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Abstract: 

The infragravity (IG) period oscillations inside an elongated rectangular harbor excited by 

bichromatic wave groups are simulated using a fully nonlinear Boussinesq model. Based on an IG 

wave analysis technique, this study presents a comprehensive investigation on how bound and free 

IG waves and their relative components change with respect to the amplitudes and wavelengths of 

incident primary (short) waves under the condition of the lowest four resonant modes. For the 

given harbor and ranges of wavelength and amplitude of the primary waves studied in this paper, 

it is shown that the amplitudes of both the bound and free IG waves become more evident when 

the short wavelengths increase, and the latter are always larger than the former due to resonant 

amplification. The amplitudes of both the bound and free IG waves change quadratically with the 

amplitudes of the incident short waves.  
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1. Introduction 

Infragravity (IG) period waves are surface gravity waves with periods between 30 s and 5 

min and wave lengths between 100 m and 10 km (Rabinovich, 2009). Theoretical knowledge of 
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the generation, propagation, dissipation and interaction of IG waves with coastlines and port 

structures has been highly developed since the early 1950s. Munk (1949) and Tucker (1950) 

carried out the first observation of the IG waves, associated with wave groups. Longuet-Higgins 

and Stewart (1962, 1964) determined analytical relations to explain the propagation of IG waves 

at wave group celerity, the genesis of bound IG wave energy and its relationship with nonlinear, 

spatial and temporal changes of the momentum flux of the wave trains traveling towards the shore. 

When the long period waves with frequencies close to those of resonating harbor modes 

come into a harbor opening, they can be highly amplified into inner basins resulting in large 

oscillations of the water surface (Miles and Munk, 1961; Vanoni and Carr, 1950) . A variety of 

dynamic forcings can induce significant oscillations within a harbor. These external forcings 

include tsunamis originating from distance earthquake, longshore-propagating edge waves, wind 

and pressure fluctuations, and impact waves induced by landslides or the failure of structures near 

the harbor (Bellotti et al., 2012; Chen et al., 2004; De Jong and Battjes, 2004; Dong et al., 2010a). 

For the very long-period incident waves such as tsunamis and waves originating from wind and 

pressure fluctuations, they can affect only very large harbors because their natural oscillation 

periods are generally longer than 10 min, which matches the very long-period wave band. For 

most harbors around the world (where the surface water area is about 1-10 km
2
 and the depth is 

about 5-10 m), the most common external forcing may be IG waves, mainly generated through 

nonlinear interaction of short wave groups. González-Marco et al. (2008) analyzed the effect of IG 

waves on port operations in Gijón harbor (Spain) and found that the port’s inefficiency is 

significantly increased if IG waves are present in the wave trains, although the harbor offers very 

good protection against wind short waves. Similar situations can be found in various other ports 

and harbors around the world, such as Hua-Lien harbor in Taiwan (Chen et al., 2004), Hosojima 

harbor in Japan (Yoshida et al., 2000), Port of Long Beach in California (Kofoed-Hansen et al., 

2005), and Pohang New Harbor in South Korea (Kumar et al., 2014). Hence, in order to identify 

layouts and technical solutions that minimize the downtime of the facility, it is crucial to further 

improve the knowledge of the IG waves inside the harbor.  

The importance of incident short wave groups on IG period harbor oscillations was initially 

proved by Bowers (1977), both theoretically and experimentally. He studied mean free-surface 

oscillations in a narrow rectangular channel of constant depth and discontinuous width. A train of 
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sinusoidally modulated wave groups incident from infinity generates not only bound IG waves, 

but also additional free IG waves. Bowers (1977) demonstrated that the free IG waves are 

generated in the diffraction process with the same frequency as the bound IG waves because of an 

imbalance between the long-period fluctuations in the water pressure inside and outside the harbor 

entrance. This imbalance arises because the primary wave heights inside the harbor are different 

from the wave heights outside, giving rise to different bound IG waves inside and outside the 

harbor. Thus, it becomes necessary to introduce additional free IG waves for purposes of the total 

second-order water pressure continuity at the harbor entrance; the free IG waves will then be 

amplified when the group period is close to a natural period of the harbor. In the last few decades, 

extensive field observations and numerical simulations on IG waves inside harbors, such as 

Esperance harbor and Two Rocks Marina in Australia (Morison and Imberger, 1992; 

Thotagamuwage and Pattiaratchi, 2014a, b) , Marina di Carrarra harbor in Italy (Bellotti and 

Franco, 2011; Guerrini et al., 2014) , Port of Ferrol in Spain (López and Iglesias, 2013; López et 

al., 2012) , and Barbers Point harbor in Hawaii (Okihiro et al., 1993), have subsequently 

confirmed those findings by showing strong correlation between IG waves inside the harbor and 

short wave groups outside the harbor. 

    Dong et al. (2010b) implemented numerical experiments based on the Boussinesq model and 

employed a wavelet-based bispectrum to analyze temporary features of wave–wave interactions at 

various phases of IG period oscillations excited by short wave groups. The influence of short wave 

frequencies on IG period oscillations was also investigated in that paper. Dong et al. (2010b) 

found that short waves with low frequencies can excite more obvious long-period fluctuations 

than those with higher frequencies. The subharmonics not only get energy through difference 

interactions, but also export energy through sum interactions in the response and quasi-steady 

phases. In the damp phase, wave energy is concentrated at the lowest resonance mode, and there is 

a reversal energy transfer from the subharmonics to other components. Subsequently, Dong et al. 

