
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Leakage Power Reduction Using Bitwidth
Optimization

Cao, Yun
Department of Computer Science and Communication Engineering, Kyushu University

Yasuura, Hiroto
Department of Computer Science and Communication Engineering, Kyushu University

https://hdl.handle.net/2324/3784

出版情報：Proc. of the 6th World Multiconference on Systemics, Cybernetics and Informatics
(SCI2002), pp.36-41, 2002-07. World Multiconference on Systemics, Cybernetics and Informatics
バージョン：
権利関係：

Leakage Power Reduction Using Bitwidth Optimization

Yun Cao Hiroto Yasuura
Department of Computer Science and Communication Engineering

Kyushu University
6–1 Kasuga-koen, Kasuga-shi, Fukuoka 816-8580, Japan

{cao,yasuura}@c.csce.kyushu-u.ac.jp

ABSTRACT
Leakage power dissipation constitutes an increasing frac-
tion of the total power in modern semiconductor tech-
nologies. Designing power efficient products will require
consideration of leakage power in the earliest phases of de-
sign. This paper addresses bitwidth optimization focusing
on leakage power reduction for system-level low-power de-
sign. By means of tuning the design parameter, bitwidth
tailored to a given application requirements, the datapath
width of processors and size of memories are optimized re-
sulting in significant leakage power reduction besides dy-
namic power reduction. In our experiments for several
real embedded applications, power reduction without per-
formance penalty are reported range from about 21.5% to
66.2% of leakage power, and 14.5% to 59.2% of dynamic
power.

Keywords
Bitwidth optimization, leakage power reduction, dynamic
power reduction

1. INTRODUCTION
The increasing use of battery-operated portable com-

puting and wireless communication systems makes power
dissipation a major concern in modern designs [1]. Reduc-
ing power dissipation hence becomes a crucial challenge
for today’s software and hardware designers. Maximiza-
tion of battery life is an obvious goal for these applica-
tions. Extensive researches for low power designs show
that minimization of power dissipation can be considered
at all design levels from circuit level to system level [2] [3]
[4] [5].

In CMOS digital circuits, power dissipation consists of
dynamic and static components. In circuits with a high
supply voltage, a relatively high transistor threshold volt-
age can be used, therefore subthreshold current can be
negligible. That is the common assumption for the ex-
isting techniques for average power optimization [3] [4]
[5]. However, low power applications have been driving
the supply voltage to become lower and lower, which re-
quires the device threshold to be reduced so as to sat-
isfy performance requirements. This leads to dramatic
increase of leakage current due to the exponential rela-
tionship between leakage current and threshold voltage.
Consequently, leakage power (static power) is no longer
negligible in low voltage circuits. Two implementations
of Intel’s Pentium III processor manufactured on Intel’s
0.18µm process are good examples. They are the Pentium
III 1.0 GHz B and the Pentium III 1.13 GHz [6]. The In-

tel datasheet lists the maximum core power dissipation of
the 1.0 GHz part at 33.0 watts and the deep sleep (i.e.
leakage) power dissipation at 3.74 watts. The 1.13 GHz
processor has a total power dissipation of 41.4 watts and
leakage power dissipation of 5.40 watts. While the total
power has increased by only 25%, the leakage power has
increased by 44% and comprises 13% of the total power
dissipation. The dynamic power dissipation of the pro-
cessor core varies significantly depending on the workload
while the leakage power dissipation is almost constant.
Therefore, leakage power is even a larger percentage of
the total power dissipation on average. Reducing leak-
age power can be especially important to battery when a
system is idle for a long time, such as for mobile phones.

Figure1 shows the increase in leakage and dynamic power
for Intel’s past few technologies [7]. These trends indicate
that leakage power will likely contribute as much to to-
tal power as dynamic power in as little as two technology
generations. Therefore leakage power should be consid-
ered as important as dynamic power when making design
tradeoffs, optimization techniques for leakage power is nec-
essary. The device and circuits communities have been
concerned with increasing leakage power for several gen-
erations. Paper [8] presents the various leakage modes of
the MOS transistor and identify subthreshold leakage as
the dominant one. Paper [1] projects dual Vt(transistor
threshold voltage) design technique will be widely used to
reduce leakage power.

