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Abstract

A plate submerged at a certain depth underneath the sea surface has been proposed as a structure type for different
purposes, including motion response reduction, wave control, and wave energy harvesting. In the present study, the
three-dimensional wave radiation problem is investigated in the context of the linear potential theory for a submerged
ring plate in isolation or attached to a floating column as an appendage. In the latter case, the ring plate is attached at
a certain distance above the column bottom. The structure is assumed to undergo a heave motion. An analytical
model is developed to solve the wave radiation problem via the eigenfunction expansion method in association with
the region-matching technique. With the velocity potential being available, the hydrodynamic coefficients, such as
added mass and radiation damping, are obtained through the direct pressure integration. An alternative solution of
radiation damping has also been developed in this study, in which the radiation damping is related to the Kochin
function in the wave radiation problem. After validating the present model, numerical analysis is performed in detail
to assess the influence of various plate parameters, such as the plate size and submergence depth. It is noted that the
additional added mass due to the attached ring plate is larger than that when the plate is in isolation. Meanwhile, the
radiation damping of the column for the heave motion can vanish at a specific wave frequency by attaching a ring

plate, corresponding to a condition that there exist no progressive waves in the exterior region.
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1 Introduction

A submerged plate can be frequently employed as an es-
sential component of many offshore structures. Attaching a
submerged plate to a floating system can increase the added
mass and provide additional damping for the heave motion.
The natural frequency of the structure can be tuned out of
the dominant frequency range of incident waves, and the
resonant motion response can be substantially reduced
(Downie et al., 2000; Magee et al., 2000; Li et al., 2013a).
Possible utilization of a submerged plate for other purposes,
such as wave control and coastal morphology control, is
also promising (Yip and Chwang, 1997; Yu, 2002). Besides,
floating structures with attached plates have been regarded
as potential wave energy harvesting devices (Orer and
Ozdamar, 2007; Olaya et al., 2015; Liu et al., 2016). There-
fore, the functional performance of a submerged plate is of
great common interest in practical engineering.

Various studies have been performed to evaluate the hy-
drodynamic properties related to a submerged plate. Yu and

Chwang (1993) solved the wave scattering over a sub-
merged thin plate by means of the eigenfunction expansion
matching method. Martin and Farina (1997) used the hyper-
singular integral equation method to examine the radiation
of water waves by a heaving thin plate submerged beneath
the free surface of deep water. Molin (2001) proposed a the-
oretical model to predict the added mass and damping of
periodic arrays of plates. Tao and Thiagarajan (2003a,
2003b) studied the flow characteristics around an oscillat-
ing plate by direct numerical simulation based on the finite
difference method. Farina (2010) used generalized Love’s
integral equation to formulate the wave radiation by a heav-
ing horizontal plate at a shallow submergence depth. Koh
and Cho (2016) provided an analytical method for simulat-
ing the wave radiation by a circular cylinder undergoing a
heave motion with double thin plates. McCauley et al.
(2018) applied the eigenfunction expansion method along
with the transform matrix method to solve the linear diffrac-
tion and radiation problems for an arbitrary array of sub-
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merged cylinders.

To maintain sustainability and stability, the motion re-
sponse of a ship or an offshore structure needs to be con-
trolled within acceptable limits. Therefore, damping ele-
ments, such as heave plates, are often used as response re-
duction devices in a floating system. Attaching a heave plate
to the main body can increase the added mass of the struc-
ture and provide additional damping for the heave motion as
well. Consequently, the hydrodynamic properties of a float-
ing system can be changed by increasing its natural fre-
quency in heave and introducing extra damping. Heave
plates can be thin plates of circular or square shape attached
at the keel of the main body or fitted beneath the main body
(Downie et al., 2000; Li et al., 2013b). In the meantime,
heave plates can also be ring-shaped attached at a certain
distance above the keel (Koh and Cho, 2016). So far, the
functional performance of submerged structures has been
studied by various researchers. However, it is still neces-
sary to understand the hydrodynamic properties of a sub-
merged ring plate and its effects on the performance of the
main structure.

The hydrodynamic analysis of an arbitrary-shaped geo-
metry can be usually performed by a mesh-based numerical
method. As to a submerged thin plate, since the vertical di-
mension is typically much smaller than the horizontal, a par-
ticular kind of near-singularities occur in the single- and
double-layer integration kernel of 1/r and 1/72 types (Jiang
et al., 2014). To overcome this issue, a self-adaptive Gauss
integral method has been developed and adopted in some
studies such as Teng et al. (2010) and Ning et al. (2015). In
this method, when a certain calculational element is found
to be larger in size than that of the neighboring one, this ele-
ment will be divided into sub-elements in a self-adaptive
manner. The subdivision process does not stop until the
characteristic size of the sub-element is equal to or smaller
than that of the neighboring one. Then, the integral in the
original element is transformed into that in the sub-ele-
ments with more Gauss points. Based on this method, high
precision calculation of the nearly singular integral can be
ensured.

