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Abstract

In solving elliptic problems by the finite element method in a bounded do-
main with has a re-entrant corner, the rate of convergence could be improved
by adding a singular function to the usual C0 approximating basis. When the
domain is enclosed by line segments which forms a corner of π/2 or 3π/2, we
have obtained an explicit an a priori H1 error estimation of O(h) for such a
finite element solution of the Poisson equation. Particularly, we emphasize that
all constants in our error estimates are numerically determined, which plays
an essential role in the numerical verification of solutions for non-linear elliptic
problems.
Key Words: Finite element method, A priori error estimation, Poisson equa-
tion
Mathematics Subject Classification (2000): 65N30, 65N15, 35J05

1 Introduction

In this paper, we consider the elliptic problem on polygonal domain Ω which is enclosed
by line segments and right angles. Ω is assumed to be connected but it is not necessarily
simply connected. First of all, we assume Ω = Ω0, where Ω0 is an inside of the L-shape
domain shown in Fig.1. The general case is described in Section 3.
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Figure 1: The shape of Ω0

1Faculty of Mathematics, Kyushu University, Fukuoka 812-8581 Japan.
This research is partly supported by the 21st Century COE program of Faculty of Mathematics,

Kyushu University

1



For f ∈ L2(Ω), we consider the weak solution of the following partial differential
equation {

−∆u = f in Ω,

u = 0 on ∂Ω.
(1.1)

It is known that u has a singular function representation [9][10]

u(x, y) = w(x, y) + λσ(x, y)(1.2)

where w(x, y) ∈ H2(Ω) ∩ H1
0 (Ω), λ is a constant, σ(x, y) ∈ H1

0 (Ω) and

σ(x, y) ∼ r2/3 sin

(
2

3
θ

)
in a neighborhood of the origin. Here, (r, θ) is the polar coordinates of (x, y) where θ
satisfies 0 ≤ θ < 2π.

There is arbitrariness in the choice of σ. To simplify the calculation of H1
0 inner

product, we take

σ(x, y) = (1 − x2)(1 − y2)r2/3 sin

(
2

3
θ

)
,

in this paper.
Solving this problem by the finite element method, we use the square mesh with

mesh size h. The mesh of h = 1/8 is shown in Fig.2.
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Figure 2: The square mesh when h = 1/8

We use the piecewise bilinear function,

φi,j(x, y) ≡ max
(
1 −

∣∣∣x
h
− i
∣∣∣ , 0

)
· max

(
1 −

∣∣∣y
h
− j
∣∣∣ , 0

)
,

as the finite element basis.
We define Φh by the set of functions φi,j in H1

0 (Ω),

Φh =
{
φi,j

∣∣∣ (ih, jh) ∈ Ω
}

.
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Since u does not generally have H2 regularity, we can not obtain O(h) error esti-
mates with H1

0 norm by using this approximating basis Φh.
Therefore, we adopt Φh ∪ {σ} as the finite element basis. In this case, it is known

that the following error estimation holds [8][9][10],

‖u − uh‖H1
0 (Ω) ≤ Ch‖f‖L2(Ω),

where uh is the finite element solution. The following O(h2) estimation for the L2-error
is also obtained by the Aubin-Nitsche trick [6],

‖u − uh‖L2(Ω) ≤ C2h‖f‖L2(Ω).

The main purpose of this paper is to obtain this constant C.

The coefficient λ in (1.2) is often called the stress intensity factor in a context
of mechanics. In our error estimation, the explicit evaluation of the coefficient λ is
essential (Lemma 4.2 and Lemma 4.6 in section 4). For the coefficient λ, the fllowing
extraction formula holds [9][10]

λ =
1

π

{∫ ∫
Ω

fηs−dxdy +

∫ ∫
Ω

u∆(ηs−)dxdy

}
,

where

s− = r−2/3 sin

(
2

3
θ

)
,

and η is a cut-off function which equals one at the origin and zero on
{
(x, y)

∣∣max(|x|, |y|) =
1
}
. Poincaré-Friedrichs inequality is needed to evaluate λ by this extraction formula.

However, since Poincaré-Friedrichs inequality is reduced to a kind of a problem of
eigenvalue bounds, it is not easy to obtain good estimation, except for the case that Ω
is simple domain such as rectangle. In this paper, instead of using cut-off function, we
use the maximum principle for the super harmonic functions to evaluate λ directly.

There are several approaches to deal with the lack of regularity at the re-entrant
corner. The method in this paper is based on [8]. This method is a simple finite
element method but is enough to obtain H1

0 and L2 error bounds. The dual singular
function method (DSFM) [3][7] is presented to obtain better approximation for the
coefficient λ. DSFM consists of a system of w and λ which is derived from extraction
formula, and is often implemented as an iterative procedure. A multigrid version of
this method appears in [4]. An efficient method using improved extraction formula
was presented in [5] . Another useful method is based on the local mesh refinement
[2]. The advantage of using mesh refinement is that calculation of the element matrix
is easy, because the information about the singular function is not needed.

In many applications, it is useful to obtain explicit error estimation. For exam-
ple, numerical verification method for nonlinear problems are based on explicit error
bounds for linear equations [12][16].

