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Existence of Optimal Growth Paths in a Class of Dynamic
Economic Problems

Keisuke Osumi

1 Introduction

Many current economic issues beg a rigorous and coherent explanation from the per-
spective of a dynamic context. For example, innovation and education are today central
to theories of economic growth. Industrial innovation is regarded as one of the engines
of economic growth, and is promoted by accumulations of human capital. These issues
should be dealt with within a dynamic framework with a long-term horizon rather than
a static system with a short time horizon. Since seminal papers by Ramsey(1928), there
has been much written about the characterizations of optimal growth paths or equilibrium
growth paths, there remain a lot of unanswered questions concerning the existence of op-
timal growth paths or equilibrium growth paths within a rigorous framework( see Brock
and Haurie(1976), Chichilnisky(1981), and Montrucchio(1995)). Arguments regarding these
issues motivate the systematic investigation of either infinite sequences of states within the
discrete-time framework, or of continuous time-paths of states in a continuous-time context.
The purpose of this paper is to develop a general mathematical framework in a unified and
self-contained way that can be applied to a wide variety of dynamic economic models and
to consider the existence problem of solutions in a deterministic economic growth context.

2 Existence Problem in a General Context

In the following development, we suppose that X is a function space and J : X — R.
Also, in order to simplify the notation, we write (x(¢)) for (¢) : [0,00) — R™. In the
first part of this chapter, we consider the existence of solutions for a class of the following
problems.

maximize J|[(x(t))]
subject to
(x(t)) € X, x(0) = &y = given.

As noticed for the above formulation, the existence of solutions depends on how X and
J : X — R are specified.

In this section, we consider the existence of solutions in a class of dynamic economic

models. As is well known, if X is a compact set and the functional J : X — R is continuous,
there exists an optimal solution.

We introduce some important theorems:

Theorem 1 : Suppose that X is a compact set in a metric space and J(z): X - R is a
continuous mapping. Then

(1) J(z) is bounded on X;
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(2) J(z) attains the supremum and infimum on X.

Proof: Since J(X) is a compact set, it is bounded. Therefore, for J(z), there exist the
supremum and infimum on (X). Also since J(X) is closed, it contains the supremum and
the infimum.

Q. E.D.

We proceed to introduce the weaker concept of continuity.

Definition 1 . We suppose that W is a normed space and f : W — R. If one of the
following conditions is satisfied, f : W — R is said to be upper semicontinuous.

(1) For any zg € W and for any € > 0, there exists § > 0 such that

|z —x0l| <6, z€eW = f(z)— f(zo) <e.
(2) For any xo € W and for any sequence (x,) of W converging to x,
tn o = lim sup f(zn) < f(zo).

(3) Foranya€R, {z|zeW, f(z)2a} is a closed set.
We may state the following important theorem:

Theorem 2 : Suppose that X is a compact set in a metric space. Then, if J: X — R is
upper semicontinuous, J[z| attains the supremum.

Proof: For any a € R, we define as follows:
E,={z|zeX, Jz] <a}.

Since J : X — R is upper semicontinuous, F, is an open set in X. Also, since X = UyerE,
and X is a compact set, there exists a finite open covering of X {E,,, E,,, -, E,,, }. That
is,

X =U"E,,.

Next, define @ = max{ai,as,--,am}. Then, for any z € X,
Jz] < a.

Therefore there exists ¢ = sup{J[z]|z € X}. Suppose that there exists no # € X such that
J[&] = ¢ € R. Then,

1
qug’f:l{a:]xeX, J[w]<c—~}.
m

Since X is a compact set, there exists a finite open covering such that

i

1
X:Uﬁzl{m‘xEX, J[a:]<c—;1—}.
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Define as follows:

Then, for any x € X,

flz)<e
Thus
c= sup{f(:v)|a: eX}<é
Also, ¢ = max {c — 'n1_17 cee e — nil} < c¢. This is a contradiction.