Besides the numerical method, a substitution approach,
e.g., an analytical approach, can also be effective in the hy-
drodynamic analysis. As the mesh generation process is not
involved, the analytical approach can be free of the weak-
ness associated with the near-singularity in the numerical
method. For this reason, the analytic approach is adopted in
this study to analyze the wave radiations by a submerged
ring plate, within the scope of linear potential theory. In
practical engineering, a submerged plate is usually used as
an appendage to a floating structure. Therefore, the wave ra-
diations by a compound structure consisting of a floating
column and a ring plate attached at a certain distance above
the column bottom are also concerned. The fluid domain is
divided into different regions and different expansions are

developed in these regions. They are matched at the con-
junct bounds to determine the unknown coefficient in the
expansion of the velocity potentials. Thereafter, the hydro-
dynamic coefficients can be obtained by integrating the flu-
id pressure over the body surface. Moreover, an alternative
solution of radiation damping is also developed by deriving
the Kochin function in the wave radiation problem. After
examining the convergence and validity of the present mod-
el, detailed numerical analysis is performed, in which vari-
ous plate geometric parameters are systematically adjusted
to investigate their effects on the hydrodynamic coefficients.

With the introduction, the governing equation and
boundary condition for the wave radiation problem is intro-
duced. In Sections 3 and 4, hydrodynamic analysis is per-
formed for both cases of a submerged ring plate in isolation
or attached to a floating column as an appendage, respect-
ively. In Section 5, expressions of added mass and radiation
damping are given, which is followed by the convergence
test and validation in Section 6. In Section 7, computed res-
ults are demonstrated and discussed. Finally, concluding re-
marks are given based on the previous analysis.

2 Governing equation and boundary condition

The problems of wave radiation by a submerged ring
plate and a compound structure consisting of a floating
column and an attached ring plate are both considered in
this study. The Oxy and Orf planes are both located on the
undisturbed free surface and the z-axis points upward. The
structure performs vertical oscillations of radian frequency
w and a small amplitude &. Then, the displacement of the
motion, Z(f), can be given as follows:

(1) = Re[&e™], M

where i = V—1; Re[ ] denotes the real part of a complex ex-
pression; ¢ is the time. It is assumed that the fluid is inviscid
and incompressible, and the fluid motion is irrotational. The
flow field can be described in terms of a velocity potential
@(x,t). Based on the linear wave theory, @(x,f) can be
reasonably expressed as:

@ (x,1) = Re|~iwép (x)e 7|, )

in which, ¢ (x) is the spatial part of the velocity potential
and satisfies Laplace’s equation,

Ppx) () Pp()  Phx)
or? ror  1206% 072
wherever in the fluid. Besides, ¢ (x) is also required to satis-
fy appropriate boundary conditions. On the interface
between air and water, the boundary condition is given as

2
WX _ @) on z=0, )
0z 8

in which, g is the gravity acceleration. Since no water can
flow through the impermeable body surface and the sea bed,
the component of the fluid velocity normal to an imper-

0, 3
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meable surface must be equal to the velocity of the body
surface. This gives the following boundary conditions

6q;(x) =n, on Sp, &)
n

and

o4 (x) _ _

0 0 on z=—d. (6)

In Eq. (5), S, represents the mean body surface; n = (n,,
n,, n;)T is the normal vector on S}, and is positive when
pointing out of the fluid domain. In addition, ¢ (x) has to
satisfy the Sommerfeld radiation condition at a large radial
distance from the structure

lim W[6¢ (rx)

r—oo0 0

in which, xg is the solution of the dispersion relation w
gro tanh(xod).

—iKog (X)} =0, (M

2:

3 Analysis of wave radiation by a single submerged ring

plate

The wave radiation by a submerged ring plate is con-
sidered firstly. The sketch of the structure is shown in
Fig. 1. The submerged ring plate has an inner radius @ and
an outer radius R, and its axis coincides with the z-axis. The
plate thickness is e. The distance between the mean free sur-
face and the upper and bottom surfaces of the plate is de-
noted by d; and d,, respectively. The water depth d is a con-
stant in this study. The clearance between the plate and
seabed is S=d — d,.

Submerged Q
ring plate Q, Q, Q, 1

// :I'.:

Fig. 1. Sketch of a submerged ring plate.

In the solution procedure, the whole fluid domain is di-
vided into four subdomains denoted by Qy, £,, Q3 and Q4
as described in Fig. 1. Qy is the exterior subdomain (» = R,
—d < z < 0), ©Q, is the interior subdomain (r < a, —d <
z < 0), Q3 is the subdomain above the plate (¢ < r < R,
—d, < z < 0) and Q4 is the subdomain below the plate (a <
r < R, —d < z < —d,). Hereinafter, (}51 (x),¢A52 (%), &53 (x) and
$4 (x) are used to denote the spatial potential in the subdo-
mains Q1, Q, 3 and 4, respectively.

The solution procedure starts from the derivation of the

expressions for the velocity potential in each subdomain.
Evidently, the boundary conditions on the top and bottom
surfaces of the plate are inhomogeneous. Therefore, particu-
lar solutions satisfying the inhomogeneous boundary condi-
tions are to be determined in £23 and 4. By using the meth-
od of separation of variables (Yeung, 1981; Mavrakos,
1985), the spatial potential can be expressed in the form of
orthogonal series in each subdomain

