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Abstract

We propose a method for create a background model in
non-stationary scenes. Each pixel has a dynamic Gaussian
mixture model. Our approach can automatically change the
number of Gaussians in each pixel. The number of Gaus-
sians increases when pixel values often change because of
Illumination change, object moving and so on. On the other
hand, when pixel values are constant in a while, some Gaus-
sians are eliminated or integrated. This process helps re-
duce computational time. We conducted experiments to in-
vestigate the effectiveness of our approach.

1. Introduction

Background subtraction technique was traditionally ap-
plied to detection of objects. We can get object areas only
by doing subtraction between the observing image and the
background image without requiring the prior information
about the objects. However, when the background subtrac-
tion technique is applied for a surveillance system which
captures outdoor scene, it detects not only objects but also a
lot of noise since it shows great sensitivity to small changes
such as illumination changes.

There are many approaches to handle these background
changes[2, 7, 1, 9, 3]. Han et al. proposed a background es-
timation method. In their method, the mixture-of-Gaussians
is used to approximate the background model, and the num-
ber of Gaussians is variable in each pixel. Their method can
handle variations in lighting since a Gaussian is inserted
or deleted according to the illuminant condition. How-
ever, it takes a long time to estimate the background model.
On the other hand, there are some approaches to estimate
background model in less time[6, 4, 5, 8]. Stauffer et al.

proposed a fast estimation method to avoid a costly ma-
trix inversion by ignoring covariance components[8]. How-
ever, the number of Gaussians is constant in their back-
ground model. When recently observed pixel values fre-
quently change, a constant number of Gaussians is not al-
ways enough to estimate the background model, and it is
very difficult to determine the appropriate number of Gaus-
sians.

In this paper, we propose a new background estimation
method, which can increase and decrease the number of dis-
tributions to handle the variations. Section 2 presents the
algorithm to estimate the background model proposed by
Stauffer et al.[8]. In section 3, we propose an algorithm of
our approach. Experimental results are presented in section
4.

2. Background Estimation
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We consider the values of a particular pixel ��� �� over
time as a “pixel process”, which is a time series of pixel
values, e.g. scalars for gray values or vectors for color
images. We can represent the recent history of each pixel
���� � � � � ��� by a mixture of � Gaussian distributions,
where �� is the pixel value of ��� �� at time �. The proba-
bility of observing the current pixel value is
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where � is the number of distributions, ���� is an estimate
of weight of the 
�� Gaussian in the mixture at time �, 	���
is the mean value of the 
�� Gaussian in the mixture at time
�, ���� is the covariance matrix of the 
�� Gaussian in the



mixture at time �, and where � is a Gaussian probability
density function
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� is determined by the available memory and computa-
tional power. Also, for computational reasons, the covari-
ance matrix is assumed to be of the form:

���� � ����� (3)

This assumes that the red, green, and blue pixel values are
independent and have the same variances. While this is
certainly not the case, the assumption allows us to avoid
a costly matrix inversion at the expense of some accuracy.

Thus, the distribution of recently observed values of each
pixel in the scene is characterized by a mixture of Gaus-
sians. A new pixel value will be represented by one of the
major components of the mixture model and used to update
the model. We will describe the background model estima-
tion process in 7 steps.

����� Every new pixel value �� is examined against the
existing � Gaussian distributions, until a match is
found. A match is defined as a pixel value within 2.5
standard deviations of distribution.

����� When a match is found for the new pixel value in
�����, it is regarded as the background if the matched
distribution is one of the background models (de-
scribed in ����	). Otherwise, the pixel value is the
foreground.

����� The prior weights of the � distributions at time �,
����, are adjusted as follows

���� � ��� �������� 
 ������� (4)

where� is the learning rate and���� is � for the model
which matched and � for the remaining models. After
this approximation, the weights are renormalized.

����	 The 	 and  parameters for unmatched distribu-
tions remain the same. The parameters of the distri-
bution which matches the new observation are updates
as follows

	� � ��� ��	��� 
 ��� (5)
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where the second learning rate � is

� � ������	�� �� (7)

����
 If none of the� distribution match the current pixel
value in �����, the least probable distribution is re-
placed with a distribution with the current value as its
mean value, an initially high variance, and low prior
weight.

����� The Gaussians are ordered by the value of ���.
This value increases both as the distribution gains more
evidence and as the variance decreases.

����� The first � distributions are chosen as the back-
ground model, where

� � �����
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where � is a measure of the minimum portion of the
data that should be accounted for by the background.
If a small value for � is chosen, the background model
is usually unimodal. If � is higher, a multi-modal
distribution caused by a repetitive background motion
(e.g. leaves on a tree, a flag in the wind, a construc-
tion flasher, etc.) could result in more than one color
being included in the background model. This results
in a transparency effect which allows the background
to accept two or more separate colors.