Q. E.D.

Now, X is not always compact. We consider the following example such that X is not
a compact set. We suppose that X is the set of all functions (z(t)) satisfying the following
conditions.

(1) (=z(t)) is continuous over [0, 1].
(2) z(0)=0, z(1) =1.
(3) max|f(0)] <1

Also, we consider the following functional:

)=~ [ ey

Now, suppose that z(t) = t™. Then,

T = —5-

2n+1

Also

sup J[(z(t))] = 0.
(z(t))eX

By the way, for any (z(t)) € X,
J[(z(t))] < 0.

Therefore, the supremum is not attained.

In order to deal with the case where X is not compact, we need some concepts.We
introduce a number of concepts and theorems. We suppose that M, S are normed spaces.
Also, we denote the set of all linear continuous mappings from M to S by B(M,S). We
state the following theorem:

Lemma 1 : Suppose that M is a normed space and S is Banach space. Then, B(M,S) is
a Banach space.
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Proof: We prove the completeness. Suppose that (T3,) is a Cauchy sequence of B(M, S),
that is, j

Ve > 0, In(e) € N, Vn,m 2 n(e) :
T, — Tn| < €.

Then, for any z, lim 7T, x = T x. Furthermore
n—o0

|T x — T, z| Tz —Tmzx|+|Thnz—T,|

<
; Tz — T x| + | T — Thl |2)-
Here, letting m — oo, the right-hand side tends to 0. Therefore,
|T —T,| — 0.
Q. E.D.

Thus we may have the following result.

Corollary 1 ! Suppose that M is a normed space. Then, B(M, R) is a Banach space.

Definition 2 : We suppose that M is a normed space. B(M,R) = M?* is called the
conjugate space of M.

Definition 3 A Banach space M is said to be reflexive if M = (M*)*.

We may state the folowing fact.
Theorem 3 : Given a Banach space M, the following conditions are equivalent.
(1) A Banach space M is reflexive;

(2) Any bounded closed convez set of M is compact in the sense of weak topology.

Definition 4 . We suppose that xq is an element of a Banach space M and g € M*. Also,
we define a neighborhood of xgas follows:

B(zo;e;9) = {z | z € M, |g(x — z0)| < €}.
The topology introduced by this specification in E is called a weak topology.

Theorem 4 : Suppose that M is a Banach space and the above weak topology is introduced
in M. Then, a sequence (x,,) of M converges to xg in the sense of weak topology if and only
iof for any g € M*,
n—oo = g(zn) — g(zo).
Now, suppose that for a sequence (z,) of a Banach space M,

n— 00 = Ip— Ig.
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Then for any g € M*,

|9(zn) — g(z0)|
= |g(zn - 370)'
2 |lgllllzn —oll.
Therefore, if a sequence (z,) in a Banach space converges to zo in an ordinary sense, by

the above theorem, (z,) converges to xo in the sense of weak topology. The converse does
not always hold. We may state the folowing facts.

Lemma 2 : Given a Banach space M, the following conditions are equivalent.
(1) A Banach space M is reflexive;
(2) Any bounded closed convex set of M is compact in the sense of weak topology.

A set M is said to be weakly compact if it is compact in the sense of weak topology.

Lemma 3 : Suppose that X is a conver set in a Banach space. Then, X is a closed set in
the sense of the norm if and only if it is a closed set in the sense of weak topology.

Proof: Trivilally, if X is a closed set in the sense of weak topology, it is a closed set in the
sense of the norm. Suppose that X is closed in the sense of the norm. Also, suppose that
(zn) is a sequence of X which converges to x in the sense of weak topology. Suppose that
x ¢ X. By the separation theorem, there exists a linear continuous mapping g € X* such
that

g9(z) < inf{g(y) |y € X}.
Define as follows:
m = inf{f(y) ly € X}.
Then g(z) < m < g(x,). Here
g(zn) — g(z).

