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Abstract

Large time behavior of solutions to the compressible Navier-Stokes
equation around a given constant state is considered in an infinite
layer Rn−1 × (0, a), n ≥ 2, under the no slip boundary condition for
the velocity. The Lp decay estimates of the solution are established for
all 1 ≤ p ≤ ∞. It is also shown that the time-asymptotic leading part
of the solution is given by a function satisfying the n − 1 dimensional
heat equation. The proof is given by combining a weighted energy
method with time-weight functions and the decay estimates for the
associated linearized semigroup.

1. Introduction

This paper is concerned with the initial boundary value problem for the
compressible Navier-Stokes equation in an infinite layer Ω :

(1.1) ∂tρ + div (ρv) = 0,

(1.2) ∂t(ρv) + div (ρv ⊗ v) + ∇P (ρ) = μΔv + (μ+ μ′)∇div v,

(1.3) v|xn=0,a = 0, ρ|t=0 = ρ0(x), v|t=0 = v0(x).

Here Ω is an n-dimensional infinite layer that is defined by

Ω = {x = (x′, xn) ; x′ = (xn, · · · , xn−1) ∈ Rn−1, 0 < xn < a}, n ≥ 2 ;

ρ = ρ(x, t) and v = (v1(x, t), · · · , vn(x, t)) denote the unknown density and
velocity at time t ≥ 0 and position x ∈ Ω, respectively ; P = P (ρ) is the
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pressure ; μ and μ′ are the viscosity coefficients that satisfy μ > 0, 2
n
μ+μ′ ≥ 0

; and the notation div (ρv ⊗ v) means that its j-th component is given by
div (ρvjv).

We are interested in the large time behavior of solutions to problem (1.1)-
(1.3) when the initial value (ρ0, v0) is sufficiently close to a given constant
state (ρ∗, 0), where ρ∗ is a given positive number.

Matsumura and Nishida [22, 23] proved the global in time existence
of solutions to the Cauchy problem for (1.1)-(1.2) on the whole space Rn

around (ρ∗, 0) and obtained the optimal L2 decay rate of the perturbation
u(t) = (ρ(t)−ρ∗, v(t)). Kawashima, Matsumura and Nishida [17] then showed
that the leading part of u(t) is given by the solution of the linearized problem.
(See [16] for the case of a general class of quasilinear hyperbolic-parabolic sys-
tems.) The solution of the linearized problem reveals a hyperbolic-parabolic
aspect of system (1.1)-(1.2), a typical property of system (1.1)-(1.2). It is
written asymptotically in the sum of two terms, one is given by the convo-
lution of the heat kernel and the fundamental solution of the wave equation,
which is the so-called diffusion wave, and the other is the solution of the heat
equation. Hoff and Zumbrun [7, 8] showed that there appears some interest-
ing interaction of hyperbolic and parabolic aspects of the system in the decay
properties of Lp norms with 1 ≤ p ≤ ∞. The diffusion wave decays faster
than the heat kernel in Lp norm for p > 2 while slower for p < 2. (See also
[20].) This decay property of the diffusion wave also appears in the exterior
domain problem [18, 19] and the half space [14, 15].

On the other hand, in contrast to the domains mentioned above, we
know that the Poincaré inequality holds for functions on the infinite layer Ω.
Therefore, if one considers, for example, the incompressible Navier-Stokes
equation on Ω under the no-slip boundary condition for the velocity, it is
easily seen that the L2 norm of the velocity decays exponentially. (See [1,
2, 3] for the Lp decay estimates.) As for problem (1.1)-(1.3), the Poincaré
inequality still holds for the velocity v(t) but not for the density part φ(t) =
ρ(t)− ρ∗. This leads to that the spectrum of the linearized operator reaches
the origin but it is like the one such as the n−1 dimensional Laplace operator.
As a result, the solution of the linearized problem behaves in large times such
as a solution of an n−1 dimensional heat equation [11]. In this paper we will
prove that the leading part of the solution of the nonlinear problem (1.1)-
(1.3) is given by the solution of the linearized problem. More precisely, we
will show that under suitable assumptions on the initial value, u(t) satisfies

(1.4) ‖u(t) − u(0)(t)‖Lp = O(t−
n−1

2
(1− 1

p
)− 1

2L(t))

for all 1 ≤ p ≤ ∞ as t→ ∞. Here L(t) = 1 when n ≥ 3 and L(t) = log(1+t)
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when n = 2 ; and u(0) = (φ(0)(x′, t), 0) with φ(0)(x′, t) satisfying

∂tφ
(0) − κΔ′φ(0) = 0, φ(0)|t=0 =

1

a

∫ a

0

(ρ0(x
′, xn) − ρ∗) dxn,

where κ = a2γ2

12ν2 , ν = μ
ρ∗ , γ

2 = P ′(ρ∗) and Δ′ = ∂2
x1

+ · · ·+ ∂2
xn−1

. We will also

establish decay estimates of ‖∂xu(t)‖p for all 1 ≤ p ≤ ∞.
The estimate (1.4) means that the leading part of u(t) is given by a

solution of the n − 1 dimensional heat equation and no hyperbolic feature
appears in the leading part. We also note that, even in the case of n = 2,
any effect from the nonlinearity does not appear in the leading part.

As for related works, we mention that the structure of the spectrum of the
linearized operator near the origin is quite similar to that of the linearized
operator appearing in the free surface problem of viscous incompressible fluid
studied in [4]. So, the leading part of u(t) has a similar form to that of the
free surface problem. We also mention the work of Benabidallah [5] where the
global existence of the solution was proved in the isothermal case under the
action of a large potential force such that the density tends to 0 as |x| → ∞.

The proof of (1.4) is similar to that of an analogous result on the half
space problem investigated in [15]. It is based on the Hs a priori estimate
with time-weight function by the energy method [13, 15, 21, 24] and the decay
estimates for the linearized semigroup [10, 11]. There are, however, several
aspects different from the half space problem, especially in low-dimensional
cases. One thing is that the decay rate of the linearized semigroup is not so
fast in the case n = 2, 3. Therefore, for these cases, a more detailed treatment
of the nonlinearity is needed.

The paper is organized as follows. In Section 2 we state our main results
concerning the large time behavior. The proof of the main results is given
in Section 3. We first show the asymptotic behavior (1.4) for p = 2. We
then investigate the asymptotic behavior in L∞ space by combining the lin-
earized analysis and the decay estimate of the Hs norm. We finally study
the asymptotic behavior in L1 space. In the Appendix we give a proof of the
estimates for the solutions of the Stokes problem which are used in the proof
of the energy estimates.

2. Main Result

We first introduce some notation. For 1 ≤ p ≤ ∞ we denote by Lp the
usual Lebesgue space on Ω and its norm is denoted by ‖ · ‖p. The L2 inner
product will be denoted by (·, ·)2. Let � be a nonnegative integer. The symbol
W �,p denotes the �-th order Lp Sobolev space on Ω with norm ‖·‖W �,p. When
p = 2, the space W �,2 is denoted by H� and its norm is denoted by ‖ ·‖H�. C�

0
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stands for the set of all C� functions which have compact support in Ω. We
denote by H1

0 the completion of C1
0 in H1. The dual space of H1

0 is denoted
by H−1.

We often write x ∈ Ω as x = (x′, xn), x
′ = (xn, · · · , xn−1) ∈ Rn−1. Partial

derivatives of a function u in x, x′, xn and t are denoted by ∂xu, ∂x′u, ∂xnu
and ∂tu, respectively. We also write higher order partial derivatives of u in
x as ∂k

xu = (∂α
xu; |α| = k).

We next rewrite problem (1.1)-(1.3). We set φ = ρ − ρ∗. Then problem
(1.1)-(1.3) is reduced to finding u = (φ, v) that satisfies

(2.1) ∂tφ+ v · ∇φ+ ρdiv v = 0,

(2.2) ρ(∂tv + v · ∇v)− μΔv − (μ+ μ′)∇div v + P ′(ρ)∇φ = 0,

(2.3) v|xn=0,a = 0 ; u|t=0 = u0,

where ρ = φ+ ρ∗ and

u0 = (φ0, v0), φ0 = ρ0 − ρ∗.

Here (1.1) is used to obtain (2.2).
In the following we set

s0 ≡
[n
2

]
+ 1.

Here and in what follows [q] denotes the greatest integer less than or equal
to q.

For a solution of (2.1)-(2.3) we define some quantities. Let u = (φ, v) be
a solution of (2.1)-(2.3). We define Eσ

r (t) and Dσ
r (t) by

Eσ
r (t) =

(
sup

0≤τ≤t
(1 + τ )2r

{|[φ(τ )]|2σ + |[v(τ )]|2σ
})1/2

and

Dσ
r (t) =

⎧⎪⎪⎨⎪⎪⎩
(∫ t

0

(1 + τ )2r|||Dv|||20 dτ
)1/2

for σ = 0,(∫ t

0

(1 + τ )2r
{|||Dφ|||2σ−1 + |||Dv|||2σ

}
dτ

)1/2

for σ ≥ 1.

