similarly we sometimes consider N or Z as a standard path (non-compact case).

Definition 2.2.12 (abstract m-path). Let K be a simplicial complex and δ be a stan-
dard n-path. Then a simplicial map φ : δ → φ(δ) ⊂ K (or its image φ(δ)) is called the
abstract n-path. We define the abstract n-circle similarly. An abstract n-circle is called
simple if the map φ is injective.

Definition 2.2.13 (closed simplicial surface). A closed simplicial surface Σ is an ab-
stract simplicial complex formed by finite number of triangles and satisfying the fol-
lowing conditions:

(1) Any point p ∈ Σ belongs to at least one triangle T ∈ Σ.

(2) For any point p ∈ Σ, the link link(p) is an abstract circle.
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2.2.5 Geometric simplicial complexes

Our main object is defined by a geometric realization of an abstract simplicial complex.
First we give a “parameter domain” of abstract simplices.

Definition 2.2.14 (standard simplex). A standard simplex ∆m ⊂ Rm+1 is the convex
hull of the end points of the canonical basis {e0, . . . , em} ⊂ Rm+1. Formally ∆m is
defined by

∆m =

{
m∑
i=0

λiei | 0 ≤ λi ≤ 1,
m∑
i=0

λi = 1

}
.

Here the coefficient (λ0, . . . , λm) is called the barycentric coordinates.

Definition 2.2.15 (geometric simplicial complex). A geometric simplicial complex
(P,K(V )) consists of the following three objects:

(1) (Combinatorial structure) A simplicial complex K(V ) over a set of abstract points
V = {v0, v1, . . .}.

(2) (Geometric realization) A set of geometric vertices P = {p0, p1, . . .} ⊂ Rn and a
bijection Φ : V → P , Φ(vi) = pi.

(3) (Local parametrization) For each k-simplex σ = [vi0 , . . . , vik ] there exists a sim-
plicial map

φσ : ∆k → σ, φσ(ej) = pij .

The set of affine maps {φσ}σ∈K gives a piecewise affine structure on the geometric
simplicial complex K. This induced from the bijection Φ we don’t denote explicitly in
the pair (P,K(V )).

In the following sections we use the word “a simplicial curve (a discrete curve)” and
“a simplicial surface (a discrete surface, a triangulated surface)” as a geometric realiza-
tion of a simplicial curve and a simplicial surface, respectively. Note that the geometric
realization gives the induced metric on the abstract simplicial curves or surfaces.

2.3 Geometry of discrete anisotropic curve energy

2.3.1 Anisotropic curve energy and its first variation

For a discrete curve there is a natural question:

What is the unit normal, curvature and line element at the vertices ?

In this section we derive will derive the first variation formula for the anisotropic
energy and extract the “curvature vector” at a vertex in order to approach to this
question. However non-uniqueness of the line element at vertices gives different notions
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of the discrete curvature (so-called “no free lunch” story), and we will show that various
kinds of discrete curvature notions, e.g. in [19], [15], can be derived from this viewpoint.

Let γ : S1 → R>0 be a continuous function and Γh be a simplicial curve in R2, i.e.,
Γh is a geometric realization of a standard (n− 1)-path or (n− 1)-circle G. The set of
vertices of G is denoted by V and its image is denoted by {pk}n−1

k=0 . For each oriented
edge ek := [pk, pk+1] of Γh we can assign an unit normal vector

νk := R

(
pk+1 − pk

lk

)
:= R

(
pk+1 − pk
|pk+1 − pk|

)
,

where R is the π/2-rotation or −π/2-rotation in R2. It does not matter whichever we
choose but we choose the same R for all k. Then the anisotropic energy of Γh is defined

Figure 2.1: A part of a discrete curve with −π/2-rotation and its variation.

by

Fγ(Γh) :=
∑
k

γ(νk)|pk+1 − pk| =
∑
k

γ(νk)lk

By the definition of simplicial curves if we fix the orientation of the unit normal, the
anisotropic energy Fγ for a discrete curve can be considered as a function Fγ : R2n →
R>0.

First we derive the first variation formula, that is, we compute the directional deriva-
tive in R2n. In the following we assume that γ is of class C1. We consider a variation

pk(t) = pk + tvk +O(t2), k = 0, . . . , n− 1

where tv⃗ = (tv0, . . . ,
tvn−1) ∈ R2n is the “variation vector field”. If pk is a boundary

point of Γh, then we assume vk = 0.

We would like to find a vector ∇Fγ ∈ R2n which satisfies

d

dt |t=0
Fγ = ⟨v⃗,∇Fγ⟩R2n =

∑
k

⟨vk,∇pkFγ⟩R2 ,

where we write t∇Fγ = (t∇p0Fγ, . . . ,
t∇pn−1Fγ) ∈ R2n. In this setting we have the

following proposition:

34



Proposition 2.3.1. Let γ : S1 → R>0 be a C1 function and Γh = {pk}k be a discrete
curve. Then at each interior vertex pk the gradient of the anisotropic energy with
respect to variations of the vertices can be expressed

∇pkFγ = R(ξγ(νk)− ξγ(νk−1)), (3.1)

where ξγ : S1 → R2 is the Cahn-Hoffman map for γ.

Remarks . By using this formula we have

δFγ =
∑
k

⟨R(ξγ(νk)− ξγ(νk−1)), vk⟩ = −
∑
k

⟨
1

Lk

R(ξγ(νk−1)− ξγ(νk)), vk

⟩
Lk,

where we inserted some auxilary function L : Vn → R>0. This kind of observation is
already remarked in the paper [9]. We give some remarks for the isotropic case, i.e,
γ ≡ 1 case.

(1) In this case, we have ξγ(ν) = ν and the vector

Ñk := − 1

Lk

R(νk − νk−1) =
1

Lk

(
pk+1 − pk
|pk+1 − pk|

+
pk−1 − pk
|pk−1 − pk|

)
can be considered as a curvature vector on the vertex pk because of the following
reasons. First, the vector Ñk is independent of the orientation of the unit normal.
Moreover, if we assume that X : I(⊂ R) → R2 is an arclength parametrized
smooth regular curve and νX : I → S1 is the (outward-pointing) unit normal,
denoted by νX(s) = (cos θ(s), sin θ(s)), the curvature κ is characterized by

κ = −dθ
ds
.

Then we can regard the norm |Ñk| as a discretization of the above equation. From
another point of view, we can regard the relation

1

Lk

(Tk − Tk−1) = Ñk, Tk :=
pk+1 − pk
|pk+1 − pk|

as a discrete version of the Frenet-Serret formula. As we will remark later, there
are many possibilities of Lk, so we will define constant (anisotropic) curvature
curves without defining the curvature notion. However, since the scaling factor
Lk does not change the direction of −∇pk Length, we take a position that the
vector −∇pk Length gives the normal direction at the vertex pk throughout this
chapter.
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(2) In the length gradient case, we can give a geometric interpretation. If we fix
the vertex pk+1 and move the vertex pk and consider the length of the edge
ek = [pk, pk+1]. Then the direction which the length of the edge lk most decreases
is (pk+1 − pk)/|pk+1 − pk|. The vector −∇pk Length is a sum of two vectors
(pk+1 − pk)/|pk+1 − pk| and (pk−1 − pk)/|pk−1 − pk| means the steepest direction
of the length function at pk.

Before giving the proof, we derive the first variation of the unit normal.

Lemma 2.3.2. lkδνk = R(vk+1 − vk)− ⟨R(vk+1 − vk), νk⟩νk.

Remark . If we define the notation ∇vk = (vk+1 − vk)/lk, then

δνk = ∇(Rvk)− ⟨∇(Rvk), νk⟩νk,

and this can be considered as the “covariant derivative” of Rv at the edge ek = [pk, pk+1].

Proof. By using the fact

δl2k = δ|pk+1 − pk|2 = 2⟨pk+1 − pk, vk+1 − vk⟩, δl2k = 2lkδlk,

we have δlk = ⟨−Rνk, vk+1 − vk⟩ = ⟨νk, R(vk+1 − vk)⟩ and therefore

δνk = δR

(
pk+1 − pk

lk

)
= R

(
vk+1 − vk

lk
− pk+1 − pk

l2k
δlk

)
=

1

lk
(R(vk+1 − vk)− νk⟨νk, R(vk+1 − vk)⟩)

□

Proof of Proposition 2.3.1. By the chain rule and the Leibniz rule we have

δFγ :=
d

dt |t=0
Fγ =

∑
k

⟨Dγ(νk), δνk⟩lk + γ(νk)δlk.

By using the previous lemma and the fact Dγ(ν) ⊥ ν, we have

δFγ =
∑
k

⟨Dγ(νk), R(vk+1 − vk)⟩+ γ(νk)⟨νk, R(vk+1 − vk)⟩

=
∑
k

⟨ξγ(νk), R(vk+1 − vk)⟩ =
∑
k

⟨R(ξγ(νk)− ξγ(νk−1)), vk⟩.

□
Remark . We can consider the length gradient for non-manifold case, i.e.,

∇p Length = −
m∑
k=1

pk − p

|pk − p|
.

For example, when m = 3 (trivalent graph), ∇p Length = 0 if and only if the angles of
adjacent edges are 2π/3 (120 degree).
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2.3.2 Relation with other notions of the discrete curvature

In the lecture note by Hoffman [19], three kinds of notions of the curvature for discrete
curves are defined:

(1) The curvature at vertices by using the vertex osculating circle method,

(2) The curvature at edges by using the edge osculating circle method,

(3) The curvature at vertices by using edge osculating circle for “arclength parametrized”
curve.

Moreover, Hatakeyama [15] also defined the curvature for discrete curves another way.
We will show that these curvature notions can be derived from our curvature vector by
taking the different line elements Lk at vertices. In other words, these difference comes
from the non-uniqueness of the “natural” line element at vertices.

As we have seen before, from the first variation formula

δ Length =
∑
k

⟨R(νk − νk−1), vk⟩ = −
∑
k

⟨
1

Lk

R(νk−1 − νk), vk

⟩
Lk,

we shall consider the vector

Ñk =
1

Lk

R(νk−1 − νk) =
1

Lk

(
pk+1 − pk
|pk+1 − pk|

+
pk−1 − pk
|pk−1 − pk|

)
as the curvature vector on the vertex pk. However, there are many possibilities of Lk.
Therefore we call Ñk the discrete curvature vector with respect to Lk. For example, the
choice 2Lk = lk+1 + lk = |pk+1 − pk|+ |pk−1 − pk|, which satisfies

∑
k Lk = Length(Γh),

is compatible with the curve-shortening flow.
To describe the curvature notions, we have to define the angles at vertices. If we

define (the absolute value of) the angle between νk−1 and νk as θk, i.e.,

cos θk := ⟨νk, νk−1⟩ =
⟨pk+1 − pk, pk − pk−1⟩
|pk+1 − pk| · |pk − pk−1|

.

In the following we assume cos θk ̸= 1 for every k. We have to care about the signature
of θk. Let Rθ be the θ-rotation in R2. We assign the signature depends on the choice
of the rotation R:

σ :=

{
+1 if R = Rπ/2,

−1 if R = R−π/2.

In this situation the signature of θk is determined by the equation Rσθk(νk−1) = νk.

Remark . For any closed curve we have σ
∑

k θk = 2mπ for some interger m. Because
if we note that

Rσ(θ0+···+θn−1)ν0 = νn = ν0,

then we have σ(θ0 + · · ·+ θn−1) = 2mπ. □
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Figure 2.2: The angle at the vertex pk (θk < 0 in this figure).

By virtue of the fact

|R(νk−1 − νk)| = 2 sin(|θk|/2),

we call the value

κ(pk) :=
2 sin(θk/2)

Lk

the discrete curvature at pk with respect to Lk.

