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THE SHORTEST PATH SEARCH AND LENGTH

CALCULATION

By

Masao Mori∗ and Yoshihiro Mizoguchi†

Abstract

We consider a graph with labels of edges. A label means the length of an edge.
We present a method to compute the length of the shortest path between two ver-
tices using graph transformations. We introduce graph transformation rules which
preserve the length of paths. Reducing to a simple graph which contains two ver-
tices, we finally calculate the length of the shortest path of those two vertices. There
were several algorithms for computing network reliabilities using graph transfor-
mations. We use the same framework as those algorithms for applying the graph
transformation rules, but our transformation rules do not calculate the network
reliabilities but calculate the length of the shortest path.

1. Introduction

Graph transformation (graph reduction or graph rewriting) techniques are useful
for developing an algorithm to compute several values of graph properties in the area
such as circuits and networks.

Politof and Satyanarayana (1986a) introduced a polynomial-time algorithm for the
computation of network reliability for some restricted class of graphs, and Satyanarayana
and Wood (1985) studied O(|E|)-time algorithms for k-terminal reliability for series
and parallel graphs. Politof and Satyanarayana (1986b) studied all-terminal reliability
for IFCF (inner for cycle free) graphs and they also presented O(|V |)-time algorithms
for PCF (planar cube free) graphs. In these studies graph transformation methods
were introduced to compute network reliabilities. Network graphs were classified into
some class, e.g. IFCF graphs and PCF graphs, to give efficient algorithms using graph
transformation methods.

Okada and Hayashi (1991) showed the theoretical results about critical pair lemma
for the graph transformation rules introduced by Politof and Satyanarayana (1986a;
1986b). The notion of critical pair was firstly considered in the area such as studies
of term rewriting systems. In Mizoguchi and Kawahara (1995) and Mizoguchi (1999)
the concept of critical pair lemma was generalized to a graph rewriting system, and a
complete graph rewriting system was introduced to computes network reliabilities such
as Okada and Hayashi (1991).

In this paper, we introduce graph transformation rules to search the shortest path
and compute its length for given graphs and construct an O(|E|)-time algorithms for
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series and parallel graphs. Application of those rules yields to the shortest path and its
length for given two vertices. Using those rules, it is easily verified that the method of
the 2-terminal network reliability algorithms introduced by Politof and Satyanarayana
(1986b) is available to search the shortest path and its length. Especially, by modifying
the result of Politof and Satyanarayana (1986a), we present an O(|E|)-time algorithm
to calculate the length of the shortest path for series and pararell graphs.

We review an invariant property for IFCF and ICF graphs in terms of ∆−Y graph
transformation rules. Further, we reconstruct ∆ − Y graph transformation rules for
computing the length of the shortest path. This construction shows a possibility to
make an efficient algorithm using graph transformations for computing the length of the
shortest path. Politof and Satyanarayana’s algorithms for IFCF graphs and PCF graphs
compute an all-terminal reliability of networks but not 2-terminal reliability, so it is not
obvious to apply their results to calculate the length of the shortest path between two
vertices.

2. Preliminary

We consider a graph G = (V, E) (where V and E are the sets of vertices and edges
of G). Each edge e ∈ E has a label l(e) ≥ 0 which indicates the length of the edge.

A cutvertex of a graph is a vertex whose removal disconnects the graph. A non-
separable(or biconnected) graph is a connected graph with a cutvertex. A separation
pair of a graph is a pair of vertices whose removal disconnects the graph. If a graph
contains no separation pairs, it is called triconnected. Distinguished edges with the same
vertices are called the parallel edges. If two edge is connected at a vertex whose degree
is 2, then the edge is called the series edges. A plane graph can be drawn on the plane.
A plane graph partitions the plane into a number of connected regions; the closures of
these regions are called the faces. With respect to any face f the vertices of the graph
can be distinguised into two sets: the inner (written If (G)) and outer (written Of (G))
vertices of G.

