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ABSTRACT
Two fundamental restrictions that limit the amount of instruction-
level parallelism extracted from sequential programs are con-
trol flow and data flow. TLSP (Thread-Level Speculative
Parallel processing) architecture gains high parallelism us-
ing three techniques (speculation with branch prediction,
control dependence analysis, executing multiple flows of
control) which relax constraints due to control dependences.
In this paper, we evaluate the effects of three techniques
(memory disambiguation, renaming, value prediction) which
relax constraints due to data dependences on TLSP architec-
ture. We have two major results. First, parallelism for TLSP
architecture is restricted by enormous output and anti de-
pendences on memory. Second, value prediciton has large
effects on TLSP architecture.

1. INTRODUCTION

There are two fundamental restrictions that limit the amount
of parallelism that can be extracted from sequential pro-
grams: control flow and data flow. Control flow limits par-
allelism by imposing serialization constraints at forks and
joins in a program’s control flow graph. Data flow limits
parallelism by imposing serialization constraints on pairs of
instructions that are data dependent (i.e., one needs the re-
sult of another to compute its own result, and hence must
wait for the other to complete before beginning to execute).
Examining the extent and effect of these limits has been a
popular and important area of research, particularly in the
case of control flow.

Wall’s work[15] explained the parallelism obtained from
sequential program with branch prediction, register renam-
ing and alias analysis. The result parallelism of Wall’s work
was surprisingly small and this result incited Lam and Wil-
son’s work[7]. Lam and Wilson’s work extended the paral-
lelism by relaxing control flow constraints between instruc-
tions from the following three points of view.

1. Speculation with branch prediction

2. Control dependence analysis

3. Executing multiple flows of control

Combination of these techniques especially introduces large
parallelism and triggers many architectures called “TLSP
(Thread-Level Speculative Parallel processing) architecture”.
The following TLSP architectures have been proposed so
far.

• Multiscalar[13] at UW-Madison

• MUSCAT[12], thereafter MP98[10] at NEC

• Hydra[3] at Stanford

• Speculative CMP(Chip MultiProcessor)[6] at UIUC

• TLDS(Thread-Level Data Speculation)[14] at CMU

• OCHA-Pro[11] at Tokyo University

• SKY[5] at Nagoya University

However, Lam and Wilson’s work and researches on TLSP
architectures have three problems stated below.

1. Although there is conspicuous disjunction of paral-
lelism between Lam and Wilson’s work and the per-
formance evaluation of TLSP architectures shown in
Table 1 and 2, there are few considerations about the
reason.

2. Lam and Wilson’s work defines one manner to han-
dle data dependences, assuming that only true depen-
dences are kept wherever operands exist and that de-
pendences of memory operands are known before-
hand. Although this is an ideal approach to handle
data dependences, data dependences contains false data
dependences, such as anti-dependence and output de-
pendence, and therefore the way to handle these de-
pendences affects parallelism. And again, we have
a problem, called “memory ambiguity”, that means
that we cannot know the address of data dependences
on memory until execution. After all, Lam and Wil-
son’s work is effective to know the limit of paral-
lelism obtained by using the way to relax constraints



Table 1. Results of Lam and Wilson’s Evaluation
awk ccom eqntott espresso gcc irsim latex Harmonic Mean

Lam and BASE 2.85 2.13 1.98 1.51 2.10 2.31 2.71 2.14
Wilson[7] CD 3.24 2.51 2.05 1.54 2.55 2.66 3.17 2.39
〈Parallelism〉 CD-MF 5.32 5.61 5.21 7.49 14.63 11.89 6.18 6.96

SP 9.22 6.92 6.40 4.16 7.76 8.40 7.60 6.80
SP-CD 12.89 9.83 18.09 19.55 13.18 15.82 9.72 13.27
SP-CD-MF 41.88 18.05 225.90 402.85 66.29 45.86 18.65 39.62
ORACLE 242.77 46.80 3282.91 742.30 174.50 265.42 131.69 158.26

Table 2. Comparison of ILP on TLSP Architectures

compress eqntott espresso gcc go idct li vortex
Multiscalar[13] 1PE 0.74 0.85 0.93 0.86
〈UICR〉 2PEs 1.52 1.32 1.44 1.25

