
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Modeling and Control of Diffusion Processes by
using the CNN Approaches based on the
Approximation by the Genetic Programming

時永, 祥三
九州大学大学院経済学研究院

https://doi.org/10.15017/3717

出版情報：經濟學研究. 70 (1), pp.29-42, 2003-09-30. 九州大学経済学会
バージョン：
権利関係：



Modeling and Control of Diffusion Processes by 
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Approximation by the Genetic Programming 

Shozo Tokinaga 

1 Introduction 

111 the last few years, there have beerr many advances in the study of pattern formation and 
wave phenomena in the fields such as physics and chemistry[l] [2]. These studies have been 
carried out mostly experimentally and by simulation of nonlinear partial differential equations. 
An alternative approach is the direct analysis of nonlinear dynamics. For example, it is also 
showed that interconnections of a sufficiently large number of simplc dynamic units such as 
cellular neural networks (CNNs) can exhibit extremely complex and self-organizing behavior 

[11-[51- 
The study of chaos has provided new conceptual and theoretical tools enabling us to under- 

stand complex behavior and control them [5][6]. Even though the chaotic behavior seems to be 
universal, and shows up the deterministic model in electrical circuits, lasers, chemical reactors 
and many other systems, but the applicability means that we learn about chaotic behavior by 
studying simple mathematical models. 

The goal of modeling and control of chaotic behavior is to estimate the dynamics of systems 
and to predict the future value from a set of known past data. To reconstruct a dynamic model 
by measuring the time series is a kind of inverse problem existing as a counter part of ordinary 
approach in numerical analysis where we postulate physical dynamical systems. Sometime, we 
can only use the immediate past behavior of the time series to reconstruct the current state of 
systems. 

In previous works, we demonstrated that the Genetic Programming (GP) provides the flex- 
ibility to evolve the structure and function of chaotic dynamics in their entirety based on 
observed time series, and is also applicable to the control of chaos [g]-[Ill. The estimation 
method enable us to model complicated variations with simplc deterministic equations, espe- 
cially for the cases where the number of available observation is restricted. We also showed the 
method is applicablc to rnodeling and control of chaotic behaviors observed in the autowaves 
in CNNs[8]. 

However, there still rernairl problems, since previous works using the GP focused on known 
system dynamics and artificially generated chaotic time series, and it is not shown whether 
the method is applicable to real world data. In addition, the couditiorls for the propagation 
failure of autowavcs are given only for the one-dimensional systems, and are not extensible for 
higher-dirnensional cases [8] [17]. 

We investigate in the paper 011 modeling and control of thc diffusion processes by using the 
CNN approaches based on the approximation by the G P  for real world data. The condition 



for the propagation failure of the autowave is also discussed based or1 the estirrlatcd equations 
by using the cigerlvalues of coefficients of linearlixcd equations a t  the equilibriurrl point. The 
conditions are used to estimate the possibility to discuss the propagation failure on the basis 
of structural changes of system equatio~ls. 

Our interest is to derrrorrstratc a control scheme of travelixlg wave on CNN plane without 
changing the dynamics. We seek taming arrd controllirlg chaos by providing a weak control 
signal to induce the system follow a stability (fixed points arld limit cyde). 

The chief genetic operator used in the GP is subtree crossover. Systerrr cquatiorls are usually 
reprcserlted by parse trees (called individuals). Orle parse tree corresporlds to a system of dy- 
namic equations. The performance of each individual (called as fitness) is defined by comparing 
the output generated by the system equation correspouds to the individual with the observed 
data to be approximated. Subtree crossover rarrdornly selects two individuals from the pool 
possessing relatively higher fitness and swaps them at the crosspoint in the reproduction phase. 

In our control scheuic, we assume the equations goverr~irlg the autowaves is approximated 
and estimated by the GP. We only need to impose the small input to the system to achieve the 
desired propagation failure in autowaves. We assume that the dynamic systcm f (x(t)) wit h 
input s(t) = 0 is estimated by using the GP, and is denoted as j(x(t)). Then, the control 
method is derived straightforward by using the approximation. We impose the input s(t) so 
that the solution of dz(t)/dt = j(x(t)) + s(t) moves to the fixed point. 