Proposition 2.3.3 (The vertex osculating circle method [19]). If we choose

Lk =
|pk+1 − pk−1|
2 cos(θk/2)

=
|pk+1 − pk + pk − pk−1|

2 cos(θk/2)
,

then the discrete curvature with respect to Lk becomes

κ(pk) =
2 sin θk

|pk+1 − pk−1|
=

2 sin θk
|pk+1 − pk + pk − pk−1|

and this value coincides with the curvature based on the vertex osculating circle method.

Proposition 2.3.4 (For the arclength parametrized curves [19]). Assume lk = lk−1 =
l0. Then if we choose

Lk = l0 cos
θk
2

=
lk + lk−1

2
· cos θk

2
,

then the discrete curvature with respect to Lk becomes

κ(pk) =
2

l0
tan

θk
2

and this value coincides with the curvature of arclength parametrized curve.

In the paper [15], the discrete curvature at the vertex is defined as

κ(pk) :=
1

|pk − pk−1|

∣∣∣∣ pk+1 − pk
|pk+1 − pk|

− pk − pk−1

|pk − pk−1|

∣∣∣∣ = −|∇pk Length |
|pk − pk−1|

.

Then we immediately have the following result:
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Proposition 2.3.5. If we choose Lk = lk−1 = |pk − pk−1|, then the discrete curvature
with respect to Lk coincides with the discrete curvature defined by Hatakeyama [15].

Before considering the edge osculating circle method, we shall modify the first vari-
ation formula from the vertex-based expression to the edge-based expression. If we put
vk = (wk + wk−1)/2, then we have

δ Length =
1

2

∑
k

⟨∇pk Length, wk + wk−1⟩

=
1

2

∑
k

⟨∇pk Length+∇pk+1
Length, wk⟩ = −

∑
k

⟨
R(νk−1 − νk+1)

2L′
k

, wk

⟩
L′
k

where L′
k is some auxiliary function. As in the vertex case, we call the value

κ(ek) :=
1

L′
k

· sin θk + θk+1

2

the discrete curvature at the edge ek = [pk, pk+1] with respect to L′
k.

Proposition 2.3.6 (The edge osculating circle method [19]). If we choose

L′
k = lk cos

θk
2
cos

θk+1

2
= |pk+1 − pk| cos

θk
2
cos

θk+1

2
,

then the discrete curvature with respect to L′
k becomes

κ(ek) =
tan(θk/2) + tan(θk+1/2)

|pk+1 − pk|

and this value coincides with the curvature based on the edge osculating circle method.

Remark . To define the discrete curvature, we have to choose Lk (respectively L′
k)

properly. That means if lk, lk−1 → ds and θk → 0, then Lk (respectively L′
k) must

converge to ds, i.e., Lk must be a “good” candidate for a discrete line element. We can
check that Lk and L′

k satisfy this condition in the above examples.

Remark (“No free lunch” for the discrete Laplacian, cf. [41]). We consider these
kinds of “no free lunch” story for the discrete Laplacian which will be used in the
second variation formula. Let V be the vertices of a standard n-path and X : V → R2

be its geometric realization (hence we have the induced metric). Then for a function
ψ : V → Rd, the gradient and the Laplacian of ψ can be defined as

∇ψk :=
ψk+1 − ψk

lk
, ∆ψk :=

1

Lk

(∇ψk −∇ψk−1) =
1

Lk

(
ψk+1 − ψk

lk
− ψk − ψk−1

lk−1

)
,

where we denote ψk := ψ(k). Note that the gradient is the “edge-based operator” but
the Laplacian is the “vertex-based” operator, in addition, the discrete curvature vector
Ñk with respect to Lk can be written as ∆pk.
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From another point of view, if we define the Dirichlet energy of ψ as

Eh(ψ) :=
1

2

∑
k

|∇ψk|2 lk =
1

2

∑
k

|ψk+1 − ψk|2

lk
,

then the first variation of the energy becomes

δEh(ψ) =
∑
k

⟨ψk+1 − ψk, φk+1 − φk⟩
lk

=
∑
k

⟨∇ψk−1 −∇ψk, φk⟩ = −
∑
k

⟨∆ψk, φk⟩Lk,

where we take the variation of ψ as ψk(t) = ψk + tφk +O(t2). Therefore δEh(ψ) = 0 if
and only if ∆ψk = 0. Note that the condition ∆ψk = 0 is independent of the choice of
Lk.

As in the curvature case, the Laplacian can be changed since there is no natural
“line element divisor Lk”. However, with another function φ : V → R, we still have the
following properties since the quanties ∆ψkLk are independent of Lk:

(1) If ψ is constant, then ∆ψ = 0.

(2) The condition ∆ψ = 0 is independent of the choice of Lk and in this case we have
the mean value property:

ψk =
lk−1

lk + lk−1

ψk+1 +
lk

lk + lk−1

ψk−1.

(3) L2 symmetric property:∑
k

ψk ·∆φk · Lk =
∑
k

∆ψk · φk · Lk.

Note that the summation is vertex-based.

(4) Integration by parts:

−
∑
k

ψk ·∆φk · Lk =
∑
k

∇ψk · ∇φk · lk.

Note that the right hand side is the edge-based summation but the left hand
side is the vertex-based summation. As a corollary, the operator −∆ is positive
semi-definite.

2.3.3 Parallel curves and Steiner-type formula

In this section we will derive the discrete version of the Steiner-type formula. The fol-
lowing type of Steiner formula is essentially appeared in some papers, for example [10].
Although they try to extract the curvature notion from the Steiner-type formula, we
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will derive the Steiner-type formula by using our vertex normal and connect with the
well-known curvature notion in [19].

Let Γh = {pk}k be a discrete curve and take an interior vertex pk. If we recall the
length gradient

−∇pk Length = R(νk−1 − νk) =
pk+1 − pk
|pk+1 − pk|

+
pk−1 − pk
|pk−1 − pk|

gives a candidate of the normal direction at the vertex pk and the fact |R(νk−1− νk)| =
2 sin(|θk|/2), we should divide −∇pk Length by 2 sin(θk/2) in order to get the unit
normal. However this choice does not work well. In the discrete case, we should
consider another factor 2 sin(θk/2) cos(θk/2) = sin θk and put

Nk := −∇pk Length

sin θk
=
R(νk−1 − νk)

sin θk
=

1

1 + cos θk
(νk + νk−1),

if θk ̸= 0. Then we shall call the vector Nk as the vertex normal at the vertex pk. Then
we consider the following deformation of a discrete curve

pk(t) = pk + tNk = pk + t · R(νk−1 − νk)

sin θk
,

where the vertex pk with θk ̸= 0.

Lemma 2.3.7. Assume θk, θk+1 ̸= 0. Then we have ⟨pk+1(t)− pk(t), νk⟩ = 0, therefore
we call this deformation parallel curves.

Proof. In order to clarify the situation, we consider a more general deformation

Nk := −∇pk Length

Mk

=
R(νk−1 − νk)

Mk

,

where Mk is some auxilary function. Then we have

⟨pk+1(t)− pk(t), νk⟩ = ⟨(pk+1 − pk) + t(Nk+1 −Nk), νk⟩

= t

(
⟨R(νk − νk+1), νk⟩

Mk+1

− ⟨R(νk−1 − νk), νk⟩
Mk

)
= t

(
−⟨Rνk+1, νk⟩

Mk+1

− ⟨Rνk−1, νk⟩
Mk

)
= t

(
sin θk+1

Mk+1

− sin θk
Mk

)
.

Therefore if we choose Mk = sin θk, then ⟨pk+1(t)− pk(t), νk⟩ = 0. □

Theorem 2.3.8 (Discrete Steriner-type formula). For parallel curves {pk(t)}k, we have

|pk+1(t)− pk(t)| = |pk+1 − pk|(1 + t · κ(ek)),

where κ(ek) is the discrete curvature based on the edge osculating circle method [19]:

κ(ek) =
tan(θk/2) + tan(θk+1/2)

|pk+1 − pk|
.
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Figure 2.3: Parallel curves

Before giving the proof, we give an intuitive explanation for a special case. In the
Figure 2.3, the similarity ratio of the triangles gives

|pk+1(t)− pk(t)| : |pk+1 − pk| = (rk + t) : rk

⇐⇒ |pk+1(t)− pk(t)| = |pk+1 − pk|(1 + t · 1

rk
)

⇐⇒ |pk+1(t)− pk(t)| = |pk+1 − pk|(1 + t · κ(ek)).

Proof. As in the previous lemma we consider Nk := R(νk−1 − νk)/Mk and pk(t) =
pk + tNk. Then⟨

pk+1 − pk
|pk+1 − pk|

, Nk+1 −Nk

⟩
=

⟨
−Rνk,

R(νk − νk+1)

Mk+1

− R(νk−1 − νk)

Mk

⟩
= −

(
1− cos θk+1

Mk+1

+
1− cos θk

Mk

)
,

|Nk+1 −Nk|2 =
1

cos2(θk+1/2)
+

1

cos2(θk/2)
− 2⟨Nk, Nk+1⟩

= 2 + tan2 θk+1

2
+ tan2 θk

2
− 2 · sin θk sin θk+1 − (1− cos θk)(1− cos θk+1)

MkMk+1

.

If we take Mk = sin θk, then we have⟨
pk+1 − pk
|pk+1 − pk|

, Nk+1 −Nk

⟩
= −

(
tan

θk
2

+ tan
θk+1

2

)
,

|Nk+1 −Nk|2 =
(
tan

θk
2

+ tan
θk+1

2

)2

.
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Therefore we conclude

|pk+1(t)− pk(t)|2

= |pk+1 − pk|2 − 2t⟨pk+1 − pk, Nk+1 −Nk⟩+ t2|Nk+1 −Nk|2

= |pk+1 − pk|2 + 2t|pk+1 − pk|
(
tan

θk
2

+ tan
θk+1

2

)
+ t2

(
tan

θk
2

+ tan
θk+1

2

)2

= |pk+1 − pk|2
(
1 + t · tan(θk/2) + tan(θk+1/2)

|pk+1 − pk|

)2

.

□

Remark . This formula itself is already appeared some papers to extract the discrete
curvature at the vertices by using the offsets, see [5], [10]. If we take the offset of the
edges, then we have the following (at least) three possiblities. By computing the length

(a) Γ
(1)
h,t , connect by a segment (b) Γ

(2)
h,t , connect by an arc (c) Γ

(3)
h,t , connect by a wedge

Figure 2.4: Three possibilities to construct a new curve

of dotted curves in the figure, we can write the total length of each offsets as follows:

Length(Γ
(1)
h,t) = Length(Γh) + t

∑
k

2 sin
θk
2
, Length(Γ

(2)
h,t) = Length(Γh) + t

∑
k

θk,

Length(Γ
(3)
h,t) = Length(Γh) + t

∑
k

2 tan
θk
2
.

Note that θ ≈ 2 sin(θ/2) ≈ 2 tan(θ/2) if θ ≈ 0. The second curve Γ
(2)
h is nothing but

the normal cone method (or the boundary of the Minkowski sum with the disk) known
in the convex geometry. However, the only possible way which does not change the
number of the vertices during the offset procedure is the third one, and by modifying
the third formula gives our Steiner-type formula:

Length(Γ
(3)
h,t) =

∑
k

(lk + 2t tan(θk/2))

=
∑
k

(lk + t(tan(θk/2) + tan(θk+1/2))) =
∑
k

lk(1 + tκ(ek)),

where we put κ(ek) = (tan(θk/2) + tan(θk+1/2))/lk (the curvature defined by the edge
osculating circle).
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2.3.4 Critical points of the length functional

In §2.3.2, we saw that there is no universal notion of discrete curvature. However, since
our main interest is constant (mean) curvature objects, we formulate such objects by
using the variational method without defining the curvature itself. In this section we
focus on the length functional case and consider closed discrete curves in the following.
The 2-dimensional oriented volume (i.e., the area) bounded by a closed discrete curve
Γh is defined by

Vol(Γh) :=
1

2

∑
k

⟨pk, νk⟩|pk+1 − pk| =
1

2

∑
k

⟨pk, Rpk+1⟩,

Note that the signature of the volume can be negative. Then we have the following
result:

Lemma 2.3.9. For any vertex pk of Γh the gradient of the volume ∇pk Vol is given by

∇pk Vol =
1

2
R(pk+1 − pk−1).

Proof. We consider any variation tv⃗ = (tv1, . . . ,
tvn) and it follows from the second

representation of the volume that

δVol =
1

2

∑
k

δ⟨pk, Rpk+1⟩ =
1

2

∑
k

(⟨vk, Rpk+1⟩+ ⟨pk, Rvk+1⟩)

=
1

2

∑
k

(⟨vk, Rpk+1⟩+ ⟨pk−1, Rvk⟩ =
1

2

∑
k

⟨R(pk+1 − pk−1), vk⟩.