We should mention that in [15] an explicit error estimation for non-convex domain
is proposed. However, the error estimation in [15] needs specific information about the
finite element solution of (1.1), and furthermore, the order of their error estimation is
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about O(h0.6927) with H1
0 norm. What we are going to present is much higher order

error estimation which can be a priori calculated.

The present paper is organized as follows. In section 2, we present a priori error
estimation when the case of Ω is simple L-shape domain. The general case is explained
in section 3. Section 4 contains proof of lemmas which appear in section 2 and 3. We
show numerical results in section 5 and conclude this paper by section 6.

Throughout this paper, we take the angle of polar coodinates in [0, 2π). Let 1A

denotes the function which takes value 1 if condition A holds, and takes value 0
otherwise.

2 A priori error estimation

The main purpose of this section is to prove the following theorem. Lemmas appear
in this section will be proved in section 4.

Theorem 2.1 When Ω = Ω0, as to the finite element solution uh by using Φh ∪ {σ}
as the basis, the following error estimation holds,

‖u − uh‖H1
0 (Ω) ≤ 1.156h‖f‖L2(Ω),

‖u − uh‖L2(Ω) ≤ 1.335h2‖f‖L2(Ω).

Proof. We represent the exact solution as,

u = w + λσ.(2.1)

Where λ is a constant which depends on Ω and f , and w is a function which belongs
to H2(Ω) ∩ H1

0 (Ω).
Define wh as the bilinear interpolation of w. Then, since w ∈ H2(Ω) ∩ H1

0 (Ω),

‖w − wh‖H1
0 (Ω) ≤

h

π
|w|H2(Ω)

holds [13].
Since Ω is a polygonal domain, the following equality holds [11].

|w|H2(Ω) = ‖∆w‖L2(Ω).

We immediately have,

‖w − wh‖H1
0 (Ω) ≤

h

π
‖∆w‖L2(Ω).

Let
ũh = wh + λσ

then, we have

‖u − ũh‖H1
0 (Ω) ≤

h

π
‖∆w‖L2(Ω).(2.2)
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Form (2.1),

‖∆w‖L2(Ω) ≤ ‖f‖L2(Ω) + |λ| ‖∆σ‖L2(Ω) .(2.3)

From Lemma 4.1,∥∥∥∥∆{(1 − x2)(1 − y2)r2/3 sin

(
2

3
θ

)}∥∥∥∥
L2(Ω)

≤
√

4000

81
− 11713

1782
π.(2.4)

For the coefficient λ, Lemma 4.2 implies

|λ| ≤ 1

π

∥∥∥∥(r−2/3 − 2−2/3r2/3
)

sin

(
2

3
θ

)∥∥∥∥
L2(Ω)

‖f(x, y)‖L2(Ω)(2.5)

and, from Lemma 4.3,∥∥∥∥(r−2/3 − 2−2/3r2/3
)

sin

(
2

3
θ

)∥∥∥∥
L2(Ω)

≤
√

3 · 21/3

5
π.

Consequently, from (2.2),(2.3),(2.4) and (2.5),

|u − ũh|H1
0 (Ω) ≤

h

π

(
1 +

√
4000

81
− 11713

1782
π · 1

π

√
3 · 21/3

5
π

)
‖f‖L2(Ω)

= 1.1552884253 · · ·h‖f‖L2(Ω) ≤ 1.156h‖f‖L2(Ω).

Since the finite element solution uh is the best approximation in H1
0 space, we have

‖u − uh‖H1
0 (Ω) ≤ ‖u − ũh‖H1

0 (Ω) ≤ 1.156h‖f‖L2(Ω).

‖u − uh‖L2(Ω) ≤ 1.15532h2‖f‖L2(Ω) ≤ 1.335h2‖f‖L2(Ω)

is also obtained by the Aubin-Nitsche trick. �

3 Generalization

We consider general cases in this section. We suppose that Ω is enclosed by line
segments which forms a corner of π/2 or 3π/2. Ω is assumed to be connected but it is
not necessarily simply connected (Fig.3).

The following singular bases are used together with usual interpolating basis

Tkσ

(
x

lk
,
y

lk

)
, (k = 1, · · · , n),

where n is a number of re-entrant corner,

σ(x, y) =

 (1 − x2)(1 − y2)r2/3 sin

(
2

3
θ

)
,
(
(x, y) ∈ Ω0

)
,

0, (otherwise),

5



Ω

Figure 3: Admissible pattern

Ω

Figure 4: Admissible pattern

and Tk is a combination of parallel translation and rotation.
lk denotes sizes of the singular bases. Different sizes of the singular bases are

admissible. It is also admissible even if some part of the support of the singular bases
are overlapped (Fig.4).

There are some restrictions on defining the singular bases. Let us now suppose
that Γ is the support of a singular basis, and ∂Γ consists of line segments γ1 ∼ γ6

where γ1 and γ6 form the re-entrant corner (Fig.5). In this case, γ1 and γ6 must be
contained in ∂Ω and γ2 ∼ γ5 must coincide with the grid line of the mesh. Therefore,
both Fig.6 and Fig.7 are not admissible.

In this situation, we have the following Theorem.

