A Sufficient Condition for Secure Ping-Pong Protocols

Mori, Masao
Department of Informatics, Kyushu University

http://hdl.handle.net/2324/3622
A SUFFICIENT CONDITION FOR SECURE PING-PONG PROTOCOLS

By

Masao Mori*

Abstract

A sufficient condition for secure ping-pong protocols is presented. This condition, called name-suffixing, is essentially to insert identities of participants in messages. We prove its sufficiency and discuss the feature of security in terms of name-suffixing.

Key Words and Phrases: Cryptography, Verification of cryptographic protocols

1. Introduction

In the 1980 Dolev and Yao (1983), and Dolev et al. (1982) proposed a fundamental model for verification of simple cryptographic protocols called ping-pong protocols. Their model is given by constructing a finite automaton which accepts strings expressing all of possible executions of each cryptographic protocol. Verification is done by searching unsecure execution-strings from all of strings accepted by the finite automaton.

This verification technique by Dolev et al. (1982) does not give any advice to revise vulnerable protocols. In designing cryptographic protocols some guiding principles for security, such as Abadi and Needham (1996), is required. From the point of view we present in this paper a sufficient condition, called name-suffixing, in order to design secure ping-pong protocols. This condition is simply to insert identities of participants in messages. A similar result has been found by Lowe (1995) who points out a vulnerability of the Needham-Schroeder protocol and gives its correction. Lowe's correction is essentially to include participants identities in messages. Such correction as Lowe's is an instance of Principle 3 in Abadi and Needham (1996). However, Lowe's work is only for the Needham-Schroeder protocol. We attempt to present a general method to design secure cryptographic protocols.

In executions of cryptographic protocols legitimate participants cannot distinguish saboteurs from legitimate participants, moreover attacking would be occured in legal communication by an abuse of protocol-flaws. From this observation we will introduce attacking examples which show vulnerabilities in the sense of Dolev et al. (1982). From those examples insertion of identities is shown effective. In addition we discuss the way to consider secure conditions for more practical with respect to name-insertion.

2. Preliminary

Names of legitimate participants, initiator and responder, are denoted by A and B respectively which belong to the set \(\{0, 1\}^* \) of finite bit-strings. The name \(S \in \{0, 1\}^* \)

* Department of Informatics, Kyushu University
denotes the saboteur who can participate in the network as a legitimate user. As all of participants can act as either initiator and responder, it is necessary to describe protocols with variables of participants. Variables of participants, X and Y, range over the set of participants $\{A, B, S\}$. We use small characters for subscripts of symbols, i.e., x, y range over $\mathcal{U} = \{a, b, s\}$. For instance, when the saboteur impersonate a user X, we write S_x.

Each participant possesses private keys D_x and public keys E_x, which are defined on $\{0, 1\}^*$. When a message $M \in \{0, 1\}^*$ is concatenated with a name X, denoting MX, we use a name-suffix operator i_x defined as $i_x(M) = MX$. On the other hand, deleting a name-suffix from MX, we use a name-cancellation operator d_x defined if X is a suffix of T, i.e., $T = MX$, $d_x(MX) = M$; else $d_x(T)$ is undefined. We call all of i_x and d_x by name-operations. All of operators E_x, D_x, i_x, d_x for each user X are defined on the finite set $\{0, 1\}^*$ of bit-strings. If a participant receives (or sends) a cryptographic message, it is necessary to decode (or encode, respectively) the message. We call decoding and encoding in one step execution by procedure.

By means of cryptographic functions and name-operations, a set of cancellation rules is given as follows. Let ε be an identity function on a set of messages. The cancellation rules are $E_x D_x = \varepsilon$, $D_x E_x = \varepsilon$, and $d_x i_x = \varepsilon$ for each user X. Note that the cancellation rules of d_x and i_x cannot be symmetric. For a sequence φ of operators we denote a reduced form $\overline{\varphi}$ if no cancellation rule is applicable. The identity function ε can be regarded as the empty sequence (identity) in terms of a rewriting system on strings of cryptographic functions.