Here and in what follows we denote

|[ψ(t)]|σ =

⎛⎝ [ σ
2
]∑

j=0

‖∂j
tψ(t)‖2

Hσ−2j

⎞⎠1/2

,
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|||Dψ(t)|||σ =

⎧⎪⎨⎪⎩
‖∂xψ(t)‖2 for σ = 0,(
|[∂xψ(t)]|2σ + |[∂tψ(t)]|2σ−1

)1/2

for σ ≥ 1.

We will look for the solution u ∈ ∩[ s
2
]

j=0C([0,∞);Hs−2j) satisfying Es
0(t)

2 +
Ds

0(t)
2 <∞ for all t ≥ 0 with s ≥ s0.

Before stating our main results we mention the compatibility condition.
Since we consider strong solutions, we need to require the compatibility con-
dition for the initial value u0 = (φ0, v0), which is formulated as follows.

Let u = (φ, v) be a smooth solution of (2.1)-(2.3). Then ∂tu = (∂j
tφ, ∂

j
t v)

(j ≥ 1) is inductively determined by

∂j
tφ = −v · ∇∂j−1

t φ− ρdiv∂j−1
t v − {[

∂j−1
t , v · ∇]

φ+
[
∂j−1

t , ρdiv
]
v
}

and

∂j
t v = −ρ−1

{
A∂j−1

t v + P ′(ρ)∇∂j−1
t φ

}− ρ−1
{[
∂j−1

t , ρ
]
∂tv +

[
∂j−1

t , P ′(ρ)∇]
φ
}

−ρ−1∂j−1
t (ρv · ∇v).

Here Av = −μΔv− (μ+ μ′)∇div v ; and
[
C,D

]
= CD−DC is the commu-

tator of C and D.
From these relations we see that (∂j

tφ, ∂
j
t v)

∣∣
t=0

is inductively given by
(φ0, v0) in the following way:

(∂j
tφ, ∂

j
t v)

∣∣
t=0

= (φj, vj),

where

φj = −v0 · ∇φj−1 − ρ0div vj−1 −
j−1∑
�=1

(
j − 1
�

){
v� · ∇φj−1−� + φ�div vj−1−�

}
,

vj = −ρ−1
0

{
Avj−1 + P ′(ρ0)∇φj−1

}
−ρ−1

0

j−1∑
�=1

(
j − 1
�

){
φ�vj−� + a�(φ0;φ1, · · · , φ�)φj−1−�

}
+ρ−1

0 Gj−1(φ0, v0, ∂xv0;φ1, · · · , φj−1, v1, · · · , vj−1, ∂xv1, · · · , ∂xvj−1).

Here ρ0 = φ0 + ρ∗ ; a�(φ0;φ1, · · · , φ�) is a certain polynomial in φ1, · · · , φ� ;
· · · · · · , and so on.

By the boundary condition v|xn=0,a = 0 in (2.3), we necessarily have
∂j

t v |xn=0,a = 0, and hence,
vj |xn=0,a = 0.
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Assume that (φ, v) is a solution of (2.1)-(2.3) in ∩[ s
2
]

j=0C([0, T ];Hs−2j) for
some T > 0. Then, from the above observation, we need the regularity
(φj, vj) ∈ Hs−2j for j = 0, · · · , [s/2], which, indeed, follows from the fact
that (φ0, v0) ∈ Hs with s ≥ s0. Furthermore, it is necessary to require that
(φ0, v0) satisfies the ŝ-th order compatibility condition:

vj ∈ H1
0 for j = 0, 1, · · · , ŝ =

[
s− 1

2

]
.

We are ready to state our global existence result.

Theorem 2.1. Let s be an integer satisfying s ≥ s0 and assume that
P ′(ρ∗) > 0. Then there exists a positive number ε0 such that if the initial
perturbation u0 ∈ Hs satisfies ‖u0‖Hs ≤ ε0 and the ŝ-th compatibility condi-

tion, then there exists a unique global solution u(t) ∈ ∩[ s
2
]

j=0C([0,∞);Hs−2j)
of problem (2.1)-(2.3), which satisfies

Es
0(t)

2 +Ds
0(t)

2 ≤ C‖u0‖2
Hs

for all t ≥ 0. Furthermore, it holds that limt→∞ ‖u(t)‖∞ = 0.

The proof of Theorem 2.1 is similar to that of analogous results in [13, 24].
It is proved by a combination of the local existence and the a priori energy
estimate. The local existence can be proved by applying the local solvability
result in [12]. The a priori energy estimate can be obtained by the same
energy method as in [13, 24]. The decay of the L∞ norm can also be proved
in a similar manner as in [13]. We omit the details. (See Lemma 3.5 below
for the energy estimate.)

As for the asymptotic behavior of the solution, we have the following
result.

Theorem 2.2. Let s be an integer satisfying s ≥ s0 + 2 when n ≥ 4,
s ≥ s0 + 3 when n = 3 and s ≥ s0 + 4 when n = 2. Assume that P ′(ρ∗) > 0.
In addition to the assumption on u0 in Theorem 2.1, assume also that u0

belongs to Hs ∩ (W 2,1 ×W 1,1). Then if u0 is sufficiently small, the solution
u(t) of problem (2.1)-(2.3) satisfies

‖u(t)‖p = O(t−
n−1

2
(1− 1

p
)),

‖∂xu(t)‖p = O(t−
n−1

2
(1− 1

p
)− 1

2L(t)
1
2
(1− 2

p
)+)

and
‖u(t) − u(0)(t)‖p = O(t−

n−1
2

(1− 1
p
)− 1

2L(t))
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for any 1 ≤ p ≤ ∞ as t → ∞. Here (1 − 2
p
)+ = max{1 − 2

p
, 0} ; u(0) =

(φ(0)(x′, t), 0) and φ(0)(x′, t) is a function satisfying

∂tφ
(0) − κΔ′φ(0) = 0, φ(0)

∣∣
t=0

=
1

a

∫ a

0

(ρ0(x
′, xn) − ρ∗) dxn,

where κ = a2γ2

12ν2 , ν = μ/ρ∗, γ2 = P ′(ρ∗) and Δ′ = ∂2
x1

+ · · · + ∂2
xn−1

; and
L(t) = 1 when n ≥ 3 ; and L(t) = log (1 + t) when n = 2.

Remark 2.3. (i) As is well known, ‖u(0)(t)‖p decays exactly in the order

t−
n−1

2
(1− 1

p
). We thus see that the decay estimate for u(t) in Theorem 2.2 is

optimal.
(ii) The regularity assumption on u0 can be relaxed depending on p. See

Theorems 3.4, 3.7, 3.13–3.15 and 3.17 below.

Theorem 2.2 will be proved in the next section.

3. Proof of Theorem 2.2

In this section we prove the asymptotic behavior described in Theorem
2.2. The proof is given by combining the weighted energy estimate (Lemma
3.5) and the estimates for the linearized semigroup (Lemmas 3.1 and 3.2)
which were obtained in [10, 11].

We first transform the unknown v into m = ρv. Then (2.1)-(2.3) is
written as

∂tφ+ divm = 0,

∂tm+ div

(
m⊗m

ρ

)
+ ∇P (ρ) = μΔ

(
m

ρ

)
+ (μ + μ′)∇div

(
m

ρ

)
,

m|xn=0,a = 0 ; φ|t=0 = φ0(x), m|t=0 = m0(x),

where m0 = ρ0v0 with ρ0 = φ0 + ρ∗. We rewrite this problem as

(3.1) ∂tw + Lw = div Ñ ,

(3.2) m|∂Ω = 0 ; w|t=0 = w0,

where w =

(
φ
m

)
, w0 =

(
φ0

m0

)
and

L =

(
0 div

γ2∇ −νΔ − ν̃∇div

)
, Ñ =

(
0

(Njk)1≤j,k≤n

)
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with γ2 = P ′(ρ∗), ν = μ/ρ∗, ν̃ = (μ+ μ′)/ρ∗ and

Njk = −ν∂xk

(
φmj

φ+ ρ∗

)
− δjkν̃ div

(
φm

φ+ ρ∗

)
−δjk φ

2

∫ 1

0

(1 − θ)P ′′(φθ + ρ∗) dθ − mjmk

φ+ ρ∗
.

Here the j-th component of divN is given by
∑n

k=1 ∂xk
Njk.

In view of the Hs energy bound in Theorem 2.1, it suffices to prove
Theorem 2.2 with u(t) replaced by w(t).

In [10] we showed that the operator −L with domain D(L) = W 1,r(Ω)×[
W 2,r(Ω) ∩W 1,r

0 (Ω)
]

generates an analytic semigroup U (t) on W 1,r(Ω) ×
Lr(Ω) (1 < r < ∞) and established the estimates of U (t) for 0 < t ≤ 2
stated in Lemma 3.1 below.