Theorem 3.1 For the finite element solution uh with the basis

Φh ∪
{
Tkσ

(
x/lk, y/lk

) ∣∣∣ k = 1, · · · , n
}
, the following error estimation holds,

‖u − uh‖H1
0 (Ω) ≤

(
0.319 +

n∑
k=1

√
0.971 + 1.469

|Ω|
l2k

)
h‖f‖L2(Ω),

‖u − uh‖L2(Ω) ≤
(

0.319 +

n∑
k=1

√
0.971 + 1.469

|Ω|
l2k

)2

h2‖f‖L2(Ω),

Γ γ1

γ2

γ3

γ4

γ5

γ6

Figure 5: The support of a singular basis
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Ω

Figure 6: Nonadmissible pattern

Ω

Figure 7: Nonadmissible pattern

where |Ω| denotes the area of Ω.

Proof. Let

u(x, y) = w(x, y) +

n∑
k=1

λkTkσ

(
x

lk
,
y

lk

)
, w(x, y) ∈ H2(Ω) ∩ H1

0 (Ω).

be the exact solution.
We define ũh as follows,

ũh(x, y) = wh(x, y) +
n∑

k=1

λkTkσ

(
x

lk
,
y

lk

)
where wh denotes the bilinear interpolation of w.

We also define

σ(x, y) =

 (1 − r)2r2/3 sin

(
2

3
θ

)
, (r < 1),

0, (r ≥ 1).
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Now, we exclude the grid of the square mesh from Ω and define it as Ω∗. Then,

‖u − ũh‖H1
0 (Ω) = ‖w − wh‖H1

0 (Ω∗) ≤
h

π
|w|H2(Ω∗)

=
h

π

∣∣∣∣∣u −
n∑

k=1

λkTkσ

(
x

lk
,
y

lk

)∣∣∣∣∣
H2(Ω∗)

≤ h

π

∣∣∣∣∣u −
n∑

k=1

λkTkσ

(
x

lk
,
y

lk

)∣∣∣∣∣
H2(Ω)

+
h

π

∣∣∣∣∣
n∑

k=1

λkTk

(
σ

(
x

lk
,
y

lk

)
− σ

(x

l
,
y

l

))∣∣∣∣∣
H2(Ω∗)

=
h

π

∥∥∥∥∥∆
(

u −
n∑

k=1

λkTkσ

(
x

lk
,
y

lk

))∥∥∥∥∥
L2(Ω)

+
h

π

∥∥∥∥∥
n∑

k=1

λk∆Tk

(
σ

(
x

lk
,
y

lk

)
− σ

(
x

lk
,
y

lk

))∥∥∥∥∥
L2(Ω∗)

≤ h

π
‖f(x, y)‖L2(Ω)

+
h

π

n∑
k=1

|λk|
lk

(
‖∆σ(x, y)‖L2(Ω0) +

∥∥∥∆(σ(x, y) − σ(x, y)
)∥∥∥

L2(Ω0)

)
.

From Lemma 4.4,

‖∆σ(x, y)‖L2(Ω0) =
3
√

π

2
.

Lemma 4.5 implies that∥∥∥∆(σ(x, y) − σ(x, y)
)∥∥∥

L2(Ω0)
≤
√

4000

81
− 232367

46332
π.

Then, we have

‖u − ũh‖H1
0 (Ω) ≤

h

π
‖f‖L2(Ω) +

h

π

(
3
√

π

2
+

√
4000

81
− 232367

46332
π

)
n∑

k=1

|ak|
lk

.

From Lemma 4.6, we have the following evaluation

|λk| ≤
{∫ ∫

Ω

10≤θ<3π/2 ·
∣∣∣∣Glk

(
r, cos

(
4

3
θ

)
, cos

(
4

3
θ

))∣∣∣∣2 dxdy

+

∫∫
Ω

13π/2≤θ<2π ·
∣∣∣∣Glk

(
r,

1

9

(
8 + cos(4θ)

)
, 1

)∣∣∣∣2dxdy

}1/2

‖f(x, y)‖L2(Ω),

where

Gl(r, X, Y ) =
l2/3

√
2π

√√
r−8/3 + l−8/3 − 2r−4/3l−4/3X + l−4/3 − r−4/3Y .
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It follows from Lemma 4.7 that

|λk| ≤ 1

π

√(
5

2
− 3π

8

)
l2k + 2|Ω| · ‖f‖L2(Ω).

Then,

‖u − ũh‖H1
0 (Ω)

≤ h

π

(
1+

(
3
√

π

2
+

√
4000

81
− 232367

46332
π

)
n∑

k=1

1

π

√(
5

2
− 3π

8

)
+

2|Ω|
l2k

)
× ‖f‖L2(Ω)

=

(
0.31830988 · · ·+

n∑
k=1

√
0.97070784 · · ·+ 1.46865243 · · · |Ω|

l2k

)
h‖f‖L2(Ω)

≤
(

0.319 +

n∑
k=1

√
0.971 + 1.469

|Ω|
l2k

)
h‖f‖L2(Ω).

Since the finite element solution uh is the best approximation in H1
0 space,

‖u − uh‖H1
0 (Ω) ≤ ‖u − ũh‖H1

0 (Ω)

≤
(

0.319 +

n∑
k=1

√
0.971 + 1.469

|Ω|
l2k

)
h‖f‖L2(Ω).