A plane graph G with no series or parallel edges is said to be an inner-cycle-
free(ICF-graph), if there exists a face f in G such that every cycle of G contains at
least one vertex of f . A plane graph G with no series or parallel edges is said to be
an inner-four-cycle-free(IFCF-graph), if there exists a face f in G such that every cycle
with 4 or more edges of G contains at lease one vertex of f . Those faces are referred to
as window of G. The subgraph induced by all inner vertices of graph G with respect to
a window w will be written in Iw(G) or Iw in short if the graph G is trivial from the
context. An ICF-graph is called a wheel graph if it has a window with respect to which
the graph has exactly one major inner vertex.

3. ICF-graph and ∆− Y replacements

In this section we review an invariant property of IFCF-graphs and ICF-graphs in
terms of ∆− Y replacements Politof and Satyanarayana (1986b). We start to review a
procedure to recognize IFCF-graphs with no series or parallel edges. Suppose that G
is an IFCF-graph and w is a window. If G has no series and no parallel edges, then
every cycle of G that does not contain any vertices of w must have exactly three edges,
that is, ∆. Application of ∆− Y replacements on such ∆ yields to an IFCF-graph with
respect to w again. The class of ICF-graphs includes IFCF-graphs. The same property
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as above is obtained. That is, we have an invariant property of ICF-graphs in terms of
∆ − Y replacements. Let G = (V, E). We will test whether G is an IFCF-graph. This
procedure requires O(|V |2) operations. ∆ − Y graph transformation can be shown in
the following figure.

Procedure 1 Recognition algorithm of IFCF-graphs
Input : A triconnected graph G = (V,E) with no series or parallel edges.

Output : Answer whether G is IFCF-graph or not. If yes, the window will
be also output.

step 1 Chech whether G is planner. If G is planner, obtain a planner embedding of G.
Otherwise STOP.

step 2 Label the faces of G, f1, f2, . . . , f|E|−|V |+2 arbitrarily. Initialize i ← 1.

step 3 Partition vertices into inner and outer vertices with respect to fi.

step 4 Consider the subgraph Ifi Find the maximal biconnected components(block) of
Ifi . If every block contains 3 or fewer vertices then G is IFCF-graph with respect
to fi; hence RETURN yes with w ← fi. Otherwise increment i ← i + 1.

step 5 If i > |E| − |V |+ 2 then STOP; RETURN no. Otherwise go to step 3.

Now we can obtain IFCF-graphs from triconnected graphs. A 3 cycle with no
vertices of a window in IFCF-graph is called inner ∆. We derive the following property
from the definition of IFCF-graphs.

Proposition 3.1. If IFCF-graph G with respect to a window w does not have
inner-∆s, then G is a ICF-graph with respect to w.

Proposition 3.2. Suppose that IFCF-graph G with respect to a window w has
inner-∆s. If f is an inner-∆ in G and G′ is the graph obtained from G by replacing f
with a Y , then G′ also is an IFCF-graph with respect to w.

Proof. Suppose that G′ is not IFCF-graph. Since G is IFCF-graph, there must
be a cycle C not containing vertices of w in G′ which have more than 4 vertices. Clearly
C contains a new added vertex v by ∆−Y replacement because G is IFCF-graph. Then
we have a cycle in G consisting of more than 4 vertices of ∆ and C except v. This cycle
does not contain any vertex of the window. Contradiction.

These previous propositions implies that ICF-graph can be obtained from IFCF-
graph by ∆− Y replacement. Now we present the following procedure.

Procedure 2 Algorithm to obtain ICF-graphs from IFCF-graphs
Input : IFCF-graph G = (V,E) having no series or parallel edges, and window w of G.

Output : ICF-graph G′ with respect to w.
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step 1 Partition vertices into inner vertices Iw and outer vertices Ow.

step 2 Consider the subgraph Iw induced by the inner vertices. Find the blocks of Iw.
Every block with exactly three vertices constitutes inner ∆.

step 4 Replace all inner ∆s by Y s. The resulting graph is an ICF-graph with respect
to w.

Proposition 3.3. Suppose that non-series and non-parallel graph G is a ICF-
graph with respect to w. If G is triconnected, then the subgraph Iw induced inner vertices
of G is a tree.