□
Remark (Another “no free lunch” story). We can modify the first variation formula
of the volume as follows:

δVol =
1

2

∑
k

⟨R(pk+1 − pk + pk − pk−1), vk⟩ =
∑
k

⟨
lkνk + lk−1νk−1

2Lk

, vk

⟩
Lk.

At a glance, it seems like a natural to choose 2Lk = lk + lk−1 = Length(star (p)) and
this is also frequently used as a “vertex normal” (weighted sum of the edge normals):

NV
k :=

lkνk + lk−1νk−1

lk + lk−1

.

In addition, we have

−∇pk Length = R(νk−1 − νk) =
sin θk

1 + cos θk
(νk + νk−1) = 2 tan

θk
2

· νk + νk−1

2
.

by a simple calculation. Therefore, unless the curve is arclength parameterized, there
are (at least) two choices of the “vertex normal” from the variational viewpoint : using
the length gradient (length descent direction) or using the volume gradient (volume
descent direction). This suggests that, in contrast to the smooth case, we have to
choose the “prefered” vertex normal according to the energy in question. □
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First, we will start from the γ ≡ 1 case.

Example 2.3.10 (Regular polygons). Let us take a discrete curve Γm,n
h = {pk}k as in

the following way (including non-convex regular n-gon with radius a):

pk = a exp(2π
√
−1mk/n), k = 0, . . . , n− 1, 1 ≤ m ≤ n− 1,

where we assume that m and n are coprime. In particular, we sometimes call the
curve Γ1,n

h as a convex regular n-gon. Note that Γn−1,n
h is also convex but it has an

opposite unit normal with Γ1,n
h (usually we assume that Γ1,n

h has the outward-pointing
unit normal). Then the curve Γm,n

h is a critical point of the functional Length+κVol

(a) κ = −1/ cos(π/5) (b) κ = −1/ cos(2π/5) (c) κ = −1/ cos(3π/5) (d) κ = −1/ cos(4π/5)

Figure 2.5: Convex and non-convex regular 5-gons with radii a = 1.

with κ = −1/(a cos(mπ/n)). This value is the reciprocal of the radius of the inscribed
circle of the polygon (up to the signature). We sometimes say that a convex regular
n-gon with radius a (and outward-pointing unit normal) has constant curvature κn =
−1/(a cos(π/n)). Note that cos(πm/n) = − cos(π(n − m)/n) and κn → −1/a when
n → ∞. We also remark that this value naturally appears in the discrete cylinder
(Example 2.4.9).

We will show that these regular polygons are the only critical points for the func-
tional Length+κVol.

Theorem 2.3.11. Let Γh = {pk}n−1
k=0 be a closed discrete curve and take κ ∈ R \ {0}.

Then the following two conditions are equivalent:

(1) Γh is a critical point of the functional Length+κVol.

(2) The edge length lk and the angles θk are constant l0 and θ0 which satisfies κl0 =
2 tan(θ0/2).

Proof. We put

Ak := (νk − νk−1) +
κ

2
(pk+1 − pk−1), k = 0, . . . , n− 1.
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Then the discrete curve Γh is a critical point of the functional Length+κVol if and
only if Ak = 0 for all k. By a simple calculation we have

⟨Ak, νk−1⟩ = sin θk

(
κlk
2

− tan
θk
2

)
, (3.2)

⟨Ak, νk⟩ = sin θk

(
tan

θk
2

− κlk−1

2

)
, (3.3)

⟨Ak+1, νk+1⟩ = sin θk+1

(
tan

θk+1

2
− κlk

2

)
. (3.4)

For the necessity, that is, if we assume Ak = 0 for all k, then it follows from (3.2) and
(3.3) that κlk = 2 tan(θk/2) = κlk−1. And it also follows from (3.3), (3.4) and using
lk = lk−1 that

tan
θk
2

=
κlk
2

=
κlk−1

2
= tan

θk−1

2
.

To prove the sufficiency, since νk and pk − pk−1 forms a basis of R2 and ⟨Ak, νk⟩ = 0
by using (3.2) and the assumption, all we have to prove is ⟨Ak, pk − pk−1⟩ = 0 for all k.
By using the assumption lk = lk−1 = l0 and θk = θ0, we have⟨
Ak,

pk − pk−1

lk

⟩
= − sin θk +

κ

2
(lk cos θk + lk−1)

= (1 + cos θ0)

(
κl0
2

− sin θ0
1 + cos θ0

)
= (1 + cos θ0)

(
κl0
2

− tan
θ0
2

)
= 0.

This shows Ak = 0 and proves the statement. □

We found that critical points of the functional Length+κVol must satisfy lk ≡ l0,
i.e., they must have “good coordinates (arclength parameter)”. If we note that for
an arclength parametrized curve we can define the curvature at vertices, the previous
result can be restated as follows:

Corollary 2.3.12. Let Γh be an arclength parametrized discrete closed curve, i.e.,
lk ≡ l0, and take κ ∈ R \ {0}. Then the following two conditions are equivalent:

(1) Γh is a critical point of the functional Length+κVol.

(2) The discrete curvature (2/l0) tan(θk/2) is constant κ.

Corollary 2.3.13. Let Γh = {pk} be a critical point of the functional Length+κVol.
Then Γh must be a regular polygon (including a non-convex polygon).

Proof. Let rk be the radius of the triangle (pk−1, pk, pk+1). By using the sine law, we
have rk = 1/(|κ| cos(θk/2)) and this is independent of k by the previous result. Then
all vertices of Γh must lie on the same circle with radius r0 = rk. By a rotation

46



and translation, we can put pk = r0 exp(iφk) with φ1 = 0. By using the condition
κl0 = 2 tan(θ0/2), we have

|pk+1 − pk| = lk = l0 ⇐⇒ r0 · 2 sin
φk+1 − φk

2
=

2

|κ|
tan

|θ0|
2

⇐⇒ sin
φk+1 − φk

2
= sin

|θ0|
2

⇐⇒ φk+1 − φk = |θ0|.

Therefore we have φk = (k − 1)|θ0| and this proves the statement. □

Remark . We will prove the instability of the non-convex regular polygons (Theorem
).

2.3.5 Discrete constant anisotropic curvature curves

In this section we will define the discrete constant anisotropic (mean) curvature (CAMC)
curves by using the variational principle inspired by [37]. We will derive the conserva-
tion law for the Euler-Lagrange equation and Minkowski-type formula. As an applica-
tion, we will show another proof of the Chakerian-Lange theorem by using our method
(Corollary 2.3.18). Finally we will give some examples of discrete CAMC curves. In
connection with Chapter 1, we can give “non-uniqueness” of discrete CAMC curves.

Definition 2.3.14 (Discrete CAMC curve). Let γ : S1 → R be a C1 function. Then a
simplicial curve Γh has constant anisotropic (mean) curvature (CAMC) if there exists
a constant Λ such that

∇pFγ + Λ∇p Vol = 0

holds for every interior vertex p. This definition is equivalent to the following equations:

ξγ(νk)− ξγ(νk−1) +
Λ

2
(pk+1 − pk−1) = 0 (3.5)

for any interior vertex pk.

Remark . This definition is inspired by the definition of discrete CMC surfaces in [37].
Note that we defined the constant anisotropic curvature curve without defining the
discrete anisotropic curvature. We sometimes call such a curve as CAMC-Λ curve.

We first remark the following fact.

Proposition 2.3.15. Let γ : S1 → R>0 be of C
2 and assume γ′′(θ)+γ(θ) > 0 where we

define γ(θ) := γ(cos θ, sin θ). Then any bounded curve with zero anisotropic curvature
must be a segment.

Proof. When γ ≡ 1, the statement is trivial. If we assume the function γ satisfies
γ′′ + γ > 0, then the Cahn-Hoffman map ξγ : S1 → Wγ becomes diffeomorphism.
Therefore, the zero curvature condition ξγ(νk−1) = ξγ(νk) is equivalent to νk−1 = νk. □

47



Lemma 2.3.16 (Conservation law). A closed discrete curve Γh = {pk}k is CAMC-Λ if
and only if there exists a vector c ∈ R2 such that ξγ(νk) + (Λ/2)(pk+1 + pk) ≡ c for all
k.

Proof. In the critical point condition (3.5), by inserting pk − pk we have

ξγ(νk) +
Λ

2
(pk+1 + pk) = ξγ(νk−1) +

Λ

2
(pk + pk−1) for all k.

This implies the vector ξγ(νk) + (Λ/2)(pk+1 + pk) is independent of k. □

Since the constant vector c is just a translation of the curve, it is enough to consider
the case c = 0, then we have

pk+1 + pk
2

= − 1

Λ
ξγ(νk) for all k. (3.6)

Moreover, since the Cahn-Hoffman map ξγ : S1 → R2 is a wave front (cf. [24], Propo-
sition 5.1), every midpoint of the edge of the curve is tangent to the rescaled image of
the Cahn-Hoffman map ξγ. Therefore discrete CAMC-Λ curves for a energy density γ
must be constructed from the lines{

x ∈ R2 | ⟨x, ν⟩ = − 1

Λ
γ(ν)

}
, ν ∈ S1

which are the tangent lines of the rescaled Cahn-Hoffman map (−1/Λ)ξγ : S1 → R2.

Remark . The condition in the above lemma can be considered as a conservation law
for the Euler-Lagrange equation (3.5). Note that the Euler-Lagrange equation (3.5)
is the vertex-based condition but the conservation law is the edge-based condition.
Moreover, some calculation shows the following relation:

δ(Fγ + ΛVol) =
∑
k

⟨
ξγ(νk) +

Λ

2
(pk + pk+1), R(vk − vk+1)

⟩
.

From another point of view, if the curve {pk}k approximates a smooth curve p(s), then
pk ≈ pk+1 ≈ p(s) and therefore p(s) = −(1/Λ)ξγ(ν). In particular p(s) = ξγ(ν) when
Λ = −1. This fact is closely related to the result of F. Morgan [30], but since we
did not assume the convexity for γ, the Wulff shape is replaced by the image of the
Cahn-Hoffman map. □

Taking the inner product (3.6) with νk gives the following relation:

γ(νk) = ⟨ξγ(νk), νk⟩ = − Λ

2
⟨pk+1 + pk, νk⟩ = −Λ⟨pk, νk⟩.

In particular, we have the following Minkowski-type formula:
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Proposition 2.3.17 (Discrete Minkowski-type formula). Let γ : S1 → R be a C1

function and Γh = {pk}k be a closed discrete CAMC-Λ curve. Then we have the
following Minkowski-type formula:∑

k

(γ(νk) + Λ⟨pk, νk⟩)|pk+1 − pk| = 0.

In connection with the convex geometry, we mention about the discrete isoperimetric
problem, i.e., we consider the following problem:

For a given convex region W and number n, find the convex n-gon which
have the least area containing W .

This kind of problem is interested not only from the pure mathematics, but also from
the robotics and computer aided design field, see e.g. [1]. Here we will show that our
discretization method gives another proof of the following theorem:

Corollary 2.3.18 (Chakerian-Lange [8]). Let W be a strictly convex domain, n ≥ 3
and Γh = {pk}k be a convex n-gon of minimum area containingW . Then, the midpoints
of the edges of Γh must lie on ∂W .