(2013) proposed a wave separation procedure to decompose the IG period components inside the 

harbor into bound and free IG waves, and further investigated the influence of the short 

wavelengths on the bound and free IG waves and their relative components inside the harbor when 

the lowest resonant mode, which are excited by regular wave groups, occurs. For comparison, the 

non-resonant wave condition was also considered. Dong et al. (2013) demonstrated that the 
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amplitudes of bound and free IG waves and their ratio are closely related to the short wavelengths, 

regardless of whether the harbor is resonant or not.  

To improve the understanding of the IG waves inside harbors involved in IG period 

oscillations, this paper further investigates how the bound and free IG waves and their relative 

components change with respect to the incident short waves. Compared to Dong et al. (2013), 

there are mainly two research developments in this paper. Firstly, in Dong et al. (2013), only the 

lowest resonant mode was investigated; while in this paper, we extended the resonant mode to the 

lowest four modes to explore the similarities and differences between different modes. Secondly, 

this paper systematically investigated the influence of not only the short wavelengths but also the 

amplitudes of the incident short waves on the bound and free IG waves and their relative 

components inside the harbor. In this paper, all simulations are based on the fully nonlinear 

Boussinesq model proposed by Wei et al. (1995). For simplification, the harbor is assumed to be 

long and narrow; the free surface movement inside the harbor then essentially becomes one 

dimensional. The water depth inside and outside the harbor is constant, and the incident waves are 

bichromatic with two slightly different frequencies.  

The remainder of this paper is organized as follows. Section 2 describes the numerical model 

and the analysis technique, which will be verified using physical experimental data and known 

analytical signals, respectively. Section 3 presents the numerical experimental setup and the 

experimental wave parameters. Section 4 demonstrates the simulation results, which are explained 

in detail. Concluding remarks based on the results are given in Section 5.  

2. Numerical model and analysis technique 

2.1 Numerical model 

Numerical experiments are performed using the well-known and widespread Funwave2.0 

model (Kirby et al., 2003), referring to the fully nonlinear Boussinesq wave model on curvilinear 

coordinates. The Funwave2.0 model retains information to O[(kh)
2
] for frequency dispersion and 

to all orders for nonlinearity a/h (where k denotes the wavenumber scale, h denotes the water 

depth and a denotes the wave amplitude). The one-way wave maker theory proposed by Chawla 

and Kirby (2000) is used to generate monochromatic or random waves. Sponge layers are placed 

at the boundaries of the domain to effectively absorb the energy of outgoing waves with various 

frequencies and directions. The capability of the Funwave2.0 model to predict wave propagation 
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and transformation from deep to shallow water has been well validated by laboratory experiments 

(Bruno et al., 2009; Kirby et al., 2003).  

To verify the applicability of the Funwave2.0 model to the simulation of nonlinear harbor 

resonance, Dong et al. (2010b) used the model to reproduce the physical experiments conducted 

by Rogers and Mei (1978). Dong et al. (2010b) compared the numerical results of the first three 

super-harmonics with the experimental data of Rogers and Mei (1978) for three long and narrow 

bays of different lengths. Overall agreement was observed between the measured data and the 

numerical results. It was demonstrated that the numerical model can also simulate nonlinear 

harbor resonance accurately. 

2.2 Analysis technique 

This paper employs the wave separation procedure originally proposed by Dong et al. (2013) 

to decompose the IG period components inside the harbor into bound and free IG waves. To 

facilitate the reader’s understanding of this paper, the wave separation procedure is illustrated 

briefly in this section. 

Fig. 1 shows the setup of the numerical experiment studied in this paper. The length of the 

harbor is L=100.0 m, and the width of the opening is W=5.0 m. Twenty-one wave gauges are 

equidistantly deployed along the central line inside the harbor; the distance between adjacent 

gauges, D, is equal to 5.0 m. The origin of the Cartesian coordinate system (o, x, y, z) is placed at 

the still water level with z measured upwards. The gauge G01 is installed near the inner end of the 

harbor; the gauge G21 is at the midpoint of the harbor entrance. The water depth inside and outside 

the harbor is constant and equal to h=2.0 m. 

 

 

Fig. 1. Definition sketch of the harbor, the arrangement of the wave gauges and the coordinate 

system. 
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When the elongated harbor is subjected to incident bichromatic waves groups, primary waves, 

second-order bound and free IG waves all take the form of standing waves inside the harbor. 

Because of the fully reflecting vertical wall at the inner end of the harbor, an antinode exists at 

x=0 for all the standing wave components. Bowers (1977) has formulated these standing wave 

components. Following his equations, the IG period component free-surface inside the harbor can 

be expressed analytically as follows:  

 I I I I I

L b b f f= cos[(2 ) ]cos( ) cos[(2 ) ]cos( ),f t kx f t x              
 (1) 

where  

 1 2 ,f f f    (2) 

 1 2k k k    (3) 

and (f1, k1) and (f2, k2) denote the frequencies and wavenumbers of the primary waves and satisfy 

the linear dispersion relation:  

 2(2 ) tanh( ) ( 1, 2).i if gk k h i    (4) 

The first and second terms on the right-hand-side of Eq. (1) represent the bound and free IG 

standing wave components, respectively. ∆f and ∆k denote the frequency and wavenumber of the 

bound IG waves. κ denotes the wavenumber of the free IG waves, and (κ, ∆f ) also satisfy the 

linear dispersion relation. I

b  and I

f  denote the amplitudes of the envelop of the bound and free 

IG standing waves, respectively, and I

b  and I

f  denote the initial phases of the bound and free 

IG waves, respectively. The gravitational acceleration is denoted by g. Bowers (1977) noted that 

the second-order bound sub-harmonics contain not only the (∆f, ∆k) component, but also the (∆f, 

k1+k2) component. However, calculations based on the equations in Bowers (1977) demonstrate 

that the (∆f, ∆k) component is approximately (0.003–3.50)×10
5
 times the (∆f, k1+k2) component in 

the range of our simulations (this will be described in detail in Section 3). Therefore, the (∆f, k1+k2) 

component is neglected, just as it was in Bowers (1977).  