In the following we will denote by Q̃ the (n+1)× (n+1)-diagonal matrix
diag(0, 1, · · · , 1). Note that

Q̃w =

(
0
m

)
for w =

(
φ
m

)
.

Lemma 3.1. Let � = 0, 1. Then there hold the estimates

‖∂�
xU (t)w0‖r ≤ Ct−

�
2‖w0‖W �,r×Lr , 1 < r <∞,

‖∂�
xU (t)w0‖∞ ≤ Ct−(1−ε)‖w0‖H [n

2 ]+1+�×H[ n
2 ]+�

and
‖∂�

xU (t)w0‖p ≤ Ct−
�
2‖w0‖W �+1,p×W �,p , p = 1,∞,

for 0 < t ≤ 2 with some constant 0 < ε < 1, provided that w0 belongs to
the Sobolev spaces indicated on the right-hand side of each inequality above.
Furthermore, if Q̃w0|xn=0,a = 0, then

‖∂xU (t)w0‖1 ≤ C‖w0‖W 2,1×W1,1

holds for 0 ≤ t ≤ 2.

As for the large time behavior of U (t), we showed the following result in
[11].

Lemma 3.2. Let 1 < r < ∞ and let U (t) be the semigroup generated by
−L. Suppose that w0 = (φ0, m0) ∈ L1(Ω) ∩ [W 1,r(Ω) × Lr(Ω)]. Then the
solution w(t) = U (t)w0 of problem (3.1)–(3.2) is decomposed as

U (t)w0 = U (0)(t)w0 + U (∞)(t)w0,
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where each term on the right-hand side has the following properties.

(i) U (0)(t)w0 is written in the form

U (0)(t)w0 = W (0)(t)w0 + R (0)(t)w0.

Here W (0)(t)w0 =

(
φ(0)(x′, t)

0

)
; and φ(0)(x′, t) is a function independent

of xn and satisfies the following heat equation on Rn−1:

∂tφ
(0) − κΔ′φ(0) = 0, φ(0)

∣∣
t=0

=
1

a

∫ a

0

φ0(x
′, xn) dxn,

where κ = a2γ2

12ν
and Δ′ = ∂2

x1
+ · · · + ∂2

xn−1
.

The function R (0)(t)w0 satisfies the following estimate. For any 1 ≤ p ≤
∞ and j, � = 0, 1, there exists a positive constant C such that

‖∂j
t∂

�
xR

(0)(t)w0‖p ≤ Ct−
n−1

2
(1− 1

p
)− 1

2
−j‖w0‖1

holds for t ≥ 1. Furthermore, it holds that

‖∂xR
(0)(t)Q̃w0‖p ≤ Ct−

n−1
2

(1− 1
p
)−1‖Q̃w0‖1

and
‖R (0)(t)[∂xQ̃w0]‖p ≤ Ct−

n−1
2

(1− 1
p
)− 1

2‖Q̃w0‖1.

(ii) There exists a positive constant c such that U (∞)(t)w0 satisfies

‖∂j
t ∂

�
xU

(∞)(t)w0‖r ≤ Ce−ct‖w0‖W �,r×Lr , j, � = 0, 1,

for all t ≥ 1. Furthermore, the following estimates

‖∂�
xU

(∞)(t)w0‖∞ ≤ Ce−ct‖w0‖H [n
2 ]+1+�×H[ n

2 ]+�, � = 0, 1,

‖∂�
xU

(∞)(t)w0‖p ≤ Ce−ct‖w0‖W �+1,p×W �,p , p = 1,∞, � = 0, 1,

hold for all t ≥ 1, provided that w0 belongs to the Sobolev spaces on the right
of the above inequalities.

Remark. Although the estimates of the time derivative was not given in
[10, 11], it is easy to prove these estimates by tracing the proof in [10, 11].

We first prove the L2 decay estimates (Theorem 3.4) and then the Lp

estimates for p = ∞ (Theorems 3.7, 3.13 and 3.14) and p = 1 (Theorems
3.15 and 3.17). The Lp estimates for general p can then be obtained by
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interpolation. To prove the Lp estimates for p = ∞ and p = 1, we will
use the L2 decay estimates and the Hs energy estimate with a time-weight
function.

We define M
(k)
2 (t) and M(t) by

M
(k)
2 (t) = sup

0≤τ≤t
(1 + τ )

n−1
4

+k
2 ‖∂k

xw(τ )‖2,

M(t) = M
(0)
2 (t) +M

(1)
2 (t).

To obtain the decay estimates for L2 norm we use the following

Lemma 3.3. Let s ≥ s0 +1 and assume that ‖u0‖2 ≤ ε0. Then the following
inequalities hold.

(i) ‖divN‖1 ≤ C(1 + t)−
n−1

4
− 1

2

{
Es

0(t)
1/2M(t)3/2 + Es

0(t)M(t)
}

(n ≥ 3).

(ii) ‖divN‖1 ≤ C(1 + t)−
n−1

4
− 1

2

{‖∂xv‖1/3

H3M(t)5/3 + Es
0(t)M(t)

}
(n = 2).

(iii) ‖divN‖2 ≤ C(1 + t)−
n−1

4
− 1

2Es
0(t)M(t) (n ≥ 4).

(iv) ‖divN‖2 ≤ C(1 + t)−
n−1

4
− 1

2

{
Es

0(t)
3/4M(t)5/4 + Es

0(t)M(t)
}

(n = 3).

(v) ‖divN‖2 ≤ C(1 + t)−
n−1

4
− 1

2

{
Es

0(t)
1/2M(t)3/2 + Es

0(t)M(t)
}

(n = 2).

(vi) Set N (�) = (N (�)
jk ), � = 1, 2, with N (1)

jk = −ν∂xk

(
φmj

φ+ρ∗

)
−δjkν̃ div

(
φm

φ+ρ∗

)
and N (2)

jk = Njk −N (1)
jk . Then

‖N (1)‖1 ≤ C(1 + t)−
n−1

2
− 1

2M(t)2,

‖divN (2)‖1 ≤ C(1 + t)−
n−1

2
− 1

2M(t)2.

Proof. The inequalities in Lemma 3.3 follows by a direct application of the
Hölder, Poincaré and Gagliardo-Nirenberg-Sobolev inequalities to each term
of divN except ‖J‖p (p = 1, 2) for n = 2, 3 with J = −ν φ

ρ
Δm− ν̃ φ

ρ
∇divm.

We here estimate it for n = 2. The case n = 3 can be treated similarly.
We write m = ρv = φv + ρ∗v. Then

|∂2
xm| ≤ C{|∂2

xv|+ |φ∂2
xv|+ |∂xφ∂xv|+ |∂2

xφv|},
and whence,

‖J‖1 ≤ C{‖φ∂2
xv‖1 + ‖φ2∂2

xv‖1 + ‖φ∂xφ∂xv‖1 + ‖φ∂2
xφv‖1}.

10



Let us estimate each term on the right-hand side. Since ∂xv = ∂xm/ρ −
∂xφm/ρ

2, we have
|∂xv| ≤ C(1 + |m|)|∂xw|.

Therefore, by the interpolation inequality : ‖∂2
xv‖2 ≤ C‖∂xv‖2/3

2 ‖∂xv‖1/3

H3 , we
have

‖φ∂2
xv‖1 ≤ C‖φ‖2‖∂xv‖2/3

2 ‖∂xv‖1/3

H3 ≤ C‖φ‖2‖∂xw‖2/3
2 ‖∂xv‖1/3

H3

≤ C(1 + t)−
3
4‖∂xv‖1/3

H3M(t)5/3.

Similarly, we have ‖φ2∂2
xv‖1 ≤ C(1 + t)−

3
4‖∂xv‖1/3

H3M(t)5/3. The remaining
terms can be estimated by using the Hölder and Poincaré inequalities, and,
consequently, we obtain

‖J‖1 ≤ C(1 + t)−
3
4{‖∂xv‖1/3

H3M(t)3/5 + Es
0(t)M(t)}.

We next consider ‖J‖2. We decompose φ as

φ = φ+ φ1, φ =
1

a

∫ a

0

φ(x′, xn, t) dxn.

Observe that φ does not depend on xn and that
∫ a

0
φ1 dxn = 0 for all (x′, t).

Therefore, we have the Gagliardo-Nirenberg inequality for φ :

‖φ‖∞ ≤ C‖φ‖1/2

L2
x′
‖∂x′φ‖1/2

L2
x′
≤ C‖φ‖1/2

2 ‖∂xφ‖1/2
2

and the Poincaré inequality for φ1 :

‖φ1‖2 ≤ C‖∂xnφ1‖2 ≤ C‖∂xφ‖2.