Remark . The original theorem assumed that W is just a convex region. As we will
see, we have to remove the regularity assumption for the energy density function in
order to overcome this restriction.

For any strictly convex domain W , it is known that there exists a convex and C1

energy density γ : S1 → R>0 with ∂W = ξγ(S
1) ([14]). We say a closed discrete

curve Γh = {pk}k is circumscribed about Wγ if for every k there exist λk ∈ R such that
(1− λk)pk + λkpk+1 = ξγ(νk). Note that we have

Fγ(Γh) = 2Vol(Γh) ⇐⇒ Fγ(Γh)− Vol(Γh) = Vol(Γh)

for any discrete curve Γh circumscribed about Wγ. Therefore we have the following
lemma:

Lemma 2.3.19. For any discrete curve circumscribed aboutWγ, the following problems
are equivalent:

• Find the minimizer of the energy Fγ − Vol (CAMC-(−1) curve).

• Find the minimizer of the 2-dimensional volume Vol.

In particular, the existence of the minimizer of the second problem guarantees the
existence of the minimizer of the first problem.
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Proof of Corollary 2.3.18. By the assumption, there exists a convex and C1 energy
density γ : S1 → R>0 with ∂W = ξγ(S

1). Consider the variational problem of discrete
curves for the functional Fγ − Vol. Then by the previous lemma, among discrete
curves circumscribed about ∂W , the minimizer of the bounded area coincides with the
minimizer of the energy Fγ −Vol. From the conservation law (Lemma 2.3.16), we have

pk + pk+1

2
= ξγ(νk) for all k,

for the minimizer Γh. This proves the statement. □

We will give some examples of discrete CAMC curves. As we will see, non-convexity
of the energy density also affects the “non-uniqueness” of the discrete CAMC curves.

Example 2.3.20. We take the energy density γ : S1 → R>0 as γ(ν1, ν2) =
√
a2ν21 + b2ν22 ,

where a, b ∈ R>0 are constant. Then the corresponding Wulff shape becomes the ellipse
(x/a)2 + (y/b)2 = 1. For positive numbers A,B > 0, we define a map TA,B : R2 → R2

as TA,B(x1, x2) := (Ax1, Bx2). By a typical calculation, we can check the following fact:

Proposition 2.3.21 (for smooth case, see [25], Example 4.4). Let Γh = {pk}k be a
closed discrete curve and Λ ̸= 0. Then Γh is a critical point of the functional Fγ+ΛVol

if and only if Γ̃h := {T1/a,1/b(pk)} is a critical point of Length+ΛVol.

Therefore, by using the previous result, every discrete CAMC curve for the density
γ is “rescaled” regular polygons, i.e., if Γh is a regular polygon, then Ta,b(Γh) is CAMC
for γ.

The following Figure 2.6 give examples of the discrete CAMC curve (Λ = −1) for
the energy density γ(ν1, ν2) =

√
4ν21 + ν22 . The dotted curve represents the image of

the Cahn-Hoffman map, i.e., the ellipse x2/4 + y2 = 1. In the first figure, the vertices
are

(2, 1), (−2, 1), (−2,−1), (2,−1).

In the second figure, the vertices are

(2,
√
2− 1), (2(

√
2− 1), 1), (2(1−

√
2), 1), (−2,

√
2− 1),

(−2, 1−
√
2), (2(1−

√
2),−1), (2(

√
2− 1),−1), (2, 1−

√
2).

Note that the first and third figure have the same volume, therefore this means the
minimizer for the functional Fγ − Vol is not unique.

Example 2.3.22. Let us take a non-convex energy density which appeared in the
Chapter 1, i.e., we put γ(ν1, ν2) = ν61 + ν62 . The dotted curve represents the image of
the Cahn-Hoffman map for γ. As in the smooth case, we have discrete CAMC-(−1)
curves which are quite different from the Wulff shape like in the second and third figures.
As we will see later, these curves are unstable (Proposition 2.3.27). □
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Figure 2.6: Examples of discrete CAMC-(−1) curves for γ(ν1, ν2) =
√

4ν21 + ν22 .

Figure 2.7: Examples of discrete CAMC-(−1) curves for γ(ν1, ν2) = ν61 + ν62 .

2.3.6 Second variation of the anisotropic energy

In this section we consider the second variation of the anisotropic energy and stability
of discrete CAMC curves. We will follow the argument developed in [37]. We assume
that the energy density γ is of class C2 in the following.

Let G = (V,E) be a standard (n − 1)-circle and p : V → R2 be its realization and
denote its image by Γh = {pk}k. We consider a smooth variation pk(t) = pk + tvk +
O(t2). Recall the first variation formula of the anisotropic energy and the 2-dimensional
volume:

d

dt
Fγ =

∑
k

⟨∇pkFγ, p
′
k⟩, ∇pkFγ = R(ξγ(νk)− ξγ(νk)),

d

dt
Vol =

∑
k

⟨∇pk Vol, p
′
k⟩, ∇pk Vol =

1

2
R(pk+1 − pk−1).

Note that if the variation is volume-preserving, then

0 = δ2 Vol =
∑
k

⟨δ(∇pk Vol), δpk⟩+ ⟨∇pk Vol, δ
2pk⟩.

We say a variation is admissible (or permissible) if the variation is volume-preserving
and fixes the boundary.

Lemma 2.3.23. Let Γh = {pk}k be a discrete CAMC-Λ curve and pk(t) = pk + tvk +
O(t2) be an admissible variation. Then we have

δ2Fγ :=
d2

dt2 |t=0
Fγ =

∑
k

⟨δ(∇pkFγ + Λ∇pk Vol), vk⟩.
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Proof. From the CAMC condition (3.5) we have

δ2Fγ =
∑
k

δ⟨∇pkFγ, p
′
k⟩ =

∑
k

⟨δ∇pkFγ, δpk⟩+ ⟨∇pkFγ, δ
2pk⟩

=
∑
k

⟨δ∇pkFγ, vk⟩+ ⟨−Λ∇pk Vol, δ
2pk⟩

=
∑
k

⟨δ∇pkFγ, vk⟩+ ⟨Λδ∇pk Vol, δpk⟩ =
∑
k

⟨δ(∇pkFγ + Λ∇pk Vol), vk⟩

□

Definition 2.3.24 (Stability of discrete CAMC curve). Let γ : S1 → R be a C2

function and Γh = {pk}k be a closed discrete CAMC curve. Then Γh is said to be stable
if δ2Fγ ≥ 0 for any admissible variation.

We introduce the matrix Qγ and QV as follows:

tv⃗Qγ v⃗ =
∑
k

⟨δ∇pkFγ, vk⟩, tv⃗QV v⃗ =
∑
k

⟨δ∇pk Vol, vk⟩.

Then we can write δ2Fγ = tv⃗(Qγ + ΛQV )v⃗.

Lemma 2.3.25. tv⃗QV v⃗ =
∑

k⟨vk, Rvk+1⟩.

Proof. The proof follows from the direct computation:

tv⃗QV v⃗ =
∑
k

⟨δ∇pk Vol, vk⟩ =
1

2

∑
k

⟨δR(pk+1 − pk−1), vk⟩

=
1

2

∑
k

⟨R(vk+1 − vk−1), vk⟩ =
∑
k

⟨vk, Rvk+1⟩.

□

Lemma 2.3.26. tv⃗Qγ v⃗ =
∑

k⟨dξγ(δνk), δνk⟩lk.

Proof. If we note that dξγ is an endomorphism of the tangent space and δνk is tangent
to the edge ek = [pk, pk+1], then we have

tv⃗Qγ v⃗ =
∑
k

⟨δ∇pkFγ, vk⟩ =
∑
k

⟨δR(ξγ(νk)− ξγ(νk−1)), vk⟩

=
∑
k

⟨R(dξγ(δνk)− dξγ(δνk−1)), vk⟩ =
∑
k

⟨R(dξγ(δνk)), vk − vk+1⟩

=
∑
k

⟨dξγ(δνk), R(vk+1 − vk)⟩ =
∑
k

⟨dξγ(δνk), δνk⟩lk

□
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Therefore we have an expression of second variation for the anisotropic energy:

δ2Fγ =
∑
k

(⟨dξγ(δνk), δνk⟩lk + ⟨vk, Rvk+1⟩).

As a special case, we consider an one point variation, i.e., for a fixed vertex pk, consider
a variation vector field vk ∈ R2 with vj = 0 for j ̸= k. As we saw in Chaper 1,
the matrix dξγ|ν can be written as γ′′(θ) + γ(θ) when we write ν = (cos θ, sin θ) and
γ(θ) = γ(cos θ, sin θ). Then the second variation formula reduces to the following form:

δ2Fγ = ⟨dξγ(δνk), δνk⟩lk = (γ′′ + γ)|νk · |Rvk − ⟨Rvk, νk⟩νk|2/lk.

Therefore, we have the following necessary condition for the stability:

Proposition 2.3.27. Let γ : S1 → R>0 be of C2 and Γh be a discrete CAMC curve.
Then Γh is stable only if every edge of the curve is tangent to a portion of the Cahn-
Hoffman map for γ which satisfies γ′′+γ ≥ 0, i.e., the convex part of the Cahn-Hoffman
map.

Example 2.3.28. The second and third curves in the Figure 2.7 are unstable since
the vertical and horizontal edges are tangent to the non-convex part of the Cahn-
Hoffman map (see Figure 2.8, 2.9 for the energy descent deformations under the volume-
constraint condition).

(a) energy = 8. (b) energy ≈ 5.63944664472859. (c) energy = 2.

Figure 2.8: Energy descent deformation (rotation) for unstable discrete CAMC curve.

Figure 2.9: Energy descent deformation for unstable discrete CAMC curve.

In the following we will focus on the γ ≡ 1 case and denote Qγ = Q in this case.
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Proposition 2.3.29 (Second variation formula for the length functional).

Q =
∑
k

1

lk
(|vk+1 − vk|2 − ⟨vk+1 − vk, Rνk⟩2) =

∑
k

(|∇vk|2 − ⟨∇vk, Rνk⟩2)lk,

therefore we have the following second variation formula for the length functional:

δ2 Length =
∑
k

(|∇vk|2 − ⟨∇vk, Rνk⟩2)lk + Λ⟨vk, Rvk+1⟩. (3.7)

Proof. By using Lemma 2.3.2, we have

Q =
∑
k

⟨δνk, R(vk+1 − vk)⟩ =
∑
k

⟨R(∇vk)− ⟨R(∇vk), νk⟩νk, R(∇vk)⟩lk

=
∑
k

(|∇vk|2 − ⟨R(∇vk), νk⟩2)lk =
∑
k

(|∇vk|2 − ⟨∇vk, Rνk⟩2)lk.

□

In the section of the Steiner-type formula, we used the vector

Nk :=
R(νk−1 − νk)

sin θk
=

1

sin θk

(
pk+1 − pk

lk
− pk − pk−1

lk−1

)
as the “normal vector” at the vertex pk. If we define the “tangent vector” Tk as
Tk = −RNk, then we can decompose the variation vector vk as

vk = ψkNk + ηkTk = ψkNk − ηkRNk,

where ψ, η : V → R is some functions on the vertices. If ηk = 0 for all k, we sometimes
call it the normal variation. In the following we will use this notation.

Lemma 2.3.30. The first variation formula of the volume can be written as

δVol =
1

2

∑
k

(
ψk(lk + lk−1) + ηk(lk − lk−1) tan

θk
2

)
.

In particular, if a curve {pk} satisfies lk ≡ l0, then
∑

k ψk = 0 for any volume-preserving
variation.

