
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Functional Composition of Web Databases

Mori, Masao
Office of Information for University Evaluation, Kyushu University

Nakatoh, Tetsuya
Communication and Computing Center, Kyushu University

Hirokawa, Sachio
Communication and Computing Center, Kyushu University

https://hdl.handle.net/2324/3627

出版情報：Proceedings of ICADL2006 (Lecture note in Computer Science 4312). 4312, pp.439-448,
2006-11. Springer Berlin / Heidelberg
バージョン：
権利関係：

Functional Composition of Web Databases

Masao Mori1, Tetsuya Nakatoh2, and Sachio Hirokawa2

1 Department of Informatics, Kyushu University.
6-10-1 Hakozaki, Fukuoka, 812–8581, Japan.

masa@i.kyushu-u.ac.jp,
2 Computing and Communications Center, Kyushu University.

6-10-1 Hakozaki, Fukuoka, 812–8581, Japan.
{nakatoh, hirokawa}@cc.kyushu-u.ac.jp

Abstract. This paper proposes the architecture of the functional com-
position of Web databases (WebDBs). Unlike a general search engine
which receives keywords and returns a list of URLs, a WebDB receives a
complex query and returns a list of records. The complex query specifies
the condition of each field of the records. The process of composing Web-
DBs is described as a script, where a user chooses the target WebDBs
and describes how to connect the output from one WebDB to the in-
put of another WebDB and how to generate outputs. The novelty of the
proposal is that both the WebDBs and output formats are considered
as components of the same level and that the reuse of new keywords is
represented as a connection (CGI links). Once the process is described
as a script, the user can use the script for a new WebDB of his own.

1 Introduction

An increasing number of search engines are available on the Web besides gen-
eral search engines such as Google. There are also databases with a Web inter-
face. We can obtain high-quality information for a particular purpose from these
databases.

However, information on these Web databases (WebDBs) cannot be indexed
by general search engines and cannot be referred to directly because they are
referred to only by the page that is generated dynamically from the database
according to the user’s query. Because of that, these databases are called by such
names as Invisible Web [13, 12], Deep Web [1] and Hidden Web [4, 5].

We developed a system DAISEn [15] which performs a metasearch for such
databases on the Web. Conventional metasearch engines integrate a fixed num-
ber of particular general search engines. The goal of DAISEn is the dynamic
integration of an arbitrary set of databases on the Web.

On the other hand, there is a new trend of databases on the Web for a user
to send a complex query. The queries are not just simple keywords; instead,
they are the keywords which specify each field of the records that the user wants
to retrieve from a database. For example, Amazon.com returns a list of book
information which consists of the author, the title, the publisher, the price, ISBN,

and so on. kakaku.com returns a list of prices of PCs and other electric products.
Travelocity.com returns a list of hotel information for a specified location.

When we survey a specific subject with such WebDBs, we do not stop search-
ing with a single trial. We usually keep searching until we have enough infor-
mation. In many cases, we obtain new keywords during the search process and
use them for the next step of the search. For example, we can get a list of local
restaurants by a search and then collect information about the menu and price
of each restaurant. People who want to buy a used car can collect and compare
detailed information on the cars obtained by a search. Those searches are per-
formed by the same WebDB repeatedly, or are performed by different WebDBs.
Some keywords in the output can be used as input for the next step of the search.
If an attribute of the output data of a WebDB is “NAME”, it can be connected
to the input of another WebDB which receives the name as a search keyword.

When an author name and a keyword are sent to a WebDB of scientific
journal articles, the result is not a list of Web pages but a list of articles with
the author, the title, the magazine name and the publication year. When in-
vestigating papers exhaustively, even if the first search result is obtained, the
investigation is not finished. The search is further continued based on the ob-
tained information. As an example, we consider the following search.

– Are there any other articles written by the same author?
– Are there any articles written by the coauthors?
– What kind of articles does the article cite?
– How is the paper cited?
– What are the important keywords in related research?
– Where are the authors’ home pages?
– Is there any related project?