Therefore, g(z) < m < g(z). This is a contradiction. Thus, = € X. Therefore, X is a
closed set in the sense of weak topology.

Q.E.D.

Lemma 4 : Suppose X is closed and convez in a Banach space and J : X — R is a concave
function. Then, J : X — R is upper semicontinuous in the sense of the ordinary norm if
and only if it is upper semicontinuous in the sense of weak topology.

Proof: For any ¢ € R, the following set is convex.
E.={z|zeX, f(z) 2c}

By Lemma 3, E. is closed in the sense of weak topology if and only if E. is closed in the
norm.

Q. E.D.

We may state the following important result.
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Theorem 5 . Suppose that X is a compact convex set in the sense of weak topology in
Banach space. Also, suppose that J : X — [—00,00) satisfies the following conditions.

(1) Fzope X: J[zo] > —o0.
(2) J:X — [—00,00) is concave.
(3) J:X — [—00,00) is upper semicontinuous.

Then there exists £ € X such that f(&) = max f(z).

Proof: By condition (1), there exists a € R such that
A={z|zeX, J)2a} 0.

Since J : X — RU {—o0} is upper semicontinuous, A is closed and convex in X. Thus, A
is a compact convex set in the sense of weak topology. Also, since J: X — RU {—o0} is
an upper semicontinuous function, by Lemma 4, it is an upper semicontinuous function in
the sense of weak topology. Therefore, given a weak topology, we can apply theorem 2 to
this proof.

Q. E.D.
2.1 Existence Problem in a Class of Continuous-Time Economic

Models

In this section, we make use of the argument of Montrucchio(1995) to show the existence
of optimal economic growth path. In order to proceed, we need some concepts and results.

Definition 5 ! ¢g:Q — RU{—o0} is said to be a — concave if

(1)  g(z) + 3a|z|? is concave on Q, that is, for any z,y € Q and for any 6 € [0,1],

1
9(0z + (1 - 0)y) + Saflfx + (1~ 0)yl*

2 69(x) + (1~ 0)g(y) + sodllall + sa(1 - O)[yl?

where || - || is a norm in Q.
We may state the following:

Lemma 5 .| ¢g:Q — RU{—o0} is a concave on Q if and only if for z,y € Q and for any
6 € (0,1),

9(0c + (1 - 0)y) = Og(x) + (1~ O)g(y) + 3aB(1 — O]}z ~ yl|*

Proof: In the following development, we denote the inner product between a and b by
(a,b).

Bllzll* + (1 = O)llyl* — 16z + (1 — O)y|*
= 0(z,2)+ (1 -0)(y,y) - (0z+ (1 -0y, 6z + (1 -6)y)
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= O(z,z) + (1 —0)(y,y) — 0*(z,2) — (1 — 0)*(y, ) — 20(1 — 6)(z,v)
0(1 — 8)(z,z) + (1 — 0)8(y,y) — 20(1 — 0)(z,y)

0(1 — 0){(z,z) + (v,y) — 2(z,y)}

(1 —0)(z—y,z—y)

= 0(1—-0)|lz—yl*

i

I

Q. E. D.
Lemma 6 : Suppose that g:Q — RU{—o0} satisfies the following conditions:
(1) ¢:Q2— RU{—0o0} is a concave, where a >0 ;
(2) g:92— RU{—00} is upper semicontinuous.

Suppose that there exists xog € Q such that g(xg) > 0. Then the following set is bounded in
a sense of norm in Hilbert space.

T(g(x0)) = {z | z € Q, g(z) = g(x0)}-

Furthermore, sup g(z) < oo.
zeQ

Proof: Since there exists o € 2 such that g(z¢) > 0 and g : 2 - RU {—o0o} is an upper
semicontinuous,

Ve > 0,30 > 0:
|z — 20l £9, € Q = g(x) —g(zo) < €.
Let €9 > 0 be given. Then there exists §p > 0 such that |
lz — zo|| < o, x € Q = g(z) < g(z0) + €0-

Here we set g(zp) + €0 = M > 0.
Now suppose that T'(g(xp)) is not bounded. Then there exists a sequence (z,) such that

In € T(g(:BO))v Ty 7& Zo, ”xn” — 00 (TL - OO)? ”xn - l‘o“ > do.