Remark . Conversely, for such a curve, if a function ψ : V → R satiefies
∑

k ψk = 0,
then we can construct a volume-preserving normal variation whose variation vector is
ψkNk (cf. [4]).
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Proof. Using the first variation formula, we have

δVol =
1

2

∑
k

⟨R(pk+1 − pk−1), vk⟩ =
1

2

∑
k

⟨R(pk+1 − pk−1), ψkNk + ηkTk⟩

=
1

2

∑
k

[
ψklk

⟨νk, Rνk−1⟩
sin θk

+ ψklk−1
⟨νk−1,−Rνk⟩

sin θk
+

ηk
sin θk

(lk − lk−1)(1− cos θk)

]
=

1

2

∑
k

(
ψk(lk + lk−1) + ηk(lk − lk−1) tan

θk
2

)
.

□
Recall that if {pk}k is a critical point of the functional Length+ΛVol, then we have

lk ≡ l0, θk ≡ θ0 and Λl0 = 2 tan(θ0/2).

Lemma 2.3.31.

|vk+1 − vk|2 − ⟨vk+1 − vk, Rνk⟩2 = [(ψk+1 − ψk) + tan(θ0/2)(ηk+1 + ηk)]
2.

Therefore we have

|∇vk|2 − ⟨∇vk, Rνk⟩2 =
(
∇ψk +

Λ

2
(ηk + ηk+1)

)2

Proof. Recall that

⟨Nk,−RNk+1⟩ = tan
θk
2

+ tan
θk+1

2
= 2 tan

θ0
2
,

⟨Nk, Nk+1⟩ = 1− tan
θk
2
tan

θk+1

2
= 1− tan2 θ0

2
.

If we note |Nk| = 1/ cos(θ0/2), then

|vk+1 − vk|2

= |ψk+1Nk+1 − ψkNk|2 + 2⟨ψk+1Nk+1 − ψkNk, ηk+1Tk+1 − ηkTk⟩+ |ηk+1Tk+1 − ηkTk|2

=
ψ2
k+1

cos2(θ0/2)
− 2ψkψk+1(1− tan2(θ0/2)) +

ψ2
k

cos2(θ0/2)
− 2⟨Nk, RNk+1⟩(ψk+1ηk − ψkηk+1)

+
η2k+1

cos2(θ0/2)
− 2ηkηk+1(1− tan2(θ0/2)) +

η2k
cos2(θ0/2)

= (1 + tan2(θ0/2))(ψ
2
k+1 + ψ2

k + η2k+1 + η2k)

− 2(ψkψk+1 + ηkηk+1)(1− tan2(θ0/2)) + 4 tan(θ0/2)(ηkψk+1 − ηk+1ψk).

Similarly since

⟨vk+1 − vk, Rνk⟩
= ⟨ψk+1Nk+1 − ψkNk + ηk+1Tk+1 − ηkTk, Rνk⟩

= ψk+1
⟨νk − νk+1, νk⟩

sin θk+1

− ψk
⟨νk−1 − νk, νk⟩

sin θk
− ηk+1

⟨νk+1 − νk, Rνk⟩
sin θk+1

+ ηk
⟨νk − νk−1, Rνk⟩

sin θk

= (ψk+1 + ψk) tan
θ0
2
− (ηk+1 − ηk),
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we have

⟨vk+1− vk, Rνk⟩2 = (ψk+1+ψk)
2 tan2 θ0

2
− 2 tan

θ0
2
(ψk+1+ψk)(ηk+1− ηk)+ (ηk+1− ηk)

2.

Substracting these factors we have

|vk+1 − vk|2 − ⟨vk+1 − vk, Rνk⟩2

= ψ2
k+1 + ψ2

k + tan2 θ0
2
(η2k+1 + η2k)− 2ψkψk+1 tan

2 θ0
2
+ 2ηkηk+1

+ 2 tan
θ0
2
(2ηkψk+1 − 2ηk+1ψk + ψk+1ηk+1 − ψk+1ηk + ψkηk+1 − ψkηk)

− 2(ψkψk+1 + ηkηk+1) + 2 tan2 θ0
2
(ψkψk+1 + ηkηk+1)

= (ψk+1 − ψk)
2 + tan2 θ0

2
(ηk+1 + ηk)

2 + 2 tan
θ0
2
(ψk+1 − ψk)(ηk+1 + ηk)

= [(ψk+1 − ψk) + tan
θ0
2
(ηk+1 + ηk)]

2

□

Lemma 2.3.32.

⟨vk, Rvk+1⟩ = −2 tan
θ0
2
(ψkψk+1 + ηkηk+1)− (1− tan2 θ0

2
)(ηkψk+1 − ηk+1ψk).

Proof. This is also a simple calculation:

⟨vk, Rvk+1⟩ = ⟨ψkNk − ηkRNk, ψk+1RNk+1 + ηk+1Nk+1⟩
= (ψkψk+1 + ηkηk+1)⟨Nk, RNk+1⟩ − (ηkψk+1 − ηk+1ψk)⟨Nk, Nk+1⟩

= −2 tan
θ0
2
(ψkψk+1 + ηkηk+1)− (1− tan2 θ0

2
)(ηkψk+1 − ηk+1ψk).

□

Theorem 2.3.33 (Second variation formula for the length functional).

δ2 Length =
∑
k

[
|∇ψk|2 − Λ2ψkψk+1 + Λ tan2 θ0

2
∇ψk(ηk+1 + ηk) +

Λ2

4
(ηk+1 − ηk)

2

]
l0

=
∑
k

[
|∇ψk|2 − Λ2ψkψk+1 + tan2 θ0

2
(Λ∇ψk(ηk+1 + ηk) + |∇ηk|2)

]
l0

In particular, for a normal variation we have

δ2 Length =
∑
k

(|∇ψk|2 − Λ2ψkψk+1)l0 = −
∑
k

ψk(∆ψk + Λ2ψk+1)l0,

where we use the integration by parts and take the line element at the vertex as Lk =
(lk + lk−1)/2 = l0.
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Proof. By using the previous lemmas, we have

(|∇vk|2 − ⟨∇vk, Rνk⟩2)lk + Λ⟨vk, Rvk+1⟩

=

(
|∇ψk|2 + Λ∇ψk(ηk+1 + ηk) +

Λ2

4
(ηk+1 + ηk)

2

)
l0

− Λ2l0(ψkψk+1 + ηkηk+1)− Λ(1− tan2 θ0
2
)(ηkψk+1 − ηk+1ψk)

= |∇ψk|2l0 + Λ∇ψk(ηk+1 + ηk)l0 +
Λ2

4
(ηk+1 − ηk)

2l0 − Λ2ψkψk+1l0

− Λ(1− tan2 θ0
2
)((ψk+1 − ψk)(ηk+1 + ηk)− (ψk+1ηk+1 − ψkηk))

= |∇ψk|2l0 + Λ tan2 θ0
2
∇ψk(ηk+1 + ηk)l0 +

Λ2

4
(ηk+1 − ηk)

2l0 − Λ2ψkψk+1l0

+ Λ(1− tan2 θ0
2
)(ψk+1ηk+1 − ψkηk).

Taking the summation, we have the desired result. □

2.3.7 Instability of non-convex regular polygons

It is known that embedded regular polygons are global minimizer for the discrete isoperi-
metric problem (see e.g. [13]). In this section we will prove the instability of the non-
convex regular polygons. To prove this, we find a special variation with a help of the
following discrete version of Wirtinger’s inequality:

Theorem 2.3.34 (Discrete Wirtinger’s inequality, [12]). Let ψ0, . . . , ψn be (n+1) real
numbers such that

ψ0 = ψn,
n−1∑
k=0

ψk = 0.

Then we have
n−1∑
k=0

(ψk+1 − ψk)
2 ≥ 4 sin2 π

n

n−1∑
k=0

ψ2
k

and the equality holds if and only if there exist A,B ∈ R such that

ψk = A cos
2πk

n
+B sin

2πk

n
.

We inculde the proof of this theorem for the completeness. The essential part of the
proof is the analysis of the discrete Laplacian by using the circulant matrix method.

Proof of Theorem 2.3.34. By some calculation we have∑
k

(ψk+1 − ψk)
2 =

∑
k

(−ψk−1 + 2ψk − ψk+1)ψk = ⟨LΨ,Ψ⟩,
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where we put

L =


2 −1 0 · · · 0 −1
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

. . .
...

...
−1 0 0 · · · −1 2

 , Ψ =


ψ0

ψ2

ψ3
...

ψn−1

 .

The (n× n)-matrix L is the circulant matrix, and the eigenvalues λk and eigenvectors
ek can be computed by the well known fact (cf. e.g. [11], p. 72) :

λk = 4 sin2 kπ

n
, ek = (1, ωk, . . . , ωk(n−1)) ∈ Cn, ω = exp(2π

√
−1/n).

In particular, L is positive semi-definite. The assumption
∑

k ψk = 0 shows that the
vector Ψ is perpendicular to the vector t(1, . . . , 1) which is the eigenvector of the eigen-
value λn = 0. Therefore for any Ψ satisfying

∑
k ψk = 0 we have∑

k

(ψk+1 − ψk)
2 = ⟨LΨ,Ψ⟩ ≥ 4 sin2 π

n
⟨Ψ,Ψ⟩

and the equality holds if and only if Ψ = e1 = en−1 =
t(1, ω, . . . , ωn−1). □

In the following, we will consider a special type of normal variation, i.e., a variation
which has the form:

pk(t) = pk + tψkNk, Nk = R(νk − νk−1)/ sin θk.

By the second variation formula (Theorem 2.3.33) we have

δ2 Length =
∑
k

(|∇ψk|2 − Λ2ψkψk+1)l0 =
∑
k

1

l0

[
(ψk+1 − ψk)

2 − 4ψkψk+1 tan
2 mπ

n

]
for any admissible variations, where we use the relation Λl0 = 2 tan(θ0/2) and put
θ0 = 2mπ/n for some m ∈ Z and assume that m and n are coprime. Note that the
area-preserving condition derives

∑
k ψk = 0 (Lemma 2.3.30).

Theorem 2.3.35 (Instability of non-convex regular polygons). Let n ≥ 5. By taking
ψk = A cos(2πk/n) + B sin(2πk/n), (A,B) ̸= (0, 0), we have

δ2 Length =
4

l0

[
sin2 π

n
− cos

2π

n
tan2 mπ

n

]∑
k

ψ2
k.

In particular, δ2 Length < 0 for 2 ≤ m ≤ n − 2, i.e., non-convex regular polygons are
unstable.
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Proof. By the discrete Wirtinger’s inequality we have

δ2 Length ≥
∑
k

4

l0
(ψ2

k sin
2 π

n
− ψkψk+1 tan

2 mπ

n
).

In the following we use the equality condition ψk = A cos(2πk/n) + B sin(2πk/n) and
put φk = −A sin(2πk/n) + B cos(2πk/n). Then we have

ψk+1 = ψk cos(2π/n) + φk sin(2π/n), ψkφk =
1

2
(B2 − A2) sin

4kπ

n
+ AB cos

4kπ

n
.

If we note the fact
∑

k ψkφk = 0, then

δ2 Length =
∑
k

4

l0

[
ψ2
k sin

2 π

n
− ψk

(
ψk cos

2π

n
+ φk sin

2π

n

)
tan2 mπ

n

]
=

4

l0

[
sin2 π

n
− cos

2π

n
tan2 mπ

n

]∑
k

ψ2
k.

If m = 1 or m = n− 1, then

δ2 Length ≥ 4

l0
sin2 π

n
tan2 π

n

∑
k

ψ2
k ≥ 0.

