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On the global uniqueness of Stokes’ wave of extreme form

Kenta Kobayashi 1

Abstract

We present a computer-assisted proof of global uniqueness of Stokes’ wave
of extreme form. Stokes’ wave of extreme form is a water wave which forms
a corner of 120 degrees at the crest, and is considered to be the limit of the
positive solution of Nekrasov’s equation which expresses periodic gravity waves
of permanent form on the free surface. The numerical verification method plays
an important role in the proof. As for the global uniqueness of Stokes’ wave of
extreme form, it is not only a longtime open problem, but also it is related to
an important conjecture which is called Stokes’ conjecture.
Key Words: Stokes’ wave of extreme form, Nekrasov’s equation, Numerical
verification method, gravity wave, Stokes’ conjecture

1 Introduction

We are concerned in this paper with Stokes’ wave of extreme form (see, e.g., [8]), which
is a positive solution of a nonlinear integral equation for the unknown θ : (0, π] → IR
and is written as follows:



θ(s) =

∫ π

0

K(s, t)
sin θ(t)∫ t

0
sin θ(w)dw

dt,

0 < θ(s) <
π

2
s ∈ (0, π),

θ(π) = 0,

(1.1)

where

K(s, t) =
2

3π

∞∑
k=0

sin ks sin kt

k
=

1

3π
log

∣∣∣∣sin s+t
2

sin s−t
2

∣∣∣∣ .
Stokes’ wave of extreme form is derived from the following equation by Nekrasov:



θ(s) =

∫ π

0

K(s, t)
sin θ(t)

µ−1 +
∫ t

0
sin θ(w)dw

dt,

0 < θ(s) <
π

2
s ∈ (0, π),

θ(0) = θ(π) = 0,

(1.2)

where µ is a positive parameter. The equation (1.1) is derived from this by letting
µ → ∞.

Nekrasov’s equation arises from the following physical situation. We consider a two-
dimensional, irrotational motion of inviscid fluid having a free surface. In a coordinate
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system moving with the wave, the wave profile is assumed to be stationary. We further
assume that the shape is periodic and that the flow is infinitely deep. We are then
asked to determine the shape of the free surface. Details are omitted (see [8]) but we
should note that the free surface is represented as (x(s), y(s)) (0 < s < 2π), where x
and y are determined by

dx

ds
= − L

2π
e−Hθ(s) cos θ(s),

dy

ds
= − L

2π
e−Hθ(s) sin θ(s).(1.3)

Here, L is the wavelength and H is the Hilbert transform. The right hand sides are
known if θ is. Thus, after integrating in s, we have a parametric representation of the
free surface.

The wave is assumed (i) to be symmetric about its crest, (ii) to have a surface
that is a single-valued 2π-periodic function of horizontal distance, and (iii) to have
only one peak and one trough per period. As a consequence we have

θ(s) = −θ(−s), θ(s + 2π) = θ(s), and 0 < θ(s) <
π

2
on (0, π).(1.4)

We call such solutions positive solutions.
We finally note that

µ =
3gL

2πc2
e−3Hθ(0)

where c denotes the propagation speed, and g the gravitational acceleration. We refer
the reader to [8] for the derivation of (1.2) and (1.3).

The global nature of the positive solutions for (1.2) was shown first by Krasovskii[5].
He showed that, for any β ∈ (0, π/6), the equation (1.2) has a solution (µ, θ) satisfying
(1.4) and max θ(s) = β. Presumably Krasovskii imagined that his solutions formed
the whole branch up to the extreme wave. However, the fact of the matter was not that
simple: numerical experiments showed strong evidence, that there existed solutions in
which the maximum slope was strictly bigger than π/6 (see [10]). The existence of a
positive solution for every µ > 3 (there is no positive solution when µ ≤ 3) was first
proved by Keady & Norbury[4].

When µ → ∞, the speed at the crest tends to zero and the crest becomes sharper.
Keady and Norbury guaranteed all waves having one crest and one trough except for
the case of µ = ∞. The waves of extreme form satisfies (1.1). The existence of a
solution to (1.1) was proved by Toland[12]. He proved that as µ → ∞, the solution of
(1.2) have a convergent subsequence and that the limit function satisfies (1.1).

About the extreme wave, Stokes[11] recognized the following two propositions
which are nowadays called Stokes’ conjectures:

(a) the crest forms a corner of angle 2π/3, that is, lims↓0 θ(s) = π/6.

(b) the wave profile between two consecutive crests is concave,
that is, θ′(s) < 0 for s ∈ (0, π).

The conjecture (a) was proved by Amick et al.[1]. Toland & Plotnikov[13] proved
that there exists a wave which satisfies θ′(s) < 0. However, this does not settle the
conjecture (b) completely. Because of the lack of the proof of the uniqueness, it is not
excluded that there is a positive solution of (1.1) which does not satisfy θ′(s) < 0.
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Although the existence of solutions for Nekrasov’s equation and Stokes’ wave of
extreme form are proved, despite the effort of many mathematicians for many decades,
the global uniqueness seems to remain open. While writing this paper, the author
heard that Fraenkel[2] proved the local uniqueness, i.e., the uniqueness in a certain
neighborhood of the solution. On the other hand, we had succeeded to prove the
global uniqueness of a positive solution for Nekrasov’s equation when µ ≤ 170 (see [3]).
With the technique in [3], we present in this paper a proof of the global uniqueness of
Stokes’ wave of extreme form. In the two proofs, we employ the numerical verification
method (see, for instance, [9], [6]) to obtain rigorous mathematical results by numerical
computations.