Define 5
Q= —0——, Zn = QnZn + (1 — ay)xo.
[|#n — o

Then 5

0
Zn — To = an(Tn — o) = m(wn — o).
n
Thus

Iz — x| = do.
Since g : @ - RU {—o0} is a concave, by Lemma 5,

9(zn)
g(anxn + (1 — apn)xo)

|

Gng(zn) + (1~ an)g(z0) + 50an(1 — )2 — 2ol

v

IV

1
g(xo) + §aan(1 - an)”xn - 170”2-
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Since ||zn, — zo|| = do, g(2n) < M. Therefore

1
M > g(zo)+ §aan(1 —ap)|lzn — mol|2

1 ) )
= glwo) + ra—2—r {1 - HT—O_} lzn — zoll?

2 ||zn — xo| — zo|

1
= g(wo) + 509 {llzn — zoll — do} -

Also, ||z, — zol] = 00 (n — o0). This is a contradiction. Therefore T'(g(zo)) is bounded,
that is, Jv >0, Vz € T(g(xo)) :

|z|| < v.

Next, we prove that sup g(x) < +oo. The following fact is trivial.
z€O0Omega

sup g(z) = sup g(z).
IS z€T(g9(z0))

If |z — zo|| £ b0, z € R, g(z) < M. Thus consider z € T(g(zo)) such that
||il? — IL'()“ > dg.

Define n by
do

=
llz — zo|

Since g :  — RU {—o0} is a concave,

o(nz + (1 — m)zo) 2 ng(x) + (1 — n)g(zo) + zon(1 — n)llz — zo®

2
Hence,
_ _ 1
g(z) = n7lg(na + (1 —n)wo) —n~ (1= mg(zo) — 51 —n)lz — oll*
< nlg(nz + (1 - n)xo).
Also
nz + (1 —n)zo — o
do
= n(z—xz9) = —(z — zo).
e N
Therefore
Inz + (1 — n)xzo — 20| = do-
Hence
sy < Jr =l Mool v
8o do
Thus since g(x) is bounded from above, there exists sup g(z).
A1
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Q. E.D.

Lemma 7 . Suppose that Q and g: Q — RU{—o0} satisfy the following conditions:

(1) Q is closed and convex in a Hilbert space.
(2) ¢g:Q— RU{—o00} is a concave ( a > 0).
(3) ¢:92— RU{—0o0} is upper semicontinuous.
(4) there exists xo such that g(zo) > 0.

Then, there exists a unique x* € Q) such that
Ve € Q: g(z*) 2 g(z).

Proof: For xz such that g(zo) > 0, T(g(z0)) = {z | z € Q, g(z) 2 g(z0)} is bounded.
Since g : @ — R U {—o0} is upper semicontinuous, T'(g(zo)) is a closed set. Also, g :  —
R U {—o0} is concave. Therefore, T'(g(z¢)) is convex. Since reflexivity is guaranteed in a
Hilbert space, T(g(x¢)) is weakly compact. Therefore, by Theorem 5, there exists x* € {2
such that

Ve e Q: g(z¥) 2 g(x).
Uniqueness is guaranteed by the strict concavity of g : @ - RU {—o0}.
Q. E.D.
Lemma 8 . We suppose that g : Q@ — RU {—o0} is aconcave. We consider x* € Q such

that for any x € (,
g9(z*) 2 g().

Then

* 1 *
Ve eQ: g(x) L g(z*) — 504”37 —z*))2.