On the other hand, for 2 ≤ m ≤ n− 2 and (A,B) ̸= (0, 0) we have

δ2 Length ≤ − 4 sin2(π/n)(1 + 2 cos2(π/n))

l0 cos(2π/n)

∑
k

ψ2
k < 0,

where we use the fact tan2(mπ/n) ≥ tan2(2π/n) if 2 ≤ m ≤ n− 2, and cos(2π/n) > 0
if n ≥ 5. This proves the statement. □

2.4 Geometry of discrete anisotropic surface energy

2.4.1 Anisotropic surface energy and its first variation

Next we consider the anisotropic energy for simplicial surfaces. Let Mh be a simplicial
surface and {νT}T∈M(2)

h
be the unit normal vector fields on Mh, where M

(2)
h is the set of

2-skeltons, i.e., the set of triangles. For a continuous function γ : S2 → R>0, we define
the anisotropic surface energy of Mh as

Fγ(Mh) :=
∑

T∈M(2)
h

γ(νT ) · Area(T ).

This functional can be considered as a function Fγ : R3n → R as in the simplicial curve
case, where n is the number of vertices of Mh.
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Consider a vector-valued function vpj ∈ R3 defined on the ni interior vertices Vint =
{vp1 , . . . , vpni

} of Mh. We may extend this function to the boundary vertices of Mh as
well, by assuming vp = 0 ∈ R3 for each boundary vertex p. The vectors vpj are the
variation vector field of any boundary-fixing variation of the form

pj(t) = pj + t · vpj +O(t2),

that is, p′j(0) = vpj . We define the vector v⃗ ∈ R3n by

tv⃗ = (tvp1 , . . . ,
tvpn).

If we modify this vector as a (3 × n)-matrix (vp1 , . . . , vpn), each row vector can be
considered as an element in L0, where L0 is the set of conforming functions on Mh

which vanish on the boundary:

L0 := {f :Mh → R : f ∈ C0(Mh), f is linear on each T ∈Mh and f |∂Mh
= 0}.

Now we derive the first variation formula for the anisotropic surface energy. We assume
that γ is of class C1 in the following. That means we would like to find the vectors
∇pjFγ ∈ R3 which satisfies

d

dt t=0
Fγ = ⟨v⃗,∇Fγ⟩R3n =

n∑
j=1

⟨vpj ,∇pjFγ⟩R3 ,

where we denote t∇Fγ = (t∇p1Fγ, . . . ,
t∇pnFγ) ∈ R3n. In other words, we will calcu-

late the directional derivative of the function Fγ in R3n.

Theorem 2.4.1. Let γ : S2 → R>0 be a C1 function and p be an interior vertex of a
simplicial surface Mh. Then at each interior vertex p the anisotropic energy gradient
can be expressed in the following formula:

∇pFγ =
1

2

k∑
j=1

ξγ(νj)× (qj+1 − qj) =
1

2

k∑
j=1

(ξγ(νj−1)− ξγ(νj)))× (qj − p), (4.1)

where we write star (p) = {T1, . . . , Tk}, Tj = (p, qj, qj+1), νj := νTj
, and ξγ : S2 → R3 is

the Cahn-Hoffman map for γ.
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Remarks . (1) If we take γ ≡ 1, this formula reduces to the well-known formula
(so-called cotangent formula) in [34].

(2) We can define this quantity on any polyhedral surface, i.e., the quantity (4.1) is
independent of the choice of the triangulation of polygons. Because the triangles
lie on the same plane, they have the same unit normal. In general, we can treat
the same way if the polyhedral surface contains a simply-connected subsurface
lies in a plane (cf. [37], Remark 2.2).

(3) We can define the energy gradient at the edge as in the isotropic case [35], i.e., if
we take an interior edge e = q−p and denote the unit normal of adaject triangles
T1 = (p, r1, q) and T2 = (p, q, r2) as ν1, ν2, then

∇eFγ :=
1

2
(ξγ(ν1)− ξγ(ν2))× e.

The proof of well-definedness is completely the same as [35], Lemma 83. From
this viewpoint we can consider that the bending of a surface happens at edges
instead of vertices.

Lemma 2.4.2. For a triangle T = (p, q, r) we have

δArea(T ) =
1

2
[⟨ν × (r − q), vp⟩+ ⟨ν × (p− r), vq⟩+ ⟨ν × (q − p), vr⟩],

δν =
1

2Area(T )
[(r − q)× vp + (p− r)× vq + (q − p)× vr − 2(δArea(T ))ν] ,

where we write ν = νT .

Remark . Note that the first variation of the unit normal δν = δνT is tangent to the
triangle T .

Proof. We put ν̃ = (q − p) × (r − p). Then by differentiating 4Area(T )2 = ⟨ν̃, ν̃⟩, we
have

4 · 2Area(T )δArea(T ) = 2⟨δ[(q − p)× (r − p)], (q − p)× (r − p)⟩

⇐⇒ δArea(T ) =
1

2
⟨δ[(q − p)× (r − p)], ν⟩

Then we have

δArea(T ) =
1

2
⟨(vq − vp)× (r − p) + (q − p)× (vr − vp), ν⟩

=
1

2
⟨ν, (r − q)× vp + (p− r)× vq + (q − p)× vr⟩

=
1

2
[⟨ν × (r − q), vp⟩+ ⟨ν × (p− r), vq⟩+ ⟨ν × (q − p), vr⟩]
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The second statement follows from the fact

δν =
1

∥ν̃∥
(δν̃ − 2(δArea(T ))ν) =

1

2Area(T )
(δν̃ − 2(δArea(T ))ν).

□

Proof of Theorem 2.4.1. By using the lemma and the fact Dγ(ν) ⊥ ν, on the triangle
T = (p, q, r) we have

δ(γ(νT )Area(T )) = ⟨Dγ(ν), δν⟩Area(T ) + γ(νT )δArea(T )

=
1

2
[⟨Dγ(ν), (r − q)× vp + (p− r)× vq + (q − p)× vr⟩

+ γ(ν)(⟨ν × (r − q), vp⟩+ ⟨ν × (p− r), vq⟩+ ⟨ν × (q − p), vr⟩)]

=
1

2
(⟨ξγ(ν)× (r − q), vp⟩+ ⟨ξγ(ν)× (p− r), vq⟩+ ⟨ξγ(ν)× (q − p), vr⟩).

By summing up these terms we have

δFγ =
∑
p

⟨
1

2

k∑
j=1

ξγ(νj)× (qj+1 − qj), vp

⟩
,

where we write the vertices of the star (p) as {q1, . . . , qk}, qk+1 = q1, Tj := (p, qj, qj+1)
and νj := νTj

. □

Remark . We can consider this formula as a special case of the smooth version of the
first variation formula. On the triangle Tj, the π/2-rotation RTj

in (NTj
, νTj

)-plane can
be written as

RTj
(x) = x× c⃗j

|c⃗j|
.

By using this fact, we have

RTj
(PTj

(ξ(νTj
))) = RTj

(⟨ξ(νTj
), νTj

⟩νTj
+ ⟨ξ(νTj

), NTj
⟩NTj

)

= RTj
(γ(νTj

)νTj
+ ⟨Dγ(νTj

), NTj
⟩NTj

)

= γ(νTj
)νTj

× c⃗j
|⃗cj|

+ ⟨Dγ(νTj
), NTj

⟩νTj

=
1

|⃗cj|
(γ(νTj

)νTj
× c⃗j + ⟨Dγ(νTj

), c⃗j × νTj
⟩νTj

)

=
1

|⃗cj|
(γ(νTj

)νTj
× c⃗j + ⟨Dγ(νTj

)× c⃗j, νTj
⟩νTj

)

=
1

|⃗cj|
(γ(νTj

)νTj
× c⃗j +Dγ(νTj

)× c⃗j)

=
1

|⃗cj|
(Dγ(νTj

) + γ(νTj
)νTj

)× c⃗j =
1

|⃗cj|
ξ(νTj

)× c⃗j.
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Here we use the fact Dγ(νTj
), c⃗j ⊥ νTj

(hence Dγ(νTj
)× c⃗j ∥ νTj

). Therefore we have

k∑
j=1

⟨c⃗j × ξ(νTj
), v⟩ =

k∑
j=1

⟨−RTj
(PTj

(ξ(νTj
))), v⟩|⃗cj| =

∫
∂star (p)

⟨−R(P (ξ)), v⟩ds̃

□

2.4.2 Discrete constant anisotropic mean curvature surfaces

The volume of oriented surface Mh is the oriented volume enclosed by the cone of the
surface over the origin in R3

Vol(Mh) :=
1

3

∑
T=(p,q,r)∈Mh

⟨p, νT ⟩ · Area(T ) =
1

6

∑
T=(p,q,r)∈Mh

⟨p, q × r⟩,

where we denote

νT =
(q − p)× (r − p)

∥(q − p)× (r − p)∥
.

Then we have the first variation of the volume with respect to the variation vector field
v⃗ ∈ R3n by

d

dt |t=0
Vol(Mh) =

∑
p

⟨vp,∇p Vol⟩,

where

∇p Vol =
1

6

∑
T=(p,q,r)∈star (p)

q × r.

Remark . Since ∂ star (p) is a closed curve for an interior vertex p, we have∑
T=(p,q,r)∈star (p)

q × r =
∑

T=(p,q,r)∈star (p)

(q − p)× (r − p).

Therefore we can modify the first variation of the volume as follows:

δVol =
∑
p

⟨ 1

3Ap

∑
T∈star (p)

Area(T )νT , vp

⟩Ap.

Then we have weighted summations of the face normals which are volume descent
direction:

NV
p :=

1

3Ap

∑
T∈star (p)

Area(T )νT ,

and it seems to be natural to take 3Ap = Area(star (p)). However, since there is no
natural area element at the vertices, another choice can be allowed. □
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By virtue of the smooth case, we define the discrete constant anisotropic mean
curvature surface as follows.

Definition 2.4.3 (Discrete CAMC surface (cf. [37], Definition 2.3)). Let γ : S2 → R
be a C1 function. Then a simplicial surfaceMh has constant anisotropic mean curvature
(CAMC) if there exists a constant Λ such that

∇pFγ + 2Λ∇p Vol = 0

holds for all interior vertex p. If Λ = 0, we call the surface discrete anisotropic minimal
surface. When γ ≡ 1, this reduces to the definition of the discrete CMC surfaces ([37]).

Remark . As we remarked before, if Mh is a discrete surface that contains a simply-
connected discrete subsurface M ′

h that lies in a plane, then it follows easily from the
formula (4.1) that the discrete anisotropic minimality is independent of the choice of
triangulation of the trace of M ′

h as in the isotropic case (see [37], Remark 2.2).

We have the following Minkowski-type formula.

Proposition 2.4.4 (Discrete Minkowski-type formula). Let γ : S2 → R be a C1

function and Mh be a closed discrete CAMC-Λ surface. Then we have the following
Minkowski-type formula: ∑

T=(p,q,r)

(γ(νT ) + Λ⟨p, νT ⟩)Area(T ) = 0.

Proof. We consider the homothety p(t) = p+ tp = (1+ t)p. Then we have δFγ(Mh,t) =
2Fγ(Mh). On the other hand, by using the CAMC condition ∇pFγ = −2Λ∇p Vol and
the first variation of the volume, we have

δFγ(Mh,t) =
∑
p

⟨∇pFγ, p⟩ = −2Λ
∑
p

⟨∇p Vol, p⟩

= −Λ

3

∑
p

∑
star (p)∋T=(p,q,r)

⟨p, q × r⟩

= −Λ
∑

T=(p,q,r)

⟨p, q × r⟩ = −2Λ
∑

T=(p,q,r)

⟨p, νT ⟩Area(T ).

Therefore we conclude

2Fγ(Mh) = −2Λ
∑

T=(p,q,r)

⟨p, νT ⟩Area(T ) ⇐⇒
∑

T=(p,q,r)

(γ(νT ) + Λ⟨p, νT ⟩)Area(T ) = 0.

□
Remark . The following question is naturally arised from the observation in the planar
curve case: can we prove the relation (p + q + r)/3 = −(1/Λ)ξγ(νT ) on every triangle
T = (p, q, r)? The answer is trivially false since we have discrete cylinders (Example
2.4.9). However, the following theorem is known in convex geometry [13].
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Theorem 2.4.5 ([28], [29]). Of all convex polyhedra with a fixed surface area and the
same number of faces, the best polyhedron with the largest volume is circumscribed
about a sphere which touches each face in its barycenter.