We also obtain

‖u − uh‖L2(Ω) ≤
(

0.319 +

n∑
k=1

√
0.971 + 1.469

|Ω|
l2k

)2

h2‖f‖L2(Ω)

by the Aubin-Nitsche trick. �

4 Lemmas

Lemma 4.1∥∥∥∥∆{(1 − x2)(1 − y2)r2/3 sin

(
2

3
θ

)}∥∥∥∥
L2(Ω0)

≤
√

4000

81
− 11713

1782
π.

Proof.

∆

{
(1 − x2)(1 − y2)r2/3 sin

(
2

3
θ

)}
=

2

3
r2/3

{
(4r2 − 10) sin

(
2

3
θ

)
+ r2 sin

(
10

3
θ

)}
=

2

3
r2/3 sin

(
2

3
θ

){
9r2 − 10 − 20r2 sin2

(
2

3
θ

)
+ 16r2 sin4

(
2

3
θ

)}
.
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When 1 ≤ r ≤ √
2,

∆

{
(1 − x2)(1 − y2)r2/3 sin

(
2

3
θ

)}
=

2

3
r2/3 sin

(
2

3
θ

){
9r2 − 10 − 4r2 sin2

(
2

3
θ

)
−16r2 sin2

(
2

3
θ

)(
1 − sin2

(
2

3
θ

))}
≤ 2

3
r sin

(
2

3
θ

){
8 − 4r2 sin2

(
2

3
θ

)}
,

and

∆

{
(1 − x2)(1 − y2)r2/3 sin

(
2

3
θ

)}
= −2

3
r2/3 sin

(
2

3
θ

){
10 − 4r2 sin2

(
2

3
θ

)
− r2

(
3 − 4 sin2

(
2

3
θ

))2
}

≥ −2

3
r sin

(
2

3
θ

){
10 − 4r2 sin2

(
2

3
θ

)}
,

which implies∣∣∣∣∆{(1 − x2)(1 − y2)r2/3 sin

(
2

3
θ

)}∣∣∣∣
≤ 2

3
r sin

(
2

3
θ

){
10 − 4r2 sin2

(
2

3
θ

)}

=
20
√

10

9
√

3
− 8

3

(
r sin

(
2

3
θ

)
−
√

5

6

)2(
r sin

(
2

3
θ

)
+

√
10

3

)
≤ 20

√
10

9
√

3
.

Then ∥∥∥∥∆{(1 − x2)(1 − y2)r2/3 sin

(
2

3
θ

)}∥∥∥∥2

L2(Ω0)

≤ 4

9

∫ 1

0

∫ 3π/2

0

r4/3

{
(4r2 − 10) sin

(
2

3
θ

)
+ r2 sin

(
10

3
θ

)}2

r dθ dr

+

(
|Ω0| − 3

4
π

)(
20
√

10

9
√

3

)2

=
127

22
π +

(
3 − 3

4
π

)
4000

243
=

4000

81
− 11713

1782
π.

�

Lemma 4.2 When Ω = Ω0,

|λ| ≤ 1

π

∥∥∥∥(r−2/3 − 2−2/3r2/3
)

sin

(
2

3
θ

)∥∥∥∥
L2(Ω)

‖f(x, y)‖L2(Ω).
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Proof. For any 0 < ε < 1, let gε be a weak solution of the following equation,

{
−∆gε = −∆g̃ε in Ω,

gε = 0 on ∂Ω,
(4.1)

where,

g̃ε(x, y) =
1

π

(
(2ε−4/3 − 2−2/3)r2/3 − ε−8/3r2

)
sin

(
2

3
θ

)
, (r < ε),

1

π

(
r−2/3 − 2−2/3r2/3

)
sin

(
2

3
θ

)
, (ε ≤ r).

From the fact that g̃ε ∈ C1(Ω) and −∆g̃ε ≥ 0, both gε and g̃ε − gε are superhar-
monic function. Since gε and g̃ε − gε takes non-negative value on ∂Ω,

0 ≤ gε(x, y) ≤ g̃ε(x, y).

Consequently,
|gε(x, y)| ≤ |g̃ε(x, y)|.

From (1.1) and (4.1), taking gε and u as test functions,∫ ∫
Ω

fgε dxdy =

∫ ∫
Ω

∇u · ∇gε dxdy = −
∫ ∫

Ω

u∆g̃ε dxdy

=
32ε−8/3

9π

∫ ∫
Ω

1r<ε · u(x, y) sin

(
2

3
θ

)
dxdy

=
32ε−8/3λ

9π

∫ ε

0

∫ 3π/2

0

(1 − x2)(1 − y2)r2/3 sin2

(
2

3
θ

)
r dθdr

+
32ε−8/3

9π

∫ ε

0

∫ 3π/2

0

w(x, y) sin

(
2

3
θ

)
r dθdr

=

(
1 − 4

7
ε2 +

ε4

20

)
λ

+
16ε−8/3

9π

∫ ε

0

∫ 3π/2

0

(ε2 − r2)
∂

∂r
w(x, y) sin

(
2

3
θ

)
dθdr.
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Then (
1 − 4

7
ε2 +

ε4

20

)
|λ|

≤ ‖f‖L2(Ω)‖gε‖L2(Ω)

+
16ε−8/3

9π

(∫ ε

0

∫ 3π/2

0

∣∣∣∣(ε2 − r2) sin

(
2

3
θ

)∣∣∣∣7/6

r−1/6 dθdr

)6/7

×
(∫ ε

0

∫ 3π/2

0

∣∣∣∣ ∂

∂r
w(x, y)

∣∣∣∣7 r dθdr

)1/7

≤ ‖f‖L2(Ω)‖g̃ε‖L2(Ω)

+
16ε1/21

9π

(∫ 1

0

∫ 3π/2

0

∣∣∣∣(1 − r2) sin

(
2

3
θ

)∣∣∣∣7/6

r−1/6 dθdr

)6/7

×
(∫ ∫

Ω

(∣∣∣∣ ∂

∂x
w(x, y)

∣∣∣∣+ ∣∣∣∣ ∂

∂y
w(x, y)

∣∣∣∣)7

dxdy

)1/7

.