The present paper is organized as follows: In section 2, we explain the idea of
the proof of uniqueness. Discretization is explained in section 3, and we show the
numerical results in section 4.

Influence of discretization in section 3 and rounding error in section 4 are both
rigorously evaluated. Consequently, though we use numerical computation, our result
is rigorous.

In this paper, θ always denotes Stokes’ wave of extreme form, namely, a solution
of (1.1), s is assumed to run in 0 < s ≤ π. 1A denotes the function which takes value
1 if condition A holds, and takes value 0 otherwise.

2 The idea of the proof of uniqueness

In this section, we first derive a formula about bounds of θ. Secondly, we present the
specific lower bound of θ. Finally, we explain how to prove the uniqueness.

First of all, we prove the following theorem,

Theorem 2.1 Assume that, for θ(s), an upper bound and a lower bound are given as

0 ≤ θ(s) ≤ θ(s) ≤ θ(s) ≤ π/2,

then, it holds that
J
(
θ, θ
)
(s) ≤ θ(s) ≤ J

(
θ, θ
)
(s),

where

J
(
φ, ϕ

)
(s) =

1

6π

∫ π

0

cot
t

2
log


1 +

∫ π−|s+t−π|
|s−t| sinφ(w)dw∫ min(s,|s−t|)

0
sin ϕ(w)dw +

∫ |s−t|
min(s,|s−t|) sinφ(w)dw


 dt.

Proof. Note first that

∂

∂t
K(s, t) =

1

6π

(
cot

t + s

2
− cot

t − s

2

)
=

1

3π
· sin s

cos t − cos s
.
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With this and (1.1) we compute as follows.

θ(s) =

∫ π

0

K(s, t)
d

dt
log

(∫ t

0

sin θ(w)dw

)
dt

=
1

3π

∫ π

0

sin s

cos s − cos t
· log

(∫ t

0
sin θ(w)dw∫ s

0
sin θ(w)dw

)
dt

≤ 1

3π

∫ π

0

sin s

cos s − cos t
· log



∫ t

0
sin
(
1w<s · θ(w) + 1w≥s · θ(w)

)
dw∫ s

0
sin θ(w)dw


 dt

=
1

6π

∫ π

0

(
cot

t − s

2
− cot

t + s

2

)
log



∫ t

0
sin
(
1w<s · θ(w) + 1w≥s · θ(w)

)
dw∫ s

0
sin θ(w)dw


 dt

=
1

6π

∫ π

−π

cot
t − s

2
· log



∫ |t|
0

sin
(
1w<s · θ(w) + 1w≥s · θ(w)

)
dw∫ s

0
sin θ(w)dw


 dt

=
1

6π

∫ π

0

cot
t

2
· log



∫ π−|s+t−π|
0

sin
(
1w<s · θ(w) + 1w≥s · θ(w)

)
dw∫ s

0
sin θ(w)dw


 dt

+
1

6π

∫ 0

−π

cot
t

2
· log



∫ |s+t|
0

sin
(
1w<s · θ(w) + 1w≥s · θ(w)

)
dw∫ s

0
sin θ(w)dw


 dt

=
1

6π

∫ π

0

cot
t

2
· log



∫ π−|s+t−π|
0

sin
(
1w<s · θ(w) + 1w≥s · θ(w)

)
dw∫ |s−t|

0
sin
(
1w<s · θ(w) + 1w≥s · θ(w)

)
dw


 dt

=
1

6π

∫ π

0

cot
t

2
· log


1+

∫ π−|s+t−π|
|s−t| sin

(
1w<s · θ(w) + 1w≥s · θ(w)

)
dw∫ min(s,|s−t|)

0
sin θ(w)dw+

∫ |s−t|
min(s,|s−t|) sin θ(w)dw


dt

≤ 1

6π

∫ π

0

cot
t

2
· log


1 +

∫ π−|s+t−π|
|s−t| sin θ(w)dw∫ min(s,|s−t|)

0
sin θ(w)dw +

∫ |s−t|
min(s,|s−t|) sin θ(w)dw


 dt.

Hence, J
(
θ, θ
)
(s) is a renewed upper bound of θ(s). In the same way, J

(
θ, θ
)
(s) is

shown to be a renewed lower bound of θ(s).

This theorem is used in section 4 to obtain sharp upper and lower bounds of θ(s)
by iteration.
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Next, we prove the following theorem about the specific lower bound of θ(s).

Theorem 2.2
θ(s) ≥ 0.00005 · 10<s≤π/2.

Proof. Let ε denote 0.00005. Assume that 0 < a < π/2 satisfies the following
condition;

for all 0 < s ≤ a, θ(s) ≥ ε holds.