It then follows that

‖φ∂2
xm‖2 ≤ ‖φ‖∞‖∂2

xm‖2 ≤ C‖φ‖1/2
2 ‖∂xφ‖1/2

2 ‖∂xm‖1/2
2 ‖∂xm‖1/2

H2

≤ C(1 + t)−1Es
0(t)

1/2M(t)3/2

and
‖φ1∂

2
xm‖2 ≤ ‖φ1‖4‖∂2

xm‖4 ≤ C‖∂xφ1‖2‖∂xm‖H2

≤ C(1 + t)−3/4Es
0(t)M(t),

from which the desired inequality for ‖J‖2 is obtained. This completes the
proof. �
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In the following we will denote

E0 = ‖w0‖Hs + ‖w0‖1.

Theorem 3.4. Let s ≥ s0 +1. Assume that w0 ∈ Hs∩L1. Then there exists
a positive number ε1 such that

(i) ‖∂�
xw(t)‖2 ≤ C(1 + t)−

n−1
4

− �
2E0, � = 0, 1,

for all t ≥ 0, provided that E0 < ε1. Furthermore, it holds

(ii) ‖w(t) − u(0)(t)‖2 ≤ C(1 + t)−
n−1

4
− 1

2E0.

Here u(0)(t) is the function defined in Theorem 2.2.

Proof. To prove (i) we derive a uniform estimate for M(t). By Theorem
2.1, we know that ‖w(t)‖H1 ≤ CE0 for all t ≥ 0. So, it suffices to estimate
M(t) for t ≥ 2.

We write w(t) as

w(t) = U (t)w0 +

∫ t−1

0

U (t− τ )div Ñ (τ ) dτ +

∫ t

t−1

U (t− τ )div Ñ (τ ) dτ

≡ I0(t) + I1(t) + I2(t).

We note that

div Ñ (τ ) =

(
0

divN (τ )

)
= Q̃ div Ñ (τ ).

By Lemma 3.2, we see that

‖∂�
xI0(t)‖2 ≤ C(1 + t)−

n−1
4

− �
2E0.

We next apply Lemmas 3.2 and 3.3 to estimate I1(t). When n ≥ 3, we
have

‖∂�
xI1(t)‖2 ≤ C

∫ t−1

0

(1 + t− τ )−
n−1

4
− �+1

2 ‖divN (τ )‖1 dτ

+C

∫ t−1

0

e−c(t−τ)‖divN (τ )‖2 dτ

≤ C(1 + t)−
n−1

4
− �

2

{
Es

0(t)M(t) + Es
0(t)

3/4M(t)5/4
}

for � = 0, 1. We here used the fact that div Ñ = Q̃div Ñ .
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In case n = 2, since s ≥ s0 + 1 = 3, we similarly have

‖∂�
xI1(t)‖2

≤ C

∫ t−1

0

(1 + t− τ )−
3
4
− �+1

2 (1 + τ )−
3
4 (‖∂xv‖1/3

H3M(τ )5/3 + Es
0(τ )M(τ )) dτ

+C

∫ t−1

0

e−c(t−τ)(1 + τ )−
3
4 dτ(Es

0(t)
1/2M(t)3/2 + Es

0(t)M(t)).

By Hölder’s inequality, we have∫ t−1

0

(1 + t− τ )−
3
4
− �+1

2 (1 + τ )−
3
4‖∂xv‖1/3

H3 dτ

≤
(∫ t−1

0

(1 + t− τ )−
6
5
( 3
4
+ �

2
)(1 + τ )−

9
10 dτ

)5/6 (∫ t−1

0

‖∂xv‖2
H3 dτ

)1/6

≤ C(1 + t)−
1
4
− �

2Ds
0(t)

1/3.

It then follows that

‖∂�
xI1(t)‖2 ≤ C(1 + t)−

1
4
− �

2

{
Ds

0(t)
1/3M(t)5/3 +Es

0(t)M(t) +Es
0(t)

1/2M(t)3/2
}

for � = 0, 1.
As for I2(t), we apply Lemmas 3.1 and 3.3 to obtain

‖∂�
xI2(t)‖2

≤ C

∫ t

t−1

(t− τ )−
�
2‖divN (τ )‖2 dτ

≤ C(1 + t)−
n−1

4
− 1

2

{
Es

0(t)M(t) + Es
0(t)

3/4M(t)5/4 + Es
0(t)

1/2M(t)3/2
}

for � = 0, 1.
Since Es

0(t) + Ds
0(t) ≤ CE0 for all t ≥ 0 by Theorem 2.1, it follows from

the above estimates that if E0 is sufficiently small, then

M(t) ≤ C{E0 + E1/3
0 M(t)5/3 + E3/4

0 M(t)5/4 + E1/2
0 M(t)3/2}.

We thus conclude M(t) ≤ CE0, provided that E0 is sufficiently small. This
completes the proof of (i).

We next prove the estimate (ii). By Lemma 3.2, we have

‖I0(t) − u(0)(t)‖2 ≤ CE0(1 + t)−
n−1

4
− 1

2 .
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We already showed that ‖I2(t)‖2 has the desired decay property. As for I1(t),
we write N = N (1) +N (2) as in Lemma 3.3 (vi). It follows from Lemmas 3.2
and 3.3 (vi) that

‖I1(t)‖2 ≤
∫ t−1

0

(1 + t− τ )−
n−1

4
− 1

2 (‖N (1)(τ )‖1 + ‖divN (2)(τ )‖1) dτ

+C

∫ t−1

0

e−c(t−τ)‖divN (τ )‖2 dτ

≤ CE0(1 + t)−
n−1

4
− 1

2L(t).

We thus obtain the estimate in (ii). This completes the proof. �

We next establish L∞ decay estimates. We first derive a decay estimate
of the Hs norm, which will be also used to obtain the L1 estimate for ∂xw(t).

Lemma 3.5. Under the assumption of Theorem 3.4, it holds

‖w(t)‖Hs ≤ CE0(1 + t)−
n−1

4 (log(1 + t))1/2 .

Proof. The proof is based on Theorem 3.4 and a weighted energy estimate
with a time-weight function. Let u = (φ, v) be a solution of (2.1)-(2.3).
Assume for simplicity that Es

0(t) < 1 for all t. One can then prove that there
exists a positive constant C independent of t such that

(3.3)

Es
r(t)

2 +Ds
r(t)

2 ≤ C
{
‖u0‖2

Hs + Es
0(t)D

s
r(t)

2

+rDs
0(t)

2 + r

∫ t

0

(1 + τ )2r−1‖u‖2
2 dτ

}
.

The inequality (3.3) is proved in the same way as in the proof of [13, Proposi-
tion 3.2] and [15, Propositions 11.2, 11.3], where the half space problem was
investigated. In fact, there are only two points to be remarked as compared
with the argument in [13, 15]. One is in the estimate of E0

r (t)
2 + D0

r (t)
2.

Although we can estimate it as in [13], here we can also use the Poincaré
inequality. Let a(ρ) =

√
P ′(ρ)/ρ. Then we see from (2.1)-(2.2) that

(3.4) ∂t(a(ρ)φ) + v · ∇(a(ρ)φ) + ρ a(ρ)div v = −ρ a′(ρ)(div v)φ,

(3.5) ρ
(
∂tv + v · ∇v) + Av + ∇(P ′(ρ)φ) = P ′′(ρ)(∇φ)φ.
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Taking the L2 inner product of (3.4) and (3.5) with (1 + t)2ra(ρ)φ and (1 +
t)2rv, respectively, and noting that

(ρa(ρ)div v, a(ρ)φ)2 = −(∇(P ′(ρ)φ), v)2,

we have

(3.6)

1

2

d

dt

[
(1 + t)2r

(‖a(ρ)φ(t)‖2
2 + ‖√ρ v(t)‖2

2

)]
+ (1 + t)2r‖A1/2v(t)‖2

2

= r(1 + t)2r−1
(‖a(ρ)φ(t)‖2

2 + ‖√ρ v(t)‖2
2

)
+R(t),

where ‖A1/2v‖2
2 = μ‖∇v‖2

2 + (μ + μ′)‖div v‖2
2 and

R(t) = −(v · ∇(a(ρ)φ), a(ρ)φ)2 + (v,∇(ρa′(ρ)a(ρ)φ2))2 + (P ′′(ρ)(∇ρ)φ, v)2.

For the velocity v, we have the Poincaré inequality : ‖v‖2 ≤ C‖∂xv‖2
2. There-

fore, R(t) is estimated as

|R(t)| ≤ C(1 + ‖φ‖∞)‖φ‖∞‖v‖2‖∂xφ‖2 ≤ CEs
0(t)‖∂xu‖2

2.

This, together with (3.6), implies that E0
r (t)

2 + D0
r (t)

2 is bounded by the
right-hand side of (3.3).