As far as we know, prior work on power reduction at
the system level has been focused almost entirely on dy-
namic power. In order to limit dynamic power dissipa-
tion, techniques such as clocking gating [3] and cache sub-
banking [9] have been employed. The goal of these tech-
niques is to reduce the number or frequency for switching
devices. Optimization of the supply voltage to minimize
the power/performance ratio is also performed [5], this
has the added benefit of addressing dynamic power dissi-
pation, which is proportional to the square of the supply
voltage. However, all of these techniques are hardly used
to reduce leakage power. Some may claim that system
level designers have no control over leakage power because
of its strong dependence on technology and circuit opti-
mization. We think that although lower level optimization
more directly affects the final leakage power dissipation,
awareness of the issue during the system design can result
in a design better suited to later optimization.

This paper presents bitwidth optimization focusing on
leakage power reduction for system level design, while pro-
viding adequate performance level. Using the technique,
system designers can control the design parameters, such

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.0 0.8 0.6 0.35 0.25

 P
ow

er
 (

W
at

ts
)

Technology Generation (um)
0.18

1.E-05

1.E+01

1.E+02

Dynamic
Leakage

Figure 1: Trends in dynamic power and leakage
power dissipation(from [7])

as the datapath width of processors freely. The power dis-
sipation of the whole system not only dynamic power but
also leakage power is drastically reduced by tuning the
parameters of processors and memories tailored for the
applications. To get first-cut estimates of leakage power
dissipation early in the design, a few component-based es-
timation models are also developed.

The rest of this paper is structured as follows: the next
section 2 presents leakage power reduction technique us-
ing bitwidth optimization, estimation models for leakage
power dissipation are also presented in this section. Ex-
periments are described in section 3. Finally, section 4
concludes our work.

2. LEAKAGE POWER REDUCTION
As transistors become smaller and faster, leakage power

dissipation due to leakage current in the absence of any
switching activity has become important, system design-
ers will be called upon to consider it in making design
decisions.

2.1 A Leakage Power Model
We have proposed bitwidth optimization for dynamic

power reduction in [15]. Dynamic power dissipation is
described by the familiar formula, Pdyn = 1

2 · C · V 2
cc · f ,

C is the capacitance of switching nodes, which is roughly
proportional to the number of switching devices. Vcc is the
supply voltage, and f is the effective operating frequency
(frequency times activity factor). Our technique reduces
dynamic power by reducing C and f .

This paper focuses on leakage power reduction. Leakage
power dissipation is equal to the product of the supply
voltage and the leakage current. To deal with the leakage
power at system level, we start addressing leakage power
model from a simple equation for estimation in [10],

Pstatic = Vcc · N · kdesign · Îleak (1)

where Vcc is the supply voltage, N is the number of
transistors, kdesign is a design dependent parameter, and

Îleak is a technology dependent parameter. This model en-
ables high-level reasoning about the likely leakage power
demands of alternative designs. Reasonably accurate val-
ues for the factors in the equation may be obtained directly
from the high-level designs. The factors in the equation
also suggest opportunities for leakage power optimization,
including reducing the total number of devices, partition-
ing the design to allow for lower supply voltages or slower,
less leaky transistors, turning off unused devices, favoring
certain design styles, and favoring high bandwidth over

low latency. The parameters of the leakage power model
of the equation may be divided into two groups. The tech-
nology parameters are derived from measurements or sim-
ulations of individual devices. They are all dependent on a
host of lower-level process parameters(e.g., oxide thickness
and doping profiles) in complex ways. The design depen-
dent parameters(Vcc,N and kdesign) apply to groups of
devices interconnected in a specific design style. Within
certain constraints, they are independent of the process
technology and may be varied independently.