Simulation studies for approximating known dynamics by using the observed time series show 
good estimation of the systems equations. As an application, modeling and control method in 
the paper is applied to the control of autowaves for real world data observed in the propagation 
of harmful ir~sects and epidemic. 

In the following, in Sect.2, we show the fundamentals of the CNN treated in the paper related 
to the propagation failure of autowaves. In Sect.3, the approxirnation of the dynamics of the 
CNN is shown based or1 the GP. Sect 4 shows simulation studies for modeling and control of 
known dynamics by the method of the paper. In Sect -5,  we show the estimation and control of 
propagation of autowaves for real world data. 

2 Fundamentals of autonomous CNN 

In the computational tasks such as image processing, Chua and Roska proposed the CNN as 
a alter~lative with a clear mathematical description by partial derivatives and analogue VLSI 
implementation [l]- [3]. 

We have several types of CNN, namely autonomous CNN and non-autonomous CNN. In 
the following, we restrict ourselves to the autonomous CNN but having diffusion terms. As is 
pointed out, these CNN can simulate very wide class of partial differential equations [l]. 

In the following, it is assumed that the system equations are shown by using differential 
equations including the diffusion terms. For earnple, if the system is described by a three 
dimensional systems, then we have 

where X = [21i (X, t) , ~i j (2, t) , wi j (X, t)] is three dimensional vector a t  the location (i, j )  , and 
DUV2uij (X, t),  DvV2vij(x, t) DWV2wij(+, t )  are the diffusiorl term with diffusion coefficient D,, DV,  D,. 
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The state vector X st ands for the location (i, j) orr a Cartesian coordinate systerrl of CNN plane. 
In one dirnensio~lal case n: IrleaIls the location i on a line. 

The diffusio~l terms included in equations arc discretizcd in one-di~nensional CNN such as 

111 the sarrle way, at each cell cij at location ( i , j )  i11 a Cartetian coordirlate, we have 

-4zi, j (t) ( 5 )  

2.1 Conditions for propagation failure 

We begin our study of yropagatiorl with the model problem shown in equations (1)-(3). We 
examine conditions for the exsiterlce of unique stable traveling solution of equations, or otherwise 
propagation failure of autowaves so that wc can use the control of autowave based on the 
structural change of systern equations. We assume that the dynamics of all cells on CNN is 
gover~lcd by a same diflere~ltial equation, then the suffix i j  for state variables in equations 
(1)-(3) are omitted if not necessary. 

The goal of this section is to prove that equations (1)-(3) have propagation failure for 
sufficiently small coupling. We assume that the equations in (1)-(3) have the solution in the 
following form. 

where the nu~nbcr c is independent of diuffusion coefficients D,, D,, D,. By substituting the 
solution into equations(1)-(3), and we introduce the following intermediate variables. 

Then, the equations (1)-(3) arc represented as 

Then, we assume that the system reaches a stable and equilibrium point uo, 710, WO, U0 , Vo, WO 
for variables U, v, W, U, V, W in a sufficient large time. By applying the linearlizatiorl and ap- 
proximation of equations at the equilibrium point, and representing the linearlized equations 
by using newly introduced variables U,, v,, W,, U,, V,, W, such that 

Then, we have a system of first-order differential equations described in U,, v,, ..., W,. We denote 
the matrix A of coefficients for variables u,,v,, U),, U,, V,, W, included in the systern of first- 
order differential equations. We know that the solution of the first order differential equations 
is described as a linear combination of cxp(Xi) where A;, i = 1,2, ..., 6 are the eigenvalues of the 
matrix A. 

111 case the autowaves arc hirldcred to propagate on the CNN plane, the system of differential 
equations should have the solution which do not include the terms exp()ci) with negative Xi. 



3 Approximation of system dynamics by the GP 

3.1 Applying the GP 

The GP tree is intcrprcted as a coding of functional form of dynamics i11 CNN showing the 
growth from a initial structure. We assume that the dynamics f,(.), h(.), h(.) in cquatiorls(1)- 
(3) arc not known, and should be esti~natcd by using the observed tirne series for variables 
U,  v, U). Then, WC approximate thc equations by using the GP procedurc. 

The GP is an extension of Genetic Algorithm (GA), but its elernents consist of arithmetic 
expressiorl and variables[l2]-[16]. A tree structure corresponds to a systcrn dynarrlics and a set 
of trees structure (population of irldividuals) consist of search space for approximation. 