Some calculation shows the following relation:

∇pFγ + 2Λ∇p Vol =
1

2

∑
T=(p,q,r)∈star (p)

(
ξγ(νT ) +

Λ

3
(p+ q + r)

)
× (r − q),

Therefore, if every barycenter of the triangles touches to the rescaled Cahn-Hoffman
map −(1/Λ)ξγ, then the surface is discrete CAMC-Λ. In particular, the regular tetra-
hedron, regular octahedron and regular icosahedron are discrete CMC surfaces as re-
marked in [35].

(a) Regular tetrahedron (b) Regular octahedron (c) Regular icosahedron

Figure 2.10: Discrete CMC surfaces

We also remark the following fact:

γ(νT ) + Λ⟨p, νT ⟩ = 0 ⇐⇒ − 1

Λ
ξγ(νT ) ∈ span{p, q, r}

for any triangle T = (p, q, r). Moreover, γ(νT ) + Λ⟨p, νT ⟩ = 0 for every triangle
T = (p, q, r) if and only if the vector field XT := ξγ(νT ) + (Λ/3)(p + q + r) defines
a piecewise constant vector field on the simplicial surface. For example, a discrete
cylinder (Example 2.4.9) satisfies this condition with γ ≡ 1 even though the triangles
of the surface does not necessarily touch to the sphere.

Another viewpoint is to consider the energy gradient on edges. As we remarked
before, we can define the energy gradient on the edge e = q − p as follows:

∇eFγ :=
1

2
(ξγ(ν1)− ξγ(ν2))× e, ∇e Vol =

1

6
(r1 − r2)× e,

where we write star (e) = {T1, T2}, T1 = (p, r1, q), T2 = (p, q, r2). Then we have

∇eFγ − Λ∇e Vol =
1

2

[(
ξγ(ν1) +

Λ

3
(p+ q + r1)

)
−
(
ξγ(ν2) +

Λ

3
(p+ q + r2)

)]
× e.

Therefore, if we assume ∇eFγ = Λ∇e Vol for every interior edge e, then

ω(e) :=
1

2

(
ξγ(ν) +

Λ

3
(p+ q + r)

)
× e,

is a well-defined discrete 1-form, where T = (p, q, r) is either triangle of star (e).
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2.4.3 Examples of discrete CAMC surfaces

Examples of discrete anisotropic minimal surfaces:

Example 2.4.6 (Discrete anisotropic Plateau-type problem). For fixed points

q1 = (−1, 0,−1), q2 = (0,−1, 0), q3 = (1, 0,−1), q4 = (0, 1, 0),

we want to find a point p = (0, 0, h) which satisfies ∇p Area = 0. This is one of the
simplest case of the discrete Plateau-type problem. A direct calculation shows

∇p Area =
2(1 + 2h)√
2h2 + 2h+ 2

(0, 0, 1).

Therefore we have ∇p Area = 0 ⇐⇒ h = −1/2.
Next we consider the anisotropic version of this surface. If we choose

γ : S2 → R>0, γ(ν1, ν2, ν3) :=
√
a2ν21 + b2ν22 + c2ν23 ,

then the Cahn-Hoffman map for γ is represented as

ξγ(ν1, ν2, ν3) =
1√

a2ν21 + b2ν22 + c2ν23
(a2ν1, b

2ν2, c
2ν3),

therefore the Wulff shape for γ is the ellipsoid (x/a)2+(y/b)2+(z/c)2 = 1 and we have

∇pFγ =
2((a2 + b2)h+ a2)√
(1 + h)2a2 + h2b2 + c2

(0, 0, 1).

Therefore ∇pFγ = 0 ⇐⇒ h = −a2/(a2 + b2). We remark that if we choose a =
b = c = 1, then γ ≡ 1 and it reduces to the previous result. These surfaces are stable
since we will show that a discrete CAMC surface with only one interior vertex must
be a stable (Corollary 2.4.16). Although it is difficult to find the discrete anisotropic

(a) a = b = 1 (b) a = 2, b = 1 (c) a = 1, b = 2

Figure 2.11: Discrete (stable) anisotropic minimal surfaces

minimal surfaces having more refined mesh by hand, we can visualize such surfaces
numerically (gradient flow method) as in the following figures.
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(a) a = b = 1 (b) a = 2, b = 1 (c) a = 1, b = 2

Figure 2.12: Discrete anisotropic minimal surfaces (numerically)

Example 2.4.7 (Square anisotropic catenoid). We take γ(ν1, ν2, ν3) = (ν81 + ν82 +
ν83)

1/8. For constructing Schwarz P surface (triply periodic minimal surface in R3), we
sometimes use so-called square catenoid as in the Figure 2.13 (left). From the square
catenoid, we can construct a square anisotopic catenoid numerically (Figure 2.13, right).

Figure 2.13: Discrete square catenoid and square anisotropic catenoid

Example 2.4.8 (Discrete timelike catenoid). If we take γ(ν1, ν2, ν3) =
√
1− 2ν23 , |ν3| <

1/
√
2, the energy functional Fγ coincides with the area functional in the Lorentz-

Minkowski space (R3, dx21 + dx22 − dx23) [17].
With this energy, we can consider a discrete version of the timelike catenoid which

rotation axis is the timelike direction as in [37]. Consider the meridian curve (x(t), 0, t)
as

x(t) = r cos

(
1

r
at

)
, a =

r

δ
arccos

(
1− 1

r2
δ2

1 + cos(2π/k)

)
Note that we have

lim
δ→+0

r

δ
arccos

(
1− 1

r2
δ2

1 + cos(2π/k)

)
=

√
2

1 + cos(2π/k)
, lim

k→∞

√
2

1 + cos(2π/k)
= 1.

Then the discrete surface whose dihedral angle is 2π/k, k ∈ N, k ≥ 3 and the profile
curve (xj, 0, zj) defined by

zj := jδ, xj := x(zj)

is a discrete anisotropic minimal surface until the trapezoids are degenerate (Figure
2.14). The planar trapezoids of the surface may be triangulated arbitrarily by the
previous remark.
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Figure 2.14: Discrete timelike catenoid (avoiding singularities)

Examples of discrete (non-zero) CAMC surfaces:

Example 2.4.9 (Discrete cylinder ([35], p. 116)). Let X : Z2 → R3 be a map

X(j, l) := (a cos(2πjm/k), a sin(2πjm/k), el), k ≥ 3, 1 ≤ m ≤ k − 1, a, e > 0,

where we assume that m and k are coprime. The image of the map X, denoted by Mh,
is a “discrete cylinder”. For any vertex p on the meridian line we have

∇p Area = e
√
2(1− cos(2πm/k))

1
0
0

 , ∇p Vol =

ae sin(2πm/k)0
0

 .

Therefore if we set

H := H(k, e) := − 1

2a

√
2

1 + cos(2πm/k)
= − 1

2a cos(πm/k)
,

then we have∇p Area+2H∇p Vol = 0 andMh is discrete CMC surface by the definition.
It is interesting that H does not depend on the value e and we saw that the value

(a) m = 1, k = 17 (b) m = 5, k = 17 (c) m = 9, k = 17

Figure 2.15: Discrete cylinders

−1/a cos(πm/k) appeared as the curvature for regular k-gons. For the casem = 1, when
k → ∞ and e→ 0, we have a smooth cylinder with radius a and H(k, e) → −1/(2a).

Example 2.4.10 (Discrete unduloid-type surface ([35], p. 117)). By the similar calcu-
lation we also have a discrete unduloid-type surface. We consider the following discrete
surface:

X(j, l) :=

{
(a cos(2πj/k), a sin(2πj/k), el) if l is odd,

(b cos(2πj/k), b sin(2πj/k), el) if l is even.
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For any vertex p on the meridian curve we have

∇p Area =
2(1− c)(e2 + (1 + c)a(a− b))√

2e2(1− c) + s2(b− a)2

1
0
0

 , ∇p Vol =
se(2a+ b)

3

1
0
0

 ,

where we put c = cos(2π/k) and s = sin(2π/k). Note that if we set a = b this reduces
to the discrete cylinder.

Example 2.4.11 (Visualization of generating crystals). As we remarked in the preface,
the anisotropic energy gives a mathematical model of small crystals. By using the
energy gradient descent method, we can visualize the generation of shapes (Figure
2.16). On the other hand, although we cannot handle a non-smooth energy density by

Figure 2.16: Anisotropic energy descent (γ(ν1, ν2, ν3) = (ν201 + ν202 + ν203 )1/20).

out method, we can visualize such kind of objects by specifying the Cahn-Hoffman map
except a measure zero set on the unit sphere (Figure 2.17).

Figure 2.17: Anisotropic energy descent (γ(ν1, ν2, ν3) = |ν1|+ |ν2|+ |ν3|).

2.4.4 Second variation of the anisotropic energy

Next we consider the second variation of the anisotropic energy Fγ of a simplicial
surface Mh. We assume that γ is of class C2 in the following. Consider a variation of
the form

pj(t) = pj + tvpj +O(t2), j = 1, . . . , n

with the variation vector field tv = (tv1, . . . ,
tvn). We say a variation is admissible (or

permissible) if the variation is volume-preserving and fixes the boundary.

Definition 2.4.12 (Stability of discrete CAMC surface). Let γ : S2 → R be a C2

function andMh be a discrete CAMC surface. Then Mh is said to be stable if δ2Fγ ≥ 0
for any admissible variation.
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Lemma 2.4.13 (cf. [37], Lemma 5.1). For a discrete CAMC-Λ surface Mh with vertex
set V , we have

δ2Fγ :=
d2

d2t |t=0
Fγ =

∑
p∈V

⟨vp, δ(∇pFγ + 2Λ∇p Vol)⟩.

for any admissible variation.

The proof is completely the same as Lemma 2.3.23.
We now decompose δ2Fγ into the sum of two terms

tv⃗Qγ v⃗ :=
∑
p∈V

⟨vp, δ(∇pFγ)⟩, tv⃗QV v⃗ :=
∑
p∈V

⟨vp, δ(∇p Vol)⟩.

Then Qγ and QV are 3n× 3n-matrix and

δ2Fγ =
d2

d2t |t=0
Fγ = tv⃗(Qγ + 2ΛQV )v⃗.

Since

⟨vp, δ∇p Vol⟩ =
1

6

∑
T=(p,qj ,qj+1)∈star (p)

⟨vp, vqj × qj+1 + qj × vqj+1
⟩

=
1

6

∑
j

⟨vp, (qj−1 − qj+1)× vqj⟩

=
1

6

∑
j

tvp[(qj−1 − qj+1)× e1, (qj−1 − qj+1)× e2, (qj−1 − qj+1)× e3]vqj ,

we have the following result:

Proposition 2.4.14 ([37], Proposition 5.2). The matrix QV can be considered as an
n× n grid with a 3× 3 entry QV

p,q for each pair of vertices p, q ∈ VInt of Mh, so that

tv⃗QV v⃗ =
∑
p∈V

⟨vp, δ(∇p Vol)⟩

for the variation vector field v⃗ of any permissible variation. We have QV
p,p = 0 and

QV
p,q = 0 when the vertices p and q are not adjacent, and

QV
p,q =

1

6

 0 r2,3 − r1,3 r1,2 − r2,2
r1,3 − r2,3 0 r2,1 − r1,1
r2,2 − r1,2 r1,1 − r2,1 0


=

1

6
((r1 − r2)× e1, (r1 − r2)× e2, (r1 − r2)× e3)

for adjacent unequal p and q, where (p, q, rk) are the two triangles in star (pq) and
rk = (rk,1, rk,2, rk,3) for k = 1, 2, {e1, e2, e3} is the canonical basis of R3, and (p, q, r2)
is properly oriented and (p, q, r1) is not.
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Next we consider the matrix Qγ. In the proof of the first variation formula (Theorem
2.4.1), we showed

d

dt
Fγ =

1

2

∑
T=(p,q,r)

[⟨ξγ(νT )× (r− q), vp⟩+ ⟨ξγ(νT )× (p− r), vq⟩+ ⟨ξγ(νT )× (q− p), vr⟩].