The model suggests different ways in which leakage power
may be reduced. One obvious technique that can be em-
ployed is to reduce the total number of devices. However,
finding opportunities to reduce the device count enough to
impact power dissipation without decreasing performance
or functionality is difficult, normal design practices elimi-
nate obvious redundancy. At system level the number of
transistors (represented by N) can often be estimated al-
though circuit designs are not yet available. Presuming
a circuit with known functionality has been designed in
the past, a reasonably accurate estimate may be obtained
with little effort. Design exploration to get optimized al-
ternatives can be achieved by estimation without reaching
the circuit design phase. N is only constrained by the
functionality required of the circuit and the available area
in which to implement it. For a given functionality, the
number of transistors should be constant across genera-
tions.

In this paper, we present bitwidth optimization to re-
duce the number of devices(N) by tuning datapath width
of processors for each application, to try to ease the prob-
lem of leakage power. Because reducing the number of
devices directly reduces the switching capacitance(C), our
technique also reduce dynamic power dissipation as well.

2.2 Design Platform
We have developed a design platform for embedded core-

based systems, which consists of a variable configuration
processor called Bung-DLX [11], a multi-precision retar-
getable compiler called Valen-C retargetable compiler [12],
a variable size analyzer [13] and a cycle-based simulator
[14].

2.2.1 A Variable Configuration Processor
A variable configuration processor called Bung-DLX, is

a prototype of embedded processor, which has some de-
sign parameters. The parameters can be tuned by de-
signers for each application, and a customized processor
optimized for the application can be obtained. By us-
ing the variable configuration processor, development of
embedded systems becomes easier and requires less time,
further more performance and power optimization can be
achieved.

Bung-DLX is designed based on DLX architecture. The
number of general-purpose registers, datapath width and
instruction set are parameters in Bung-DLX. Bung-DLX
description is written in VHDL around 7000 lines, it inher-
its properties from DLX such as addressing mode and dat-
apath structure. The number of general-purpose registers
can be changed to any value bigger than 1. This makes it
possible to customize the number of general-purpose reg-
isters. For example, a resource intensive application may
require more registers, on the other hand, control inten-
sive application may require less registers. The width of
datapath (also the width of registers) is scalable too, but

it must be bigger than the width of special purpose reg-
ister width. The datapath width of the processor need
not to be 2n (n is a positive integer number), it can be
any bit. If an application, for instance, requires only at
most 21-bit precision, datapath wider than 21 bits can
not give any performance improvement, namely the width
of datapath more than 21 bits is redundant. Bung-DLX
incorporates Harvard style addressing, i.e., separation of
data and program space. This makes the width of pro-
gram counter(PC) and the width of memory address reg-
ister(MAR) can be defined independently. In addition, the
bit width of data memory and instruction memory space
can be different. System designers can tune the value of
these parameters in accordance with the characteristics of
target system to deliver most suited processor.

2.2.2 A Multi-precision Retargetable Compiler
If processor architecture is modified, the compiler for the

processor also needs to be modified. To make the modifi-
cation easier, we developed a multi-precision retargetable
compiler called Valen-C compiler, which uses SUIF (Stan-
ford University Intermediate Format) library. The feature
of it is that any datapath width can be applicable without
8 × 2n limit.

Valen-C language(Variable Length C) has been devel-
oped [12]. It is an extended C language, by which sys-
tem designers can specify the required bit length of each
variable in programs explicitly. Even if system design-
ers customize the datapath width for their application,
the Valen-C programs can be reused on processors with
various datapath widths. Valen-C is one solution for the
problem of word-length support in C language.

The Valen-C compiler is retargetable by modifying the
machine description including the datapath width, the
number of registers, the instruction set, the sizes and align-
ments of the program and data memories, the minimum
addressable size of the data memory, and so on. The
Valen-C compiler preserves the precision of programs in
the following manner: If a variable has a precision of n
bits, the Valen-C compiler allocates the storage of not less
than n bits for the variable. If an operation in a Valen-C
program requires the precision of n bits, the operation is
performed with the precision of not less than n bits. For
example, an addition of two 13-bits variables will be cal-
culated with a precision of 20 bits on 20-bit processors. In
cases that the precision of an operation is bigger than the
datapath width, the operation is performed by a certain
number of machine instructions. For example, an addi-
tion with a 20-bit precision is performed by two addition
instructions of lower 10 bits and upper 10 bits on a 10-bit
processor.