Proof: Since g: Q2 — RU {—o0} is a concave, for any z € Q and for any 6 € [0, 1],
902" + (1~ 6)2) 2 69(s") + (1~ 0)g(x) + 50b(1 ~ )" — z]*
Since g(z*) 2 g(z) for any z € ,
(1 - 0)9(a") = (1 - 0)g(a) + 3a6(1 ~ O)]}2" ~

Also for 6 € [0,1),
* 1 *
o(s%) 2 g(a) + sable — ol
Therefore,

* 1 *
9(z") 2 g(z) + 5ollz —z|.
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We proceed to deal with the following problem:

maximize T((k(t))) = /00 v(k(t), k(t)) p(dt)
subject ’
(1) (k(t),k(t)) € X for almost every t, k(0) = ko;
(2) k(t): Ry — R", k(t): R, — R" are measurable functions.
We introduce the following assumptions.

(A.1) X is closed and convex.

(A.2) v: X — RU{—o0} is upper semicontinuous.
1 1
(A3) Fa>0,>0: v(k,z)+ 50¢|k|2 + §5|z|2 is a concave function.

Now, we may state the following important theorem:

Theorem 6 : For any kg € K, there exists a unique optimal economic growth path (k™ (t))
from kq. Also

/ N |k* ()% u(dt) < 400, / h Ik (8))2p(dt) < +o0.
0 0

Proof: Since v(k, z) is an upper semicontinuous function on X and a concave function,
there exists (k*, z*) such that

V(k,z) € X :v(k™, 2*) 2 v(k, 2).

Also, since v(k, z) is a concave with respect to k and 8 concave with respect to z, for any
(k,z) € X,

1 1
o(k,2) S v(k", 2") — sollk — k| — 5fllz — 2.
Therefore, for any feasible economic growth path (k(t)),
| e rrotite) bieyuan
0

o0

= [Tt 2t - ga [ e k) - (e
~58 [ el - = (),

o0 oo
Now, suppose that / e P k(t)||*u(dt) = +oo or / e Pt||k(t)||u(dt) = +oo. Then,
0 0

o0
/ e Pro(k(t), k(t))pu(dt) = —oco. Thus, (k(t)) is not an optimal economic growth path.
0

Therefore, we can make a restriction to the set of feasible growth paths. We denote Li for
the Hilbert space of all functions (k(t)) such that
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(1) k(t): Ry — R™is a measurable function ;

@ | " k(@) u(dt) < oo.

0

Now we extend v(k,z): X — R as follows:

. [ vk, 2z) ((k,2)eX)
v (k, 2) —{ o ((k,2) & X).

maximize T((k(t)),(z(t))) = /000 e Ptu*(k(t), z(t)) p(dt)

subject
(k(t)),(2(t))) € HcC L2 x L2,

where we denote H for the convex set of all (k(t)), (2(t))) in L2 x L2 such that

t
k(t) = ko + / z(7)dr (for almost every t € R4 ).
0

Here /O tz(T)d'r = ( /0 t zy(r)dr, -, /0 t zn(f)df)

Now since T((k(t)), (2(t))) is bounded from above by v(k*,2*)p~!, T((k(t)),(z(t))) is
well-defined. Also, since v(k, 2) < v(k*, 2*), by Fatou’s lemma, if

(™ (), (2™(1) — (k(?)), (2(t)),

n

T o)
| e 20t = [ lim sup et (6 0), (2 (0) sl
0 0

2 lim sup/ e~Pto* (k™ (1), 2 (t)) u(dt)
n 0

= lim sup T((™ (1)), (= (1))).

Therefore, T((k(t)),(2(t))) is upper semicontinuous over L2 x L2. Furthermore, the fol-
lowing function is concave over L2 x L2.

T((k(1)), (2(6))) + 5ol (REDIE + 81z

Here, [[(w@)I3 = [y~ lo(®)I n(de).