Since Amick et al.[1] proved that lims↓0 θ(s) = π/6, such an ‘a’ certainly exists.
Then, from Theorem 2.1, for a ≤ s ≤ min(1.01a, π/2),

θ(s) ≥ J
(
ε · 1s≤a, π/2

)
(s)

≥ 1

6π

∫ s+a

s−a

cot
t

2
· log

(
1 +

a − |s − t|
|s − t| sin ε

)
dt

=
1

3π

∫ a

0

sin s

cos t − cos s
· log

(
1 +

a − t

t
sin ε

)
dt

≥ 1

3π

∫ a

0

1

s − t
· log

(
1 +

a − t

t
sin ε

)
dt

≥ 1

3π
· 1

s

∫ a

0

log

(
1 +

a − t

t
sin ε

)
dt

=
1

3π
· a

s
· sin ε

1 − sin ε
· log

(
1

sin ε

)

≥ 1

3π
· sin ε

1.01
· log

(
1

sin ε

)
= 0.0000520194 · · · ≥ ε.

Therefore, if θ(s) ≥ ε holds for 0 < s ≤ a, then its also holds for 0 < s ≤
min(1.01a, π/2). Inductively, θ(s) ≥ ε holds for all 0 < s ≤ π/2.

Now, we will explain how to prove the uniqueness of (1.1). For this purpose, we
use the following theorem.

Theorem 2.3 The solution of (1.1) is globaly unique if the following condition holds,

sup
0<s≤π

G
(
θ, θ, g

)
(s)

g(s)
< 1,

where θ(s) ≥ 0 and θ(s) ≤ π/2 are lower and upper bound of the solution of (1.1),
g(s) is an arbitrary positive function, and

G(φ, ϕ, g)(s) =
1

6π

∫ π

0

cot
t

2
·
(∫ π−|s+t−π|

|s−t| sin φ(w)dw · ∫ min(s,|s−t|)
0

cosϕ(w)·g(w)dw∫ |s−t|
0

sinϕ(w)dw

+

∫ π−|s+t−π|

|s−t|
cosϕ(w)·g(w)dw

)
· dt∫ π−|s+t−π|

0
sinϕ(w)dw

.
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Proof. Suppose that θ(s) ≥ 0 and θ(s) ≤ π/2 are given. We then define
inductively the following functions:


φ0(s) = θ(s), ϕ0(s) = θ(s),

φn+1(s) = min
(
φn(s), J(φn, ϕn)(s)

)
, (n = 0, 1, · · · ),

ϕn+1(s) = max
(
ϕn(s), J(ϕn, φn)(s)

)
, (n = 0, 1, · · · ).

Theorem 2.1 shows that for all n ≥ 0, 0 ≤ ϕn(s) ≤ θ(s) ≤ φn(s) ≤ π/2.
By these definitions,

φn+1(s) − ϕn+1(s)

g(s)
≤ J(φn, ϕn)(s) − J(ϕn, φn)(s)

g(s)

=
1

6πg(s)

∫ π

0

cot
t

2
· log




1 +

∫ π−|s+t−π|
|s−t| sin φn(w)dw∫ min(s,|s−t|)

0
sin ϕn(w)dw +

∫ |s−t|
min(s,|s−t|) sinφn(w)dw

1 +

∫ π−|s+t−π|
|s−t| sin ϕn(w)dw∫ min(s,|s−t|)

0
sin φn(w)dw +

∫ |s−t|
min(s,|s−t|) sinϕn(w)dw




dt.

=
1

6πg(s)

∫ π

0

cot
t

2
· log

[
1 +

{ ∫ π−|s+t−π|
|s−t| sinφn(w)dw∫ min(s,|s−t|)

0
sinϕn(w)dw +

∫ |s−t|
min(s,|s−t|) sinφn(w)dw

×
(∫ min(s,|s−t|)

0

(
sin φn(w) − sin ϕn(w)

)
dw −

∫ |s−t|

min(s,|s−t|)

(
sin φn(w) − sin ϕn(w)

)
dw

)

+

∫ π−|s+t−π|

|s−t|

(
sinφn(w) − sinϕn(w)

)
dw

}

× 1∫ min(s,|s−t|)
0

sin φn(w)dw +
∫ π−|s+t−π|
min(s,|s−t|) sinϕn(w)dw

]
dt

≤ 1

6πg(s)

∫ π

0

cot
t

2
·
(∫ π−|s+t−π|

|s−t| sinφn(w)dw · ∫ min(s,|s−t|)
0

(
sin φn(w) − sin ϕn(w)

)
dw∫ min(s,|s−t|)

0
sin ϕn(w)dw +

∫ |s−t|
min(s,|s−t|) sinφn(w)dw

+

∫ π−|s+t−π|

|s−t|

(
sin φn(w) − sinϕn(w)

)
dw

)

× dt∫ min(s,|s−t|)
0

sin φn(w)dw +
∫ π−|s+t−π|
min(s,|s−t|) sinϕn(w)dw
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≤ 1

6πg(s)

∫ π

0

cot
t

2
·
(∫ π−|s+t−π|

|s−t| sin θ(w)dw · ∫ min(s,|s−t|)
0

cos θ(w)·g(w)dw∫ |s−t|
0

sin θ(w)dw

+

∫ π−|s+t−π|

|s−t|
cos θ(w)·g(w)dw

)
· dt∫ π−|s+t−π|

0
sin θ(w)dw

· sup
0≤s≤π

φn(s) − ϕn(s)

g(s)

=
G
(
θ, θ, g

)
(s)

g(s)
· sup

0<s≤π

φn(s) − ϕn(s)

g(s)
.

This leads us to

sup
0<s≤π

φn+1(s) − ϕn+1(s)

g(s)
≤ sup

0<s≤π

G
(
θ, θ, g

)
(s)

g(s)
· sup

0<s≤π

φn(s) − ϕn(s)

g(s)
.