We use the prefix represeutat ion to describe thc tree structure of functions, for example, 

The equation represented by using the prefix are interpretcd based upon the stack operation. 
We begin to scan the prefix representation, and if we meet a set of operator and two terminals 
(operands) then we perform the calculation and push down the result into the stack again. 

To ensure that the underlying GP trees always valid, the so-called stack count (denoted as 
StackCount in the paper) is useful [16]. The StackCount is the number of arguments it places 
on minus the number of arguments it takes off from the stack. The cumulative StackCount 
never becomes positive until we reach the end at which point the overall sum still needs to be 
1. 

By using the StackCount we can see which loci on the prefix expression is available to  cut 
off the tree for the crossover operation, and we can validate whether thc nlutation operation 
is allowed. If final count is 1, thcn the prefix representation (tree) corresponds properly to a 
system equation. Otherwise, the tree structure is not relevant to represent the equation. 

Usually, we calculate the root mean square error (rmse) between z( t )  and 5(t) where Z(t) is 
the prediction of x(t) obtained by the individual, and use it as the fitness. By selecting a pair of 
individuals having higher fitness, the crossover operation is applied to generate new individuals. 
Crossover operations 

The chief genetic operator used in the GP is crossover. Contrary to the operation in GA, 
the crossover operation in GP is applied to restricted cases. Then, we can rrot choose arbitrary 
loci in the string of individuals and replace the parts of two tree structures. 

To keep the crossover operation always producing syntactically and semantically valid pro- 
grams, we look for the nodes which can be a subtree in the crossover operation and check for 
no violation. By using the StackCount already mentioned, we know the subtrees which are the 
candidate for the crossover operation. The basic rule is that any two loci on the two parents 
genomes can serve as crossover points as long as the 011goirlg Stackcount just before those 
points is the same. The crossover operation creates new offsprings by exchanging sub-trees 
between two parents. 
Mutation 

The goal of the mutation operation is the reintroduction of some diversity in an population. 
Two types of mutation operation in G P  is utilized to replace a part of the tree by another 
element. 
(Global mutation :G-mutation) 

Generate a individual Is ,  and select a subtree which satisfies the consistency of prefix r e p  
resentation. Then, select at random a terminal in the individual, and replace the terminal by 
the subtree of the individual Is. 
(Local mutation:L-mutation) 
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Select at random a locus in a parse trce to which the mutation is applied, wc replacc the 
place by another value (a  primitive furictiorl or a variable). 

3.2 Optimizing the constants 

Even though the structure of the cquatiorls describing the system dynamics is improved by the 
GP, but thc corlstants included in thc prefix reprcsentatio~l are usually only swapped from one 
individual to another irldividual, and never changed from initial value. Besides the mutation 
operatiorls, there is no way to optirriize the constants. In previous works, we utilized the Genetic 
Algorithm (GA) as one procedure in the GP to optimize the constants in the individuals, but 
it is time consuming [g] [10]. An altcrnative to optimizirlg corlstants is to try to dynarriically 
adjust the value during the run. 

In the paper, we optimize the corlstants by using converltional steepest descent algorithm 
to simplify the procedure [7][11]. However, the steepest descent algorithm for optimizirlg the 
constants is applied only oncc for each GP iteration. Because the individuals having higher 
fitness will remain in the pool for a lorlg time, and it is expected that sufficient times of 
increrriental change of the constants are applied to these individuals iteratively. On the other 
hand, it is not useful to optirnize the constants in the individuals with lower fitness which are 
ultimately removed from the pool. 

Define the difference between the observation of the time series x(t) and the prediction y(t, a)  
obtained by interpreting a certain individual as follows where the difference is accumulatcd for 
t = 1 ,2  ,..., T .  

T 

where a = (al,  a2, . .., a,) are the constants included in the individual. The incremental value 
Aa to optimize the constants a are given by 

where a, is used to accelerate the convergence. 
The partial derivative is obtained by interpreting the prefix representation. Then, in each 

GP operation, each individual is interpreted three times to evaluate y(t, a ) ,  and Aai , and 
another y(t, a) after the incremental change of a. 

From many experimental data we can recognize that the problem arises from the convergence 
to the local minimum can be avoided in the tasks treated in the paper. 