Now, we show that H is closed. We suppose that ((k™(t)), (z(™(t))) € H and

(K™ (@) = (k(®)), (™) — (2(2)).
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Forany t € R,

£(r) — 2 () u(dr)
(

7) = 2™ (1) u(dr).

|
0
t

> / 2
0

Thus, as (2(™(t)) — (2(t)), the following expression tends to 0.

/0 |2(1) — PR (7)|%dr.

Therefore, (z(™)(t)) converges to (2(t)) in Hilbert space L2(0,t). Thus,
t ¢
/ z2M(r)dr — / z(7)dr.
0 0

t t
k™ (1) = ko + / 2™ (r)dr — ko + / 2(r)dr.
0 0

Hence

Also, since (k'™ (t)) — (k(t)) in L2, there exists a subsequence such that (k™(t)) —
(k(t)) (u,a,e,t) . Therefore

t
k(t)=ko + / 2(r)dr (for almost every t € Ry).
0

Q. E.D.

3 Existence Problem in a Discrete-Time Economic Model

3.1 Preliminary Results

We define some concepts.

Definition 6 : A correspondence T : X — Y is said to be lower hemi-continuous at x € X
if

(1) T(=x) is nonempty;

(2) VyeT(x), V(zn) withz, —» z, AN 2 1, I(y,) withy, = y -

(yn) € T(zn) (n 2 N).

Definition 7 : Suppose that for any x € S, T(z) is compact. A correspondenceT : X —Y
is said to be upper hemi-continuous at x € X if

(1) T(x) is nonempty;
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(2) V(zn) with x, — =, V(yn) satisfying (yn) € T(zn) I Yn,):

lim y,, € T(z)
72— 00
where (yn,) is a subsequence of (yn).

Definition 8 : (1) A correspondence T : X — Y is said to be continuous at x € X if it is
lower hemi-continuous and upper hemi-continuous.

(2) A correspondence T : X — Y is said to be continuous if it is lower hemi-continuous
and upper hemi-continuous at every r € X.

In order to obtain the main theorem, we show some theorems.

Theorem 7 : Let B(S) be the set of all bounded continuous functions f : S — R, with the
sup norm. Then, B(S) is a complete normed space.

Proof: We prove only the completeness of B(S). Suppose that (f,) is a Cauchy sequence
of B(S). Then
Ve >0, dn € N, Ym 2 n., Yn 2 n, :

I fn = fm lI<e.
(1) Let = € S be given. Then, for the sequence (f,(z)),

|[fn(2) = fm(2)] < sup (@) = fm (@) =l o = fm |-

Thus, the sequence (f,(z)) is a Cauchy sequence in R. Also, since the set of real numbers
is complete, the sequence (f,(x)) converges to a limit point f(x). Thus, we may have the
function f : S — R.

(2) Next we will prove that

Lim || fn—f|I=0.
n-—o0

Let € > 0 be given. We may choose n, such that
VYm 2 ne, Yn 2 n, :

€
n—Jm l[|< 3.
| fo = fm ll< 5

Ym 2 ne, Yn 2 ne:

1a@) = F@] £ 1fa(@) = fm(@)] + | fn(e) ~ £(@)
< “ fn - fm H _Hfm(m) - f(x)l
< ot +Hfn@ - @)

Also, we can choose m = n. such that

|fm(2) — f(2)| <

N
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Thus, Ve > 0,3n. € N, Vn = n.: :
| fa=fl<e

(3) We will show that f: S — R is bounded and continuous. Let € > 0 be given. Then,
for € > 0, there exists ne such that for any n = n,

I f—fall< %,fn e B(S).

Also choose § such that for y € B(z;4),

|fn(2) = faly)l =

Wl m

Then, for any y € B(z;9),

@) = fW)l = |f(@) = fu(@)| + [fnlz )—fn(y)l+|fn(y)—f(y)l
S 2| F-fall Hin(@) - fuly)l = e

Q. E. D.

Theorem 8 :Suppose that S is contained in R', BA(S) is a set of all bounded functions
f:S — R with the sup norm. Also, let A : B(S) — B(S) be given by

(1)  Suppose that g,h € B(S) and g(z) < h(x) for any x € S. Then for any x € S :
(Ag)(z) = (Ah)(z).