If the assumption of this theorem holds, then

sup
0<s≤π

φn(s) − ϕn(s)

g(s)
→ 0, (n → ∞),

and this means that the solution of (1.1) is unique.

The next problem is to choose a suitable function g(s). The simple choice g(s) ≡
constant was found not to work. Our choice, which will be exhibited in section 4, is
more involved.

3 Discretization

The main purpose of this section is to explain how to discretize functional J(·, ·) and
G(·, ·, ·) by step functions.

Let N be an arbitrary even number ≥ 4, and let QN denote the set of step functions
which are constant in each intervals

kπ

N
< s ≤ (k + 1)π

N
(k = 0, 1, · · · , N − 1).(3.1)

Assume that θ(s) ≥ 0 and θ(s) ≤ π/2 are lower and upper bounds of the solution
θ(s), and that g(s) is an arbitrary positive function. We also assume that θ(s), θ(s)
and g(s) belong to QN .

We will constructively define step functions J∗, J∗ and G∗ in QN which satisfy

J∗(θ, θ)(s) ≥ θ(s),(3.2)

J∗(θ, θ)(s) ≤ θ(s),(3.3)

G∗(θ, θ, g)(s) ≥ G(θ, θ, g)(s),(3.4)

as discretizations of J(·, ·), J(·, ·) and G(·, ·, ·).
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The values of J∗, J∗ and G∗ in the subinterval (3.1) are denoted by Jk, Jk and Gk.
We may accordingly write as follows:

J∗(θ, θ)(s) =
N−1∑
k=0

1 kπ
N

<s≤ (k+1)π
N

· Jk(θ, θ),

J∗(θ, θ)(s) =

N−2∑
k=0

1 kπ
N

<s≤ (k+1)π
N

· Jk(θ, θ),

G∗(θ, θ, g)(s) =
N−1∑
k=0

1 kπ
N

<s≤ (k+1)π
N

· Gk(θ, θ, g).

The precise definitions of Jk(θ, θ) etc. are rather complicated and will be given
later. To that end, we define the following symbols.

Θ(u) ≡ sup
u<x≤N

sin θ
( π

N
x
)

, 0 ≤ u < N,

Θ(u) ≡ inf
0<x≤min(u,N)

sin θ
( π

N
x
)

, 0 < u,

γ(u) ≡ sup
u<x≤N

cos θ
( π

N
x
)
· g
( π

N
x
)

, 0 ≤ u < N,

Θ(N) ≡ lim
u↑N

Θ(u), Θ(0) ≡ lim
u↓0

Θ(u), γ(N) ≡ lim
u↑N

γ(u),

Θa ≡ Θ(a), Ψ
b

a ≡
∫ b

a

Θ(u)du,

Θa ≡ Θ(a), Ψ b
a ≡

∫ b

a

Θ(u)du,

γ a ≡ γ(a), Γ b
a ≡

∫ b

a

γ(u)du,

c1 ≡ sup
0<t≤N

Ψ
t

0

Ψ t
0

, c2 ≡ sup
0<t≤N

Γ t
0

Ψ t
0

, c3 ≡ sup
0<t≤N

t

Ψ t
0

,

f [w] ≡ N − |w − N |.

For each s and integer k such that

kπ

N
< s ≤ (k + 1)π

N
(0 ≤ k ≤ N − 1),

the following inequality holds,

Θ
(

(k+1)w
s

)
≤ sin θ(w) ≤ Θ

(
kw
s

)
(0 < w ≤ π).(3.5)

In fact, note first that sin θ(w) ≤ sin θ. Since kw
s

< Nw
π

, we have Θ
(

kw
s

) ≥ sin θ(w),
which implies the inequality on the right hand side. The one on the left hand side is
proved similarly.
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Using (3.5) and Theorem 2.1, we have

θ(s) ≤ 1

6π

∫ π

0

cot
t

2
log


1 +

∫ π−|s+t−π|
|s−t| Θ

(
kw
s

)
dw∫ min(s,|s−t|)

0
Θ
(

(k+1)w
s

)
dw +

∫ |s−t|
min(s,|s−t|) Θ

(
kw
s

)
dw


 dt

=
1

6π

∫ π
s

0

s

tan st
2

log


1 +

∫ π
s
−|1+t−π

s |
|t−1| Θ(kw)dw∫ min(1,|t−1|)

0
Θ((k+1)w)dw +

∫ |t−1|
min(1,|t−1|) Θ(kw)dw


 dt

≤ 1

6π

∫ N
k

0

lim
σ↓kπ

N

σ

tan σt
2

log


1 +

∫ π
σ
−|1+t−π

σ |
|t−1| Θ(kw)dw∫ min(1,|t−1|)

0
Θ((k+1)w)dw +

∫ |t−1|
min(1,|t−1|) Θ(kw)dw


 dt

≤
N−1∑
l=0

Ak,l(θ, θ) +
N−1∑
l=k

min
(
Bk,l(θ, θ), Ck,l(θ, θ)

) ≡ Jk(θ, θ),

where Ak,l, Bk,l and Ck,l are defined as follows:

First, Ak,l(θ, θ) is defined for l = 0 as

1

6π

∫ 1
N

0

4Θ k(1− 1
N )

1
k+1

Ψ
(k+1)(1− 1

N )
0 +

(
1
N
− t
)