3.3 Algorithm of the GP 

We iteratively perform the followirlg steps until the termination criterion has been satisfied. 
(Step 1) 

Generate an initial population of random composition of possible functions and terminals 
for the problem at hand. The random tree must be syntactically correct program. 

(Step 2) 
Execute each individual (evaluation of systcm equation) in population by applying the op- 

timization of the constarlts irlcluded in the individual. Then, assign it a fitness value giving 
partial credit for getting close to the correct output. Then, sort the individuals according to 
the fitness Si. 
(Step 3) 



Sclect a pair of individuals chosen wit h a probability pi based on the fitness. The probability 
p; is dcfiried for ith i~idividual as follows. 

whcrc Smin is the rni~iimuui value of Si, a i d  N is the populatiori size. 
(Step 4) 

Then, crcatc new i~idividuals (offsprings) from the selected pair by genetically recombining 
raridouily choscn parts of two existing individuals using the crossover operation applied at a 
randorrdy chosen crossover point. Iterate the procedure several times to replace individuals 
with lower fit~icss. 

(Step 5 )  
If the result designation is obtained by the GP ( the maximum value of the fitness becorne 

larger than the prescribed value), then terminate the algorithm, otherwise go to Step 2. 
We can evaluate thc approximation of chaotic dynamics generated by known system equa- 

tions. As a result, the approximatiori error of system equations for the artificial chaotic time 
series generated by known l-D and 2-D dynamics such as (Logistic map, Henon map, and Ushiki 
map) are about 1.0e-7 and are very small [g] [10]. 

3.4 Control of propagation of autowaves 

Our interest in the paper is to demonstrate a control scheme of traveling wave on CNN plane 
without changing the dynamics. In thinking about the chaotic behavior in CNN such as the 
autowaves and syatio-temporal chaos, conventional ideas are taming and controlling chaos by 
providing a wcak control signal to induce the system follow a stability (fixed points and limit 
cycle). Our method is simple and easy to apply compared to conventional methods such as the 
OGY method [17]. 

The OGY method is well known control scheme by using the linearlization of a trajectory 
x(t + 1) = f (x(t), s(t)) where s(t) is a perturbation input for control [18]. Then, we have a 
linearlization at a certain fixed point xf as 

where A = D, f (X f ,  o), b = D, f (xf , 0) and are able to be experimentally determined. We then 
change s(t) slightly from zero to some value (determined by the eigenvalues and eigenvectors 
of the matrix A) so that the state moves to a stable manifold. 

In previous works, we demonstrated that by comparing the result of control by the OGY 
method with our control scheme, it is revealed that the OGY method still effective if the noise 
is relatively small, but in the region of with higher level of noise the control fails almost always, 
whilc our method still provide in some extent an effective control. Furthermore, the time to 
comylcte the control is relatively large in the OGY control compared to the case using the 
control of our method. 

In our control scheme, we assume the equations governing the autowaves is approximated 
arid estimated by the GP. We only need to impose the small input to the system to achieve the 
desired propagatiori failure in autowaves. 

Consider a nowlinear dynarriical system 

dx(t) /dt = f (x(t)) + s(t) (17) 

where we assume that x(t) is the multi-dirnensio~ial state vector, and s(t) = (s,(t), s,(t), s,(t)) 
is the only available control (multi-dimensional) parameter which we allow to vary in a range. 
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We assume further that we are not far apart from the rleighborliood of some steady state XJ 

(fixed point), which we want to stabilize by choosing an appropriate scquerkce of adnlissible 
input . 

Off course, if we need to control the state to a limit cycle, then we replace the fixed point 
XI by the trajectory of the limit cycle. We assume that the dynamical system f (x(t)) with 
s(t) = O is estimated by using the GP, and is denoted as j(x(t)). Then, the control method is 
derived straightforward by using the approximation. Since we can obtain the estimated value 
?(t) for the next state, we impose the input s(t) so that we lead the solution of equation 

to the fixed point xf . 
The method is similar to conventional feedback control for chaotic dynamics [6][19], but 

examined in descretized time points [7]. 
Since the system is assumed to be nonlinear, the application of linear input will succeed 

only in a neighborhood of around xf. Due to the bound, we have to correct the parameters in 
the next iterations according to the same scheme where we hope to need one iteration of the 
new set less than the step before. 