(2) There exists a € (0,1) such that for any g € B(S), for any ¢ 2 0 and for any x € S,
(A(g +¢))(z) £ (Ag)(z) + ac.

Then, A : B(S) — B(S) satisfies the following condition.
Ja € (0,1), V(g,h) € B(S) x B(S) :
d(A(g), A(h)) < ad(g, h).

Proof: For any g,h € B(S) and for any = € S,

9(z) = h(z) =llg—h |,
that is,
9@) < h@)+lg—h.
Thus, for any = € S,
(Ag)(z) < (A(h+ [ g — R [))(z) = (AR)(z) + |l g— R ] .

Similarly,
(AR)(z) < (Ag)(z) +oallg—h]|.
Thus, for any x € S,

—allg—h|< Ah(z) - Ag(z) < allg—h].
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Therefore, for any = € S,
|[Ah(z) — Ag(z)| < allg—h] .
Thus
| Ag—Ah|salg—h].

Hence, A : B(S) — B(S) satisfies the following condition
Ja € (0,1), Y(g,h) € B(S) x B(S) :
d(A(g), A(R)) < ad(g, h).

3.2 Existence of Optimal Growth Paths

In this subsection, by following the argument of Stokey and Lucas (2001), we deal with
the existence problem in the discrete model. Let k be the economic state variable. Then
we define some notation. S =the set of possible values for the economic state variable k.
T (k) =the set of all feasible values of S from k through feasible transformation.

Definition 9 : Given ko € S, (k) is said to be a feasible growth path from ko if
(1) ko = ko,
(2)  kiy1 € T(ke) (fort=0,1,--).

Here, we denote F'(kg) for the set of all feasible growth paths from k.

Definition 10 : For any t, we denote V(x,y,t) for the utility obtained by the transforma-
tion from x to y.

We introduce the following assumption.
Assumption 1 :

(1) S is a subset of R™.

(2) Forany k€ S, T(k) is nonempty and compact. Also, the correspondence T(k) : S
S is continuous.

(3) For anyt, V(x,y,t) = 6'v(x,y), where 0 < § < 1. Also, v(z,y) : S x S — R is
bounded and continuous.

In this section, we deal with the following problem.

sup lim Z Stu(ky, k1)
t=0

subject to (k) € F(ko).
In this case, however, we may show that for any kg € S and for any (k:) € F(ko),

lim ;atu(kt,km)

is finite.
We introduce some concepts.
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Definition 11 :
(1) Given ko € S, for (ki) € F(ko),

n

w((ke)) = lim > 8tv(ke, ki)

n—o00
t=0

where w((ky)) is finite. Given kg, we denote w : F (ko) — R.
(2) Given ko, we define the function W (ko) : S — R by

W (ko) = supw((kt)) over (ki) € F(ko).

In this case, if U(k) : S — R is a solution of the functional equation, then it is the supremum
function, too.

Definition 12 : For U(k) € B(S),
(1) h(k) = sup, gy {v(k, y) + 6U ()}
(2)  G(k) = {yly € T(k), h(k) = v(k,y) + 6U(y)}.
(3) U(k):S — R is said to be a solution of the functional equation if it satisfies

U(k)= sup {v(k,y)+U(y)}.
yeT(k)

Lemma 9 : G(k) is upper hemi-continuous and h(k) is continuous.