4PEs 2.15 2.18 1.96 1.56
8PEs 2.44 2.39 2.98 1.70
12PEs 2.52 2.43 3.74 1.73

MUSCAT[12] 1PE 1.00 1.00 1.00
〈Speedup〉 2PEs 1.15 1.18 1.98

4PEs 1.48 1.60 2.90
8PEs 1.80 2.18 3.00

Hydra[3] 4PEs 1.00 0.58 1.04 0.62
〈Speedup〉
SKY[5] 2PEs 1.2 2.4 2.7 2.8 3.1
〈IPC〉 4PEs 1.9 2.4 3.0 2.9 3.2

8PEs 3.3 2.5 3.1 2.9 3.2
UICR: Useful Instruction Completion Rate

IPC: Instruction Per Clock cycle

Speedup: Speedup of nPEs over 1PE

due to control dependences, but it offers no informa-
tion about the correlation between the ways to handle
data dependences and control dependences.

3. Some TLSP architectures employ value prediction tech-
niques to relax constraints due to true data depen-
dences. These architectures are called TLDSP (Thread-
Level Data-Speculative Parallel processing) architec-
ture. Though value prediction is fairly strong way
to relax constraints due to true data dependences, no
evaluation about the effect have been performed.

On TLSP architectures, not only intra-thread data depen-
dences but also inter-thread data dependences define paral-
lelism. Therefore, we try to know what kind of data depen-
dences have been underlying within and without threads by
solving above-mentioned problem 2 and 3. To solve these
problems, we summarize techniques to relax constraints due
to control and data dependences and define abstract machine
models which use those techniques to evaluate the effects.

And we show the result parallelism obtained by using ab-
stract machine models.

The rest of this paper is organized as follows: Section 2
explains the techniques to relax the control flow constraints.
Section 3 explains the techniques to relax data flow con-
straints. Section 4 describes the experimental framework.
Section 5 presents the results of these experiment and ana-
lyzes the results.

2. THREAD-LEVEL SPECULATIVE PARALLEL
PROCESSING ARCHITECTURE

Lam and Wilson’s work uses the following three techniques
to relax constraints due to control dependences.

1. Speculation with Branch Prediction:
If a branch instruction exists, successive instructions
must wait execution until the branch instruction is re-
solved. However, it is able to predict the direction of



the branch instruction and execute the successive in-
structions. If the prediction succeeds, the constraint
due to the branch instruction can be relaxed.

2. Control Dependence Analysis:
When we note a branch instruction, not all of the
following instructions are control dependent on the
branch instruction. Then if we can analyze control de-
pendence between individual instructions precisely,
instructions that have no control dependence on the
branch instruction can execute independently of the
branch instruction.

3. Executing Multiple Flows of Control:
In a program, multiple flows of control can exist. If
multiple processors can execute multiple flows of con-
trol, constraints due to control dependences can be re-
laxed.

We call the architecture using all above techniques as “TLSP
architecture”. The result of Lam and Wison’s work shown
in Table 1 tells us that ‘Speculation with Branch Prediction”
and “Executing Multiple Flows of Control” introduce enor-
mous parallelism.

In Lam and Wilson’s work, TLSP architecture is called
“SP-CD-MF” and the definition is below.

SP-CD-MF An instruction cannot execute until its mis-
predicted control dependence branches are resolved.
There are no additional constraints on branches.

To evaluate TLSP architecture, we also use above abstract
machine model.

3. RELAXING DATA DEPENDENCE
CONSTRAINTS

Data dependences are classified into three types: flow de-
pendence, anti-dependence and output dependence. In ad-
dition, the way to relax constraints due to these data depen-
dences are independent from each other. In this paper, we
consider the following techniques.

1. Memory Disambiguation:
Generally, we cannot know memory reference addresses
before execution. In this case, we cannot know de-
pendences between instructions which accesses mem-
ory until its execution. If we can analyze dependences
between memory access instructions by means of some
methods, constraints due to memory ambiguation can
be relaxed.

2. Renaming:
Anti-dependences and output dependences are false
dependences caused by reusing resources (registers
and memories). False dependences, differently from
true dependences, can be eliminated by renaming.