Since we see a dependency between the maximum parameter perturbation and the expected 
time to achieve control, there is a trade-off between the maximum allowed parameter changes 
and the expected time to achieve the target. Since the input s(t) may not be too large, there 
exist some lower limit of expected time which may still be large. 

4 Simulation Studies for Known dynamics 

4.1 Approximation of equations 

Here we presents examples of estimation and control of CNN under six model of maps listed 
in Table 1 by using the observation of autowaves. We give these examples since they may 
be applied to modeling the particular diuffusion processes, and the overview of equations are . 

shown in Table 1 where the coefficients are represented by symbols. 
Case 1 denotes the generalized Fisher equation (D, = l ) ,  and has the steady state U = 1 

or U = 0. The equation for Case 2 is well known Fisher equation (D, = l), and has a 
constant value for the variable U in a steady state. Case 3 is the FitzHugh-Nagumo equation 
(Du = 1, DV = O), and has a autowave in a pulsive form. Case 4 is a basic model treated in 
Reference [3] (D, = DV = 0, D, = l ) ,  and converges to a stable pattern in a steady state. Case 
5 (Du = DV = 0, D, = 1) and Case 6 (Du = D, = D, = 1) are the CNN generating specific 
patterns such as the spiral wave [4][5]. 

Table l-Examples of CNN systems (ai mean constants) 

The parameters for the GP in simulation studies are given as follows. 
operators:11, +, -, X 

f w ( J  = 

U - W  

U - W  

f v ( J  = 

al(u  - a2v) 
2 a3u - a4v) 

w / u  - v  
-v+a2w-uv 

name 
Case 1 
Case 2 
Case 3  
Case 4 
Case 5 
Case6 

f,(.)= 
-u(u - 1) (u  - a l )  
-U(U - 1) 
-(u3/3 - U )  - v  
a lu2 /v  - azu 
l / v 2  - U 

u + v - a 1 u 2 - u v  



population size= 1000 
maximum length of array for U, v, W = 90 
data length of time scries=20 

The solution for each individual is obtained by the Runge-Kutta method having following 
parameters. 
step size:h = 0.01 
maximum nurnber of steps:lOO 

Table 2 shows the final value of n - rmse (defirlcd as the rmse divided by the standard 
deviation of the time series) for the evaluatiorl approximation of system equations. 

n - rmse = [ C ( z ( t )  - ~ ( t ) ) ~ ] " " ~ ~ o -  

Table 2 also shows the number of iterations denoted as Np at which the point we have almost 
the same functional form of equations as the ultimately obtainable results. 

Concerning the iteration of algorithm to terminate the approximation, about after 200 gen- 
erations of GP we have good approximation (estimation) for CNN dynamics. 

Table 2-Approximation error 

4.2 Ap~lications of control 1 

name 
Case 1 
Case 3 
Case 5 

Then we show several examples for the control of autowaves for CNN where the dynamics of 
the original CNN is known but these system equations are estimated by the GP. 

We again use examples in Table 1. However, since we  reed to show the effectiveness of the 
control for the chaotic dynamics of CNN, we select orlly two example (Case 3 and 4) from Table 
1, and add another two examples of CNN including the Chua's circuits. These two examples 
are denoted as CNN-1 and CNN-3 , and have following forms of dynamics [4] [6]. 

a1 = 9, a2 = -1817, a3 = 27/14, a4 = 9/14, a5 = -300, = 0.6, D,, D,, = 0 for CNN-1 1 
a1 = 9,a2 = 15.426, a3 = 8.356,a4 = O,a5 = -19Du = 0.5, D, = 6.5, D, = 0 for CNN-3 l 

Fig.1 and 2 show examples of control of CNN-1 and CNN-3. In the CNN-1, the initial l 
l 

condition of all cells are set to one of the stable states, and then controlled to another stable I 
state by imposing the input. In the CNN-3, the initial states of cells are given by using the 
uniformly distributed random number, and controlled to a stable limit cycle. The left diagram 

l 

of Fig.1 and 2 shows the transition of the state u(t) in a certain cell. In the following, the 
i 
I 

solid line denotes the controlled state, and the dashed line means the original (uncontrolled) 
state. The right side of Fig.1 denotes the corresponding input signal s(t) to control the chaotic 

l 
behavior of the CNN-l. As is seen from Fig. l , the state of CNN-1 is moved to a fixed point 
after imposing a input s,(t) at a time point. 