Proof: For any k € S, G(k) is nonempty and G(k) C T(k). Also, since T'(k) is compact,
G(k) is bounded. Suppose that (y,) is a converging sequence in G(k). Let the limit be y.
Since T'(k) is compact, y € T'(k). Also, for any n € N,

’U(k, yn) + 5U(yn) = h(k)

Let k be given. Since v(k,y) + 6U(y) : S — R is continuous, v(k,y) + 6U(y) = h(k).
Thus, y € G(k). Therefore, G(k) is closed. Next, we wish to show that G(k) is upper
hemi-continuous. For any k € S, let (k,) be any sequence of S converging to k. Choose
any sequence (yy) such that

Yn € G(ky).
(

Since T'(k) is a continuous correspondence, T'(k) is upper hemi-continuous, there exists a
subsequence (y,,) of (y,) converging to y € T'(k). Also, let z € T'(k). Since T'(k) is lower
hemi-continuous, there exists (z,,) converging to z such that z,, € T'(k,,). Thus,

U(knwym) + 6U(ynz) g v(knw zm) + 6U(Zm)
Since v(k,y) + 6U(y) : S x S — R is continuous,

v(k,y) +0U(y) = v(k, z) + 6U(2).
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Thus, for any z € T'(k),
o(k,y) +8U(y) 2 v(k, 2) + 6U(2).

Therefore, y € G(k). Hence, G(k) is upper hemi-continuous.
Let k be given. Also, take any sequence (k) of S converging to k and choose y,, € T'(ky,).
In this case,

sup h(kn) 2 h(km) 2 inf h(ky).

n=m

Define
ho = lim sup h(k,), hi = lim inf h(k,).

m—00 p>m m—oo n2m

Thus, there exist subsequences y,,. € T'(k,,), yy, € T(k,,,) of (y,) such that

ho = lim{o(Ky,, yh,) + U (¥4,)}, ha = lim{u (KL, ull,) + U (yl,)}.

A

Furthermore, since G (k) is upper hemi-continuous, we may choose a subsequence (k,,), ()
of (ky,), (yn,) and (ky,), (yy) such that

limy, =y,y € T(k)

Thus,
hO = h’(kvy) = hl-

Q. E.D.
Definition 13 : For the supremum function W (k) € B(S),
(1) h(k) = sup,crg, {v(k, y) + W (y)}.
(2) G(k) = {yly € T(k), h(k) = v(k,y) + W (y)}.

Theorem 9 : There exists the supremum function W (k) : S — R and the optimal path of
the above problem.

Proof: It is sufficient for us to show that there exists W (k) : S — R such that

W(k) = sup {v(k,y)+W(y)}.
yeT(k)

We proceed to show the existence of W (k) : S — R of the above functional equation in
the space B(S) of bounded continuous functions with sup norm. For any bounded continuous
function g : S — R, we define the correspondence T : B(S) — B(S) by

(Tg)(k) = max {v(k,y)+dg(y)}
yeT(k)

(1) For any g € B(S), there exists B > 0 such that for any (k,y) € § x S,

—B < v(k,y) +0g9(y) < B.
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Thus, for any k € S,

—-B < (Tg)(k) = maﬂ;ﬁ){v(k,y) +dg9(y)} < B.

yeT(

Therefore, (T'g)(k) is bounded.
(2) Also, by the above lemma, (T'g)(k) : S — R is continuous. Thus, T : B(S) — B(S).

(3) Suppose that g, f € B(S) and g(k) £ f(x) for any k € S. Then, given k' € S, for
any y € T(k'),

v(k',y) +89(y) < v(K',y) + 0 f(y).
Thus, for any k' € S,

Tg(k') = max {v(k',y)+dg(y)} £ max {v(k',y)+df(y)} =Tf(K).
yeT(k’) yeT(k')

Also, for any k' € S and for any a = 0,

(T(g+a))(K) = g?z,){v(k',y)w(g(y)w)}= g?z,){v(k',y)+5g(y)}+5a=Tg(k’)+5a~

Thus, T satisfies the conditions of Theorem 8. Also, as shown in the above lemma, B(S) is
a Banach space. Therefore, there exists a fixed point W € B(S).

Q. E.D.
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