We have proposed architecture to realize a search engine that combines sev-
eral WebDBs. A large listing of such WebDBs is available at Dnavi, a Database
Navigation service provided by the National Diet Library, Japan3. We confirmed
that there are 2,800 WebDBs in Dnavi and proposed a method to estimate the
query form automatically [10]. And, we reported the current situation of Web
databases with a complex query and the possibility to guess the input metadata
from the output metadata [9]. Furthermore, we proposed the algorithm which
extracts items of each record from an HTML source of an output result [11].

In this paper, we discuss the co-operation between WebDBs. The script lan-
guage which we propose describes the data flow between WebDBs as components
with input and output metadata. Furthermore, the special component which
specifies the output format can be treated similarly. The system constructs a
CGI from the script and performs a semantic metasearch using the target Web-
DBs. To demonstrate the feasibility of this approach, we show a personal WebDB
that connects four WebDBs of major Japanese IT related journals.

There are many previous works, such as TSIMMIS [2], that have examined
information integration on the Web. However, in those studies, there is a requisite
3 http://dnavi.ndl.go.jp/

that a developer must offer a conversion program to a common data format or
detailed information of the database. The technique of this paper obtains the
required information only from the Web interface of each WebDB, and can realize
results independently of the system of each site.

Kitamura et al. [6] proposed the script language MetaCommander for extract-
ing and unifying information from the Web. The extraction of the information
needed is attained by describing the procedure as a script. However, a user needs
to describe the script which extracts or converts data from HTML documents.
Therefore, a semantic description such as “extracting the element of authors
from the list of the outputted book” cannot be performed in MetaCommander.

Information extraction from Deep Web, WISE-Integrator [3] and SE-LEGO [14]
are known; in these, the metasearch to WebDB is built automatically. The ar-
chitecture of the present paper is not a simple metasearch that integrates the
outputs of heterogeneous WebDBs but a creation of a new WebDB from several
WebDBs as its components.

The works by Knoblock et al. [7, 8] consider the construction of a personal
information gathering tool with the integration of agents. Their goal is similar
to ours. In order to define the connection between WebDBs, our system uses
the script and, therefore, is more comprehensive. Moreover, we also propose the
mechanism of the gathering information repeatedly by interaction with the user.

2 Composition of WebDBs

WebDBs can be considered as functions for which complex queries are input via
Web interfaces and they output search results. Essentially, complex queries are
a list of pairs of an attribute and instance. Similarly, search results essentially
consist of a list of pairs of an attribute and instance. For example, when we
make use of the WebDBs of electric journals, we provide some keywords into the
query boxes. The WebDB shows the search results in browsers; these results can
be a table of journals with title, author and coauthors, research keywords, etc.
Each of the query boxes in the input form and each of the attributes of the table
in the output data correspond to the input and output channels, respectively.
In our architecture WebDBs are called components and their input and output
interfaces are called channels. Composition is realized by passing data from
output channels to input channels between WebDBs. We call the pairs of output
and input channels connections.

Our architecture is characterized by the generation of CGI programs and
executing them for each individual purpose. From the Web interface of our sys-
tem, users give a statement of the WebDBs (called components) and define the
connections of the components. Our architecture consists of three parts:

1. Components,
2. Composition of components, and
3. Personal output forms.

In this section we introduce the idea of components and their composition. In
Section 3, the output components will be discussed.

2.1 Components

A WebDB is described as a component with input channels and output channels.
Those channels are named with data types. A set of instances of these types is
called a record . A component inputs and outputs a list of partial records: a tuple
of instances in the form of a subset of types (Fig. 1). Note that “to output” is not
meant as output for browsers. We consider the input and output user–interface
as components.

Start component The start component is a component with no input channels.
It only outputs queries from users.