The second point is as follows. In deriving (3.3) we use regularity esti-
mates for solutions to the Stokes system. In the case of Ω it is formulated
in the following way. Let (p, v) ∈ Hk+1 ×Hk+2 be the solution of the Stokes
system

div v = f in Ω

−μΔv + P ′(ρ∗)∇p = g in Ω

v|xn=0,a = 0.

Then for any k ∈ Z, k ≥ 0, there exists a constant C > 0 such that

(3.7) ‖∂k+2
x v‖2 + ‖∂k+1

x p‖2 ≤ C
{‖f‖Hk+1 + ‖g‖Hk + ‖∂xv‖2

2

}
.

Here the right-hand side of (3.7) is slightly different from the one for the
half space problem, but it does not affect the argument to obtain (3.3). For
completeness we will give a proof of (3.7) in the Appendix. The other part
of the proof is quite similar to the argument in [13, 15]. We omit the details.

We continue the proof of Lemma 3.5. We see from (3.3) with r = 0 that

(3.8) Es
0(t)

2 +Ds
0(t)

2 ≤ C‖u0‖2
Hs,
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provided that ‖u0‖Hs < ε0 for some small ε0 > 0. Note that this is just the
energy estimate in Theorem 2.1. Since ‖u‖2 ≤ C‖w‖2, we see from (3.3) and
(3.8) that

Es
r (t) ≤ C‖u0‖Hs + C

(∫ t

0

(1 + τ )2r−1‖w‖2
2 dτ

)1/2

,

provided that ‖u0‖Hs is sufficiently small. We now take r = n−1
4

and apply
Theorem 3.4 to obtain

Es
r(t) ≤ CE0

(∫ t

0

(1 + τ )−1 dτ

)1/2

≤ CE0 (log(1 + t))1/2

with r = n−1
4

. The desired estimate now follows since ‖w(t)‖Hs ≤ C‖u(t)‖Hs.
This completes the proof. �

Before proceeding further, we prepare a lemma to estimate the nonlin-
earity, which follows from [9, Lemma 3.3.1].

Lemma 3.6. Let F be a smooth function on R. Then

‖∂k
xF (f)g‖2 ≤ C(1 + ‖f‖∞)k−1(‖f‖∞‖g‖Hk + ‖g‖∞‖f‖Hk).

Proof. The inequality follows by a direct application of [9, Lemma 3.3.1],
when Ω is the whole space. The desired inequality can then be obtained by
using the extension argument. This completes the proof. �

We set
M (0)

∞ (t) = sup
0≤τ≤t

(1 + τ )
n−1

2 ‖w(τ )‖∞.

Theorem 3.7. Let s ≥ s0 + 1. Then there exists a positive number ε2 such
that

‖w(t)‖∞ ≤ CE0(1 + t)−
n−1

2 ,

provided that E0 < ε2.

Proof. Since ‖w(t)‖∞ ≤ CEs
0(t) ≤ CE0 by the Sobolev inequality, it suffices

to show M
(0)
∞ (t) ≤ CE0 for t ≥ 2.

As in the proof of Theorem 3.4, we write w(t) = I0(t) + I1(t) + I2(t). By
Lemma 3.2 we have

‖I0(t)‖∞ ≤ CE0(1 + t)−
n−1

2 .
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Applying Lemmas 3.5 and 3.6, we see that

(3.9)
‖divN‖Hs0−1 ≤ C‖w‖∞‖w‖Hs

≤ CE0(1 + t)−
3(n−1)

4 (log(1 + t))1/2 M
(0)
∞ (t).

This, together with Lemmas 3.2 and 3.3, implies that

‖I1(t)‖∞ ≤ C

∫ t−1

0

(1 + t− τ )−
n−1

2 (‖N (1)(τ )‖1 + ‖divN (2)(τ )‖1) dτ

+C

∫ t−1

0

e−c(t−τ)‖divN (τ )‖Hs0−1 dτ

≤ CE0

∫ t−1

0

(1 + t− τ )−
n−1

2 (1 + τ )−
n−1

2
− 1

2 dτ

+CE0M
(0)
∞ (t)

∫ t−1

0

e−c(t−τ)(1 + τ )−
3(n−1)

4 (log(1 + τ ))1/2 dτ

≤ CE0{(1 + t)−
n−1

2
− 1

2L(t) + (1 + t)−
3(n−1)

4 (log(1 + t))1/2M
(0)
∞ (t)}.

As for I2(t), we see from Lemma 3.1 and (3.9) that

‖I2(t)‖∞ ≤ C

∫ t

t−1

(t− τ )−(1−ε)‖divN (τ )‖Hs0−1 dτ

≤ CE0M
(0)
∞ (t)

∫ t

t−1

(t− τ )−(1−ε)(1 + τ )−
3(n−1)

4 (log(1 + τ ))1/2 dτ

≤ CE0(1 + t)−
3(n−1)

4 (log(1 + t))1/2M
(0)
∞ (t).

We thus conclude that if E0 is sufficiently small, then M
(0)
∞ (t) ≤ CE0. This

completes the proof. �

To obtain the decay estimate for ‖∂xw(t)‖∞ we first show that ‖∂xw(t)‖∞
decays in the order t−

n−1
2 . We set

M̃ (1)
∞ (t) = sup

0≤τ≤t
(1 + τ )

n−1
2 ‖∂xw(τ )‖∞.

Proposition 3.8. Let s ≥ s0 + 2. Then there exists a positive number ε3

such that
‖∂xw(t)‖∞ ≤ CE0(1 + t)−

n−1
2 ,

provided that E0 < ε3.
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Proof. Since s ≥ s0 + 2, we see from Lemmas 3.5 and 3.6 that

‖divN‖Hs0 ≤ C‖w‖∞‖w‖Hs

≤ CE0(1 + t)−
3(n−1)

4 (log(1 + t))1/2M
(0)
∞ (t).

Similarly to the proof of Theorem 3.7, we can obtain the desired estimate.
We omit the details. This completes the proof. �

To prove ‖∂xw(t)‖∞ = O(t−
n−1

2
− 1

2L(t)
1
2 ), we next derive a decay estimate

for ‖∂2
xm(t)‖2. We set

M (2)(t) = sup
0≤τ≤t

(1 + τ )
n−1

4
+ 1

2L(τ)−
1
2{‖∂τw(τ )‖2 + ‖∂2

xm(τ )‖2}.

Based on the decay estimates obtained above, it is now straightforward
to obtain the following estimates for the nonlinearity.

Lemma 3.9. Let s ≥ s0 + 2. Assume that E0 < ε3. Then the following
inequalities hold.

(i) ‖∂tdivN‖2 ≤ CE0{1 +M (2)(t)}(1 + t)−
n−1

4
− 1

2L(t)
1
2 .

(ii) ‖∂xdivN‖2 ≤ CE0(1 + t)−
n−1

4
− 1

2L(t)
1
2 .

Proposition 3.10. Let s ≥ s0 + 2. Then there exists a positive number ε4

such that

‖∂tw(t)‖2 + ‖∂2
xm(t)‖2 ≤ CE0(1 + t)−

n−1
4

− 1
2L(t)

1
2 ,

provided that E0 < ε4.

Proof. Since ‖∂tw(t)‖2 + ‖∂2
xm(t)‖2 ≤ Es

0(t) ≤ CE0 for all t ≥ 0, we
may assume that t ≥ 2. As in the proof of Theorem 3.4, we write w(t) =
I0(t) + I1(t) + I2(t). By Lemma 3.2 we have

‖∂tI0(t)‖2 ≤ CE0t
−n−1

4
− 1

2 .

Since

∂tI1(t) = U (1)divN (t− 1) +

∫ t−1

0

∂tU (t− τ )divN (τ ) dτ,
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we see from Lemmas 3.2 and 3.3 that

‖∂tI1(t)‖2 ≤ C‖divN (t− 1)‖2 + C

∫ t−1

0

(1 + t− τ )−
n−1

4
− 1

2‖divN (τ )‖1 dτ

+C

∫ t−1

0

e−c(t−τ)‖divN (τ )‖2 dτ

≤ CE0(1 + t)−
n−1

4
− 1

2 .

By integration by parts, we have

∂tI2(t) =

∫ t

t−1

U (t− τ )∂τdivN (τ ) dτ.

Applying Lemmas 3.1 and 3.9, we then find that

‖∂tI2(t)‖2 ≤ C

∫ t

t−1

‖∂τdivN (τ )‖2 dτ

≤ CE0

{
1 +M (2)(t)

}∫ t

t−1

(1 + τ )−
n−1

4
− 1

2L(τ)
1
2 dτ

≤ CE0

{
1 +M (2)(t)

}
(1 + t)−

n−1
4

− 1
2L(t)

1
2 .

We thus obtain

‖∂tw(t)‖2 ≤ CE0

{
1 +M (2)(t)

}
(1 + t)−

n−1
4

− 1
2L(t)

1
2 .