    After some trigonometric manipulations, the squared amplitude of the IG period component 

along the central line can be expressed as follows: 

 2

0 1 2( ) ( ) ( ) ( ),A x a x b x c x      (5) 

where  
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I 2 I 2 I I I I

b f f b b f

2 2

0 1 2

( ) , ( ) , 2 cos( ),

( ) cos ( ), ( ) cos ( ), ( ) cos( )cos( ).

a b c

x kx x x x kx x

     

    

   

    
  (6) 

The amplitudes of the IG period component at every gauge location, A(xi) (i=1, 2,…, 21), can be 

obtained using the discrete Fourier transform for the free surface signals. xi denotes the abscissa 

value of each wave gauge. Because φ0(x), φ1(x) and φ2(x) are linearly independent, the unknown 

variables a, b and c can be obtained using the least squares method. Then the values of I

b , I

f  

and | I

b − I

f | will be obtained naturally.  

It should be noted that Dong et al. (2013) just verified the capacity of this separation 

procedure to decompose the bound and free IG waves under the first resonant mode. However, in 

fact, this separation procedure can also be applied to higher resonant modes. To verify this 

separation procedure suitable for different resonant modes, four known analytical signals are given 

as follows: 

 

I I I I

1 1 1 1 2 2 2 2

I I I I

b b f f

cos[(2 ) ]cos( ) cos[(2 ) ]cos( )

cos[(2 ) ]cos( ) cos[(2 ) ]cos( ),

y a f t k x a f t k x

f t kx f t x

   

      

    

     
 (7) 

where I

1a  and I

2a  denote the amplitudes of the primary wave f1 and f2 components inside the 

harbor, respectively, and I

1  and I

2  denote the initial phases of the corresponding components, 

respectively. The first two terms represent the bichromatic short standing wave free-surfaces 

inside the harbor, and the third and fourth terms denote the bound and free IG standing waves 

inside the harbor, respectively. Table 1 presents the specific parameters of the four analytical 

signals. The four cases have the same wave amplitudes and initial phases for the bichromatic 

primary waves and the bound and free IG waves. However, the beat frequency ∆f in each case is 

different, which is 0.010 Hz, 0.032 Hz, 0.053 Hz and 0.074 Hz in cases 01-04, respectively, 

corresponding to the lowest four resonant mode of the harbor illustrated in Fig. 1. This will be 

described in detail in Section 3. Fig. 2 shows the IG period component envelopes obtained using 

the known analytical signals and the separation procedure. It is obvious that there are pretty good 

agreements between the two curves for all the four cases. Table 2 demonstrates the amplitudes of 

the bound and free IG waves, the initial phase difference obtained using the separation procedure 

and their percentage errors relative to the known values. The percentage errors of the separating 

values of I

b , I

f  and | I

b – I

f | relative to the known values are denoted by the terms Err1, 2 and 3, 

respectively. It is seen that all percentage errors in the four cases are less than 1.0%. Therefore, 
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this procedure can separate the bound and free IG standing wave components from the known 

analytical signals accurately for not only the first resonant mode but also the next three resonant 

modes when twenty-one wave gauges are installed inside the harbor.  

 

Table 1. Parameters of four known analytic signals for testing the IG wave separation procedure  

Case f1 (Hz) f2 (Hz) I

1a (m) I

2a (m) I

b (m) I

f (m) I

1 (°) I

2 (°) I

b (°) I

f (°) 

01 0.200 0.210 0.05 0.05 0.01 0.02 45.0 60.0 30.0 60.0 

02 0.200 0.232 0.05 0.05 0.01 0.02 45.0 60.0 30.0 60.0 

03 0.200 0.253 0.05 0.05 0.01 0.02 45.0 60.0 30.0 60.0 

04 0.200 0.0274 0.05 0.05 0.01 0.02 45.0 60.0 30.0 60.0 

 

Table 2. Separation results of the bound and free IG standing waves for the four known analytical 

signals when twenty-one wave gauges are installed at 0≤x≤100 m. Err1, 2 and 3 refer to the 

percentage errors of the separating values of I

b , I

f  and I I

b f| |   relative to the known values, 

respectively. 

Case I

b (m) Err1 (%) I

f (m) Err2 (%) I I

b f| |   Err3 (%) 

01 1.000×10
–2

 0.000 2.000×10
–2

 0.000 30.00 0.000 

02 0.999×10
–2

 –0.100 1.998×10
–2

 –0.100 29.96 –0.133 

03 1.001×10
–2

 0.100 2.001×10
–2

 0.050 30.01 0.033 

04 1.000×10
–2

 0.000 2.006×10
–2

 0.300 29.75 –0.833 

 

 

Fig. 2. The amplitude envelopes of the IG period component for the known analytical signals 

listed in Table 1: (a) case 01, (b) case 02, (c) case 03 and (d) case 04. 
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3. Numerical experiment setup 

 

Table 3. Linear analytical solution (Mei, 1983): natural frequency, f (Hz), and amplification factor, 

R(f), of the lowest eight resonant modes of the harbor shown in Fig. 1. 