¢1("aZ)=ZAjRj(Kjr)Zj(sz>; (8a)
=0
&52 (rz)= ZBJ-V,- (Kjl’)Zj (sz); (8b)
Jj=0
d3(n2) = ) [P (r) + D0 (r)|U; (2) + 6, (r.2):
=0
(8¢)
&4 (rz)= Z[EA‘ij(/Ijr)+ﬁjTj(/1jr)]Yj(/1jZ)+(I54,p(r,z),
7=0
(8d)

where, A(,-, Bj, C‘j, Dj, E,- and Fj are unknown coefficients;
x;(j > 1) are positive real roots of —»? = gx;tan (K‘jd); 1o
and wave frequency o satisfy the dispersion relation
w? = gy tanh (uyd, ); u;(j>1) are positive real roots of
w? = —g,ujtan(yjdl); the eigenvalues 4; are defined as
Ao =1and /1]‘ = jn/S for j > 1, Rj(xjr), Vj(K'jr), Sj(/ljr) and
T; (){ jr) are radial functions, and defined by the following

equations
Ho (or), j=0
R;(xjr) = {KO (6r). 751 (%)
Jo(xor), j=0
Vi(r) = {Io (Kjr)’ is1 (9b)
In(R/r) =0
In(R/a)’
Sj(j'/r): Ko(ijr)lg(/ljR)—Ko(/ljR)Io(ijr) o
Ko (2a) 1o (1R) Ko (1) o (1)
(%)
In(r/a) ~0
n(R/a)’ /=
Tj(2r) =3 Ko(2a)lo (27) = Ko (27) 1o (1;0) .
Ko (1a)lo(1R) Ko (1R o (1) 7~
(9d)

In Eq. (9), Hp (x) is the Hankel function of the first kind
of zeroth order; Iy (x) and K¢ (x) are the modified Hankel
functions of the first and second kinds of zeroth order, re-
spectively. The expression of P; (yjr) and Q; (,ujr) can be
determined according to Egs. (9a) and (9b), respectively,
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with «; replaced by ;. Z; (sz), U; (,ujz) and Y; (/ljz) are or-
thonormal functions given at the intervals [—d, 0], [-d, 0]
and [—d, —d,], respectively, and defined as:
cosh [kg (z+d)]
cosh(xod) ~
Zj (ka) =1 cos [Kj (z+ d)]
cos (K‘ jd>

=0

(10a)
, Jj=l1

cosh [uy (z+d1)]
cosh(ugdy)
Uj(,ujz)= cos[,uj(z+d1)]

cos (ujdl)

V2
77
cos[/lj(z+d)], j=>1

(10b)
. =1

—0
v;(hj2) = / (10¢)

The particular solutions in Egs. (8¢c) and (8d), ¢; , (.2)
and ¢, »(r.z), are derived as:

1

¢3,(rz)=z+ e (11a)
1 5 r?

44,0 = 5|+ —3], (11b)

in which, v, is the deep-water wave number and defined as
w?/g.

These expressions are developed to satisfy Laplace’s
equation and all boundary conditions. In addition, these ex-
pressions have to satisfy the condition of the continuity of
pressure and normal velocity at the borders between two
neighboring subdomains, i.e., » = R and » = a. To find a
solution to these coefficients, the infinite series of orthogon-
al functions has to be truncated and in Eq. (8) only the first
N terms are taken.

The continuity of the normal velocity between different
subdomains at » = R and r = a can be satisfied over the z in-
terval in the least-square manner by making use of the or-
thogonal properties of the vertical eigenfunctions. The pro-
cedure can give the following two sets of linear equations
with 0 < j,/ < N-1

N-1
Z (G jiA1+GjonaCi+GjanuDi+
1=0
GjannEr+ Gj,5N+lFl) =Y (12a)
N-1
(GN+ jiN+1B1+ GN jon+1Cr+ Gy jan+1Di+
1=0
GN+jan+E1+ Gy jsnaiF 1) = YNt (12b)
in which,
. / . . . -
Gji=1%K; (<iR)N; (sd). j=1 (13a)
0, j#!

663

Gjan+i = = Pl (r)|,_gs (13b)

Gian+i = =y Q) (ﬂﬂ’)|,:R; (13¢)

Gan+1 = =Pk S| Qur)|,_g: (13d)

Gisnet = =BT Q)| _p; (13e)
—dy

vi= | Zi(k2) 4, 00| _ 0 (13f)
Za

Gysjnei = {SJV} (reja) N (s j; 5 (13g)

The definition of Gyyjon+i, GNtjsnet, GNrjan+,
Gn+jsn+1and Yy, j can be obtained according to Egs. (13b),
(13c¢), (13d), (13e) and (13f), respectively, with » = a. In Eq.
(13), the prime denotes the derivative with respect to the ar-
gument; N; (K‘ jd) represents the inner products of the eigen-

function Z; (;c jz), and is defined as:

0
Nj(Kjd) = IZ?(KJ'Z)CIZ =
Za

sinh (2xpd) .
, Jj=0
2K()d
sin (2x;d)
—, j=1
2K‘jd

1 d [
cosh? (kod) 2 (14

_ U 4y,
cos? (Kjd) 2

The coefficients a;; and f;; are defined as:

0

o= f Z (lc,-z) Ui (uyz)dz; (15a)
—d

—dy

Biu= | Zi(ki2) YiGu)dz.
Za

(15b)

By matching the potential between different subdo-
mains at » = R and r = a and using the orthogonal properties
of the vertical eigenfunctions U; (,u jz) and Y; (/1 jZ), the fol-

lowing four sets of linear equations with 0 < j, / < N-1
can be obtained

N-1
(G2N+ iN+1B1+ G jonniCr+ Gy j,3N+lDl) = Yon+js
1=0
(16a)
N-1
(G3N+ A1+ Gang jon+iCr+ Gang j,3N+zD1) =Y3n+js
1=0
(16b)
N-1
Z (G4N+ iN+Bi+Gayy j,4N+1E1) = Yan+js (16¢c)
1=0
N-1
(G5N+ A1+ G5y jsnF z) =Ysn4js (16d)