2.2.3 A Variable Size Analyzer
Although the Valen-C language has enhanced reusabil-

ity over ANSI-C, specifying bitwidth of variables is vary
cumbersome and time-consuming. Therefore, we have de-
veloped techniques for variable size analysis, which au-
tomatically analyze required bitwidth of variables in C
programs. Using the techniques, C programs are auto-
matically translated into Valen-C programs.

We define variable effective size as the smallest size of
a variable which can hold both maximum and minimum
values of a variable. We use two methods to analyze effec-
tive size of variables [13]. One is static analysis, the other
is simulation-based dynamic analysis.

Input:
source program : AP

(variables : xi ∈ X = {x1, x2, ..., xn}, 1 ≤ i ≤ n)
input data : Din
the constraint of cycles : C cst

Variable:
datapath width wi ∈ W={w1,w2,...wn}

Output:
execution cycles c i ∈ C = {c1,c2,...cn}
the minimal leakage power dissipation P sMin

when ck ≤ Ccst
the datapath width wk when Psk = PsMin

Phase 1 : Variable Size Analysis
{
analyzer ← (AP, X,Din)
return(EWd = {EWd(x1), EWd(x2), ...,EWd(xn)})
}

Phase 2 : Define Design Parameters for Bung-DLX
datapath width wi
the number of registers n i

Phase 3 : Valen-C program
variable declaration of bit width EWd(x i)
compile the Valen-C source program for customized

Bung-DLX at wi

Step 4 : Bitwidth Optimization

for W �= Ø
{

estimate the execution cycles c i
estimate the leakage power dissipation P s
PsMin ← the minimal leakage power when w i = wk

under ck ≤ Ccst
}

return(PsMin, wk, ck)

Figure 2: Pseudo code of the algorithm for leakage
power reduction

2.2.4 A Cycle-based Simulator
An instruction level simulator called Bung-DLX simula-

tor, which consists of a controller and a datapath, is also
developed. The input of the simulator is the assembly
code generated by the retargetable Valen-C compiler.

The innovation of the simulator is decoupling processor
internal disassembler (i.e. instruction decoder) from the
simulation description. A symbolic instruction format as
the input of the simulator is used. Since during architec-
ture/instruction set exploration phase it is hardly needed
to encode instructions into bitmap, which has little di-
rect effect to simulator accuracy. The simulator achieved
a slight simulation speed gain. In addition, any kind of
instructions is easily formed by the simulator including
those, which are difficult to be expressed in assemble-
disassemble approach such as a variable length instruc-
tion, a multi operand instruction and an instruction with
complex encoding.

2.3 Bitwidth Optimization
Optimizing bitwidth of datapath for each given appli-

cation is an effective technique to reduce leakage power
dissipation of the whole embedded systems. The leak-
age power reduction problem is formulated as to minimize
Ps(w), subject to Cycle(w) ≤ Ccst. Leakage power Ps(w)
and cycle Cycle(w) are functions of datapath width w,
Ccst is the constraint on the execution cycle.

The overview of our leakage power reduction algorithm
is described in Figure2. In the initial design phase of
our approach, we design a system with a variable con-
figuration processor(Bung-DLX), data RAMs, instruction
ROMs and logic circuits. Then we analyze the effective
bitwidth of each variable (EWd(xi)) in a given applica-
tion program (AP). After that, using the results of anal-
ysis, we rewrite the application program in Valen-C lan-
guage, in which we specify the word length of each variable

satisfying accurate computation to reduce leakage power
consumed by redundant bits in the application program.
After verifying the functionality of the initial design, we
modify several design parameters of the variable config-
uration processor, including the datapath width wi, the
number of registers and the instruction set. We can tune
up the variable configuration processor to minimize the
leakage power dissipation (PsMin) while satisfying the sys-
tem performance constraints(ck ≤ Ccst).