3. Value Prediction:
Flow dependences are true dependences where an in-
struction cannot execute until all flow dependent in-
structions are finished. However, if the value of the
data which causes flow dependence can be predicted,
flow dependent instruction can execute speculatively
using the predicted value. If the value prediction is
correct, constraints due to flow dependences can be
relaxed.

Same as control dependence constraints, we define the fol-
lowing abstract machine models regarding data dependences.

dBASE: An instruction cannot execute until all preceding
data dependent instructions finish. In addition, mem-
ory reference instruction cannot execute until all pre-
ceding memory reference instructions finish their ex-
ecution.

MD: An instruction cannot execute until all preceding data
dependent instructions finish.

RN: An instruction cannot execute until all preceding flow
dependent instructions finish. In addition, memory
reference instruction cannot execute until all preced-
ing memory reference instructions finish their execu-
tion.

dSP: A mispredicted instruction cannot execute until all
preceding data dependent instructions finish. A suc-
cessfully predicted instruction cannot execute until all
preceding anti and output dependent instructions fin-
ish. In addition, memory reference instruction cannot
execute until all preceding memory reference instruc-
tions finish their execution.

RN+dSP: An mispredicted instruction cannot execute un-
til all preceding flow dependent instructions finish. In
addition, a memory reference instruction cannot ex-
ecute until all preceding memory reference instruc-
tions finish their execution.

MD+dSP: A mispredicted instruction cannot execute un-
til all preceding data dependent instructions finish. A
successfully predicted instruction cannot execute un-
til all preceding anti and output dependent instruc-
tions finish.

MD+RN: A instruction cannot execute until all preceding
flow dependent instructions finish.

MD+RN+dSP: An mispredicted instruction cannot exe-
cute until all preceding flow dependent instructions
finish.

dORACLE: There are no constraints due to data flow.



Table 3. Benchmark Programs

Program Description
gzip Compression
vpr FPGA Circuit Placement and Routing
mcf Combinatorial Optimization
parser Word Processing
perlbmk PERL Programming Language
vortex Object-oriented Database

4. EXPERIMENTAL FRAMEWORK

To know the effects of relaxing constraints due to data de-
pendences on TLSP architecture, we do trace based simu-
lation using abstract machine models defined Section 2 and
3. We use the same simulator used in Lam and Wilson’s
work and modify it to implement our new machine models.
Therefore, the basic policy of evaluation conforms to Lam
and Wilson’s work.

4.1. Program Trace

Our simulator is trace-driven. Trace includes instruction
and basic block information at the time of execution. Though
traces are made by MIPS pixie tool in Lam and Wilson’s
work, we use SimpleScalar[1] toolset to make traces. So
that our simulator is modified to interpret SimpleScalar in-
struction set.

4.2. Program Transformations

Procedure calls and loops introduce unnecessarily serializ-
ing constraints. These constraints are unnecessary for our
evaluation because our aim is to investigate the limits of par-
allelism. So we do procedure inlining and loop unrolling to
eliminate such serializing constraints. In our simulator, we
ignore all procedure call and return instruction in a trace,
as well as all instruction that manipulate the stack pointer.
In addition, we also ignore all instruction concerning about
loop index variables and branch instruction to do with loop.

4.3. Benchmark Programs

We use six programs from SPEC CPU2000 benchmark suit
shown in Table 3. Since we use SimpleScalar toolset, the
benchmark programs are compiled for the SimpleScalar ar-
chitecture.

4.4. Simulation Algorithm

Determining the execution timing of each instruction in the
trace is the basic simulation algorithm. Execution timing

follows corresponding abstract machine models defined Sec-
tion 2 and 3. Basically we follow Lam and Wilson’s algo-
rithm which records the time of the most recent write to each
register and memory location. Since we define nine mod-
els to handle data dependences, a different manner, which
simulate abstract machine models defined in Section 3, is
required to record the time of the most recent write. Total
execution time of the trace equals the completion time of the
last instruction to execute. We assume that each instruction
in the trace has one clock cycle latency. The reported result
parallelism is instruction-level parallelism.

4.5. Branch Prediction Method

For TLSP architecture, branch prediction method is very
important. Unlike Superscalar processor, when branch in-
struction is executed on TLSP architecture, there is no guar-
antee that all preceding branch instructions have finished.
So we cannot simply use modern branch prediction method
which exploits information of preceding branch instructions
on TLSP architecture. To solve this problem, we use hy-
brid branch prediction method which does gshare[9] branch
prediction and static branch prediction based on profile in-
formation. If all preceding branch instructions are finished
before an branch instruction executed, we use gshare branch
prediction, otherwise we use static branch prediction.