WebDB component The components are equipped with wrappers and labeled
with the names corresponding to the WebDBs. As WebDBs vary in their
formats of input and output, wrappers of the components unify their formats.

Output component This is the interface to the users. Input data to the user
component are shown to the users. Users choose something which is output
data that become queries for the next search.

Fig. 1. Structure of a component Fig. 2. Connection between components

2.2 Composition of components

Suppose that a component C with output channels o1, · · · , op and a component
D with input channels i1, · · · , iq are given. A pair

〈C.(op1 , · · · , opk
), (iq1 , · · · , iqk

).D〉

of component channels denotes a connection from C to D through the corre-
sponding channels opl

→ iql
. For l = 1, · · · , k, each output channel opl

pipes the
data to input channel iql

(Fig 2). If the sets of channels are singular, the connec-
tion is denoted by an abbreviated mode such as 〈C.author, keywords.D〉. The
components and their connections forms a directed graph called a connection
graph with components as nodes and connections as directed edges.

Cycles are allowed in a connection graph under the condition that at least
one CGI link edge is included. CGI link edges are introduced in Section 3.2.

Fig. 3. Display channels

3 Output components

Output components are interfaces to users with functions for arranging the
search results. We introduce three functions which users can combine to give
output forms.

3.1 Displaying channels

Given a connection graph, the set of output channels, called displaying chan-
nels, is selected to display several outputs on the browser screen. In Fig 3, it
contains the two output forms C.{volno, title, authors} and {title, author}.D,
which generate two listings separately on the browser screen.

Fig. 4. Plain listing

3.2 Embedded CGI links

In Fig 3, there is an edge 〈D.author, authors.C〉 which yields a cycle. Such edges
are called CGI links and indicate parameters passing toward the next search step.
The third record “3. title13, author13” shown in the browser as the result from
C, is represented as

3. title13, author13 .

When the user clicks this link, the next step of the search hit component C is
activated.

3.3 Basic filters for listing

The format of search results are unified by each wrapper of WebDB components.
For example, in Fig 4 the search results for the query “Scientific Documents” are
shown by simply listing the items from the WebDB components. Each author
name has a CGI link which is a filter to obtain the coauthor list (Fig 5).

By clicking the author name “Makoto Nagao” in the fifth line, for instance,
the coauthors table in Fig 5 appears as a histogram listing the articles for each
coauthor. This filter is useful not only for the coauthor list, but also for previous
results, e.g., the table of writers and the number of their articles associated with
the keyword.

4 Example

In this section, we explain the prototype of the system which gathers informa-
tion by composing a WebDB. It collects information about the papers from the
WebDB of each of the following academic societies in Japan.

Fig. 5. Complex listing; coauthors list(the rest of article list from no.8 are omitted)

– IPSJ (Information Processing Society in Japan) 4

– IEICE (The Institute of Electronics, Information and Communication Engi-
neers)5

– JSAI (The Japanese Society for Artificial Intelligence) 6

– JSSST (Japan Society for Software Science and Technology) 7

This system mainly consists of the following three functions.

1. The function to search simultaneously to two or more WebDBs, and to show
the user the integrated result. This is what is called a metasearch.

2. The function which extracts and lists authors in the result.
3. The function to offer the next search using the listed author as a keyword.

The mimetic diagram of the data connection of this system is shown in Fig. 6.
We publish this system in http://matu.cc.kyushu-u.ac.jp/whirler/.

4 http://www.bookpark.ne.jp/ipsj/
5 http://search.ieice.org/bin/search.php
6 http://tjsai.jstage.jst.go.jp/
7 http://www.jstage.jst.go.jp/browse/jssst/

5 Conclusion

We proposed an architecture of the functional composition of WebDBs that
aggregates WebDBs for an individual user’s purpose. A user specifies the target
WebDBs and how he uses them. The user’s purpose is described as a script that
consists of the list of WebDBs, the connection information which shows how
the input and output are connected between WebDBs, and the list of display
formats. Some fields of the output are shown as CGI links that are used as
parameters for the next search step. As an output format, the user may write a
sorted list of data, a histogram of some selected fields, and other filters as well
as a plain listing of the records. Once the process is described as a script, the
user can use the script as a new WebDB of his own.