Since in many cases, high-level specifications are de-
voted to describe functionalities of target systems rather
than implementation details, they often contain a lot of
redundancies such as duplicated computations and never
executed code. Therefore, the specifications must be opti-
mized to remove the redundancies for power-efficient de-
sign. Some redundancies are introduced in size of vari-
ables. For example, in C programs, a variable whose value
is between 0 and 1000 is often declared as the int type,
i.e., usually 16 or 32 bits depending on target proces-
sors, and then some upper bits are useless. C language
provides three integer sizes, declared using the keywords
short, int and long. The compiler designer determines the
sizes of these integer types. We present Valen-C language,
by which programmers can explicitly specify the required
bitwidth of each integer data type, so it becomes possible
to reduce the leakage power of the datapath and the data
memory, which is dissipated by the redundant bits. As a
result, specifying the bitwidth required for each variable
and changing the datapath width have a significant role
in reducing the processor and the data memory size of a
system. Therefore it also affects the power dissipation of
the system.

The value of the datapath width can be tuned in accor-
dance with the characteristics of target system to deliver
most suited processor. Designers can reduce the datap-
ath width until the single precision point (SPP) without
performance loss. SPP is the processor datapath width,
which is equal to the bitwidth of the biggest variable in
a program. It is the smallest datapath width at which
all instructions can remain single-precision. The datapath
width of a processor strongly affects the power dissipation
of the whole system including the processor, data memo-
ries and instruction memories, it also affects the execution
cycles of a given task, i.e., narrowing the datapath width
less than SPP will cause the increase of execution cycles
because of multiple-precision operations. So trade-offs ex-
ist between datapath width and execution cycles. There-
fore, for a given target system, trading off the power dissi-
pation and performance is an important work for bitwidth
optimization.

2.4 Estimation Models for Leakage Power
This section presents leakage power models to give the

criteria for leakage power reduction. We assume that
the target system consists a processor, a data RAM and
an instruction ROM. The variable configuration proces-
sor Bung-DLX is used. The total leakage power dissipa-
tion, PsTot of a system, is estimated as the summation
of leakage power consumed by the processor (PsProc) and
memories (PsMem).

PsTot = PsProc + PsMem (2)

PsProc and PsMem are estimated separately. We built
the leakage power dissipation model of Bung-DLX gen-

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35

Vcc = 5.0V

Vcc = 3.3V

Datapath Width(bit)

L
ea

ka
g

e
P

o
w

er
(u

W
)

Vcc = 5.0V Vcc = 3.3V
DatapathWidth PsProc Saving PsProc Saving

32bit 0.74 - 0.95 -
28bit 0.64 13.5% 0.80 15.8%
22bit 0.49 33.8% 0.61 35.8%
19bit 0.43 41.9% 0.47 61.1%
8bit 0.19 74.3% 0.20 79.0%

Figure 3: Leakage power of Bung-DLX (µw)

erated by HITACH 0.5 µm CMOS technology and the
power dissipation models of memories generated by Al-
liance CAD System Ver.4.0 with 0.5 µm double metal
CMOS technology.

PsProc is obtained by using Synopsys Power Compiler.
The power dissipation in static CMOS circuitry can be di-
vided into static(leakage), dynamic and short-circuit power.
Here we just focus on leakage power (PsProc). After sev-
eral simulations, we obtained the empirical power model at
several datapath widths for supply voltage Vcc of 5.0V and
3.3V respectively, shown in the table of Figure3, where
power savings, Saving are got by comparing to the leak-
age power dissipation of the 32bits processor.