Therefore we put

tv⃗Qγ v⃗

=
1

2

∑
T=(p,q,r)

[⟨dξγ(δνT )× (r − q), vp⟩+ ⟨dξγ(δνT )× (p− r), vq⟩+ ⟨dξγ(δνT )× (q − p), vr⟩

+ ⟨ξγ(νT )× (vr − vq), vp⟩+ ⟨ξγ(νT )× (vp − vr), vq⟩+ ⟨ξγ(νT )× (vq − vp), vr⟩]

=:
1

2

∑
T=(p,q,r)

(IT + IIT ).

A simple calculation shows that

IIT = −2⟨ξγ(νT ), vp × vq + vq × vr + vr × vp⟩

For a triangle T = (p, q, r) if we put

AT := (r− q)× vp+(p− r)× vq +(q− p)× vr = (p− r)× (vq − vp)+ (q− p)× (vr − vp),

then we have

δνT =
1

2Area(T )
(AT − ⟨AT , νT ⟩νT ),

IT =
1

2Area(T )
⟨dξγ(AT − ⟨AT , νT ⟩νT ), AT ⟩ = 2Area(T )⟨dξγ(δνT ), δνT ⟩.

The last equality follows from the facts the first variation of the unit normal δνT is tan-
gent to the triangle and dξγ(δνT ) is perpendicular to νT (since dξγ is the endomorphism
of the tangent space).

Proposition 2.4.15. The bilinear form tv⃗Qγ v⃗ can be represented as follows:

tv⃗Qγ v⃗ =
∑

T=(p,q,r)

⟨dξγ(AT − ⟨AT , νT ⟩νT ), AT ⟩
4Area(T )

− ⟨ξγ(νT ), vp × vq + vq × vr + vr × vp⟩,

where we put AT := (r − q)× vp + (p− r)× vq + (q − p)× vr.

Although we cannot achieve to determine the explicit representation of Qγ, we have
the following facts: If we consider the matrix Qγ as an n × n grid with a 3 × 3 entry
Qγ

p,q for each pair of interior vertices p, q of Mh, then
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(1) Qγ
p,q = 0 when the vertices p and p are not adjacent.

(2) For the diagonal entries Qγ
p,p we have

tvpQ
γ
p,pvp =

∑
T=(p,q,r)∈star (p)

1

4Area(T )
⟨dξγ(AT − ⟨AT , νT ⟩νT ), AT ⟩

=
∑

T=(p,q,r)∈star (p)

1

4Area(T )
⟨dξγ(AT − ⟨AT , νT ⟩νT ), AT − ⟨AT , νT ⟩νT ⟩,

where we put AT = (r − q)× vp.

(3) For adjacent vertices p, q if we denote the adjacent triangles T1 = (p, r1, q) and
T2 = (p, q, r2), then

tvpQ
γ
p,qvq =

⟨dξγ(A1 − A1⟨A1, ν1⟩ν1), A1⟩
4Area(T1)

+
⟨dξγ(A2 − A2⟨A2, ν2⟩ν1), A2⟩

4Area(T2)

− ⟨ξγ(ν1)− ξγ(ν2), vp × vq⟩,

where we put A1 = (r2− q)× vp+(p− r2)× vq, A2 = (q− r1)× vp+(r1− p)× vq,
ν1 := νT1 and ν2 := νT2 .

Moreover, we still have the following stability result.

Corollary 2.4.16. Let γ : S2 → R>0 be of class C2 and convex. If a discrete CAMC
surface Mh has only one interior vertex, then it is stable.

Proof. The single interior vertex is denoted by p, and star (p) = Mh. Then Qγ = Qγ
p,p

and QV = QV
p,p are 3× 3 matrices. By Propsition 2.4.14, QV = 0 and we have

tvpQ
γ
p,pvp =

1

4

∑
T=(p,q,r)∈star (p)

1

Area(T )
⟨dξγ(AT − ⟨AT , νT ⟩νT ), AT − ⟨AT , νT ⟩νT ⟩.

for any vector vp ∈ R3, where we put AT := (r − q) × vp. Since the matrix dξγ is
positive semidefinite on the tangent space by the assumption, we have δ2Fγ ≥ 0 for all
admissible variations. □

Remark . This is a generalization of the stability result in [37], Corollary 5.1. We also
remark that the convexity condition for the energy density γ : S2 → R>0 seems to be
natural requirement for the stability (cf. [31], [25], [32] for strictly convex case, [24] for
convex case).
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Appendix

Examples of the anisotropic energy

The following contents are contained in [39] and we will reformulate with our notation.
In the following we assume that X has a nonparametric form, i.e., M ⊂ Rn is a

domain and X(x) = (x, φ(x)) for some smooth function φ : M → R. In this case, the
unit normal vector field νX along X and the area element can be written as follows:

νX =
1√

1 + ∥∇φ∥2
(∇φ,−1), dAX =

√
1 + ∥∇φ∥2dx.

We also assume that the image of the Cahn-Hoffman map W̃γ has a nonparametric

form. In this case, a local coordinate of W̃γ is defined by using the projection

ξγ(ν) = (y1, . . . , yn, yn+1) 7→ (y1, . . . , yn).

By using this notation, we can write the anisotropic shape operator and the anisotropic
mean curvature as

−dξ̃γ = −
(
∂yi
∂xj

)
i,j=1,...,n

, Λ = − 1

n

n∑
i=1

∂yi
∂xi

.

Example 2.4.17 (isotropic case). If we take Ω = {ν = (ν1, . . . , νn+1) ∈ Sn | νn+1 < 0}
and γ(ν) ≡ 1, then we have ξγ(ν) = ν for ν ∈ Ω, W̃γ = Ω and

ξ̃γ = ξγ ◦ νX =
1√

1 + ∥∇φ∥2
(∇φ,−1), Λ = − 1

n

n∑
i=1

∂

∂xi

(
φi√

1 + ∥∇φ∥2

)
,

where we write φi = ∂φ/∂xi. Therefore X is CAMC if and only if X is a CMC
hypersurface in Rn+1 in the usual sense. □

Example 2.4.18 (hyperbolic case). If we take Ω = {ν ∈ Sn | νn+1 < −1/
√
2} and

γ : Ω → R>0 to be

γ(ν) :=
√
ν2n+1 − ν21 − · · · − ν2n =

√
−1 + 2ν2n+1
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Then we have

ξγ(ν) =
1

γ(ν)
(−ν1, . . . ,−νn, νn+1),

and the image of the Cahn-Hoffman map becomes the lower sheet of the two-sheeted
hyperboloid y2n+1 − (y21 + · · ·+ y2n) = 1. Since∫

M

γ(νX) dAX =

∫
M

√
1− ∥∇φ∥2
1 + ∥∇φ∥2

·
√
1 + ∥∇φ∥2 dx =

∫
M

√
1− ∥∇φ∥2 dx,

the anisotropic surface energy coincides with the n-dimensional volume of X in the
Lorentz-Minkowski space Rn,1. Moreover we have

ξ̃γ = ξγ ◦ νX =
1√

1− ∥∇φ∥2
(−∇φ,−1), Λ =

1

n

n∑
i=1

∂

∂xi

(
φi√

1− ∥∇φ∥2

)
,

Therefore X is CAMC if and only if X is a spacelike constant mean curvature hyper-
surface in the Lorentz-Minkowski space Rn

1 . □
More generally we have the following result:

Theorem 2.4.19 ([17], Theorem 1). Set Ω1 = {ν = (ν1, ν2, ν3) ∈ S2 | |ν3| > 1/
√
2},

Ω2 = {ν = (ν1, ν2, ν3) ∈ S2 | |ν3| < 1/
√
2}. Define a function γ : S2 → R as

γ(ν1, ν2, ν3) :=
√

|ν23 − ν21 − ν22 | =
√

|2ν23 − 1|.

Then, an immersion X :M → R3 with Gauss image ν(M) ⊂ Ω1∪Ω2 is anisotropic zero
mean curvature if and only if the mean curvature of X is zero as an immersed surface
in R3

1.

Example 2.4.20 (parabolic case). If we take Ω = {ν ∈ Sn | νn+1 < 0} and γ : Ω → R>0

to be

γ(ν) = −1

2

ν21 + · · ·+ ν2n
νn+1

=
1

2

(
νn+1 −

1

νn+1

)
Then we have

ξγ(ν) =

(
− ν1
νn+1

, . . . ,− νn
νn+1

,
1− ν2n+1

2ν2n+1

)
and the image of the Cahn-Hoffman map of γ becomes the paraboloid yn+1 = (1/2)(y21+
· · ·+ y2n). Since we have∫

M

γ(νX) dAX =

∫
M

∥∇φ∥2

2
√

1 + ∥∇φ∥2
dAX =

1

2

∫
M

∥∇φ∥2 dx,

the anisotropic surface energy coincides with the Dirichlet energy of φ. Moreover we
have

ξ̃γ = ξγ ◦ νX = (∇φ, ∥∇φ∥2/2), Λ = − 1

n

n∑
i=1

∂2φ

∂x2i
, Hγ

2 = φ11φ22 − φ2
12.
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Therefore X has zero anisotropic mean curvature if and only if φ is harmonic on M .
Note that this geometry is called the isotropic geometry [33]. □

In the paper [39], it is remarked that the relation between the energy density and
its Wulff shape by using the Legendre transformation. We will give its reformulation
in our notation.

Let us consider a nonparametric case and we use the same notation as before. Let
Sn
− := {ν = (ν1, . . . , νn+1) ∈ Sn | νn+1 < 0} be the lower hemisphere of Sn, Ω ⊂ Sn

− be
a domain and γ : Ω → R>0 be a positive-valued C2 function. Moreover we assume that
the image of the Cahn-Hoffman map ξγ, denoted by M0, can be represented as a graph
M0 = {y ∈ Rn | w = G(y)} for some function G.

Let us recall the definition of the Legendre transformation. The Legendre transfor-
mation of a function G(y) = G(y1, . . . , yn) is given by a function

v = G∗(p1, . . . , pn), pi =
∂G

∂yi
, G∗ := −G+

∑
i

yipi.

We assume that det(Gyiyj) ̸= 0 to make the map y 7→ p diffeomorphism. By the
definition of the anisotropic Gauss map we have pi = ∂G/∂yi = ∂φ/∂xi. Therefore it
follows from the representation of the unit normal that we have

G∗(p1, . . . , pn) = G∗(−ν1/νn+1, . . . ,−νn/νn+1).

and
G∗(p)dx = −νn+1G

∗(−ν1/νn+1, . . . ,−νn/νn+1)dAX .

We will prove the coefficient of dAX coincide with the energy density γ we gave first.
If we choose the unit normal of M0 as

ν =

(
∇G√

1 + |∇G|2
,− 1√

1 + |∇G|2

)
=

(
∇φ√

1 + |∇φ|2
,− 1√

1 + |∇φ|2

)
,

then the support function of M0 becomes

⟨(y,G(y)), ν⟩Rn+1 =
⟨∇G, y⟩Rn −G√

1 + |∇φ|2

= −νn+1G
∗(p) = −νn+1G

∗(−ν1/νn+1, . . . , νn/νn+1).

On the other hand if we compute the support function of M0 as the image of the
Cahn-Hoffman map we have ⟨ξγ(ν), ν⟩ = γ(ν), hence we have the desired result.

In this sense, the energy appeared in [39] (Proposition 5) can be regarded as the
anisotropic energy we defined. As he mentioned there, we have the following first
variation formula

δ

∫
G∗(p) dx = n

∫
Λδφ dx

for any support compact variation of φ.
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