3. Change of the Number of Gaussians

The number of Gaussians is constant in all of the pix-
els in the background estimation method described in 2.1.
When recently observed pixel values are roughly constant,
all of the distributions approximate the same values. In such
a case, only one distribution should exist and the other dis-
tributions are not necessary at all. On the other hand, when
recently observed pixel values frequently changes, the pre-
defined number of Gaussians is not always enough to esti-
mate the background model. Therefore, we propose a new
background estimation method, which can increase and de-
crease the number of distributions to handle the variations
of each pixel.

���� �������	 �� ���	����	���

����� in 2.1 is replaced by following �����
�

.
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�

If none of the � distribution match the current
pixel value in �����, a new Gaussian distribution is
made as follow.

������ �� (9)
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Figure 1. Comparison of computational time
when the number of Gaussians is constant
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Figure 2. Comparison of computational time
when the number of Gaussians is variable.

where � is the initial weight value for the new Gaus-
sian. If � is higher, the distribution is chosen as the
background model for a long time. After this process,
the weights are renormalized.

���� ��������	 �� ���	����	���

We propose two methods to decrease one of the Gaus-
sians in the mixture. These processes are inserted between
����� and ����� in 2.1.

����
� � When the weight of the least probable distri-
bution is smaller than a threshold, the distribution is
deleted, and the remaining weights are renormalized.

����
� � When the difference between means of two
Gaussians (the ne is �
 and the other is �	) is smaller
than a threshold, these distributions are integrated into
one Gaussian. The integrated Gaussian �� is calculated
as follow
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4. Experimental Result

We made experiments to investigate our approach. We
took outdoor scene for �� minutes (people coming and go-
ing in front of the building, moving cars, moving clouds,
trees in the wind, and so on). The size of image was
��� � ��� and each pixel had a 24-bit RGB value. In
our experiments, we used a computer which has PentiumD
3.0GHz CPU and 1GB memory.

In the first experiment, we investigated a computational
time when the number of Gaussians is constant. Figure 1
shows the result. The horizontal axis shows the number of
Gaussians in each pixel and the vertical axis shows the av-
erage computational time for per-frame. Considering the
online processing, it is preferable that the number of Gaus-
sians is smaller than �.

In the second experiment, we investigated our approach.
Figure 2 shows the relation between the number of distribu-
tions and the computational time. The horizontal axis shows
the frame number. The left vertical axis shows the compu-
tational time and the right one shows the average number of
Gaussians per pixel. The number of distributions is closely
related to the computational time. The number of distribu-
tion is changing from ��� to ��� in most frames. It turns out
that the background model consists of the pixels which have
unimodal distribution and the pixels which have multimodal
distributions. On the other hand, the computational time is
changing from �� to 	�msec. This is proper for the compu-
tational time when the number of Gaussians is constant �,
and available online processing. The number of Gaussians
increased at a faster rate from ����� frame. This is caused
by the illumination change since the sun was obscured by
clouds. Our approach handles this illumination change by
increasing the Gaussians. After a few moments, the num-
ber of Gaussians gradually decreased since the illumination
change had become stable. Figure 3 shows the scene and
the background model changing over this period. Figure
3(a) shows the observing images and Figure 3(b)shows the
mean value of the most probable distribution. We visual-
ized the number of Gaussians at each pixel in Figure 3(c).
The higher pixel value shows that the pixel has a large num-
ber of distributions. The background subtraction results are
shown in Figure 3(d).

Finally, we have investigated the precision ratio and the



(a) Input (b) Background (c) Distribution (d) Foreground

Figure 3. Adaptive background model and the number of Gaussians when observing outdoor scene.

recall ratio of the traditional approach and our approach.
Precision is the ratio of the number of correct detections in
the detected regions to the number of detected regions. Re-
call is the ratio of the number of correct detections in the
detected regions to the ground truth data, i.e., the number of
true foreground regions. Here, the true foreground regions
are extracted manually. Figure 4 shows the result. The hor-
izontal axis shows the number of Gaussians in each pixel
and the vertical axis shows the ratio. With the increase of
the number of Gaussians, the precision ratio tended to de-
crease, and the recall ratio tended to increase. The dotted
lines plotted in the figure show the precision ratio and the
recall ratio of our approach. The precision ratio was ������
and the recall ratio was ������. Our approach can handle
the variation of background since it can change the num-
ber of Gaussians dynamically without setting the number
in advance, and, therefore, our approach is superior to the
traditional approach.

5. Conclusion

In this paper, we proposed a new approach to estimate
the background model with the mixture-of-Gaussians. Our
approach can increase and decrease the number of Gaus-
sians in each pixel. When recently observed pixel values
are roughly constant, one of the Gaussians is deleted or in-
tegrated into the other distribution. When recently observed
pixel values frequently changes, a new Gaussian in inserted
into the background model. In our experiment, we got a
good result that the computational time was �� � 	�msec
(about �����) and the precision ratio and the recall ratio
were superior to the traditional approach. We are now re-
searching for immediate handling to rapid changing of the
background, and for reducing computational time.
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of distributions.
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