In a similar manner, the process of control of the CNN-3 is depicted in Fig.2, where the 
left diagram shows the controlled state of u(t) in a certain cell, and the right signal means the 
corresponding input. The state u(t)  is moved to a limit cycle, and we need only a small input 

n-rmse 
0.015 
0.018 
0.028 

Np 
134 
184 
201 

name 
Case 2 
Case 4 
Case G 

n-rmse 
0.021 
0.021 
0.025 

Np 
153 
180 
230 
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at a time point to cornplcte the control. 
Table 3. surrimarizes the mean value of the absolute value of the input signal denoted such 

as In,, In,, Inal, for variables U, V , U I ,  and thc tirric steps Ns necessary for controlling the state 
to the steady state. 

Fig. l-Control of CNN- l (left: u,right: S,) 

Table 3-Result for control of chaos 

Case 3 
Case 4 
Case 7 
Case 8 

5 Applications for real world data 

5.1 Estimated equations 

To illustrate the applicability of the method of the paper for modeling and control of diffusion 
processes in real world data, we treat following three examples of diffusion processes available 
through published researches on the diffusion of insect and epidemic [20]. For convenience, only 
the sketch of exarnples are summarizcd as follows. 
(Case A) one-dimensional data 



The data shows the diffusion process of harmful insects in Japan. At the begin~iirlg of the 
diffusiori the number of insects denoted as U grows rapidly, but in a elaps of time the number 
reaches a level which seems to bc a saturation level acceptable in the environrncnt. 
(Case B) two-dimensional data 

The data shows the increase of patent corrupted by a kind of epidemic (denoted as thc 
variable U), arid the number of unaffected people(denoted as the variable v) . The variable U 

behaves like a sinusoidal curve, namely, i t  increases form zero to a large value at the beginning, 
but after a elays of tirrie, it decreases to a small level close to zero. At the same time, the variable 
v which is constant at the beginning decreases gradually, and reaches to a level corresporiding 
to the cease of epedemic. 
(Case C) t hrccdirnensional data 

In these case, another variable W is added to Case B representing the number of epidemic 
carrier who is not yet ill but having the otential to become ill. 

For these examples, the details of the data are omitted here for the sake of limited pages. 
Table 4 shows the result of estimated equations of dynamics for the examples. In the table, 

a part of the coefficients are represented by symbols which are used later for the discussiorl of 
the structural changes of system equations, and their initial value are one. Table 5 shows the 
result of approximation (estimation) error of equations using the approximation error denoted 
by n - rmse.  

As is seen from the result, the estimated equations are not so complicated, and usable to 
analyze the mechanism of the diffusion processes. The time until we get attainable level of 
approximation is relatively longer than the cases for simulation studies where the time series 
is generated by known dynamics (deterministic function). The main reason for relatively poor 
approximation compared to the cases for known dynamics is that for real world data it is not 
insured that the system does not necessarily follows a deterministic process, and sometime 
behaves like a stochastic process. 

Table 4Estimated system equations 

Table 5-Approximation error 

name 
CaseA 
Case B 

Case C 

Case B 
CaseC 0.15 344 

equations 
f u ( . ) = c l  x ~ ~ - c ~ u ~ + c ~ ~ c ~ x ~ u ~ , D ~ = ~ . ~  
f u ( . )  = clu(c5u - c2 X 21ulu + csv)  - c4u + c6 
f v ( . )  = c7(-2uv(c9u + 221)) + C 8  

Du = 1.3, DV = 0.9 
fu (.) = cl 12u - c2 X 0.97 + (-1.42) - csv - wl 
-C521 - C 4 W  

f v ( . )  = 4.01 - c6 X 0 . 5 1 ~ 7 ~  + I U  + I U  + V I  + W I  
+ ]U  + V [  -k I U  -k 1.851 -k -k 0.0231 + C 8  

flu(.) = c9luI - 2w + v  
D, = 1.1, DV = 1.1, D ,  = 0.9 

5.2 Control of autowaves 

Thc goal of this section is to present a control (propagation failure) of autowaves of CNN whose 
dynamics are approximated in previous section. Since we are sure of the estimation for f,, f,, f, 
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in equations (8)-(g), we can achieve the control by imposing appropriate small input. 
To emphasize the effect of control based on the GP, we =sume that the control input is 

imposed only in a certain period of time allowed for control. In discretized time points, we 
begin with the control at around t = 3, and then stop imposing the input a t  around t = 8. 