From w ∈ H2 and the Sobolev embedding theorem [1],

∂w

∂x
∈ L7(Ω),

∂w

∂y
∈ L7(Ω).

Then, we have the conclusion when ε → 0. �

Lemma 4.3 ∥∥∥∥(r−2/3 − 2−2/3r2/3
)

sin

(
2

3
θ

)∥∥∥∥
L2(Ω0)

≤
√

3 · 21/3

5
π.

Proof.∥∥∥∥(r−2/3 − 2−2/3r2/3
)

sin

(
2

3
θ

)∥∥∥∥2

L2(Ω0)

≤
∫ √

2

0

∫ 3π/2

0

(
r−2/3 − 2−2/3r2/3

)2

sin2

(
2

3
θ

)
r dθdr =

3 · 21/3

5
π.

�

Lemma 4.4 ∥∥∥∥∆{1r<1 · (1 − r)2r2/3 sin

(
2

3
θ

)}∥∥∥∥
L2(Ω0)

=
3
√

π

2
.

12



Proof. We have∥∥∥∥∆{1r<1 · (1 − r)2r2/3 sin

(
2

3
θ

)}∥∥∥∥2

L2(Ω0)

=

∥∥∥∥1r<1 · 2

3

(
10r − 7

)
r−1/3 sin

(
2

3
θ

)∥∥∥∥2

L2(Ω0)

=
4

9

∫ 1

0

∫ 3π/2

0

(
10r − 7

)2

r−2/3 sin2

(
2

3
θ

)
r dθdr =

9

4
π,

by calculating directly. �

Lemma 4.5∥∥∥∥∆{((1 − x2)(1 − y2) − 1r<1 · (1 − r)2
)
r2/3 sin

(
2

3
θ

)}∥∥∥∥
L2(Ω0)

≤
√

4000

81
− 232367

46332
π.

Proof.

∆

{(
(1 − x2)(1 − y2) − (1 − r)2

)
r2/3 sin

(
2

3
θ

)}
=

2

3
r2/3

{(
4r2 − 20 +

7

r

)
sin

(
2

3
θ

)
+ r2 sin

(
10

3
θ

)}
When r ≥ 1, same as proof of Lemma 4.1,∣∣∣∣∆{(1 − x2)(1 − y2)r2/3 sin

(
2

3
θ

)}∣∣∣∣ ≤ 20
√

10

9
√

3
,

Then ∥∥∥∥∆{((1 − x2)(1 − y2) − 1r<1 · (1 − r)2
)
r2/3 sin

(
2

3
θ

)}∥∥∥∥2

L2(Ω0)

≤ 4

9

∫ 1

0

∫ 3π/2

0

r4/3

{(
4r2 − 20 +

7

r

)
sin

(
2

3
θ

)
+ r2 sin

(
10

3
θ

)}2

r dθ dr

+

(
|Ω0| − 3

4
π

)(
20
√

10

9
√

3

)2

=
4193

572
π +

(
3 − 3

4
π

)
4000

243
=

4000

81
− 232367

46332
π.

�

13



Lemma 4.6

|λk| ≤
{∫ ∫

Ω

10≤θ<3π/2 ·
∣∣∣∣Glk

(
r, cos

(
4

3
θ

)
, cos

(
4

3
θ

))∣∣∣∣2 dxdy

+

∫ ∫
Ω

13π/2≤θ<2π ·
∣∣∣∣Glk

(
r,

1

9

(
8 + cos(4θ)

)
, 1

)∣∣∣∣2dxdy

}1/2

‖f(x, y)‖L2(Ω).

Proof. Using the parallel translation and the rotation, we move re-entrant
corner to the origin and re-entrant angle to [0, 3π/2].

For ε < lk, let gε be a weak solution of following equation,{
−∆gε = −10<θ<3π/2 · 1r<ε · ∆g̃ε in Ω,

gε = 0, on ∂Ω,

where,

g̃ε(x, y) =

(
2ε−4/3r4/3 − ε−8/3r8/3

)
Glk

(
r, cos

(
4

3
θ

)
, cos

(
4

3
θ

))
,

(r < ε, 0 ≤ θ ≤ 3π/2),

Glk

(
r, cos

(
4

3
θ

)
, cos

(
4

3
θ

))
, (r ≥ ε, 0 ≤ θ ≤ 3π/2),

Glk

(
r,

1

9

(
8 + cos(4θ)

)
, 1

)
, (3π/2 < θ < 2π).