 Resonant mode 

 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ 

f 0.010 0.032 0.053 0.074 0.095 0.116 0.137 0.156 

R(f) 27.29 9.12 5.55 4.04 3.2 2.668 2.3 2.03 

Using the analytical solution of the linear theory for the resonance of an elongated harbor in 

the absence of dissipation (Mei, 1983), the natural frequencies of the lowest eight modes of the 

harbor shown in Fig. 1 are calculated and listed in Table 3. This paper includes four groups of 

experiments, namely Groups A–D. Each group contains ten cases and has different frequency 

parameters. The specific parameters of all cases are listed in Table 4. Groups A–D satisfy the beat 

frequency Δf=0.010 Hz, 0.032 Hz, 0.053 Hz and 0.074 Hz, respectively, corresponding to the 

lowest four resonant modes. Although all cases in each group have the same beat frequency, the 

primary wave frequencies in these cases are different.  

Take Group A as an example. We define f0=(f1+f2)/2 as the average primary wave frequency 

for each case, and λ=2π/k0 denotes the average short wavelength, in which k0 is the wavenumber 

corresponding to f0. The average primary wave frequency f0 ranges from 0.205 Hz in case A01 to 

0.385 Hz in case A10; and the average short wavelength λ varies from 20.38 m to 9.23 m 

accordingly. For all cases in Group A, the wavelengths of the free IG waves generated near the 

harbor entrance, lf, are all equal to 442.9 m, according to the linear dispersion relation; while the 

wavelengths of the bound IG waves, lb, vary from 373.0 m in case A01 to 241.6 m in case A10. In 

all cases, the relative water depths h/l0 are less than 0.202; within this range, the fully nonlinear 

Boussinesq equations proposed by Wei et al. (1995) can be used to simulate the wave propagation 

and transformation accurately (l0 denotes the deep water wavelengths of the short waves).  

In order to investigate the effects of the amplitudes of the incident primary waves on the 

bound and free IG waves inside the harbor systematically, a total of 20 cases have been selected, 

in which the amplitudes of the incident primary waves, a1=a2, increased gradually from 0.005 m 

to 0.05 m in increments of 0.005 m. In the other cases, only the condition of a1=a2=0.05 m was 
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simulated. a1 and a2 denote the amplitudes of the incident primary wave f1 and f2 components, 

respectively.  

 

Fig. 3. Sketch of the numerical experimental setup in case A01. Based on its geometrical 

symmetry with respect to the x-axis, only half of the domain (i.e. 0y  ) is used as the 

computational domain for simulations. 

 

Table 4. Parameters for all cases in Groups A, B, C and D. In the cases in bolds, the incident 

primary wave amplitudes, a1=a2, increased gradually from 0.005 m to 0.05 m in interval of 0.005 

m; in the other cases, only a1=a2=0.05 m was simulated. 

Group A (∆f=0.010Hz) Group B (∆f=0.032Hz) 

Case f1 

(Hz) 

f2 

(Hz) 

lb 

(m) 

lf (m) f0 

(Hz) 

λ (m) h/l0 Case f1 

(Hz) 

f2 

(Hz) 

lb 

(m) 

lf (m) f0 

(Hz) 

λ (m) h/l0 

A01 0.200 0.210 373.0 442.9 0.205 20.38 0.054 B01 0.200 0.232 114.3 138.2 0.216 19.22 0.060 

A02 0.220 0.230 359.9 442.9 0.225 18.34 0.065 B02 0.220 0.252 110.1 138.2 0.236 17.36 0.071 

A03 0.240 0.250 346.2 442.9 0.245 16.62 0.077 B03 0.240 0.272 105.7 138.2 0.256 15.78 0.084 

A04 0.270 0.280 324.4 442.9 0.275 14.47 0.097 B04 0.260 0.292 101.1 138.2 0.276 14.40 0.098 

A05 0.290 0.300 309.4 442.9 0.295 13.26 0.112 B05 0.280 0.312 96.41 138.2 0.296 13.20 0.112 

A06 0.300 0.310 301.8 442.9 0.305 12.71 0.119 B06 0.300 0.332 91.65 138.2 0.316 12.14 0.128 

A07 0.320 0.330 286.6 442.9 0.325 11.70 0.135 B07 0.320 0.352 86.88 138.2 0.336 11.19 0.145 

A08 0.330 0.340 278.9 442.9 0.335 11.23 0.144 B08 0.340 0.372 82.16 138.2 0.356 10.33 0.163 

A09 0.360 0.370 256.3 442.9 0.365 9.974 0.171 B09 0.360 0.392 77.52 138.2 0.376 9.558 0.181 

A10 0.380 0.390 241.6 442.9 0.385 9.234 0.190 B10 0.370 0.402 75.25 138.2 0.386 9.198 0.191 

Group C (∆f=0.053Hz) Group D (∆f=0.074Hz) 

Case f1 

(Hz) 

f2 

(Hz) 

lb 

(m) 

lf (m) f0 

(Hz) 

λ (m) h/l0 Case f1 

(Hz) 

f2 

(Hz) 

lb 

(m) 

lf (m) f0 

(Hz) 