Our gshare branch predictor provide 128K entries of
pattern history table and 12 history depth of branch history
register.

4.6. Value Prediction Method

Machine models which include dSP need a concrete value
prediction mechanism. Some value prediction mechanisms
have been proposed so far. We choose a stride value pre-
dictor because this is general and easy to implement. Our
stride value predictor has 4096 value history table entries.

5. RESULTS

The parallelism for each abstract machine models are shown
in Table 4 and Figure 5.

dBASE machine provides a standard for comparison by
determining the amount of parallelism when no effort is
made to relax constraints due to data dependences. dBASE
machine has a harmonic mean parallelism of 3.83.

dORACLE machine provides upper bound of TLSP ar-
chitecture. Harmonic mean parallelism is 49.06.

5.1. Effect of Memory Disambiguation

Harmonic mean parallelism for MD machine is 4.58 and is
much lower than other machine models like RN or dSP. But
Parallelism for parser and perlbmk are higher than RN.



Table 4. Parallelism for each Machine Model of TLSP
gzip vpr mcf parser perlbmk vortex Harmonic Mean

dBASE 2.16 4.67 4.09 6.60 3.97 4.16 3.83
MD 2.80 5.07 4.67 8.35 4.91 4.56 4.58
RN 3.72 9.43 7.35 7.60 4.61 8.16 6.11
dSP 5.71 6.66 4.09 12.73 8.37 8.32 6.76
MD+dSP 9.01 13.28 7.35 15.16 10.04 11.14 10.45
RN+dSP 6.14 8.34 4.67 14.71 10.24 12.51 8.08
MD+RN 35.20 53.64 30.58 15.58 11.24 45.99 23.77
MD+RN+dSP 35.36 80.84 31.60 24.99 29.04 68.57 37.27
dORACLE 35.38 89.27 79.00 25.25 43.76 126.52 49.06

5.2. Effect of Renaming

Harmonic mean parallelism for RN is higher than MD but
lower than dSP. Parallelism for some programs like vpr and
mcf are higher than dSP.

Without MD, RN’s renaming is limited on registers. When
we use MD+RN, not only constraints of sequential access to
memory is relaxed, but also renaming of memory access is
done. If Figure5 is seen, it is quite obvious that TLSP archi-
tecture is characterized by MD+RN. Harmonic mean paral-
lelism for MD+RN is 23.77, which is lower than SP-CD-
MF of Lam and Wilson’s work in Table 1. The difference
comes from the manner of potential data dependences arise
from control flow. Lam and Wilson’s work ignore potential
data dependences and our work do not ignore.

5.3. Effect of Value Prediction

Irrespective of other techniques, the effect of value predic-
tion is quite large on TLSP. Harmonic mean parallelism for
dSP machine is 6.76 and this is higher than MD+RN. But
parallelism for some programs like vpr and mcf are lower
than RN machine.

Combinatorial use of dSP and other single technique is
also effective. Harmonic mean parallelism for MD+dSP
machine is 10.45 and is 128% increase as compared with
MD machine. But compared with MD+RN machine, paral-
lelism is much lower.

When we use value prediction on MD+RN which is the
general format of TLSP, harmonic mean parallelism is 37.27
and this is 57% increase from MD+RN. If all value predic-
tion have succeed, harmonic mean parallelism is 49.06 and
this is 106% increase of parallelism from MD+RN.

6. CONCLUSIONS

This paper shows that what kind of data dependences are
underlying in TLSP architecture and how we can relax it.
Through this study, we find that the parallelism of TLSP ar-
chitecture is restricted by enormous output and anti depen-

dences on memory. Furthermore, value prediction is very
effective in relaxing flow dependences of TLSP architec-
ture. But we also find that perfect value prediction can ob-
tain twice as more parallelism on TLSP architecture.

As future work, we would solve residual problem of
TLSP represented in Section1. To do so, we should im-
pose some restriction on machine models. By doing so, we
can do more precise comparison to establish the method for
determining the use of techniques relaxing constraints due
to data and control dependences.