PsProc can be described as follows:

PsProc =
�

∀cellsk

PCellLeakagek (3)

PsProc: Total leakage power of a processor
PCellLeakagek: Leakage power of each cell k
PsMem is estimated as follows:

PsMem = PsROM + PsSRAM (4)

where
PsMem : Total leakage power of memory
PsROM : Leakage power of ROM
PsSRAM : Leakage power of SRAM
The power of PsROM , PsSRAM is obtained from the

SPICE simulation of several memories with different con-
figurations. As the result, we have obtained the estimation
models as follows:

PsROM = 18.1 ∗ b ∗√Nwords + 0.08[pw] (5)

PsSRAM = 231.0 ∗ b ∗√Nwords + 1.1[pw] (6)

Where b is the bit width of the memory and Nwords is the
number of words.

3. EXPERIMENTS
This section reports some experimental results concern-

ing the use of our technique to reduce power dissipation
based on several real applications. We report both dy-
namic power and leakage power results.

bit
(a) Effective data width of variables (b) Datapath width of Bung-DLX

bit

D
yn

am
ic

 P
ow

er
 (

w
)

300

320

340

360

380

400

420

440

460

480

500

Proc
SRAM
ROM

T
he

 n
um

be
r

of
 v

ar
ia

bl
es

E
xecution cycles (M

ega cycle)

(c) Datapath width of Bung-DLX

L
ea

ka
ge

 P
ow

er
 (

uw
)

bit

Cycles

Figure 4: Results of MPEG-2 video decoder

No. Opt. Dynamic Power(mw) Opt. Dynamic Power(mw)
Application PdProc PdSRAM PdROM PdTot PProc PdSRAM PdROM PdTot Savings

Lempel-Ziv 645.8 330.2 66.98 1.04w 208.3 184.6 31.4 424.3 59.2%
ADPCM 155.5 82.5 118.5 356.5 77.5 51.28 70.3 199.1 44.2%

Mpeg2AAC 589.3 247.6 337.23 1.17w 503.6 194.5 301.7 999.8 14.5%
Mpeg2Video 2.05w 1.16w 349.68 3.56w 1.68w 930.72 305.97 2.91w 18.3%

No. Opt. Leakage Power(µw) Opt. Leakage Power(µw)
Application PsProc PsSRAM PsROM PsTot PsProc PsSRAM PsROM PsTot Savings

Lempel-Ziv 3.8 36.7nw 59.7nw 3.90 1.28 19.8nw 24.9nw 1.32 66.2%
ADPCM 0.95 8.8nw 0.11 1.06 0.48 5.7nw 61.7nw 0.55 48.1%

Mpeg2AAC 3.1 28.3nw 0.30 3.43 2.3 21.5nw 0.26 2.59 21.5%
Mpeg2Video 13.3 0.21 0.31 13.82 10.0 0.18 0.27 10.4 24.7%

 P
ow

er
 S

av
in

gs

10%

20%

30%

40%

50%

Lempel-Ziv ADPCM Mpeg2AACMpeg2Video

Benchmarks

60%

70% Dynamic Power

Leakage Power

80%

Total Power

(a) ActTime : InactTime = 1 : 1

 P
ow

er
 S

av
in

gs

10%

20%

30%

40%

50%

Lempel-Ziv ADPCM Mpeg2AACMpeg2Video

Benchmarks

60%

70% Dynamic Power

Leakage Power

80%

Total Power

(b) Pdynamic : Pleakage = 1 : 1 (ActTime : InacTime = 1 : 1)

 P
ow

er
 S

av
in

gs

10%

20%

30%

40%

50%

Lempel-Ziv ADPCM Mpeg2AACMpeg2Video

Benchmarks

60%

70% Dynamic Power

Leakage Power

80%

Total Power

(c) ActTime : InacTime = 1 : 100(Pdynaaic : Pleakage = 1: 1)

Figure 5: Power savings for benchmarks

In the experiments, we assumed the target system, a
SOC chip, which consists a Bung-DLX processor, a ROM
and a SRAM. The ROM and the SRAM are used as in-
struction memory and data memory respectively. For sim-
plicity, we assumed that no other core is integrated in the
SOC chip.