λ (m) h/l0 

C01 0.200 0.253 67.63 83.26 0.227 18.20 0.066 D01 0.200 0.274 47.40 59.42 0.237 17.28 0.072 

C02 0.220 0.273 65.02 83.26 0.247 16.50 0.078 D02 0.220 0.294 45.49 59.42 0.257 15.70 0.085 

C03 0.240 0.293 62.30 83.26 0.267 15.03 0.091 D03 0.240 0.314 43.51 59.42 0.277 14.34 0.098 

C04 0.260 0.313 59.50 83.26 0.287 13.75 0.105 D04 0.260 0.334 41.48 59.42 0.297 13.14 0.113 

C05 0.280 0.333 56.64 83.26 0.307 12.63 0.120 D05 0.280 0.354 39.43 59.42 0.317 12.09 0.129 

C06 0.300 0.353 53.77 83.26 0.327 11.62 0.137 D06 0.300 0.374 37.37 59.42 0.337 11.14 0.146 

C07 0.320 0.373 50.90 83.26 0.347 10.73 0.154 D07 0.320 0.394 35.34 59.42 0.357 10.29 0.163 

C08 0.340 0.393 48.08 83.26 0.367 9.916 0.172 D08 0.340 0.414 33.34 59.42 0.377 9.521 0.182 

C09 0.350 0.403 46.69 83.26 0.377 9.540 0.182 D09 0.350 0.424 32.37 59.42 0.387 9.163 0.192 
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C10 0.360 0.413 45.32 83.26 0.387 9.181 0.192 D10 0.360 0.434 31.41 59.42 0.397 8.822 0.202 

 

Fig. 3 illustrates the sketch of the numerical experimental setup in case A01. At the right, 

upper and bottom boundaries of the domain, sponge layers are installed to absorb the energy of 

reflected and radiated waves, and the width of the sponge layers is set to be slightly larger than 2.0 

times the wavelength of the free IG waves. It should be noted that in order to reduce the 

computational cost, only half of the domain (i.e. 0y  ) is used as the computational domain for 

simulations based on the geometrical symmetry with respect to the x-axis. As the numerical model 

is discretized using curvilinear grids, different grid spaces are adopted. In the x-direction, the grid 

sizes Δx are all equal to 0.50 m both inside and outside the harbor except in the sponge layer at the 

right boundary. In order to reduce the large computational cost associated with the relatively thick 

sponge layer, the grid sizes Δx in the sponge layer increase gradually from 0.50 m to 10.42 m. 

While in the y-direction, the grid sizes ∆y increase gradually from 0.50 m inside the harbor to 

12.57 m outside the harbor. Twenty-one wave gauges are arrayed inside the harbor, and the 

distance between adjacent gauges is D=5.0 m. The computational domain consists of 134,300 

nodes and 133,560 rectangular elements. To obtain a good convergence rate, the Courant number 

 min ,Cr gh t x y   
 should be less than 0.5. Therefore, we used a time step of ∆t=0.05 s in 

all cases. The total simulation time was 2000 s. 

4. Results and discussion 

4.1 Time series and spectra analysis 

 



12 
 

Fig. 4. Time series of the free surfaces at the gauge G01 for (a) case A01, (b) case B01, (c) case 

C01 and (d) case D01 under the condition of a1=a2=0.05 m, in which a=(a1a2)
1/2

. 

 

 

Fig. 5. Wavelet spectra at the gauge G01 for (a) case A01, (b) case B01, (c) case C01 and (d) case 

D01 under the condition of a1=a2=0.05 m. 

 

Time series and corresponding wavelet spectra of the free surfaces at the gauge G01 for cases 

A01, B01, C01 and D01 under the condition of a1=a2=0.05 m are presented in Fig. 4 and Fig. 5, 

respectively. Note that in Fig. 4, the time series of the free surfaces at the gauge G01 are 

normalized by the average amplitude of the incident primary waves, a=(a1a2)
1/2

. Fig. 4 shows that 

the free surface inside the harbor is calm at the initial period of time. The primary waves reach the 

position of gauge G01 at approximately 40 s for all four cases. Through the wavelet spectra 

illustrated in Fig. 5, the wave energy change with respect to the time and the frequency can be 

visually demonstrated. It is shown that the energies of the primary wave components increase 

from zero to their maximum levels very rapidly (about 20–40 s) and then remain relatively steady 

until the end of the simulations. However, more time is needed for the IG period components to 

attain the quasi-steady state from the initial response phase. For the four cases, it is shown that the 

IG period components attain the quasi-steady state at approximately 300 s. In this paper, we study 
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the quasi-steady processes only, in all cases.  

 

Fig. 6. Amplitude spectra at the gauge G01 for (a) case A01, (b) case B01, (c) case C01 and (d) 

case D01 under the condition of a1=a2=0.05 m. 