Θ k+1

dt;

for k = 0, 1 ≤ l,

1

6π

∫ l+1
N

l
N

2N

l
log


1 +

2l
N

Θ 0

Ψ
(1− l+1

N )
0 +

(
l+1
N

− t
)

Θ 1− l
N


 dt;

and for 1 ≤ k, 1 ≤ l,

1

6π

∫ l+1
N

l
N

kπ
N

tan klπ
2N2

log


1 +

min

(
1
k
Ψ

f[k(1+ l+1
N )]

k(1− l+1
N )

, 2l
N

Θ k(1− l+1
N )

)
1

k+1
Ψ

(k+1)(1− l+1
N )

0 +
(

l+1
N

− t
)

Θ (k+1)(1− l
N )


 dt.
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Bk,l(θ, θ) is defined as ∞ if l = 0;

for k = 0, 1 ≤ l ≤ N
2
− 1,

1

6π

∫ N
l

N
l+1

2(l + 1)

N
log

(
1 +

2Θ0

Ψ 1
0 + (t − 2)Θ 0

)
dt;

for k = 0, N
2
≤ l,

1

6π

∫ N
l

N
l+1

2(l + 1)

N
log


1 +

2Θ 0

Ψ
N

l+1
−1

0 +
(
t − N

l+1

)
Θ N

l
−1


 dt;

for k ≥ 1, 1 ≤ l ≤ N
2
− 1,

1

6π

∫ N
l

N
l+1

kπ
N

tan kπ
2(l+1)

log


1 +

1
k
Ψ

f[k( N
l+1

+1)]
k( N

l+1
−1)

1
k+1

Ψ k+1
0 + 1

k
Ψ

k( N
l+1

−1)
k +

(
t − N

l+1

)
Θ k(N

l
−1)


 dt;

and for k ≥ 1, N
2
≤ l,

1

6π

∫ N
l

N
l+1

kπ
N

tan kπ
2(l+1)

log


1 +

1
k
Ψ

f[k( N
l+1

+1)]
k( N

l+1
−1)

1
k+1

Ψ
(k+1)( N

l+1
−1)

0 +
(
t − N

l+1

)
Θ (k+1)(N

l
−1)


 dt.

Ck,l(θ, θ) is defined as ∞ if l = N − 1;

for k = 0, l ≤ N
2
− 1,

1

6π

∫ N
l

N
l+1

2

t
· 2Θ 0

Ψ 1
0 + (t − 2)Θ 0

dt;

for k = 0, N
2
≤ l ≤ N − 2,

1

6π

∫ N
l

N
l+1

2

t
· 2Θ0

Ψ
N

l+1
−1

0 +
(
t − N

l+1

)
Θ N

l
−1

dt;

for k ≥ 1, l ≤ N
2
− 1,

1

6π

∫ N
l

N
l+1

cos kπ
l+1

+ 1
N
kπ

sin kπ
l+1

+ t − N
l+1

·
1
k
Ψ

f[k( N
l+1

+1)]
k( N

l+1
−1)

1
k+1

Ψ k+1
0 + 1

k
Ψ

k( N
l+1

−1)
k +

(
t − N

l+1

)
Θ k(N

l
−1)

dt;

10



and for k ≥ 1, N
2
≤ l ≤ N − 2,

1

6π

∫ N
l

N
l+1

cos kπ
l+1

+ 1
N
kπ

sin kπ
l+1

+ t − N
l+1

·
1
k
Ψ

f[k( N
l+1

+1)]
k( N

l+1
−1)

1
k+1

Ψ
(k+1)( N

l+1
−1)

0 +
(
t − N

l+1

)
Θ (k+1)(N

l
−1)

dt.

We have thus defined Jk(θ, θ).

Similarly we have

θ(s) ≥ 1

6π

∫ π

0

cot
t

2
log


1 +

∫ π−|s+t−π|
|s−t| Θ

(
(k+1)w

s

)
dw∫ min(s,|s−t|)

0
Θ
(

kw
s

)
dw +

∫ |s−t|
min(s,|s−t|) Θ

(
(k+1)w

s

)
dw


 dt

=
1

6π

∫ π
s

0

s

tan st
2

log


1 +

∫ π
s
−|1+t−π

s |
|t−1| Θ((k+1)w)dw∫ min(1,|t−1|)

0
Θ(kw)dw +

∫ |t−1|
min(1,|t−1|) Θ((k+1)w)dw


 dt

≥ 1

6π

∫ N
k+1

0

(k+1)π
N

tan (k+1)tπ
2N

log


1 +

∫ N
k+1

−|1+t− N
k+1 |

|t−1| Θ((k+1)w)dw∫ min(1,|t−1|)
0

Θ(kw)dw +
∫ |t−1|
min(1,|t−1|) Θ((k+1)w)dw


 dt

≥
N−1∑
l=0

Ak,l(θ, θ) +
N−1∑

l=k+1

max
(
Bk,l(θ, θ), Ck,l(θ, θ)

) ≡ Jk(θ, θ),

where Ak,l, Bk,l and Ck,l are defined as follows:

for k = 0, Ak,l(θ, θ) is defined as

1

6π

∫ l+1
N

l
N

π
N

tan (l+1)π
2N2

log


1 +

max
(

Ψ
1+ l

N

1− l
N

, 2(l+1)
N

Θ 1+ l+1
N

)
(1 − t)Θ 0


 dt;

and for k ≥ 1,

1

6π

∫ l+1
N

l
N

(k+1)π
N

tan (k+1)(l+1)π
2N2

log


1 +

max

(
1

k+1
Ψ

f[(k+1)(1+ l
N )]

(k+1)(1− l
N )

, A

)
1
k
Ψ

k(1− l+1
N )

0 +
(

l+1
N

− t
)

Θ k(1− l+1
N )


 dt,

where we have put A = 2 min
(

l+1
N

, N
k+1

− 1
) · Θmin((k+1)(1+ l+1

N ), N, 2N−(k+1)(1+ l
N )).