We next estimate ‖∂x′∂xm(t)‖2. In view of the proof of Lemma 3.2 ([10,
11]), one can see that

(3.10) ‖∂x′∂xU
(0)(t)w0‖2 ≤ C(1 + t)−

n−1
4

−1‖w0‖1

and

(3.11) ‖∂x′∂xU
(∞)(t)w0‖2 ≤ Ce−ct‖∂x′w0‖H1×L2 .

We see from (3.10) and (3.11) that

‖∂x′∂xI0(t)‖2 ≤ CE0C(1 + t)−
n−1

4
− 1

2 .
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By (3.10), (3.11) and Lemma 3.9, we have

‖∂x′∂xI1(t)‖2 ≤ C

∫ t−1

0

(1 + t− τ )−
n−1

4
−1‖divN (τ )‖1 dτ

+C

∫ t−1

0

e−c(t−τ)‖∂x′divN (τ )‖2 dτ

≤ CE0

∫ t−1

0

(1 + t− τ )−
n−1

4
−1(1 + τ )−

n−1
4

− 1
2 dτ

+CE0

∫ t−1

0

e−c(t−τ)(1 + τ )−
n−1

4
− 1

2L(τ)
1
2 dτ

≤ CE0(1 + t)−
n−1

4
− 1

2L(t)
1
2 .

Since ∂x′ commutes with U (t), we similarly obtain

‖∂x′∂xI2(t)‖2 ≤ C

∫ t

t−1

(t− τ )−
1
2‖∂x′divN (τ )‖2 dτ

≤ CE0

∫ t

t−1

(t− τ )−
1
2 (1 + τ )−

n−1
4

− 1
2L(τ)

1
2 dτ

≤ CE0(1 + t)−
n−1

4
− 1

2L(t)
1
2 .

We thus obtain

‖∂x′∂xw(t)‖2 ≤ CE0(1 + t)−
n−1

4
− 1

2L(t)
1
2 .

It remains to estimate ‖∂2
xn
m(t)‖2. From equation (3.1) we find that

ν∂2
xn
m′ = ∂tm

′ − νΔ′m′ − ν̃∇′divm+ γ∇′φ− (divN )′,

(ν + ν̃)∂2
xn
mn = ∂tm

n − νΔ′mn − ν̃∂xn∇′ ·m′ + γ∂xnφ− (divN )n,

where ∇′ = (∂x1, · · · , ∂xn−1) and divN = ((divN )′, (divN )n). It follows
that

‖∂2
xn
m(t)‖2 ≤ C

{‖∂tm(t)‖2 + ‖∂x′∂xm(t)‖2 + ‖∂xφ(t)‖2 + ‖divN (t)‖2

}
≤ CE0{1 +M (2)(t)}(1 + t)−

n−1
4

− 1
2L(t)

1
2 .

Therefore, we arrive at M (2)(t) ≤ CE0{1 + M (2)(t)}. The desired inequality
now follows if E0 is assumed to be sufficiently small. This completes the
proof. �

The following inequalities immediately follow from Proposition 3.10.
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Lemma 3.11. Let s ≥ s0 + 2 and assume that E0 < ε4. Then

‖divN‖1 ≤ CE0(1 + t)−
n−1

2
− 1

2L(t)
1
2 .

To estimate ‖∂xu(t)‖∞ we also use the following inequality.

Lemma 3.12. Assume that s ≥ s0 + 2 when n ≥ 4, s ≥ s0 + 3 when n = 3
and s ≥ s0 + 4 when n = 2. Assume also that E0 < ε4. Then

‖divN‖Hs0 ≤ CE0{1 +M (1)
∞ (t)}(1 + t)−

n−1
2

− 1
2L(t)1/2.

Proof. We write divN as

divN =
{
ν∇ · (∇(F1(φ))m) + ν∇ · (F1(φ)∇m)

+ν̃∇(∇(F1(φ)) ·m) + ν̃∇(F1(φ)divm)
}

+
{
∇(F2(φ))φ+ F2(φ)∇φ

}
+

{
− 1

ρ2
(∇φ ·m)m− 1

ρ
m · ∇m

}
≡ J1 + J2 + J3,

where Fj(φ), j = 1, 2, are some smooth functions. By Lemma 3.6, we see
that

‖J1‖Hs0 ≤ C{‖φ‖∞‖∂xm‖Hs0+1 + ‖∂xm‖∞‖φ‖Hs0+2 + ‖∂xφ‖∞‖m‖Hs0+1}.
We here used the Poincaré inequality : ‖m‖∞ ≤ C‖∂xm‖∞.

Similarly we can obtain

‖J2‖Hs0 ≤ C{‖φ‖∞‖∂xφ‖Hs0 + ‖∂xφ‖∞‖φ‖Hs0+1},
‖J3‖Hs0 ≤ C‖∂xw‖∞‖w‖Hs0+1.

Consequently, we have
(3.12)

‖divN‖Hs0 ≤ C
{‖w‖∞(‖∂xφ‖Hs0 + ‖∂xm‖Hs0+1) + ‖∂xw‖∞‖w‖Hs0+2

}
.

Let us now consider the case n ≥ 4. Since n−1
4

≥ 3
4
> 1

2
for n ≥ 4, we see

from (3.12), Lemma 3.5 and Theorem 3.7 that

‖divN‖Hs0 ≤ CE0

{
M∞(t) +M (1)

∞ (t)
}
(1 + t)−

n−1
2

− 1
2 ,
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which yields the desired inequality for n ≥ 4.
We next consider the case n = 3. Since s0 = 2 when n = 3, we see from

Theorem 3.4 and Lemma 3.5 that

‖∂xφ(t)‖Hs0 ≤ C‖∂xφ(t)‖1/3
2 ‖∂xφ(t)‖2/3

H3

≤ CE0(1 + t)−
2
3 (log(1 + t))

1
3 ≤ CE0(1 + t)−

1
2 .

We also obtain, by Theorem 3.4, Lemma 3.5 and Proposition 3.10,

‖∂xm(t)‖Hs0+1 ≤ ‖∂xm(t)‖2 + ‖∂2
xm(t)‖H2

≤ ‖∂xm(t)‖2 + C‖∂2
xm(t)‖1/3

2 ‖∂2
xm(t)‖2/3

H3

≤ CE0

{
(1 + t)−1 + (1 + t)−

2
3 (log(1 + t))

1
3
}

≤ CE0(1 + t)−
1
2 .

This, together with (3.12), implies the desired inequality for n = 3 as in the
case n ≥ 4.

We finally consider the case n = 2. In this case we also have s0 = 2 but

‖w(t)‖Hs ≤ CE0(1 + t)−
1
4 (log(1 + t))

1
2 . Therefore,

‖∂xφ(t)‖Hs0 ≤ C‖∂xφ(t)‖1/2
2 ‖∂xφ(t)‖1/2

H4 ≤ CE0(1 + t)−
1
2 (log(1 + t))

1
4

and

‖∂xm(t)‖Hs0+1 ≤ ‖∂xm(t)‖2 + ‖∂2
xm(t)‖H2

≤ ‖∂xm(t)‖2 + C‖∂2
xm(t)‖1/2

2 ‖∂2
xm(t)‖1/2

H4

≤ CE0

{
(1 + t)−3/4 + (1 + t)−

1
2 (log(1 + t))

1
2
}

≤ CE0(1 + t)−
1
2 (log(1 + t))

1
2 .

This, together with (3.12), implies the desired inequality for n = 2 as in the
case n ≥ 4. This completes the proof. �

We now establish the estimate for ‖∂xw(t)‖∞.

Theorem 3.13. Assume that s ≥ s0 +2 when n ≥ 4, s ≥ s0 +3 when n = 3
and s ≥ s0 + 4 when n = 2. Then there exists a positive number ε5 such that

‖∂xw(t)‖∞ ≤ CE0(1 + t)−
n−1

2
− 1

2L(t)
1
2 ,
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provided that E0 < ε4.

Proof. As in the proof of Theorem 3.4, we write w(t) = I0(t) + I1(t) + I2(t).
By Lemma 3.2, we have

‖∂xI0(t)‖∞ ≤ CE0(1 + t)−
n−1

2
− 1

2 .

We also see from Lemmas 3.2, 3.11 and 3.12 that

‖∂xI1(t)‖∞ ≤ C

∫ t−1

0

(1 + t− τ )−
n−1

2
−1‖divN (τ )‖1 dτ

+C

∫ t−1

0

e−c(t−τ)‖divN (τ )‖Hs0 dτ

≤ CE0

∫ t−1

0

(1 + t− τ )−
n−1

2
−1(1 + τ )−

n−1
2

− 1
2L(τ)

1
2 dτ

+CE0{1 +M (1)
∞ (t)}

∫ t−1

0

e−c(t−τ)(1 + τ )−
(n−1)

2
− 1

2L(τ)
1
2 dτ

≤ CE0{1 +M
(1)
∞ (t)}(1 + t)−

n−1
2

− 1
2L(t)

1
2

As for I2(t), we apply Lemmas 3.1 and 3.12 to obtain

‖∂xI2(t)‖∞ ≤ C

∫ t

t−1

(t− τ )−(1−ε)‖divN (τ )‖Hs0 dτ

≤ CE0{1 +M (1)
∞ (t)}

∫ t

t−1

(t− τ )−(1−ε)(1 + τ )−
(n−1)

2
− 1

2L(τ)
1
2 dτ

≤ CE0{1 +M
(1)
∞ (t)}(1 + t)−

n−1
2

− 1
2L(t)

1
2 .