T
o
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in which,
Gon+jn+i = 01 Vilkir) =g (17a)
Gonejonsl = — {N/ (i) P ()| _ - j=1 (17b)
0, VEX!
GaN+j3N+ = —{Nj (#fdl) 0 (’ufr) r=a’ J:_ ! (17¢)
0, J#I
0
Yonyj= f Uj (ﬂ jZ) $3p (r,z)lr:adz; (17d)
—d
Gan+ji = a1, Ri(kir)l =gs (17¢)
and
Gan+jn+1 = P Viir)li=g; (182)
S .,
Gan+jan+l = Gsn+jsn+l = —{ 2 /7 (18b)
0, j#l
-
Yans+j= f Y; (/ljz) Gap (r,z)|r:adz; (18¢)
Zd
Gsn+ja = Py Ri(ir)l=g- (18d)

The definition of Gsy4jon+i, Gan+jan+i, Yan+j and
Ysy4; can be obtained according to Egs. (17b), (17¢), (17d)
and (18c), respectively, with » = R. In Eq. (17), N; (,ujdl)
represents the inner products of the eigenfunction U; (,u jz)
and is defined as:

0
Ni(ujei)= | U3 (uje)dz =
—d
1 a4 [ sinh (241dl1) ] 0
cosh? (iydy) 2 2uyd) ’
L, sin(2u;d; ) . (19)
— |1t iz
cosz(ujdl) 2 2p;d,

We now obtain six sets of the linear system of 6N com-
plex equations and an equal number of unknown coeffi-
cients. The linear equations in Egs. (12) and (17) can be re-
sembled as:

(20)
in which, X consists of the unknown coefficients A s B s ¢ s
ﬁj, Ej and Fj. For the definition of G and ¥, please refer to
Egs. (13), (16) and (17). Solving the linear algebraic sys-
tems gives the unknown coefficients in the orthogonal
series. Then, the velocity potential at any position in the flu-
id domain can be obtained.

GonxonXen = Yen,

4 Analysis of wave radiation by a compound structure
consisting of a submerged ring plate and a floating
column
The wave radiation by a compound structure consisting

of a circular column and an attached ring plate is then con-

sidered. The sketch of the compound structure is shown in

Fig. 2. A circular column with radius @ and draft 7T is float-
ing in the fluid and its axis coincides with the z-axis. The
ring plate is coaxial with the column. The clearance between
the column and seabed is S} =d — T.

Floating column

Submerged
ring plate Q 0 Q 0

L

Fig. 2. Sketch of a compound structure.

The whole fluid domain is divided into four subdo-
mains, i.e., 21, ,, 23 and Q4, as shown in Fig. 2. Qy is the
exterior subdomain (» = R, —d < z < 0), ©Q, is the interior
subdomain (r < a, —d < z < —T), Q3 is the subdomain
above the plate (¢ < r < R, —d| < z < 0) and Qq is the
subdomain below the plate (0 < r < R, —d < z < —dp).
Hereinafter, ¢, (n =1, 2, 3, 4) is used to denote the spatial
potential in these subdomains.

We proceed to obtain the expressions of the spatial po-
tential. By using the method of separation of variables, the
velocity potential valid in each subdomain can be expressed
as follows:

¢1 (I”,Z) = ZZJ‘RJ' (Kj}")Zj (sz); (21&)
Jj=0
$2n0 = Y B0 (11 )W; (1) + 65, (1.2 (21b)

J=0

$3(r,2) = Z[Eij<ﬂjr)+Bij(ﬂjr)]Uj<ﬂjz)+¢3,p (r,2);

Jj=0
Q1c)
¢4 (r,2) = Z [Eij(ijr)+FjTj(/ljr)]Yj(ijZ)+¢4’p (r,2).
Jj=0
21d)

In Eq. (21), Zj, Ej, Ej and Bj are unknown coeffi-
cients; the eigenvalues y; are defined as y, =1 and
y; = jn/S1 for j = 1; the radial function O; (y jr) and vertic-
al function W; (yjz) are defined by

1, j=0
0;(r;r) = ;OEW;, i1 (22)
o\7;a
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and
R AL =
cos[yj(z+d)], j=1

Other radial and vertical functions, such as R; (xjr),
P/(y]r), Qj(,u]r), Sj(ijr), Tj(ljl’), Z/<KJZ) and Y/(XJZ),
have been defined in Egs. (9) and (10), respectively. Owing
to the inhomogeneous body-surface conditions, particular
solutions, ¢2’p (r,2), ¢3,p (r,z) and ¢4)p (r,2), are expected in
subdomains ©,, 23 and Qy. ¢3,p (r,z) and ¢4’p (r,z) have
been defined in Eq. (11). ¢, ,(r,2) is then given by

2
[(z +d)? - ’—]

The Velocity potential given in Eq. (21) describes the
flow in the respective region. The unknown coefficients in
these expressions can be determined by imposing the match-
ing condition at » = R and » = a, based on the assumption
that the fluid pressure and the normal velocity are continu-
ous across the border of neighboring subdomains. After
truncating the infinite series of the orthogonal functions in
Eq. (21) to finite terms, i.e. N terms, six sets of linear equa-
tions can be established containing an equivalent number of
unknown coefficients. After solving the linear algebraic sys-
tem, the unknown coefficients are found and the velocity
potential in each subdomain is obtained.