11



Bk,l(θ, θ) is defined as 0 for l = k + 1;

for k = 0, k + 2 ≤ l ≤ N
2
− 1,

1

6π

∫ N
l

N
l+1

π
N

tan π
2l

log


1 +

Ψ
N
l
+1

N
l
−1

Θ 0 + Ψ
N

l+1
−1

1 +
(
t − N

l+1

)
Θ N

l+1
−1


 dt;

for k = 0, N
2
≤ l,

1

6π

∫ N
l

N
l+1

π
N

tan π
2l

log


1 +

Ψ
N
l
+1

N
l
−1

(t − 1)Θ 0


 dt;

for k ≥ 1, k + 2 ≤ l ≤ N
2
− 1,

1

6π

∫ N
l

N
l+1

(k+1)π
N

tan (k+1)π
2l

log


1 +

1
k+1

Ψ
f[(k+1)(N

l
+1)]

(k+1)(N
l
−1)

1
k
Ψ

k

0 + 1
k+1

Ψ
(k+1)( N

l+1
−1)

k+1 +
(
t − N

l+1

)
Θ (k+1)( N

l+1
−1)


 dt;

and for k ≥ 1, N
2
≤ l,

1

6π

∫ N
l

N
l+1

(k+1)π
N

tan (k+1)π
2l

log


1 +

1
k+1

Ψ
f[(k+1)(N

l
+1)]

(k+1)(N
l
−1)

1
k
Ψ

k( N
l+1

−1)
0 +

(
t − N

l+1

)
Θ k( N

l+1
−1)


 dt.

Ck,l(θ, θ) is defined as 0 for l = k + 1;

for k = 0, k + 2 ≤ l ≤ N
2
− 1,

1

6π

∫ N
l

N
l+1

π
l(l+1)(

t − N
l+1

)
tan π

2l
+
(

N
l
− t
)
tan π

2(l+1)

× Θ 0 + Ψ
N

l+1
−1

1

Θ 0 + Ψ
N

l+1
−1

1 +
(
t − N

l+1

)
Θ N

l+1
−1

log


1 +

Ψ
N
l
+1

N
l
−1

Θ 0 + Ψ
N

l+1
−1

1


 dt;

for k = 0, N
2
≤ l,

1

6π

∫ N
l

N
l+1

π
l(l+1)(

t − N
l+1

)
tan π

2l
+
(

N
l
− t
)
tan π

2(l+1)

·
(

N
l+1

− 1
)

Θ 0

(t − 1)Θ 0

log


1 +

Ψ
N
l
+1

N
l
−1(

N
l+1

− 1
)

Θ 0


 dt;
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for k ≥ 1, k + 2 ≤ l ≤ N
2
− 1,

1

6π

∫ N
l

N
l+1

(k+1)π
l(l+1)(

t − N
l+1

)
tan (k+1)π

2l
+
(

N
l
− t
)
tan (k+1)π

2(l+1)

×
1
k
Ψ

k

0 + 1
k+1

Ψ
(k+1)( N

l+1
−1)

k+1

1
k
Ψ

k

0 + 1
k+1

Ψ
(k+1)( N

l+1
−1)

k+1 +
(
t − N

l+1

)
Θ (k+1)( N

l+1
−1)

× log


1 +

1
k+1

Ψ
f[(k+1)(N

l
+1)]

(k+1)(N
l
−1)

1
k
Ψ

k

0 + 1
k+1

Ψ
(k+1)( N

l+1
−1)

k+1


 dt;

and for k ≥ 1, N
2
≤ l,

1

6π

∫ N
l

N
l+1

(k+1)π
l(l+1)(

t − N
l+1

)
tan (k+1)π

2l
+
(

N
l
− t
)
tan (k+1)π

2(l+1)

×
1
k
Ψ

k( N
l+1

−1)
0

1
k
Ψ

k( N
l+1

−1)
0 +

(
t − N

l+1

)
Θ k( N

l+1
−1)

log


1 +

1
k+1

Ψ
f[(k+1)(N

l
+1)]

(k+1)(N
l
−1)

1
k
Ψ

k( N
l+1

−1)
0


 dt.