Proof. By the definition of ICF-graph, Iw does not have any cycle. It is sufficient
to show that Iw is connected. Suppose otherwise. Choose two disconnected vertices u
and v from Iw. In the graph G every path from u to v contains outer vertices. There
must be at most two disjoint pathes since G is planner. This contradicts the fact that
G is triconnected. Hence Iw is connected.

Proposition 3.4. Let G be a triconnected plane ICF-graph with no series or par-
allel edges, and let w be a window of G. Suppose that u is a leaf of Iw. Then G contains
a ∆ formed by u and outer vertices of G.

Proof. By the proposition 3.3 Iw is a tree. If |Iw| = 1, G is a wheel graph since
G is non series graph. Then there must exist a ∆ whose vertices are u and two outer
vertices. Since u is a leaf of Iw, u connects to one inner vertex and connects at least
two outer vertices. If those outer vertices are adjacent, then u and those outer vertices
forms ∆. Suppose otherwise. Let v be a vertex between those outer vertices. Since the
graph is planner and non series, u and v are not adjacent. Then those outer two vertices
could be a separation pair. This contradicts.

Theorem 3.5. If G is planner ICF graph and non series and non paralell and w
is window of G, then

1. G contains ∆ 6= w,

2. any ∆− Y replacement in G yields a ICF graph where ∆ 6= w.

Proof. We firstly prove 1. Obviously G has at least one inner vertex with respect
to w. If G is triconnected, then G contains ∆ 6= w by proposition 3.4. Assume that G
is biconnected but not triconnected. Let (v1, v2) be a separation pair of G. We obtain a
triconnected component G′ of G by adding the edge (v1, v2). As G′ is easily shown to be
ICF graph with respect to some window, the subgraph g′ induced by the inner vertices
of G′ is tree by proposition 3.3. By proposition 3.4, a leaf of g′ and outer vertices of G′

forms a ∆ which does not contain the edge (v1, v2).
Prove 2. Let the new vertex v by applying ∆ − Y transformation and let G′ be

the transformed graph. We need two cases. Firstly consider |∆ ∩ w| = 1. If a cycle
containing v and two inner vertices in ∆ does not include vertices in w, then G has
a cycle containing two inner vertices in ∆ and it also does not include vertices in w.
This contradicts the assumption. Secondly assume |∆ ∩ w| = 2. Obviously every cycle
containing v includes outer vertices in ∆.
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In Politof and Satyanarayana (1986b) the theorem 3.5 ensures that series and par-
allel graphs can be obtained by applying ∆ − Y transformation to ICF graphs appro-
preately.

4. Rules which preserve length of the shortest path

A graph after making all series and parallel replacements showed in Figure 1 from
a graph with a single edge is called series-parallel graph.

Figure 1: series replacement, pararell replacement
Figure 2: ∆− Y transformation

Figure 3: polygon to chain transformations

Consider a graph G and a set of two vertices K = {s, t}. Two vertices indicate a
starting vertex and a goal vertex to compute the length of the shortest path. Following
two graph transformation rules(serial transformations and parallel transformations) are
called simple transformations.

Series transformation rule: For a pair of edges e1(a, b), e2(b, c) (a 6= c, deg(b) = 2,
b 6∈ K), remove a vertex b and two edges e1 and e2 and insert a single edge
e3 = (u, w) where l(e3) = l(e1) + l(e2).
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Parallel transformation rule: Replaces a pair of edges e1 = (a, b) and e2(a, b) with
a single edge e3(a, b) where l(e3) = min(l(e1), l(e2))

Figure 4: terminal pattern graphs

We construct more several transformation rules to compute the length of the short-
est path.

∆-Y transformation rule is a rule showed in Figure 2 where p = min(x, y + z),

q = min(y, z+x), r = min(z, x+y) and u =
p− q + r

2
, v =

p + q − r

2
, w =

−p + q + r

2
.

Four rules showed in Figure 3 are called polygon to chain rules. We will apply polygon
to chain rules to a graph when we cannot apply any simple transformation rules.

We call one of three pattern of graphs showed in Figure 4 as a terminal pattern
graph. A terminal pattern graph is not able to be applied any transformation rules
simple rules, ∆-Y rules and polygon to chain rules. We note that a black vertex in
Figure 3 and Figure 4 is a vertex in a set K = {s, t}.