Figures 3, 4 and 5 show the result of control by depicting the controlled state variables and 
related input. As described in previous examples, the solid lines mean the controlled states, 
m d  dashed lines stand for the uncontrolled (original) states. Table 6 show the summary of the 
result of control. In Table 4, Ns mean the length of time during the control, and In,, Inv ,  In, 
mean the average of absolute value of input for the variables U,  v, W .  

As is seen from the result, the autowaves in CNN are almost successfully hindered to prop- 
agate by the control method The fact lead us the possibility that by estimating the dynamics 
of a~itowczves modeled by the CNN, the diffusion of harmful insects or the epidemic could be 
prevented to  propagate if we begin to impose appropriate input in early stage. 

Table 6-Result for control of chaos 

Fig-3. Control of Case A   left:^,  right:^,) 

name 
Case A 
Case B 
Case C 

Fig-4.Control of Case B (top left:u, top  right:^,, down  left:^, down right:vs) 

N, 
6 
6 
6 

In, 
0.30 
0.013 
0.05 

In, 

0.05 
0.02 

In, 

0.02 



controlled 
*. .. 
ori&il.- - - .. . . .. . 

.....l. .L.. 

controlled 

. . 

Fig-5.Control of Case C (top left:u, top  right:^,, middle left:v,middle right:s,,down left:w, 
down  right:^,) 

5.3 Control by structural changes of dynamics 

Propagation failure of autowaves is realizable also by selecting sufficiently small diffusion co- 
efficients. We show an alternative to  control autowaves by estimating the smallest value of 
diffusion coefficients D,, D,, D, based on the eigenvalues of coefficient for variables obtained 
for the linearlized equations of dynamics at the equilibrium points. 

In a similar manner, no traveling wave solution is obtained if the dynamics of CNN has a 
particular form of equations. Actually, we have the estimation for the dynamics of CNN as in 
Table 4, we can choose an alternative to hinder autowaves by changing the newly introduces 
coefficient in equations such as cl, c2, ... . 

Table 7 show the smallest value of diffusion coefficients to hinder autowaves in Case A, B, 
C. In the table, "independent" means the coefficient mas no effect on the diffusion. Also, "con- 
dition" in the table means the restriction on two coefficients to represent simply the condition. 

Table 8 depicts the range of coefficients in Table 4 under which the condition autowaves 
are hindered t o  propagate on CNN (only effective changes are shown). The result is useful to 
discuss the possibility of structural changes of dynamics on CNN if the impose of control input 
is not available. 

Table 7-Smallest value of diffusion coefficients 

name 
Case A 
Case B 
Case C 

D, 
- 
- 

independent 

condition 
1 

D, + D, < 0.85 

D, 
0.07 
0.15 
0.5 

DV 

independent 
0.5 
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Table & h g e  of constants for control 

Case R c3 = 4.5 

6 Conclusion 

This paper showed modeling and control of diffusion processes by using the CNN approaches 
based on the approximation by the GP. Previous works were extended to treat the real world 
data, and the structural changes of system equations are discussed . The condition for the 
propagation failure of the autowave was discussed based on the estimated equations by using 
the eigenvalues of coefficients of linearlized equations at the equilibrium point. Then, we used 
the control method to stabilize the chaotic dynamics in the CNN. Since the system equations 
are estimated, we only need to change the input so that the system moves to the stable re- 
gion. Simulation studies showed system dynamics of known CNNs were estimated by using the 
observation of state variables, and the prediction error was discussed. As an application, the 
method in the paper was applied to the control of autowaves for real world data observed in 
the propagation of harmful insects and epidemic. As a result, examples showed effectiveness of 
the method to control diffusion processes by imposing the input so that the system moves to 
stable region. 

The problems remained to be solved include the extension of the method to various real time 
series, and further works will be continuously done by the authors. 
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