$2p(r2) = (24)

5 Calculation of the hydrodynamic coefficients

Once the solution has been obtained for the velocity po-
tential, the pressure distribution can be determined immedi-
ately according to the Bernoulli equation. The hydrodynam-
ic force caused by the motion of the structure can be
achieved by integrating the fluid pressure over the body sur-
face. The added mass is defined as a quantity giving the part
of the hydrodynamic force on the body which is in phase
with the acceleration of the moving body. Similarly, the ra-
diation damping is defined as a quantity giving the part of
the hydrodynamic force in phase with the velocity of the
moving body. For the case of a submerged ring plate in isol-
ation, the added mass and radiation damping due to the
heave motion, as3 and b33, can be determined according to

i+ 2B = fiv i 25)
(03]

in which

R - 1 1

f3 = 27'l2p = (Hl,j +H2,j> - 5 (—dl + %)(Rz —az) 5 (26&)

. [N-1 . . s 1

fa=2mp 2, (MLs ;+ 11y ;) + 7 (R -a?)- == (R* _a4)].

(26b)
In Eq. (26),

665
éo /11,0 .
1o cosh(uody)’ j=0
R 1
;= CA‘(; Ay S (272)
0y o5 uod)”
DU A2,0 P
o cosh (uyd;)’ j=0
1, =1 Ho
I ;= D; A S 1 (270)
iy osuod)
V2 B 1 1
ZaIn(R —a? =0
) 2 i@ |2 RO R g
W=y & Ko(iJR)/M,j-AleO(in) .
_ -1/, j=1
Aj Ko (/lja) Ip (/ljR) -Ko (/ljR) Ip (lja)
(27¢)
Vi fy !
= —R’In(R ——R2 =0
R 2 In(R/a )[ nRI R
H4’j_ Fj KO(’lja)A‘Lj_A?”J‘IO(;{j) j ;
o -1, j>1
4j Ko (i]a)lo(i R) Ko(ljR)Io(/lja)
27d)
and
H; R)R-H; a)a, j=0
1y TR R Ga. o8
K (4,R)R+K; (gja)a, j>1
(I RR-T (roa)a, =0 osh)
HEL (R R (wja)a, =1
A3,j: -K; (ljR>R+K1 (ija)a, j=z1; (28¢)
Asj= T (LR)R-1,(4ja)a, j>1. (28d)

Similarly, for the case of a submerged ring plate at-
tached to a floating column as an appendage, the hydro-
dynamic coefficients due to the heave motion can be de-
termined according to

azs + Ib% = }2 + }3 + ?4, (29)
in which,
F2=21p| By 42a2+ZB DS iy
'“Ja)/‘/
s %Lﬂs%_éa‘*)], (30a)

[N-1 _ 1
f3="2mp ; (m j +n2])— 3 (—d1 + v_o)(R2 _az)], (30b)
_ [N-1 _ 1
fa=2mp 2. (H3] +n4])+ °(RP-d?)- o5 (r* a4)}

_ (30¢)

In Eq. (30), I1; j, [T j, I13 ; and I14 ; can be determined
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according to Eq. (27) with C‘j and Dj replaced by E/- and

D;j, respectively.

6 Convergence test and validation

Convergence test on the added mass and radiation
damping concerning the truncation number of eigenmodes
N is performed. In Figs. 3 and 4, the added mass and radi-
ation damping are depicted as a function of N at kgpa = 1 and
2 for both cases of a ring plate in isolation (see Fig. 3) or at-
tached to a floating column as an appendage (see Fig. 4).
The value presented in Figs. 3 and 4 is the ratio of
a3z (N)/ay, or b3z (N)/b,, in which a3, and b7, are the ad-
ded mass and radiation damping with N = 200, respectively.
It can be found that N = 100 can guarantee the convergence
of the results for the test case. In the meantime, for most
cases we tested, N =100 is an appropriate value to truncate
the series taking into account both the convergence and
computational cost. Thus, N = 100 is adopted in the sub-
sequent parametric study.

Besides the direct pressure integration, it is also pos-
sible to derive an alternative solution of radiation damping
in the following manner. The case of a submerged ring plate
as shown in Fig. 1 is concerned first. A finite fluid volume

4
d R

[Py oaasisonone i

00 4‘0 80 . 120 160 200

(a) Added mass

Q. comprising S, S, S{ and S is considered, in which S is
the control surface surrounding the body and defined by r =
R.and —d < z < 0; S} and S, are the limited mean free sur-
face and seabed inside Q.. According to Mei et al. (2005),
the application of Green’s second identity in ©. and the use
of the boundary conditions of Egs. (4), (5) and (6) give

I I[C

N

€3]

in which, * denotes the complex conjugate. Eq. (31) sug-
gests that

1 0" _ .0f
b33=§1wp£f( E—¢ 5)ds

The velocity potential in the exterior region is given by
Eq. (8a). By inserting Eq. (8a) into the right-hand side of
Eq. (32) and applying the orthogonal relationship, Eq. (32)
can be rewritten as:

(32)

o OH (coR.)
b33 = —2wpnlm|AgAyroR:Ho (koR:) ————— No (xod) +
0(xoR.)
o 8Kl,- ICjRC
ZAjAj'KjRCKj (KjRC) MNJ' (K]d> . (33)
= o(x;R)
2.5
. K;)a:l
2.0 e K @=2
= 3 1.5
S
S 1of awewsee
0.5
0'00 4|0 80 120 160 200