Figure 5: Series parallel graph generation

The next proposition shows that our defined graph transformation rules preserve
the length of the shortest path. So we can make an algorithm for computing the length
of the shortest path using our graph transformation rules

Proposition 4.1. Let G be a series parallel graph G, K a set of two vertices in
G. If a graph G′ is an obtained graph by applying one of simple rules, ∆ − Y rule or
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Figure 6: Calculation using graph transformations

polygon to chain rules to G, then the length of the shortest path between two vertices in
K of G is equal to its of G′.

The next two proposition guarantee that we can compute the length of the shortest
path for a series parallel graph by just applying our tranformation rules.

Proposition 4.2. Let G be a series parallel graph G, K a set of two vertices in
G, G′ an obtained graph by applying one of simple rules or polygon to chain rules to G.
A graph G is a series parallel graph if and only if a graph G′ is a series parallel graph.

Proposition 4.3. Let G be a series parallel graph G, K a set of two vertices in
G. If G is not a terminal pattern graph, there exists a simple rule or a polygon to chain
rule which is applicable to G.

Using a similar algorithm introduced by Satyanarayana and Wood (1985), we ob-
tain the next theorem.

Theorem 4.4. Let G be a noseparable series-parallel graph. Then for any two
vertices, the length of the shortest path is computable in O(|E|) time.

Now we claim the algorithm for the shortest path calculation.

Procedure 3 The Shortest Path
Input : A nonseparable series-parallel graph G = (V, E)

: where |V | ≥ 2 and |E| ≥ 2, K = {s, t}.
Output : The length of the shortest path from s to t in G

STEP 1 For each v ∈ V (deg(v) = 2) perform series transformations.

STEP 2 For each v ∈ V (deg(v) > 2) perform polygon-to-chain transformations.
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Up to 2 times of series transformations.

The main subject of this paper is to intorduce the rewriting rules for calculating the
shortest path length and that the proof for the properties about applying rewriting rules
is induced by similar techniques in Satyanarayana and Wood (1985). We omit the proof
but we show two examples, a graph generation using series and parallel replacements
(Figure 5) and a calculation of the shortest path length using graph transformations
(Figure 6).

Searching the shortest path can be done concurrently by adding path information
to label of edge (costs) and rewriting rules for the path informations. Path information
is written with blanket, e.g. [abc] and added to the cost of the edge. Initially every edge
has no path information. The followings (Figure 7 and Figure 8)are transformation
rules with path informations where l, m, n, · · · are sequences of vertices and ’;’ shows
concatenation.

Figure 7: Serial and parallel transformations with path informations

While series and parallel transformations with path informations are trivial, path
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Figure 8: ∆− Y transformations with path informations

information machinary of ∆− Y transformation is complicated but α, β, γ are variables
for sequences of vertices which are determined by minimum operation. Note that after
∆ − Y transformation complex path informations, e.g. (a, b[α]), appear. This means
the choice of path, e.g. a or b[α]. Those complex path informations can be reduced by
series transformation with the following rule. For instance ’· · · ; (a, b[α])’ means that the
suffix of sequence is (a, b[α]).

l m l; c; m
· · · ; (a, b[α]) · · · ; (b, c[β]) α
· · · ; (b, c[β]) · · · ; (c, a[γ]) β
· · · ; (a, b[α]) · · · ; (c, a[γ]) γ

The following example (Figure 9) is an execution to search the shortest path and
length from vertex s to vertex t. Every edge of initial graph does not have path infor-
mations.

5. Conclusion

Our method can be expanded to compute the shortest path not only the length of
the shortest path. It is made by keeping information of removed vertices in labels of
edges.

We showed the length preserving property of ∆ − Y rules, this indicate a pos-
sibility for extending our method to an efficient algorithm for wider class of graphs



10 M. Mori and Y. Mizoguchi

Figure 9: Example of searching the shortest path and length

than series parallel graphs. Especially, if results in Politof and Satyanarayana (1986b),
Politof and Satyanarayana (1990) can be extended to compute 2-terminal reliability of
networks, then it simply induce an O(|E|) or O(|V |) time algorithms for calculating the
length of the shortest path.
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