Next, note that

G(θ, θ, g)(s) =
1

6π

∫ π

0

cot
t

2
×
(∫ π−|s+t−π|

|s−t| sin θ(w)dw · ∫ min(s,|s−t|)
0

cos θ(w)·g(w)dw∫ |s−t|
0

sin θ(w)dw

+

∫ π−|s+t−π|

|s−t|
cos θ(w)·g(w)dw

)
× dt∫ π−|s+t−π|

0
sin θ(w)dw

=
1

6π

∫ π
s

0

s

tan st
2

×
(∫ π

s
−|1+t−π

s |
|1−t| sin θ(sw)dw · ∫ min(1,|1−t|)

0
cos θ(sw)·g(sw)dw∫ |1−t|

0
sin θ(sw)dw

+

∫ π
s
−|1+t−π

s |
|1−t|

cos θ(sw)·g(sw)dw

)
× dt∫ π

s
−|1+t−π

s |
0 sin θ(sw)dw
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≤ 1

6π

∫ 1

0

lim
σ↓kπ

N

σ

tan σt
2

×
{

min

( ∫ π
σ
−|1+t−π

σ |
1−t Θ(kw)dw∫ N

k+1
−|1+t− N

k+1 |
0 Θ((k+1)w)dw

, c1

)

× min

( ∫ 1−t

0
γ(kw)dw∫ 1−t

0
Θ((k+1)w)dw

, c2

)
+ min

( ∫ π
σ
−|1+t−π

σ |
1−t γ(kw)dw∫ N

k+1
−|1+t− N

k+1 |
0 Θ((k+1)w)dw

, c2

)}
dt

+
1

6π

∫ N
k

1

lim
σ↓kπ

N

σ

tan σt
2

×
{

min

( ∫ π
σ
−|1+t−π

σ |
t−1 Θ(kw)dw∫ max( N

k+1
−|1+t− N

k+1 |, 0)
0 Θ((k+1)w)dw

, c1,
2Θ(0)

1 + t
c3

)

× min

(∫ min(1,t−1)

0
γ(kw)dw∫ t−1

0
Θ((k+1)w)dw

, c2

)

+ min

( ∫ π
σ
−|1+t−π

σ |
t−1 γ(kw)dw∫ max( N

k+1
−|1+t− N

k+1 |, 0)
0 Θ((k+1)w)dw

, c2,
2γ(0)

1 + t
c3

)}
dt

≤
N−1∑
l=0

Dk,l(θ, θ, g) +

N−1∑
l=k

min
(
Ek,l(θ, θ), Fk,l(θ, θ)

) ≡ Gk(θ, θ, g),

where Dk,l, Ek,l and Fk,l are defined as follows:

for k = l = 0, Dk,l(θ, θ, g) is defined as

1

6π

∫ 1
N

0

4

Ψ 1
0

{
Θ 0 · min

(
γ 0

Ψ
1− 1

N
0

, c2

)
+ γ 0

}
dt;

for k = 0, l ≥ 1,

1

6π

∫ l+1
N

l
N

2N

l

{
min

(
2l
N

Θ 0

Ψ
1+ l

N
0

, c1

)
· min

((
1 − l

N

)
γ 0

Ψ
1− l+1

N
0

, c2

)
+ min

(
2l
N

γ 0

Ψ
1+ l

N
0

, c2

)}
dt;

for k ≥ 1, l = 0,

1

6π

∫ 1
N

0

4

1
k+1

Ψ
min(k+1, 2N−(k+1)(1+ 1

N ))
0

×

Θ k(1− 1

N ) · min


 1

k
Γ k

0

1
k+1

Ψ
(k+1)(1− 1

N )
0

, c2


+ γ k(1− 1

N )


 dt;
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and for k ≥ 1, l ≥ 1,

1

6π

∫ l+1
N

l
N

kπ
N

tan klπ
2N2


min




min

(
2l
N

Θ k(1− l+1
N ),

1
k
Ψ

f[k(1+ l+1
N )]

k(1− l+1
N )

)
1

k+1
Ψ

min((k+1)(1+ l
N ), 2N−(k+1)(1+ l+1

N ))
0

, c1




× min


 1

k
Γ

k(1− l
N )

0

1
k+1

Ψ
(k+1)(1− l+1

N )
0

, c2




+ min




min

(
2l
N

γ k(1− l+1
N ),

1
k
Γ

f[k(1+ l+1
N )]

k(1− l+1
N )

)
1

k+1
Ψ

min((k+1)(1+ l
N ), 2N−(k+1)(1+ l+1

N ))
0

, c2




 dt.

Ek,l(θ, θ, g) is defined as ∞ for l = 0;

for k = 0, l ≥ 1,

1

6π

∫ N
l

N
l+1

2(l + 1)

N


min


 2Θ0

Ψ
1+ N

l+1

0

, c1


 · min


min

(
1, N

l
− 1
)

γ 0

Ψ
N

l+1
−1

0

, c2




+ min


 2γ 0

Ψ
1+ N

l+1

0

, c2




 dt;

and for k ≥ 1, l ≥ 1,

1

6π

∫ N
l

N
l+1

kπ
N

tan kπ
2(l+1)


min




1
k
Ψ

f[k(1+ N
l+1)]

k( N
l+1

−1)

1
k+1

Ψ
min((k+1)(1+ N

l+1),max(2N−(k+1)(1+N
l ), 0))

0

, c1




× min


 1

k
Γ

k min(1, N
l
−1)

0

1
k+1

Ψ
(k+1)( N

l+1
−1)

0

, c2




+ min




1
k
Γ

f[k(1+ N
l+1)]

k( N
l+1

−1)

1
k+1

Ψ
min((k+1)(1+ N

l+1),max(2N−(k+1)(1+N
l ), 0))

0

, c2




 dt.