N
(b) Radiation damping

Fig. 3. Convergence test on the added mass and radiation damping for the case of a submerged ring plate (R = 1.5a, e = 0.1a, d, = 2a and d = 10q) at

Kxoa = 1.0.
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Fig. 4. Convergence test on the added mass and radiation damping for the case of a compound structure (R = 1.5a, ¢ = 0.1a, d, = 2a, T=3a and d = 10a).
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in which, ‘Im’ indicates that the imagery part is taken. If the
control surface S, is moved to infinity, the contribution from
the evanescent modes to the velocity potential can be neg-
lected. By using the asymptotic expressions for Bessel func-
tions, the velocity potential for large xor can be expressed in
an asymptotic form. That is

n 2 .
$1(n2) = Ag | —— ™7 (od) + O (ko) 7], (34)
TKor

as kor tends to infinity. In Eq. (34), Ao has been defined as
the radiation Kochin function in some previous studies, such
as Zhao et al. (2011), that is, the angular variation of the ra-
dially spreading waves at far field. In this study, Ay is inde-
pendent of 4, due to the axisymmetric mode of motion and
the axisymmetry of the structure. Then, after inserting Eq.
(34) into Eq. (32), it can be obtained that

b33 = 4awpAgAyNo (kod) . (35)

Eq. (35) gives the relationship between the Kochin func-
tion and the heave radiation damping. In addition, it
provides an alternative solution of radiation damping. Eq.
(35) is also applicable for the case of a compound structure
as shown in Fig. 2 after replacing Ag by A.

In order to make sure that the developed analytical mod-
el is valid and reliable to a convinced degree, a comparison
between the radiation damping based on the pressure integ-
ration (see Eqs. (25) and (29)) and that based on the altern-
ative solution (see Eq. (35)) is made. From the comparison
in Figs. 5 and 6, it is evident that the results achieved by dif-
ferent methods are in good agreement.

7 Numerical results and discussion

To understand the effects of the plate geometric para-
meters on the hydrodynamic coefficients, numerical studies
are carried out in detail for both the cases of a ring plate in
isolation or attached to a floating column as an appendage.
In all calculations, the draft of the column 7 and the wave
depth d are fixed at 3@ and 10aq, respectively.
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Fig. 5. Comparative results of radiation damping for the case of a sub-
merged ring plate in isolation (R = 1.5a, e = 0.1a, d, = 2a and d = 10a).
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Fig. 6. Comparative results of radiation damping for the case of a com-
pound structure (R = 1.5a, e =0.1a, d, = 2a, T = 3a and d = 10a).

7.1 Effects of the plate draft

The effects of the plate draft on the hydrodynamic coef-
ficients are shown in Fig. 7 for the case of a submerged ring
plate with e = 0.2a and R = 1.5a. Meanwhile, the plate draft
is varied as d, = 1.5a, 1.75a, 2a, 2.25a and 2.5a. It is noted
that the added mass is hardly affected by the plate draft (see
Fig. 7a). If the plate is moved closer to the free surface, the
motion of the plate can generate more outgoing waves. As a
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Fig. 7. Dimensionless added mass and radiation damping of a submerged ring plate in correspondence to various plate drafts (R = 1.5a, e =0.2a and d =

10a).
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result, a decrease of the plate draft can give rise to a sub-
stantial enhancement of the radiation damping (see Fig. 7b).
In Fig. 7b, an obvious zero-damping frequency can be ob-
served around xpa = 1.912 when d, = 1.5a. As the radiation
damping is closely related to the progressive waves in the
exterior region, the variation of outgoing waves along the
radial direction is examined for this specific wave fre-
quency. After obtaining the velocity potential, the linear ra-
diation waves, {j, can be immediately determined accord-
ing to

(36)

When the wave radiation by a submerged ring plate is
considered, the outgoing waves are driven by the fluxes
emitted from the regions above and under the plate. As a
result, the overall wave elevation can be further expressed
as:

G =D+ =Re [(;71 +1) e—iwf]_

in which, {;. and {, represent the wave elevation due to the
vertical movement of the upper and bottom surfaces of the
plate, respectively. In Egs. (36) and (37), #; (i=0, 1, 2) is
the complex amplitude of the wave elevation ¢;. For the case
of a submerged ring plate, the variation of 7, #; and 7,
along the radial direction is given in Fig. 8 with xga = 1.912
and d, = 1.5a. In the meantime, the time history of the wave
elevation at » = 15L with kgpa = 1.912 and d, = 1.5a is given
in Fig. 9, in which L is the wave length and equal to 2m/xo.
In Figs. 8 and 9, the values are all nondimensionalized by
E+Ja/r. The progressive waves decay at a rate of 1/4/r (see
Eq. (34)) at far field. Therefore, in Fig. 8, the dimensionless
value with i = 1 or 2 tends to a constant as r tends to infin-
ity. In the meantime, the overall wave elevation decays
quickly as 7 increases until it vanishes. Fig. 9 reveals that
even though ;. and {; are with the same magnitude at far
field, they are out-of-phase. As a result, there exist no pro-
gressive waves in the exterior region at this specific wave
frequency, leading to no radiation damping.