 

During each run, data are recorded simultaneously from all gauges at a sampling time of 0.05 

s, yielding 40,000 data points per gauge. After discarding the first 7,232 data points from the 

beginning to eliminate the effects of the initial response phase, the remaining 2
15

 data points are 

analyzed using a standard FFT package. The amplitude spectra at the gauge G01 for cases A01, 

B01, C01 and D01 under the condition of a1=a2=0.05 m are illustrated in Fig. 6. For cases B01 

and C01, the nonlinear energy transfer between the primary waves and the high-order wave 

components are intense and complicated. Besides the primary wave f1 and f2 components, the 

amplitudes of the second- and higher-order wave components (2f1, 2f2, f1+f2, f2–f1, 2f1–f2, 2f2–f1, 

3f1–2f2, 3f2–f1) are also remarkable. The amplitudes of the f2 component in these two cases are 

only 0.052 m and 0.061 m, respectively, much less than the values of 2a2, which is because there 

exists the notable energy transfer from the f2 component to the second- and higher-order wave 

components. For the cases A01 and D01, the nonlinear energy transfer is much weaker than that in 

cases B01 and C01. The amplitudes of the f1 and f2 components in cases A01 and D01 are all close 

to the corresponding theoretical values of 2a1 and 2a2; in the high-order wave components, only 

the components 2f1, 2f2, f1+f2, f2–f1 are marked.  
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4.2 Effects of the short wavelength on IG waves  

 

Fig. 7. Amplitudes of the primary wave f1 and f2 components at all wave gauges (denoted by the 

solid and open circles, respectively) and the corresponding theoretical envelopes (denoted by the 

solid and dashed lines, respectively) for (a) case A01, (b) case B01, (c) case C01 and (d) case D01 

under the condition of a1=a2=0.05 m. 

 

As mentioned in Section 2.2, the primary wave f1 and f2 components take the form of 

standing waves inside the harbor. According to Eq. (7), the envelops of the f1 and f2 components 

can be analytically expressed by I

1 1cos( )a k x  and I

2 2cos( )a k x , respectively, and the amplitudes 

of the envelopes, I

1a  and I

2a , can be obtained using the discrete Fourier transform for the free 

surface signals at the gauge G01. Fig. 7 illustrates the comparisons of the amplitudes of the f1 and f2 

components at all wave gauges extracted from the corresponding free surface signals and their 

theoretical envelopes for cases A01, B01, C01 and D01 under the condition of a1=a2=0.05 m. It is 

shown that there is good agreement between the extracted amplitudes and the theoretical 

envelopes for all the four cases, which illustrates that the primary wave components inside the 

harbor are simulated by the numerical model accurately.  

Using the separation procedure based on the discrete Fourier transform and the least squares 

method proposed in Section 2.2, the bound and free IG standing waves inside the harbor are 

separated in all cases. Fig. 8 shows the amplitudes of the IG period components in all wave gauges 

and their envelopes obtained using the separation procedure for cases A01, B01, C01 and D01 
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(where AIG denotes the amplitude of the IG period components). It can be shown that the 

amplitudes of the IG period components at all wave gauges are very close to their envelopes in all 

the four cases. The separation results of the four cases are listed in Table 5. For the four cases, 

although the values of AIG, I

b  
and I

f  
are different from each other, the values of I I

b f/   are 

all less than 100%. This indicates that the relative components of the bound IG waves are less than 

those of the free IG waves inside the harbor.  

 

 

Fig. 8. Amplitudes of the IG period components (dots) at all wave gauges and their envelopes 

(solid lines) obtained using the separation procedure for (a) case A01, (b) case B01, (c) case C01 

and (d) case D01 under the condition of a1=a2=0.05 m. 

 

Table 5. The separation results of the bound and free long wave components for cases 01A, 01B, 

01C and 01D under the condition of a1=a2=0.05 m. 

Case I

b (m) I

f (m) I I

b f| |   I I

b f/  (%) 

A01 1.14×10
–2

 1.29×10
–2

 11.07
 o
 88.37 

B01 8.94×10
–3

  4.63×10
–2

  63.39
 o
 19.31 

C01 7.37×10
–3

  4.82×10
–2

  22.75
 o
 15.29 

D01 7.93×10
–3

  2.14×10
–2

  101.49
 o
  37.06  
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Fig. 9. The separating amplitudes of the bound and free IG waves for all cases in (a) Group A, (b) 

Group B, (c) Group C and (d) Group D under the condition of a1=a2=0.05m. 

 

Fig. 9 shows the variation of the amplitudes of bound and free IG waves with respect to the 

wavelengths of the incident primary waves in Groups A, B, C and D under the condition of 

a1=a2=0.05m. For both the bound and free IG waves, it is obvious that their amplitudes are more 

evident when the short wavelengths are relatively large. These phenomena coincide with the 

findings in Dong et al. (2013), and the reasons about these phenomena have been interpreted 

qualitatively from the standpoints of the nonlinear triad interactions and the generation mechanism 

of the free IG waves in Dong et al. (2013). Besides, we can see that for all the four groups, the 

amplitudes of the free IG waves are always larger than those of the bound IG waves inside the 

harbor, which is due to that the free IG waves in the four groups correspond to the lowest four 

resonant modes, respectively, and were significantly amplified inside the harbor. To better show 

the difference and resemblance between the lowest four resonant modes, Fig. 10 demonstrates the 

comparisons of the amplitudes of the bound and free IG waves in Groups A-D under the condition 
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of a1=a2=0.05m. It is interesting that both the magnitude and changing trend of the amplitudes of 

the bound IG waves in the four groups are very close to each other. However, the amplitudes of 

the free IG waves in the four groups are different with each other. Overall, the amplitudes of the 

free IG waves in Groups B and C are apparently larger than those in Groups A and D. Therefore, it 

can be inferred that for the primary wave frequency ranges studied in this paper, the overall IG 

waves under the second and third modes are more notable than those under the lowest mode, 

which breaks the usual stereotype that for narrow-mouthed bays and harbors, as well as for narrow 

elongated inlets and fjords, the lowest mode normally dominates (Rabinovich, 2009).   