We thus conclude that M
(0)
∞ (t) ≤ CE0(1 + M

(1)
∞ (t)), from which the desired

inequality follows if E0 is sufficiently small. This completes the proof. �

We next prove the asymptotic behavior in L∞ space.

Theorem 3.14. Under the same assumption of Theorem 3.13, it holds

‖w(t) − u(0)(t)‖∞ ≤ CE0(1 + t)−
n−1

2
− 1

2L(t).

Proof. We write N = N (1)+N (2) as in Lemma 3.3 (vi). We see from (3.12),
Lemma 3.5 and Theorems 3.7 and 3.13 that

(3.13) ‖divN‖Hs0−1 ≤ CE0(1 + t)−
n−1

2
− 1

2L(t)
1
2 .
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This, together with Lemmas 3.2 and 3.3, implies that

‖I1(t)‖∞ ≤ C

∫ t−1

0

(1 + t− τ )−
n−1

2
− 1

2 (‖N (1)(τ )‖1 + ‖divN (2)(τ )‖1) dτ

+C

∫ t−1

0

e−c(t−τ)‖divN (τ )‖Hs0−1 dτ

≤ CE0

∫ t−1

0

(1 + t− τ )−
n−1

2
− 1

2 (1 + τ )−
n−1

2
− 1

2 dτ

+CE0

∫ t−1

0

e−c(t−τ)(1 + τ )−
n−1

2
− 1

2L(τ)
1
2 , dτ

≤ CE0(1 + t)−
n−1

2
− 1

2L(t).

Also, by Lemma 3.1 and (3.13), we have

‖I2(t)‖∞ ≤ C

∫ t

t−1

(t− τ )−(1−ε)‖divN (τ )‖Hs0−1 dτ

≤ CE0

∫ t−1

0

(t− τ )−(1−ε)(1 + τ )−
n−1

2
− 1

2L(τ)
1
2 dτ

≤ CE0(1 + t)−
n−1

2
− 1

2L(t)
1
2 .

This completes the proof. �

We finally consider the estimates in L1 norm.

Theorem 3.15. In addition to the assumption of Theorem 3.4, assume also
that w0 ∈W 1,1 × L1. Then the following estimates hold.

(i) ‖w(t)‖1 ≤ C{E0 + ‖w0‖W 1,1×L1}.

(ii) ‖w(t) − u(0)(t)‖1 ≤ C{E0 + ‖w0‖W 1,1×L1}(1 + t)−
1
2L(t).

Proof. By Lemmas 3.1 and 3.3, we have

‖w(t)‖1 ≤ C‖w0‖W 1,1×L1 + C

∫ t

0

‖divN (τ )‖1 dτ

≤ C{E0 + ‖w0‖W 1,1×L1}
for 0 ≤ t ≤ 2.
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Assume that t ≥ 2. As in the proof of Theorem 3.4, we write w(t) =
I0(t) + I1(t) + I2(t). By Lemma 3.2 we have

‖I0(t)‖1 ≤ C{E0 + ‖w0‖W 1,1×L1}.

By Lemmas 3.2 and 3.3, we have

‖I1(t)‖1 ≤ C

∫ t−1

0

(1 + t− τ )−
1
2 (‖N (1)(τ )‖1 + ‖divN (2)(τ )‖1) dτ

+C

∫ t−1

0

e−c(t−τ)‖divN (τ )‖1 dτ

≤ CE0

∫ t−1

0

(1 + t− τ )−
1
2 (1 + τ )−

n−1
2

− 1
2 dτ

+CE0

∫ t−1

0

e−c(t−τ)(1 + τ )−
3
4 (‖∂xv(τ )‖1/3

H3 + 1)dτ

≤ CE0

{
(1 + t)−

1
2L(t) +

∫ t−1

0

e−c(t−τ)(1 + τ )−
3
4‖∂xv(τ )‖1/3

H3 dτ
}
.

As for the last term on the right, we see from Hölder’s inequality that∫ t−1

0

e−c(t−τ)(1 + τ )−
3
4‖∂xv(τ )‖1/3

H3 dτ ≤ C(1 + t)−
3
4Ds

0(t)
1/3.

We thus obtain
‖I1(t)‖1 ≤ CE0(1 + t)−

1
2L(t).

Similarly,

‖I2(t)‖1 ≤ C

∫ t

t−1

‖divN (τ )‖1 dτ ≤ CE0

∫ t

t−1

(1 + τ )−
3
4 (‖∂xv(τ )‖1/3

H3 + 1)dτ

≤ CE0(1 + t)−
3
4 .

We thus obtain the inequality (i).
Furthermore, by Lemma 3.2, we have

‖I0(t) − u(0)(t)‖1 ≤ C{E0 + ‖w0‖W 1,1×L1}(1 + t)−
1
2 .

Combining this with the estimates for ‖I1(t)‖1 and ‖I2(t)‖1 obtained above,
we arrive at the inequality (ii). This completes the proof. �

To estimate ‖∂xw(t)‖1 we make use of the following inequality.
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Lemma 3.16. Assume that s ≥ s0 + 1 when n ≥ 3 and s ≥ s0 + 2 when
n = 2. Assume also that E0 < ε1. Then

‖divN‖W 1,1 ≤ CE0(1 + t)−
n−1

4
− 1

2 (log(1 + t))
1
2 .

Proof. By Lemma 3.3, we have

‖divN‖1 ≤ CE0(1 + t)−
n−1

4
− 1

2 .

Here we used the fact that ‖∂xv(t)‖H3 ≤ Es
0(t) ≤ CE0 when n = 2 since

s ≥ s0 + 2 = 4 for n = 2.
A direct computation, together with Lemma 3.5, yields the inequality

‖∂xdivN‖1 ≤ CE0(1 + t)−
n−1

4
− 1

2 (log(1 + t))
1
2 .

We omit the details. This completes the proof. �

We now establish the decay estimate for ‖∂xw(t)‖1.

Theorem 3.17. Assume that s ≥ s0 + 1 when n ≥ 3 and s ≥ s0 + 2 when
n = 2. Assume also that w0 ∈ Hs ∩ (W 2,1 ×W 1,1). Then

‖∂xw(t)‖1 ≤ C{E0 + ‖w0‖W 2,1×W1,1}(1 + t)−
1
2 ,

provided that E0 < ε1.

Proof. We first note that m0|xn=0,a = 0 since u0 satisfies the compatibility
condition. Therefore, for 0 ≤ t ≤ 2, we see from Lemmas 3.1 and 3.16 that

‖∂xw(t)‖1 ≤ C‖w0‖W 2,1×W1,1 + C

∫ t

0

(t− τ )−
1
2 ‖divN (τ )‖W 1,1 dτ

≤ C‖w0‖W 2,1×W1,1 + CE0

∫ t

0

(t− τ )−
1
2 dτ

≤ C{E0 + ‖w0‖W 2,1×W1,1}.
We next consider the estimate for t ≥ 2. As in the proof of Theorem 3.4,

we write w(t) = I0(t) + I1(t) + I2(t). By Lemma 3.2, we have

‖∂xI0(t)‖1 ≤ C{E0 + ‖w0‖W 2,1×W1,1}(1 + t)−
1
2 .
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We also see from Lemmas 3.2 and 3.16 that

‖∂xI1(t)‖1 ≤ C

∫ t−1

0

(1 + t− τ )−1‖divN (τ )‖1 dτ

+C

∫ t−1

0

e−c(t−τ)‖divN (τ )‖W 1,1 dτ

≤ CE0

∫ t−1

0

(1 + t− τ )−1(1 + τ )−
n−1

4
− 1

2 (log(1 + τ ))
1
2 dτ

≤ CE0(1 + t)−
1
2 ,

and, by Lemmas 3.1 and 3.16,

‖∂xI1(t)‖1 ≤ C

∫ t

t−1

(t− τ )−
1
2‖divN (τ )‖W 1,1 dτ

≤ CE0

∫ t

t−1

(t− τ )−
1
2 (1 + τ )−

n−1
4

− 1
2 (log(1 + τ ))

1
2 dτ

≤ CE0(1 + t)−
1
2 .