3.1 Results
Four real embedded applications are used as benchmarks,

which are Lempel-Ziv algorithm, ADPCM encoder, MPEG-
2 AAC audio decoder, and MPEG-2 video decoder. The
cycle count is used to evaluate performance obtained by
using the simulator [14]. For dynamic power estimation,
the power models in [15] are used, and for leakage power
estimation, models in section 2.4 are used.

Figure 4 shows the estimation results for MPEG-2 video
decoder. We analyzed the C source program of MPEG-2
video decoder from the MPEG Software Simulation Group,
using our developed variable size analyzer and got the vari-
able size analysis results of effective data width depicted
in Figure4(a). This figure shows that there are a lot of
variables having many unused bits in MPEG-2 decoder,
which originally declared as “int” type. We got average

39% reduction of bits from the variable size analysis. The
dynamic power dissipation and execution cycles are de-
scribed in Figure 4(b), and the estimation results of leak-
age power shown in Figure 4(c). From these figures, we
can get the optimal datapath width, 28bits for MPEG-2
video decoder without performance loss. Optimal datap-
ath width is the datapath width where the whole system
has the minimization power dissipation without perfor-
mance penalty.

Figure5 shows the results of the experiments employed
our technique for the benchmarks. In the first table of Fig-
ure5 for dynamic power, column No.Opt.DynamicPower
including four columns, which show the results for origi-
nal designs without using our technique. Column PdProc

shows the dynamic power dissipation of processor Bung-
DLX, column PdSRAM is dynamic power of SRAM, col-
umn PdROM is the dynamic power of ROM, and column
PdTot shows the total dynamic power dissipation. The
next four columns show the results using our optimization
technique(Opt.). The last column Savings shows the dy-
namic power reduction compared to the designs without
using our technique(No.Opt.).

The results of leakage power obtained are listed in the

second table of Figure 5. Column No.Opt.LeakagePower
show the results for original designs without using our
technique. Column PsProc shows the leakage power for
processor Bung-DLX, column PsSRAM for SRAM, column
PsROM for ROM, and column PsTot shows the total leak-
age power dissipation. The next four columns show the
results using our optimization technique(Opt.). The last
column Savings shows the leakage power reduction com-
pared to the designs without using our technique(No.Opt.).

3.2 Discussion
Figure 5(a) shows the power savings of our benchmarks

including for dynamic power, leakage power and total av-
erage power. The value of Savings is the results by com-
paring our technique with original designs(datapath width
of Bung-DLX is 32bits). For Lempel-Ziv algorithm, we got
dynamic power saving of 59.2% and leakage power saving
of 64.3% at the optimal datapath width of 15bits; for AD-
PCM encoder, dynamic power savings is 44.2% and leak-
age power saving is 47.4% at the optimal datapath width
of 19bits; for MPEG-2 AAC audio decoder, the dynamic
power saving is 14.5% and leakage power saving is 18.1%
at the optimal datapath of 24bits and for MPEG-2 video
decoder, the dynamic power savings is 18.3% and leakage
power is 19.1% at optimal datapath width of 28bits. For
different application, the number of variables is different
and the effective size of variables is also different, therefore
the optimal datapath width of minimal power is different.
For a given application, our technique just tries to take ad-
vantage of the characteristics of the application to reduce
the power dissipation.

Our technique achieved drastically average power re-
duction up to 59.2% shown in Figure 5(a), note that this
is under the assumption ActTime : InactT ime = 1 : 1.
ActTime is the application execution time, which is called
active time and InactT ime is the idle time, which is called
inactive time. However with the rapid increase of leakage
power dissipation, almost half the power of the chip can be
from the leakage power [1]. In this case, we can get total
average power saving up to 62.7% (Pdynamic : Pleakage =
1 : 1) shown in Figure 5(b), and further more, considering
such kind of applications like mobile phone, the idle time
is far more than active time (ActTime : InactTime = 1 :
100), we can get more average power saving up to 66.2%
shown in Figure 5(c).