From the fact that g̃ε ∈ C1(Ω) and Lemma 4.8, 4.9 and 4.10, both gε and g̃ε − gε

are superharmonic function. Since gε and g̃ε − gε takes non-negative value on ∂Ω,

0 ≤ gε(x, y) ≤ g̃ε(x, y).

Consequently,
|gε(x, y)| ≤ |g̃ε(x, y)|.

Then, same as in Lemma 4.2,∫ ∫
Ω

fgε dxdy =

∫ ∫
Ω

∇u · ∇gε dxdy = −
∫ ∫

Ω

10<θ<3π/2 · 1r<ε · u∆g̃ε dxdy

= −
∫ ∫

Ω

10<θ<3π/2 · 1r<ε · u(x, y)

× ∆

{(
2ε−4/3r4/3 − ε−8/3r8/3

)
Glk

(
r, cos

(
4

3
θ

)
, cos

(
4

3
θ

))}
dxdy.

14



From Lemma 4.11,∫ ∫
Ω

fgε dxdy

=
32ε−8/3l

2/3
k

9π
(1 + O(ε4/3))

∫ ∫
Ω

1r<ε · u(x, y) sin

(
2

3
θ

)
dxdy

=
32ε−8/3l

2/3
k λk

9π
(1 + O(ε4/3))

×
∫ ε

0

∫ 3π/2

0

(
1 − x2

l2k

)(
1 − y2

l2k

)(
r

lk

)2/3

sin2

(
2

3
θ

)
r dθdr

+
32ε−8/3l

2/3
k

9π
(1 + O(ε4/3))

∫ ε

0

∫ 3π/2

0

w(x, y) sin

(
2

3
θ

)
r dθdr

= (1 + O(ε4/3))λk

+
32ε−8/3l

2/3
k

9π
(1 + O(ε4/3))

∫ ε

0

∫ 3π/2

0

w(x, y) sin

(
2

3
θ

)
r dθdr.

Then, same as in Lemma 4.2,

(1 + O(ε4/3))|λk| ≤ ‖f‖L2(Ω)‖gε‖L2(Ω) + O(ε1/21)

≤ ‖f‖L2(Ω)‖g̃ε‖L2(Ω) + O(ε1/21).

We have the conclusion when ε → 0. �

Lemma 4.7{∫ ∫
Ω

10≤θ<3π/2 ·
∣∣∣∣Gl

(
r, cos

(
4

3
θ

)
, cos

(
4

3
θ

))∣∣∣∣2 dxdy

+

∫ ∫
Ω

13π/2≤θ<2π ·
∣∣∣∣Gl

(
r,

1

9

(
8 + cos(4θ)

)
, 1

)∣∣∣∣2 dxdy

}1/2

≤ 1

π

√(
5

2
− 3π

8

)
l2 + 2|Ω|

15



Proof.∣∣∣∣Gl

(
r, cos

(
4

3
θ

)
, cos

(
4

3
θ

))∣∣∣∣2
=

l4/3

2π2

{√
r−8/3 + l−8/3 − 2r−4/3l−4/3 cos

(
4

3
θ

)

+ l−4/3 − r−4/3 cos

(
4

3
θ

)}

≤ l4/3

2π2

{∣∣l−4/3 − r−4/3
∣∣+√2r−4/3l−4/3

(
1 − cos

(
4

3
θ

))

+ l−4/3 − r−4/3 cos

(
4

3
θ

)}

=
l4/3

π2

{
max

(
l−4/3 − r−4/3, 0

)
+r−2/3l−2/3 sin

(
2

3
θ

)
+ r−4/3 sin2

(
2

3
θ

)}
,

∣∣∣∣Gl

(
r,

1

9

(
8 + cos(4θ)

)
, 1

)∣∣∣∣2
=

l4/3

2π2

{√
r−8/3 + l−8/3 − 2

9
r−4/3l−4/3

(
8 + cos(4θ)

)
+ l−4/3 − r−4/3

}

≤ l4/3

2π2

{∣∣l−4/3 − r−4/3
∣∣+√2

9
r−4/3l−4/3

(
1 − cos(4θ)

)
+ l−4/3 − r−4/3

}

=
l4/3

π2

{
max

(
l−4/3 − r−4/3, 0

)
+

1

3
r−2/3l−2/3| sin(2θ)|

}
.

It follows from these inequalities that,∫ ∫
Ω

10≤θ<3π/2 ·
∣∣∣∣Gl

(
r, cos

(
4

3
θ

)
, cos

(
4

3
θ

))∣∣∣∣2 dxdy

+

∫ ∫
Ω

13π/2≤θ<2π ·
∣∣∣∣Gl

(
r,

1

9

(
8 + cos(4θ)

)
, 1

)∣∣∣∣2 dxdy

≤ l4/3

π2

∫ l

0

∫ 3π/2

0

{
r−2/3l−2/3 sin

(
2

3
θ

)
+ r−4/3 sin2

(
2

3
θ

)}
r dθdr

+
l4/3

π2

∫ l

0

∫ 2π

3π/2

1

3
r−2/3l−2/3| sin(2θ)| r dθdr

+

(
|Ω| − 3πl2

4

)
l4/3

π2
· 2l−4/3

16



=
l2

π2

(
5

2
− 3π

8

)
+

2

π2
|Ω|.