In this paper, the authors considered the realistic situation that a user uses
5 or 6 WebDBs in his daily work and that he knows and can describe how he
is using them. He only has to describe his search process as a script. Automatic
selection of WebDBs will be necessary for a large pool of WebDBs. We assumed
a wrapper for each WebDB. The automatic generation of such wrappers is in-
dispensable and is an important problem for our architecture.

Fig. 6. Channels and connection graph

References

1. BrightPlanet, The Deep Web: Surfacing Hidden Value, BrightPlanet White Paper,
2000.

2. S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou,
J. Ullman and J. Widom, The TSIMMIS Project: Integration of Heterogeneous
Information Sources, In Proceedings of IPSJ Conference, pp. 7-18, Tokyo, Japan,
October 1994.

3. H. He, W. Meng, C. Yu, Z. Wu, WISE-Integrator: A System for Extracting and
Integrating Complex Web Search Interfaces of the Deep Web, Proceedings of the
31st International Conference on Very Large Data Bases (VLDB2005), Trondheim,
Norway, August 30 - September 2, 2005. pp.1314- 1317.

4. P. Ipeirotis, L. Gravano and M. Sahami, PERSIVAL Demo: Categorizing Hidden-
Web Resources, JCDL2001, 2001.

5. P. Ipeirotis, L. Gravano and M. Sahami, Probe, Count, and Classify: Categorizing
Hidden-Web Databases, ACM SIGMOD 2001, 2001.

6. Y. Kitamura, T. Noda and S. Tatsumi, Single-agent and Multi-agent Approaches to
WWW Information Integration, Multiagent Platforms, Lecture Notes in Artificial
Intelligence, Vol. 1599, Berlin et al.: Springer-Verlag, 133-147, 1999.

7. C. A. Knoblock, S. Minton, J. L. Ambite, N. Ashish, I. Muslea, A. G. Philpot,
and S. Tejada, The Ariadne Approach to Web-Based Information Integration,
International Journal of Cooperative Information Systems, vol.10, no.1-2, pp.145-
169, 2001.

8. C. A. Knoblock, Deploying Information Agents on the Web, IJCAI-03, Proceed-
ings of the Eighteenth International Joint Conference on Artificial Intelligence,
Acapulco, Mexico, August 9-15, 2003. pp. 1580-1586.

9. T. Nakatoh, K. Ohmori and S. Hirokawa, A Report on Metadata for Web
Databases, IPSJ SIG Technical Reports, 2004-ICS-138(17), pp. 95-98, 2004.

10. T. Nakatoh, K. Ohmori, Y. Yamada and S. Hirokawa, COMPLEX QUERY AND
METADATA, Proc. ISEE2003, pp. 291-294, 2003.

11. T. Nakatoh, Y. Yamada and S. Hirokawa, Automatic Generation of Deep Web
Wrappers based on Discovery of Repetition, Proc. of the First Asia Information
Retrieval Symposium (AIRS 2004), pp.269-272, 2004.

12. P. Pedley, The invisible web, ASLIB, 2001.
13. C. Sherman and G. Pric, The Invisible Web, Information Today, Inc., Medfore,

New Jersey, 2001.
14. Z. Wu, V. Raghavan, C. Du, K. Sai C, W. Meng, H. He and C. Yu, SE-LEGO: cre-

ating metasearch engines on demand, Proceedings of the 26th annual international
ACM SIGIR conference on Research and development in information retrieval (SI-
GIR ’03), 2003.

15. Project DAISEn: Directory Architecture for Integrated Search Engines,
http://daisen.cc.kyushu-u.ac.jp/