(37
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Fig. 8. Dimensionless wave elevation amplitude along the radial direction
at kpa = 1.912 for the case of a submerged ring plate (R = 1.5a, ¢ = 0.2a,
d,=1.5a and d = 10a).
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Fig. 9. Time history of the dimensionless wave elevation at » = 15L with
xoa = 1.912 for the case of a submerged ring plate (R = 1.5a, e =0.2a, d, =
1.5a and d = 10a).

The effects of the plate draft on the hydrodynamic coef-
ficients are shown in Fig. 10 for the case of a compound
structure with e = 0.2a and R = 1.5a. In Fig. 10a, the added
mass in general increases as the plate draft increases at a
fixed wave frequency. This is because more fluid can be en-
trapped in the region above the plate as the plate draft in-
creases. In Fig. 10b, obvious zero-damping frequencies, at
which the structure radiates no energy outward in the heave
motion, can be observed. Before the zero-damping fre-
quency, the plate draft has negligible effects on the radi-
ation damping. When beyond that, attaching a plate at relat-
ively shallower submergence can produce a larger amount
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Fig. 10. Dimensionless added mass and radiation damping of a compound structure in correspondence to various plate drafts (R = 1.5a, e =0.2a, T =3a

and d = 10a).
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of radiation damping. When the wave radiation by a com-
pound structure is considered, the overall wave elevation
contains the contribution due to the motion of the plate, {;.
and {,, as well as that due to the motion of the column, (3.
Then, we can obtain

G0 =6 O+EW+5 0 =Re|0r, +1y +13)e7™].

The variation of the wave elevation amplitude 7, #;, 7,
and 75 along the radial direction is given in Fig. 11 for the
case of a compound structure with xpa = 0.358 and d, =
1.5a. In the meantime, the time history of the wave eleva-
tion at » = 15L with kga = 0.358 and d, = 1.5a is given in
Fig. 12. In Fig. 11, the dimensionless value with i =1, 2 or 3
tends to a constant as 7 tends to infinity. From Fig. 12, it is
noted that at far field, the wave elevation driven by the ver-
tical movement of the upper surface of the plate, i.e., {j, is
always out-of-phase with those due to the vertical move-
ments of the bottom surface of the plate and column, ¢, and
(3. Owing to the phase cancellation between (i, {; and 3,
the overall wave elevation vanishes at far field at this specif-
ic wave frequency. As a result, there exist no progressive
waves in the exterior region, leading to no radiation damp-
ing. The above explanation is also applicable to the occur-
rence of other zero radiation damping for the case of a com-
pound structure. We also note that a decrease of the plate
draft can lead to a small shift of the zero-damping fre-
quency to the low-frequency region. This is because mov-
ing the plate closer to free surface can enhance the wave el-
evation ;. Then, at the far-field region, {; can balance {,
and {3 at an earlier wave frequency.

(3%)

7.2 Effects of the plate radius

The effects of the plate radius on the hydrodynamic
coefficients are then investigated and the numerical results
are presented in Figs. 13 and 14. In these calculations, the
plate thickness and plate draft are fixed at e = 0.2a and d, =
2a, respectively. Meanwhile, the outer radius of the ring
plate is varied as R = a, 1.2a, 1.4a, 1.5a and 1.6a.

Fig. 13 presents the variation of the added mass and ra-
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Fig. 11. Dimensionless wave elevation amplitude along the radial direc-

tion at kpa = 0.358 for the case of a compound structure (R = 1.5a, e =
0.2a,d, =1.5a, T=3a and d = 10a).
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Fig. 12. Time history of the dimensionless wave elevation at » = 15L with
xoa = 0.358 for the case of a compound structure (R = 1.5a, e = 0.2a, d, =
1.5a, T=3a and d = 10aq).

diation damping with respect to various outer radii of the
plate for the case of a submerged ring plate. In Fig. 13a, re-
gardless of the value of R, the added mass as; behaves
stable in the whole frequency range. An increase of R can
lead to an obvious increase of a3 This is because the plate
can be surrounded by more fluid as its outer radius in-
creases. In Fig. 13b, each curve is characterized by an obvi-
ous peak around xpa = 0.68. As the outer radius of the plate
increases, more free-surface kinetic energy transformation
can be caused, leading to more progressive waves in the ex-
terior region. Therefore, the radiation damping increases as
R increases at a certain wave frequency.
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Fig. 13. Dimensionless added mass and radiation damping of a submerged ring plate in correspondence to various outer radii of the plate (d, = 2a, e =

0.2a and d = 10a).
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Fig. 14. Dimensionless added mass and radiation damping of a compound structure in correspondence to various outer radii of the plate (d, = 2a, e =

0.2a, T=3a and d = 10a).