�

Lemma 4.8

−∆Gl

(
r, cos

(
4

3
θ

)
, cos

(
4

3
θ

))
= 0 in Ω.

Proof.

Gl

(
r, cos

(
4

3
θ

)
, cos

(
4

3
θ

))
is a constant times imaginary part of(

z−4/3 − l−4/3
)1/2

, z = reiθ.

Therefore, this function is harmonic in Ω. �

Lemma 4.9 For r < ε < l and 0 < θ < 3π/2,

−∆

((
2ε−4/3r4/3 − ε−8/3r8/3

)
Gl

(
r, cos

(
4

3
θ

)
, cos

(
4

3
θ

)))
≥ 0 in Ω.

Proof.

−∆

{(
2ε−4/3r4/3 − ε−8/3r8/3

)
Gl

(
r, cos

(
4

3
θ

)
, cos

(
4

3
θ

))}
=

4
√

2

9a2b2c l2π
· (a + c − 1)2(a + c + 1)2(a − b + c)(

a + c − cos

(
4

3
θ

))3/2

where

a = r4/3l−4/3, b = ε4/3l−4/3, c =

√
a2 + 1 − 2a cos

(
4

3
θ

)
.

Since

a − b + c = a − b +

√
a2 + 1 − 2a cos

(
4

3
θ

)
≥ a − b + |a − 1| ≥ 1 − b ≥ 0,

this lemma is proved. �

Lemma 4.10 For 3π/2 < θ < 2π,

−∆Gl

(
r,

1

9

(
8 + cos(4θ)

)
, 1

)
≥ 0 in Ω.

17



Proof.

−∆Gl

(
r,

1

9

(
8 + cos(4θ)

)
, 1

)
=

2
√

2
√

a + d − 1

9a2d3l2π

(
2d3 + 2(a − 1)2d − 4(a − 1)3 + d2

)
where

a = r4/3l−4/3, d =

√
a2 + 1 − 2

9
a
(
8 + cos(4t)

)
.

Since
d ≥

√
a2 + 1 − 2a = |a − 1|

holds,

2d3 + 2(a − 1)2d − 4(a − 1)3 + d2 ≥ 4|a − 1|3 − 4(a − 1)3 + 2(a − 1)2d + d2 ≥ 0.

Then, this lemma is proved. �

Lemma 4.11 When r < ε,

−∆

{(
2ε−4/3r4/3 − ε−8/3r8/3

)
Gl

(
r, cos

(
4

3
θ

)
, cos

(
4

3
θ

))}
=

32ε−8/3l2/3

9π
sin

(
2

3
θ

)
· (1 + O(ε4/3)).

Proof. Define

a = r4/3l−4/3, b = ε4/3l−4/3, c =

√
a2 + 1 − 2a cos

(
4

3
θ

)
,

then we have,

−∆

{(
2ε−4/3r4/3 − ε−8/3r8/3

)
Gl

(
r, cos

(
4

3
θ

)
, cos

(
4

3
θ

))}
=

4
√

2

9a2b2c l2π
· (a + c − 1)2(a + c + 1)2(a − b + c)(

a + c − cos

(
4

3
θ

))3/2
.

We can easily confirm the following expressions

c = 1 + O(ε4/3),

a + c − 1 =
2a

c − a + 1

(
1 − cos

(
4

3
θ

))
= 2a sin2

(
2

3
θ

)
· (1 + O(ε4/3)),

a + c + 1 = 2 + O(ε4/3),

a − b + c = 1 + O(ε4/3),

a + c − cos

(
4

3
θ

)
=

c + a + 1

c − a + 1

(
1 − cos

(
4

3
θ

))
= 2 sin2

(
2

3
θ

)
· (1 + O(ε4/3)).
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Then,

−∆

{(
2ε−4/3r4/3 − ε−8/3r8/3

)
Gl

(
r, cos

(
4

3
θ

)
, cos

(
4

3
θ

))}
=

32ε−8/3l2/3

9π
sin

(
2

3
θ

)
· (1 + O(ε4/3)).

�

5 Numerical result

In this section, numerical results are shown to confirm the validity of the error estima-
tion. All calculations were carried out on a Pentium IV PC at 2.2GHz with Borland
C++ compiler. There are some difficulties in calculating H1

0 inner product between
singular basis and bilinear basis because gradient of singular basis diverges at the ori-
gin. To deal with this difficulty, the following Double Exponential transformation (DE
transformation)[14] is used to calculate the integral at each of the square elements,∫ yl+h

yl

∫ xk+h

xk

p(x, y) dxdy

=

∫ ∞

−∞

∫ ∞

−∞
p
(
xk + ϕ(x), yl + ϕ(y)

)
ϕ′(x)ϕ′(y) dxdy,(5.1)

where p(x, y) is an integrand and

ϕ(t) =
h

2

(
tanh

(π

2
sinh t

)
+ 1
)

.

(5.1) is approximated by the trapezoidal rule as follows,∫ ∞

−∞

∫ ∞

−∞
p
(
xk + ϕ(x), yl + ϕ(y)

)
ϕ′(x)ϕ′(y) dxdy

≈ L2

N2

N∑
j=−N

N∑
i=−N

(
xk + ϕ

(
kL

N

)
, yl + ϕ

(
kL

N

))
ϕ′
(

kL

N

)
ϕ′
(

kL

N

)
.