 

 

Fig. 10. Comparisons of the separating amplitudes of the bound and free IG waves in Groups A-D 

under the condition of a1=a2=0.05m: (a) the bound IG waves and (b) the free IG waves 
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Fig. 11. The amplitude ratios, I I

b f/  , for all cases in Groups A-D under the condition of 

a1=a2=0.05m. 

 

    Fig. 11 illustrates the variation of the amplitude ratio, I I

b f/  ,
 
with respect to the short 

wavelengths in Groups A–D under the condition of a1=a2=0.05m. Because the free IG wave 

components are always larger than the bound IG wave components inside the harbor, the value of 

I I

b f/   
in all cases are less than 100%. For the first mode (Group A), when the normalized short 

wavelength λ/L is larger than 0.144, the values of I I

b f/   
are always larger than 50% and 

increase gradually with the increase of λ/L; when the normalized short wavelengths λ/L is less than 

0.133, the amplitude ratio I I

b f/   fluctuates in the range of 20–40%. For the second and third 

mode (Groups B and C), the values of I I

b f/   vary only between 5% and 25%, which is less than 

those in the lowest mode overall. For the fourth mode (Group D), the amplitude ratio I I

b f/   

changes in the range of 20–40%, which in general falls in between the first mode and the second 

and third modes. 
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4.3 Effects of the short wave amplitude on IG waves 

Fig. 12. Variation of the amplitudes of the bound and free IG waves, I

b  and I

f , with respect to 

the average amplitude of the incident primary waves, a. The open and solid circles denote the 

separating amplitudes of the bound and free IG waves, I

b  and I

f , respectively; and the dashed 

and solid curves denote the corresponding fitted amplitudes by Eq. (8). 

 

Fig. 12 shows the variation of amplitudes of the bound and free IG waves, I

b  and I

f , with 

respect to the average amplitude of the incident primary waves, a, for the cases in bold in Table 4. 

It can be observed intuitively that the separating amplitudes of the bound and free IG waves, I

b  

and I

f , seem to change quadratically with the amplitudes of the incident primary waves. To test 

the idea, it is assumed that there exist the following functional relations between the amplitudes of 

the bound and free IG waves and the amplitudes of the incident primary waves:   
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where νb and νf are unknown coefficients, which can be determined by using the least squares 

method. Table 6 presents the values of the parameters νb, νf and the correlation coefficients R
2
 in 
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these cases. It can be seen that the correlation coefficient R
2
 are all larger than 0.99 except in cases 

B01, B03 and C01. However, the values of R
2 

in the latter three cases are also larger than 0.96. It 

demonstrates that the bound and free IG wave components inside the harbor indeed vary 

quadratically with the amplitudes of the incident primary waves.  

 

Table 6. Values of the parameters νb, νf and the correlation coefficient R
2
  

Case 
I

b  I

f  
Case 

I

b  I

f  

νb R
2
 νf R

2
 νb R

2
 νf R

2
 

A01 4.572 0.9999 5.245 0.9992 B01 3.880 0.9729 20.18 0.9740 

A03 3.175 0.9996 4.763 0.9988 B03 1.767 0.9753 14.41 0.9995 

A05 1.673 0.9996 4.339 0.9991 B05 2.221 0.9996 14.49 0.9994 

A07 1.197 0.9997 3.673 0.9990 B07 1.115 0.9985 5.503 1.000 

A10 0.6093 0.9998 2.812 0.9999 B10 0.7434 0.9992 3.541 1.000 

C01 3.278 0.9634 20.38 0.9912 D01 3.125 0.9995 8.981 0.9940 

C03 1.253 0.9946 17.22 0.9991 D03 3.029 0.9995 8.832 0.9989 

C05 1.035 0.9989 14.18 0.9997 D05 1.636 0.9998 5.787 1.000 

C07 0.8205 0.9968 9.485 0.9995 D07 1.092 0.9998 5.642 0.9995 

C10 0.4411 0.9983 5.893 0.9997 D10 0.5496 0.9999 2.422 0.9997 

 

According to Longuet-Higgins and Stewart (1962, 1964), the amplitude of the bound IG 

waves generated through the wave-wave nonlinear interaction is proportional to the square of the 

amplitudes of the primary waves. Therefore, in theory, the amplitude of the bound IG waves inside 

the harbor, I

b , is proportional to (a
I
)
2
, where I I I 1/2

1 2( )a a a  denotes the average amplitudes of the 

primary waves inside the harbor. The amplitudes of the primary standing waves inside the harbor, 

I

1a  and I

2a , can be obtained using the discrete Fourier transform for the free surface signals at the 

gauge G01 in each case (refer to Fig. 7). Then the value of a
I
 in each case can be calculated 

naturally. Fig. 13 illustrates the variation of the average amplitudes of the primary waves inside 

the harbor, a
I
, with respect to the average amplitude of the incident primary waves, a. Assuming 

that a
I
 is proportional to a, that is,  

 I .a a  (9) 

Using the least square method, the coefficient γ for each case can be obtained (see Table 7). It can 

be observed that the correlation coefficient R
2
 are all larger than 0.99 except in cases B01, B03 

and C01, in which R
2 

are also larger than 0.96. It proves that a
I
 is indeed proportional to a. 
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Therefore, the reason why the bound IG wave components inside the harbor, I

b , vary 

quadratically with the amplitudes of the incident primary waves, a, can be explained well. We 

have noticed that the fitting results for cases B01, B03 and C01 are not very perfect in comparison 

with other cases especially when a is large (see Figs. 12 and 13). It is probably due to that the 

notable energy transfer from the f2 component to the second- and higher-order wave components 

occurs in the three cases (see Fig. 6. The amplitude spectrum for case B03, not shown in the paper, 

is similar to those for cases B01 and C01).  