7. REFERENCES

[1] Burger, D. and Austin, T. M., “The SimpleScalar Tool
Set, Version 2.0,” University of Wisconsin-Madison
Computer Sciences Department Technical Report,
#1342, June 1997.

[2] Dubey, P. K., O’Brien. K., O’Brien, K. M. and
Barton, C.,“Single-Program Speculative Multithread-
ing (SPSM) Architecture: Compiler-assisted Fine-
Grained Multithreading,” 1st International Confer-
ence on Parallel Architectures and Compilation Tech-
niques, pp.109–121, June 1995.

[3] Hammond, L., Hubbert, B., Siu, M., Prabhu, M.,
Chen, M. and Olukotun, K., “The Stanford Hydra
CMP,” IEEE MICRO Magazine, pp.71–84, March-
April 2000.

[4] Kemp, G. A. and Franklin, M., “PEWs: A Decen-
tralized Dynamic Scheduler for ILP Processing,” In-
ternational Conference on Parallel Processing, Vol.1,
pp.239–246, August 1996.

[5] Kobayashi, R., Iwata, M., Ogawa, Y., Ando, H. and
Shimada, T., “An On-Chip Multiprocessor Architec-
ture with a Non-Blocking Synchronization Mecha-
nism,” 25th EUROMICRO Conference, pp.432–440,
September 1999.



MD
RN
dSP
MD+dSP
RN+dSP

dBASE

MD+RN
MD+RN+dSP
MD+RN+dSP(perfect)

10

20

30

40

50

60

70

0
gzip vpr mcf parser perlbmk vortex Harmonic Mean

P
ar

al
le

lis
m 80.84 89.27 79.00 126.52

Fig. 1. Parallelism for each Machine Model of TLSP

[6] Krishnan, V. and Torrellas, J., “Hardware and Soft-
ware Support for Speculative Execution of Sequen-
tial Binaries on a Chip-Multiprocessor,” 12th Interna-
tional Conference on Supercomputing, July 1998.

[7] Lam, M. S. and Wilson, R. P., “Limits of Control
Flow on Parallelism,” 19th International Symposium
on Computer Architecture, pp.46–57, June 1992.

[8] Lipasti, M. H. and Shen, J. P., ”Exceeding the
Dataflow Limit via Value prediction,” 29th Interna-
tional Symposium on Microarchitecture, pp.226-237,
1996.

[9] McFarling, S., “Combining Branch Predictors,” WRL
Technical Note, TN–36, June 1993.

[10] Nishi, N., Inoue, T., Nomura, M., Matsushita, S.,
Torii, S., Shibayama, A., Sakai, J., Ohsawa, T., Naka-
mura, Y., Shimada, S., Ito, Y., Edahiro, M., Minami,
K., Matsuo, O., Inoue, H., Manabe, T., Horiuchi, T.,
Motomura, M., Yamashina, M. and Fukuma, M., “A
1GIPS 1W Single-Chip Tightly-Coupled Four-Way
Multiprocessor with Architecture Support for Mul-
tiple Control Flow Execution,” International Solid-
State Circuits Conference, February 2000.

[11] Tamatsukuri, J., Matsumoto, T. and Hiraki, K.,
“Large-scale speculative parallel execution mecha-
nism on On-Chip MIMD (in Japanese),” IPSJ SIG
Notes, ARC–125–24, August 1997.

[12] Torii, S., Kondo. M., Motomura, M., Ikego, A., Kon-
agaya, A. and Nishi, N., “On-chip Control Paral-
lel Multi-processor: MUSCAT (in Japanese),” Trans.
of Information Processing Society of Japan, Vol.39,
No.6, June 1998.

[13] Sohi, G. S., Breach, S. E. and Vijaykumar, T. N.,
“Multiscalar Processors,” 22th International Sympo-
sium on Computer Architecture, pp.414–425, June
1995.

[14] Steffan, J. G. and Mowry, T. C., “The Potential for Us-
ing Thread-Level Data Speculation to Facilitate Au-
tomatic Parallelizetion,” 4th International Symposium
on High-Performance Computer Architecture, January
1998.

[15] Wall, D. W., “Limits of Instruction-Level Parallelism,”
Fourth International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, pp.177-188, April 1991.