Fk,l(θ, θ, g) is defined for k = 0 as,

1

6π

∫ N
l

N
l+1

2

t


 2Θ0

1 + t
c3 · min


min

(
1, N

l
− 1
)

γ 0

1
k+1

Ψ
(k+1)( N

l+1
−1)

0

, c2


+

2γ 0

1 + t
c3


 dt;
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and for k > 0,

1

6π

∫ N
l

N
l+1

cos kπ
l+1

+ 1
N
kπ

sin kπ
l+1

+ t − N
l+1


 2Θ 0

1 + t
c3 · min


 1

k
Γ

k min(1, N
l
−1)

0

1
k+1

Ψ
(k+1)( N

l+1
−1)

0

, c2


+

2γ 0

1 + t
c3


 dt.

The inequalities (3.2)-(3.4) are verified elementarily, though the proof is lengthy. In
the proof, we use the following facts.

1.
x

tanxy
log(1 + cy), (x > 0, y > 0, xy < π/2, c : a positive constant)

is monotone decreasing in x and y.

2. x − |c − x| is a non-decreasing function of x.

3. For an arbitrary non-increasing and non-negative function P (w) and a positive
constant k ≤ n,∫ f [k(1+x)]

k(1−x)

P (w)dw is non-decreasing in 0 ≤ x ≤ 1.

4. For an arbitrary non-increasing and non-negative function P (w) and a positive
constant k ≤ n,∫ f [k(1+x)]

k(x−1)

P (w)dw is non-increasing in 1 ≤ x.

5.
log(1 + x)

x
· x ≤ log(1 + x) ≤ x, for 0 < x ≤ x.

6. For an arbitrary non-increasing and non-negative function P (w), a positive con-
stant c ≥ 1 and x ∈ [1, c],∫ c−|1+x−c|

x−1

P (w)dw

c − |1 + x − c| ≤ c − |1 + x − c| − (x − 1)

c − |1 + x − c| ·P (0) ≤ (1 + x) − (x − 1)

1 + x
·P (0) =

2P (0)

1 + x
.

4 Numerical result

The IEEE754 standard defines several modes for controlling the behavior of floating
point operations. We can choose a rounding mode: round-up, round-down, or round-
to-nearest (see [6], [9]). In our computation, we use both round-up and round-down
appropriately to obtain rigorous mathematical results. We used a Pentium4 PC with
Red Hat Linux 8.0 and gcc.

We control rounding mode to make J∗ and G∗ as large as possible, and J∗ as small
as possible.
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Set N = 3000, and we calculate following sequence of functions,


θ0(s) =
π

2
,

θ0(s) = 0.00005 · 10<s≤π/2,

θn+1(s) = min
(
θn(s), J∗(θn, θn)(s)

)
,

θn+1(s) = max
(
θn(s), J∗(θn, θn)(s)

)
.

(4.1)

From (3.2),(3.3) and Theorem 2.2, any solution of (1.1) must lie between θn(s) and
θn.
θn(s)−θn(s) decreases as n grows (Fig.1). The shape of θ0(s), θ5(s), θ10(s), · · · , θ45(s)
and
θ0(s), θ5(s), θ10(s), · · · , θ45(s) are shown in Fig.2, Fig.3 and Fig.4.

To prove uniqueness, we calculate the following sequence of functions,


g0(s) = 1,

gn+1(s) =
G
(
θ45, θ45, gn

)
(s)

sup0<s≤π G
(
θ45, θ45, gn

)
(s)

,
(4.2)

and the following inequality was verified:

sup
0<s≤π

G
(
θ45, θ45, g4

)
(s)

g4(s)
= 0.99865799 · · · < 1.

Then, Theorem 2.3 and the results of previous section implies that the solution of
(1.1), namely Stokes’ wave of extreme form, is globally unique.

The shape of g4(s) is shown in Fig.5. The whole calculation took approximately
815 minutes.

0

-1

-2

0 10 20 30 40

Log 10 Max[ θn - θn ]

n

Figure 1: n vs. log10 maxs

(
θn(s) − θn(s)

)
.
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/6π

/2π

0 π

Figure 2: The shape of θ0(s), θ5(s),· · · , θ40(s) and θ45(s).

/6π

0 π

Figure 3: The shape of θ0(s), θ5(s),· · · , θ40(s) and θ45(s).
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/6π

0 π

/6π

..0.5280

..0.5181

Figure 4: The shape of θ45(s) and θ45(s).

1

0 π

Figure 5: The shape of g4(s).

In order for our computer program to be openly tested, the author is ready to send
his program on request. Also, it is posted in his internet homepage.

5 Conclusion

We have proved the global uniqueness of Stokes’ wave of extreme form by the numerical
verification method. Thus, combined with the results of [12] and [13], the second Stokes
conjecture (the conjecture (b) of section 1) is solved affirmatively. Besides, our method
seems to have applications to other nonlinear problems.

Acknowledgment
I would like to thank Professor H. Okamoto of Kyoto University for helpful dis-

cussion and advice. This paper was completed during the author’s stay in Kyushu

19



θ45 - θa

θ45 - θa

0.01

-0.01

0 π
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Detecting persistent regimes in the North Atlantic Oscillation time series

MHF2006-13 Toru KOMATSU
Tamely Eisenstein field with prime power discriminant

MHF2006-14 Nalini JOSHI, Kenji KAJIWARA & Marta MAZZOCCO
Generating function associated with the Hankel determinant formula for the
solutions of the Painlevé IV equation
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