 

 

Fig. 13. Variation of the average amplitudes of the primary waves inside the harbor, a
I
, with 

respect to the average amplitude of the incident primary waves, a. The solid circles refer to the 

calculated a
I
, and the solid lines denote the corresponding fitted a

I
 by Eq. (9).  
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Table 7. Values of the parameter γ and the correlation coefficient R
2
  

Case γ R
2
 Case γ R

2
 Case γ R

2
 Case γ R

2
 

A01 2.133 1.000 B01 1.859 0.9670 C01 1.897 0.9701 D01 1.956 0.9991 

A03 2.069 0.9994 B03 1.541 0.9875 C03 1.554 0.9959 D03 1.849 0.9980 

A05 1.854 0.9993 B05 2.143 0.9993 C05 1.875 0.9998 D05 1.931 0.9999 

A07 1.756 0.9996 B07 1.568 0.9999 C07 1.554 1.000 D07 1.654 1.000 

A10 1.588 0.9999 B10 1.652 0.9999 C10 1.466 0.9999 D10 1.411 0.9997 

 

    The reason why the free IG wave components inside the harbor change quadratically with the 

amplitudes of the incident primary waves, a, can be qualitatively explained through the generation 

mechanism of the free IG waves near the harbor mouth. According to Longuet-Higgins and 

Stewart (1962, 1964), the amplitudes of the bound IG waves outside the harbor, E

b , is 

proportional to a
2
, that is,  

 E 2

b = ,a   (10) 

in which ψ=ψ(f1, f2, h). Based on the generation mechanism of the free IG waves (Bowers, 1977), 

the free IG wave components inside the harbor can be qualitatively expressed as follows:   

 I I E 2 2

f b b b= ,R R a R a           (11) 

in which R denote the amplification factor, related to the resonant mode. Because the primary 

wave heights inside the harbor are different from the wave heights outside, there exists an 

imbalance between the bound IG waves inside and outside the harbor (Bowers, 1977). Thus, the 

coefficient b= 0    . Based on the results shown in Fig. 12 and Table 6, it can be found that 

for the given water depth, νb in Eq. (8) is only a function of the variables f1 and f2. Therefore, for 

the given water depth, δ is also only a function of the variables f1 and f2, unrelated to the primary 

wave amplitudes. Further, for the specific resonant mode and primary wave frequencies, the value 

of Rδ becomes a constant, and I

f  varies quadratically with a. 

Fig. 14 illustrates the variation of the amplitude ratios, I I

b f/  , with respect to the average 

amplitude of the incident primary waves, a. It can be found intuitively that when the lowest four 

modes occur inside the harbor, the amplitude ratio in each case are only slightly affected by the 

amplitudes of the incident primary waves. The maximum variations of I I

b f/   in Groups A-D 

occur in cases A01, B01, C02, and D01, respectively. For the four cases, the amplitude ratios vary 
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in the ranges of 81.00–88.37%, 18.66–21.14%, 6.40–10.59% and 30.16–37.06, respectively.  

 

Fig. 14. Variation of the amplitude ratios, I I

b f/  , with respect to the average amplitude of the 

incident primary waves, a, in (a) Group A, (b) Group B, (c) Group C and (d) Group D 

 

5. Conclusion 

The harbor oscillations under the lowest four modes induced by bichromatic wave groups 

were simulated using the fully nonlinear Boussinesq model. The variations of the bound and free 

IG waves inside the harbor and their ratio relative to the wavelengths and amplitudes of the 

incident primary (short) waves were investigated systematically. The similarities and differences 

between the lowest four modes were also presented in this study. It is hoped that the results of this 

study will improve the understanding of IG waves inside harbors involved in IG period 

oscillations. 

Our simulations found that both the bound and free IG waves inside the harbor are closely 

related to the wavelengths and amplitudes of the incident primary waves under the lowest four 

resonant modes. Both the bound and free IG wave components become more evident as the short 

wavelength increases. Because the frequencies of the free IG waves generated near the entrance 

correspond to the lowest four resonant modes, they are amplified inside the harbor, and their 

amplitudes are always larger than those of the bound IG waves. For the primary wave frequency 

ranges studied in this paper, the bound IG wave components under the lowest four modes have a 
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similar magnitude and changing trend to each other; the free IG waves under the second and third 

modes are apparently larger than those under the lowest mode. Therefore, the overall IG waves 

under the second and third modes are more notable than those under the lowest mode. However, 

the amplitude ratios under the former two modes are less than those under the latter overall. 

Furthermore, it was also found that both the bound and free IG waves inside the harbor vary 

quadratically with the amplitudes of the incident primary waves. However, the amplitude ratios of 

them, I I

b f/  , are only slightly affected by the short wave amplitudes.  

Finally, we reaffirm here that these conclusions are only valid for the given harbor and the 

ranges of the wavelength and amplitude of the primary waves studied in this paper. The energy 

dissipation due to the flow separation near the entrance and wave breaking may markedly change 

the distribution and strength of the low-frequency component inside the harbor. These processes 

were not considered in the current study. 
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