We thus obtain the desired estimate. This completes the proof. �

Appendix: Proof of (3.7)

In this section we give a proof of the estimate (3.7) for the Stokes system.
The argument is similar to that in the proof of [25, Theorem III.1.5.1]. We
begin with

Lemma A.1. Let D = R3 or D = R3
+ = {x = (x′, xn); xn > 0} and let k be

a nonnegative integer. Assume that v ∈ Hk+2(D), p ∈ Hk+1(D) satisfy

div v = f in D,
−μΔv + P ′(ρ∗)∇p = g in D,

v = 0 on {xn = 0} in case D = R3
+.

Then

‖∂k+2
x v‖L2(D) + ‖∂k+1

x p‖L2(D) ≤ C{‖∂k+1
x f‖L2(D) + ‖∂k

xg‖L2(D)}.

Proof. See, e.g., [6]. �
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In what follows we assume that v ∈ Hk+2(Ω), p ∈ Hk+1(Ω) satisfy

(A.1)

div v = f in Ω,

−μΔv + P ′(ρ∗)∇p = g in Ω,

v = 0 on {xn = 0, a}.

We take a family of open cubes {Qj}∞j=1 that has the properties: (i)

Ω ⊂ ∪∞
j=1Qj, (ii) Ωj ≡ Ω ∩ Qj �= ∅, (iii) Qj’s are congruent with each other,

and (iv) {Qj}∞j=1 has the finite intersection property.

Lemma A.2. Set pj = 1
|Ωj |

∫
Ωj
p(x) dx. Then it holds

‖p − pj‖L2(Ωj ) ≤ C{‖g‖L2(Ωj) + ‖∂xv‖L2(Ωj )}.
Here C is a positive constant independent of j.

Proof. We see from (A.1) that

−μΔv + P ′(ρ∗)∇(p− pj) = g a.e. x.

For any ϕ ∈ C∞
0 (Ωj), we have

|P ′(ρ∗)(∇(p− pj), ϕ)L2(Ωj)| = |(g, ϕ)L2(Ωj ) + ν(∇v,∇ϕ)L2(Ωj )|
≤ ‖g‖L2(Ωj)‖ϕ‖L2(Ωj) + ‖∇v‖L2(Ωj )‖∇ϕ‖L2(Ωj )

≤ C{‖g‖L2(Ωj) + ‖∇v‖L2(Ωj )}‖∇ϕ‖L2(Ωj ).

Here we used the Poincaré inequality : ‖ϕ‖L2(Ωj) ≤ C‖∇ϕ‖L2(Ωj ). We thus
obtain

‖∇(p− pj)‖H−1(Ωj) ≤ C{‖g‖L2(Ωj ) + ‖∂xv‖L2(Ωj)}.
Since ‖p− pj‖L2(Ωj) ≤ C‖∇(p− pj)‖H−1(Ωj ) (See, e.g., [25, Lemma II.1.5.4]),
we have

‖p − pj‖L2(Ωj ) ≤ C{‖g‖L2(Ωj) + ‖∂xv‖L2(Ωj )}.
This completes the proof. �

In the following we take a family of smooth functions {χj}∞j=1 that satisfies
suppχj ⊂ Qj and

∑∞
j=1 χ

2
j ≡ 1.

Proof of (3.7). We set vj = χjv and pj = χj(p − pj). Then we see from
(A.1) that {

div vj = Fj,

−μΔvj + P ′(ρ∗)∇pj = Gj .
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Here
Fj = χjf + v · ∇χj,

Gj = χjg − 2ν∇χj : ∇v − νΔχjv + γ∇χj(p− pj).

By Lemma A.1 we have

(A.2) ‖∂2
xvj‖2 + ‖∂xpj‖2 ≤ C{‖∂xFj‖2 + ‖Gj‖2}.

By Lemma A.2 we have

(A.3)
‖Gj‖2 ≤ C{‖g‖L2(Ωj ) + ‖v‖H1(Ωj) + ‖p− pj‖L2(Ωj )}

≤ C{‖g‖L2(Ωj ) + ‖v‖H1(Ωj)}.
We also have

(A.4) ‖∂xFj‖2 ≤ C{‖f‖H1(Ωj ) + ‖v‖H1(Ωj )}.
Therefore, we see from (A.2)-(A.4) that

(A.5) ‖∂2
xvj‖2 + ‖∂xpj‖2 ≤ C{‖f‖H1(Ωj) + ‖g‖L2(Ωj ) + ‖v‖H1(Ωj)}.

Furthermore, since
χj∂

2
xv = ∂2

xvj + [χj, ∂
2
x]v,

χj∂xp = χj∂x(p− pj) = ∂xpj + [χj, ∂x](p− pj),

we see that

(A.6) ‖χj∂
2
xv‖2 ≤ ‖∂2

xvj‖2 + C‖v‖H1(Ωj)

and, by Lemma A.2,

(A.7)
‖χj∂xp‖2 = ‖χj∂x(p− pj)‖2

≤ ‖∂xpj‖2 + C{‖g‖L2(Ωj) + ‖∂xv‖L2(Ωj)}.
It then follows from (A.5)-(A.7) that

‖∂2
xv‖2

2 + ‖∂xp‖2
2 =

∞∑
j=1

‖χj∂
2
xv‖2

2 + ‖χj∂xp‖2
2

≤ C

∞∑
j=1

{‖f‖2
H1(Ωj)

+ ‖g‖2
L2(Ωj ) + ‖v‖2

H1(Ωj)
}

≤ C{‖f‖2
H1 + ‖g‖2

2 + ‖v‖2
H1}

≤ C{‖f‖2
H1 + ‖g‖2

2 + ‖∂xv‖2
2}.
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Here we used the Poincaré inequality for v. The estimate (3.7) is thus ob-
tained for k = 0.

The case k ≥ 1 can be shown by induction on k. We have already seen
that (3.7) holds for k = 0. Suppose that (3.7) holds for all k ≤ �. We will
prove (3.7) to hold for k = �+ 1. We apply Lemma A.1 to obtain

(A.8) ‖∂�+3
x vj‖2 + ‖∂�+1

x pj‖2 ≤ C{‖∂�+2
x Fj‖2 + ‖∂�+1

x Gj‖2}.
By Lemma A.2 we have

(A.9)
‖∂�+1

x Gj‖2 ≤ C{‖g‖H�+1(Ωj ) + ‖v‖H�+2(Ωj) + ‖p− pj‖H�+1(Ωj)}
≤ C{‖g‖H�+1(Ωj ) + ‖v‖H�+2(Ωj) + ‖∂xp‖H�(Ωj )}.

We also have

(A.10) ‖∂�+2
x Fj‖2 ≤ C{‖f‖H�+2(Ωj ) + ‖v‖H�+2(Ωj)}.

Therefore, we obtain

(A.11)
‖∂�+3

x vj‖2 + ‖∂�+2
x pj‖2

≤ C{‖f‖H�+2(Ωj) + ‖g‖H�+1(Ωj ) + ‖v‖H�+2(Ωj) + ‖∂xp‖H�(Ωj)}.
Since

χj∂
�+3
x v = ∂�+3

x vj +
[
χj, ∂

�+3
x

]
v,

χj∂
�+2
x p = χj∂

�+2
x (p− pj) = ∂�+2

x pj +
[
χj, ∂

�+2
x

]
(p− pj)

we see that

(A.12) ‖χj∂
�+3
x v‖2 ≤ C{‖∂�+3

x vj‖2 + ‖v‖H�+2(Ωj)}
and, by Lemma A.2,

(A.13) ‖χj∂
�+2
x p‖2 ≤ C{‖∂�+2

x pj‖2 + ‖∂xp‖H�(Ωj ) + ‖g‖L2(Ωj ) + ‖∂xv‖L2(Ωj)}.
It then follows from (A.11)-(A.13) that

‖∂�+3
x v‖2

2 + ‖∂�+2
x p‖2

2

=
∞∑

j=1

‖χj∂
�+3
x v‖2

2 + ‖χj∂
�+2
x p‖2

2

≤ C
∞∑

j=1

{‖f‖2
H�+2(Ωj ) + ‖g‖2

H�+1(Ωj ) + ‖∂2
xv‖2

H�(Ωj)
+ ‖∂xp‖2

H�(Ωj ) + ‖v‖2
H1(Ωj)

}

≤ C{‖f‖2
H�+2(Ω)

+ ‖g‖2
H�+1(Ω)

+ ‖∂2
xv‖2

H�(Ω)
+ ‖∂xp‖2

H�(Ω)
+ ‖v‖2

H1(Ω)}.
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By the inductive assumption and the Poincaré inequality we obtain

‖∂�+3
x v‖2

2 + ‖∂�+2
x p‖2

2 ≤ C{‖f‖2
H�+2(Ω) + ‖g‖2

H�+1(Ω) + ‖∂xv‖2
2}.

Therefore, the estimate (3.7) holds for k = �+ 1. This completes the proof.
�
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Quadratic transformations of the sixth Painlevé equation
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