Fig. 14 presents the variation of the hydrodynamic coef-
ficients with respect to various outer radii of the attached
plate for the case of a compound structure. In Fig. 14, R=a
corresponds to the case without an attached plate, i.c., a
single column. In Fig. 14a, a remarkable increase of the ad-
ded mass, which is almost constant and independent of xpa,
can be induced by an increase of R. The added mass with
r> a is obviously larger than that with » = a. It suggests that
attaching a ring plate to a floating system can increase the
added mass for the heave motion, thereby shifting the natur-
al frequency out of the wave energy regime. It is also noted
that the additional added mass due to the attached plate is
substantially larger than that when the plate is in isolation.
For example, at xpa = 1, the dimensionless added mass of a
floating column increases from 1.920 to 5.532 after attach-
ing a ring plate of R = 1.5a to it. Meanwhile, when the plate
is in isolation, the dimensionless added mass at xgpa = 1 is
only 1.986 (see Fig. 13a). This is because waves can be en-
trapped in the regions above and below the plate after at-
taching a plate to the column. In Fig. 14b, the curves corres-
ponding to R > a show a more complex tendency than that
of R = a, as there exists an obvious zero-damping fre-
quency. In the high-frequency region, a floating column
with an attached plate (R > a) can generate significantly
more radiation damping for the heave motion than that
without an attached plate (R = a) and is therefore more ef-
fective in suppressing the motion. However, around the
zero-damping frequency, a floating column with an at-
tached plate (R > a) can generate obviously less radiation
damping than that without an attached plate (R = a). It illus-
trates that attaching a ring plate to a floating column does
not always enhance the radiation damping. When a floating
column experiences excessive heave motion around the
zero-damping frequency, attaching a ring plate to the
column can cause a lack of radiation damping. From the as-
pect of radiation damping, the ring plate should be carefully
used around the zero-damping frequency. As the outer radi-
us of the plate increases, the wave elevation due to the ver-

tical movement of the upper surface of the plate, {j, can be
obviously enhanced. Then, at the far-field region, {; can bal-
ance the opposite contribution to the wave elevation, ¢, and
(3, at an earlier wave frequency. Therefore, the zero-damp-
ing frequency moves gradually to the low-frequency region
as the outer radius of the plate increases.

7.3 Effects of the plate thickness

The effects of the plate thickness on the hydrodynamic
coefficients are presented in Figs. 15 and 16. In the follow-
ing calculations, the outer radius and draft of the plate are
fixed at R = 1.5a and d, = 2a, respectively. Meanwhile, the
plate thickness is varied as e = 0, 0.1a, 0.2a, 0.3a and 0.4a.

Fig. 15 presents the variation of the added mass and ra-
diation damping for different plate thicknesses for the case
of a submerged ring plate. The added mass and radiation
damping both increase as e increases at a certain wave fre-
quency. As the plate height increases, the plate can more ef-
fectively interact with surface waves. Therefore, the effects
of the plate thickness get more pronounced as its upper sur-
face gets closer to the free surface (e increases).

Fig. 16 presents the variation of the hydrodynamic coef-
ficients with respect to the change of the plate thickness for
the case of a compound structure. In Fig. 16a, an increase of
the plate thickness can give rise to an almost constant in-
crease of the added mass. In Fig. 16b, again the radiation
damping vanishes at a specific frequency. Before the zero-
damping frequency, the influence of the plate thickness on
bs3 is trivial. While beyond that, b5; becomes quite sensit-
ive to the plate thickness and a small increase of e can lead
to a pronounced increase of b33. As the upper surface of the
plate gets closer to the free surface (e increases), the wave
elevation due to the vertical movement of the upper surface
of the plate, {j, can be enhanced. Then, at the far-field re-
gion, {; can balance the other contribution to the wave elev-
ation, ¢, and (3, at an earlier wave frequency. Therefore, the
zero-damping frequency moves gradually to the low-fre-
quency region as e increases.
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Fig. 15. Dimensionless added mass and radiation damping of a submerged ring plate in correspondence to different plate thicknesses (d, = 2a, R = 1.5a,
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Fig. 16. Dimensionless added mass and radiation damping of a compound structure in correspondence to different plate thicknesses (d, = 2a, R = 1.5a,

d=10a).

8 Conclusions

The wave radiation problems have been investigated in
the context of the linear potential theory for both cases of a
ring plate in isolation or attached to a floating column as an
appendage. The structure is assumed to undergo a heave
motion and an analytical model is developed to solve the
wave radiation problem based on the eigenfunction expan-
sion matching method. Detailed numerical studies are per-
formed to understand the effects of the plate geometric para-
meters. The main conclusions of this study can be summar-
ized as follows.

(1) The present analytical model is validated by compar-
ing the radiation damping based on different methods, and
good agreement has been found.

(2) The change of the plate size can result in a notice-
able impact on the added mass and radiation damping.
Whether a ring plate is in isolation or attached to a floating
column, an increase of the outer radius or thickness of the
plate can lead to the rise of the added mass and the radi-
ation damping. For a submerged ring plate, the plate sub-
mergence has little effect on the added mass which remains
almost the same as the plate gets closer to the free surface.
However, moving the ring plate closer to the free surface

can produce more damping effects for the heave motion.
When a ring plate is attached to a floating column, the ad-
ded mass gradually decreases as the submergence depth de-
creases. Also, beyond the zero-damping frequency, attach-
ing the plate at shallower submergence can generate a more
considerable amount of radiation damping for the heave
motion.

(3) Attaching a ring plate to a floating column can in-
crease the added mass. However, it does not always in-
crease the radiation damping. The additional added mass
due to the attached ring plate is significantly larger than that
when the plate is in isolation. The radiation damping for the
heave motion can vanish at a specific wave frequency after
attaching a ring plate to the column. This is resulted from
the possible phase cancellation between the outgoing waves
due to the motions of the column and the plate. The pro-
gressive waves in the exterior region can vanish at a specif-
ic wave frequency, leading to zero radiation damping. The
zero damping can also be found for a submerged ring plate.
This is because the vertical movements of the upper and
bottom surfaces of the plate can generate progressive waves
of the same magnitude but out-of-phase in the exterior re-
gion at a specific wave frequency.
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