We took L = 4 and N = 100 which is sufficient to obtain double floating point
precision.

We consider following Poisson equation on two different shapes of Ω,{
−∆u = 1 in Ω,

u = 0 on ∂Ω.
(5.2)

The first result is that Ω is L-shape domain which is shown in Fig.8. Fig.9 shows
an arrangement of the singular bases and Fig.10 shows the shape of the numerical
solution. The numerical results are presented in Table 5.1, where h is the mesh size
and Uh denotes the numerical solution.
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Figure 8: L-Shape domain
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Figure 9: An arrangement of the singular
bases
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Figure 10: The numerical solution when h = 1/10

Table 5.1: Numerical results for the L-shape domain

h ‖Uh − Uh/2‖H1
0 (Ω) ‖Uh − Uh/2‖L2(Ω)

Degree of
freedom

Condition
number

1/10 3.9052 × 10−2 1.0684 × 10−3 443 3.8210 × 103

1/20 1.9576 × 10−2 2.6905 × 10−4 1882 4.9653 × 104

1/30 1.3066 × 10−2 1.2008 × 10−4 4322 2.2077 × 105

1/40 9.8064 × 10−3 6.7750 × 10−5 7762 6.3104 × 105

1/50 7.8494 × 10−3 4.3464 × 10−5 12202 1.4173 × 106

Table 5.2: A priori error estimation for the L-shape domain

h ‖u − uh‖H1
0 (Ω) ‖u − uh‖L2(Ω)

1/10 7.161561 · · · × 10−1 2.293667 · · · × 10−1

1/20 3.580780 · · · × 10−1 5.734168 · · · × 10−2

1/30 2.387187 · · · × 10−1 2.548519 · · · × 10−2

1/40 1.790390 · · · × 10−1 1.433542 · · · × 10−2

1/50 1.432312 · · · × 10−1 9.174669 · · · × 10−3
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Table 5.3: Numerical results for the H-shape domain

h ‖Uh − Uh/2‖H1
0 (Ω) ‖Uh − Uh/2‖L2(Ω)

Degree of
freedom

Condition
number

1/10 6.5080 × 10−2 1.9355 × 10−3 715 3.4622 × 102

1/20 3.4414 × 10−2 5.4674 × 10−4 3025 3.9510 × 103

1/30 2.3745 × 10−2 2.6310 × 10−4 6935 1.7397 × 104

1/40 1.8253 × 10−2 1.5691 × 10−4 12445 5.0101 × 104

1/50 1.4882 × 10−2 1.0512 × 10−4 19555 1.1370 × 105

Since the exact solution of (5.2) is not known, we calculated H1
0 and L2 norm of

Uh − Uh/2 to obtain the rough estimation of the error. The true errors are expected
to be several times lager than these value. To calculate error norm, we employed
DE transformation again. The condition numbers of the element matrix were also
calculated. The definition of the condition number is the ratio of the largest to the
smallest eigenvalue.

From Theorem 3.1, H1
0 and L2 error estimations for this equation are obtained as

follows,

‖u − uh‖H1
0 (Ω) ≤

(
0.319 +

√
0.971 + 1.469 · 5

12

)√
5h,

‖u − uh‖L2(Ω) ≤
(

0.319 +

√
0.971 + 1.469 · 5

12

)2 √
5h2.

The right-hand side of these inequalities are presented in Table 5.2. Since a priori
error estimate can be applied to arbitrary f and Ω, in general, the actual error is often
smaller than a priori error estimation.

The next result is a case that Ω is an H-shape domain which is shown in Fig.11.
Fig.12 shows an arrangement of the singular bases and Fig.13 shows the shape of the
numerical solution. The numerical results are presented in Table 5.3.
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Figure 11: H-Shape domain
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Figure 12: An arrangement of the singular
bases
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Table 5.4: A priori error estimation for the H-shape domain

h ‖u − uh‖H1
0 (Ω) ‖u − uh‖L2(Ω)

1/10 7.926879 · · · 22.21567 · · ·
1/20 3.963439 · · · 5.553918 · · ·
1/30 2.642293 · · · 2.468408 · · ·
1/40 1.981719 · · · 1.388479 · · ·
1/50 1.585375 · · · 0.888626 · · ·

From Theorem 3.1, H1
0 and L2 error estimation for this equation are obtained as

follows,

‖u − uh‖H1
0 (Ω) ≤

(
0.319 + 4

√
0.971 + 1.469 · 8

0.52

)√
8h,

‖u − uh‖L2(Ω) ≤
(

0.319 + 4

√
0.971 + 1.469 · 8

0.52

)2 √
8h2.

The right-hand side of these inequalities are presented in Table 5.4.
As we can see in Table 5.3 and Table 5.4, the value of a priori error estimation be-

comes lager when the number of the re-entrant corner increases and when the support
of the singular function become smaller (n and lk in Theorem 3.1).

6 Concluding remark

We presented a constructive a priori error estimation for finite element solution in a
polygonal domain by using singular functions. The results are only when the domain is
bounded by line segments which forms a right angle. However, it seems to be possible
to extend this method to the general polygonal domain with triangular mesh. A priori
error estimation for another important method such as DSFM or method of mesh
refinement is further work.
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Figure 13: The numerical solution when h = 1/10
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