4. CONCLUSIONS
In this paper, we have proposed a system-level design

technique focusing on leakage power reduction, which can
suit the complexity of embedded systems and stringent
time-to-market constraints. The presented bitwidth opti-
mization technique can reduce both dynamic power and
leakage power dissipation at system-level. We illustrated
issues and tradeoffs involved in the design. Our experi-
mental results show that for a given application we can
reduce significantly the power dissipation by bitwidth op-
timization. We have demonstrated power savings with-
out performance penalty average about 40.1% of leakage
power, and 34.1% of dynamic power, which based on a
number of real embedded applications.

5. ACKNOWLEDGMENTS
This research was partly supported by the Grant-in Aid

for Scientific Research (B) (2) 12558029 and VCDS project

of STARC.

REFERENCES
[1] S. Borkar, “Low Power Design Challenges for the

Decade”, Proc. of Asia South Pacific Design
Automation Conference, pp. 293-296, 2001

[2] C. Svensson and D. Liu, ” ’Low Power Circuit
Techniques,’ in Low Power Design
Methodologies”, pp. 37-64, Kluwer Academic,
Norwell, MA, 1996.

[3] V.Tiwari, D.Singh, S.Rajgopal, G.Mehta, R.Patel,
F.Baez, “Reducing Power in High-Performance
Microprocessors”, Proc. of the 35th Design
Automation Conference, pp. 732-737, 1998.

[4] L.Benini, R.Hodgson and P.Siegel, “System-level
Power Estimation and Optimization”, Proc. of
International Symposium on Low Power
Electronics and Design, pp. 173-178, 1998.

[5] I.Hong, D.Kirovski et al., “Power Optimization of
Variable Voltage Core-Based Systems”, Proc.of
the 35th Design Automation Conference,
pp.176-181,1998.

[6] Intel Corporation. Pentium III Processor for the
SC242 at 450 MHz to 1.13 GHz Datasheet, pp.
26-30.

[7] S. Thompson, P. Packan and M. Bohr, “CMOS
Scaling: Tansistor Challenges for the 21st
Century”, Intel Technology Journal, Q3, 1998.

[8] A. kshavarzi, K. Roy, and C. Hawkins, “Intrinsic
Leakage in Low Power Deep Submicron CMOS
ICs”, Proc. of International Test Conference, pp.
146-155, 1997.

[9] U.Ko and P.Balsara, “Energy Optimization of
Multilevel Cache Architectures for RISC and
CISC Processors”, IEEE Transactions on VLSI
Systems, vol.6, no.2, pp. 299-308, 1998.

[10] J. Adam Butts and Gurindar S. Sohi, “A Static
Power Model for Architects”, Proc. of the 33th
Annual International Symposium on
Microarchitecture, pp. 191-201, 2000.

[11] F. N. Eko, A. Inoue, H. Tomiyama, H. Yasuura,
“Soft-Core Processor Architecture for Embedded
System Design”, IEICE Trans.on Electronics,
Vol.E81-C, No.9, pp. 1416-1423, 1998.

[12] A.Inoue, H.Tomiyama, T.Okuma, H.Kanbara and
H.Yasuura, “Language and Compiler for
Optimizing Datapath Width of Embedded
Systems”, IEICE Trans. Fundamentals, Vol.
E81-A, No.12, pp. 2595-2604, Dec. 1998.

[13] H. Yamashita, H. Yasuura, F. N. Eko, and Yun
Cao, “Variable Size Analysis and Validation of
Computation Quality”, Proc. of Workshop on
High-Level Design Validation and Test, pp.95-100,
2000.

[14] E. N. Eko and H. Yasuura, “A Cycle-Accurate
Simulator Toolkit for Soft-Core Processors”, Proc.
of Asia Pacific Conference on CHip Design
Languages, pp. 11-16, 1999.

[15] Yun Cao, Hiroto. Yasuura, “A System-level
Energy Minimization Approach Using Datapath
Width Optimization”, Proc. of International
Symposium on Low Power Electronics and
Design, 2001.