It is necessary to specify a set Σ_x of available operations for each user X. Define

$$\Sigma_x = \{D_x\} \cup \{E_y, i_y, d_y \mid y \in \mathcal{U}\}$$

Actually name-cancellation operators would not be used in encoding procedure. Moreover each participant would not use their own public key because no one could decode the associated message. So that a set Δ_x of available operations in encoding and a set Δ_x^{-1} of their inverse is defined as follows.

$$\Delta_x = \Sigma_x - \{d_y \mid y \in \mathcal{U}\} \cup \{E_x\}$$

$$\Delta_x^{-1} = \{f^{-1} \mid f \in \Delta_x\}$$

where $i_x^{-1} = d_x$ and $d_x^{-1} = i_x$.

Ping-pong protocols are given as a series of sequences consisting of cryptographic functions and name-operations. Following Dolev and Yao (1983) and Dolev et al. (1982) we assume to fix a message in the whole communication, i.e., participants decode received messages and send encoded messages where those messages are the same message that the initiator has sent. If one receives a message, he needs to know that it was dealt in the legitimate procedure of encoding, signature and name-operation in the protocol. We assume each procedure to have two parts, receiving operations and sending operations.

Definition 2.1. A ping-pong protocol $P(X, Y)$ is a finite series $\{\alpha_k^{xy} \mid x \neq y, 1 \leq k \leq n\}$ of sequence of operators such that $\alpha_k^{xy} \in \Delta_x^+$ if k is an even number, or $\alpha_k^{xy} \in \Delta_y^+$ if k is an odd number. We call each sequence α_k^{xy} the procedure.
In a communication between A and B, denoting their protocol by $P(A, B)$, the initiator A sends the first message $\alpha_1^{ab}(M)$, the responder B applies $(\alpha_1^{ab})^{-1}$ to the received message and obtain M. Next B sends the second message $\alpha_2^{ab}(M)$ back to A, the initiator gets M using $(\alpha_2^{ab})^{-1}$ and sends the third message $\alpha_3^{ab}(M)$ again. By the k-th step the message M has been applied operations as following:

$$\{\alpha_k^{ab}(\alpha_{k-1}^{ab})^{-1}\} \cdots \{\alpha_2^{ab}(\alpha_1^{ab})^{-1}\} \{\alpha_1^{ab}\}(M) = \alpha_k^{ab}(M)$$

where $k \geq 2$.

We distinguish terminology initiator and responder from sender and receiver. Initiator and responder would be fixed in executions of protocols. We call a sender (receiver) to those who sends (receives, respectively) a message in one procedure.

3. Examples of attack

The purpose of the saboteur is to read other participant's messages making use of flaws in cryptographic protocols. Since the saboteur may take part in the network as a legitimate user, he is supposed to follow procedures in the protocol and does not know other's private keys. But in practical communication the saboteur can intercept and substitute transferring messages, and impersonate legitimate participants. While we will formalize those saboteurs' devices in the next section, let us observe attacking methods in this section.

In the following the notation $X \rightarrow Y : \varphi(\psi(M))$ means that a received message $\varphi(\psi(M))$ is sent by X with operation φ. In each step the message should be revealed successfully. So that we assume that it must hold that $\varphi'' = e$ where $\varphi = \varphi' \varphi''$.

EXAMPLE 3.1. The simplest ping-pong protocol, called echo protocol, defined by $P_0(X, Y) = \{\alpha_1^{xy} = E_y, \alpha_2^{xy} = E_x\}$, is vulnerable because it is impossible for a receiver to verify and the message which is indeed sent by a legitimate sender. If the saboteur succeeds to intercept a message and impersonates the initiator, then the attack would be done successfully.

Now one would try to improve the echo protocol using adding digital signature, i.e., adding private key D_x in each procedure, but with no success.

EXAMPLE 3.2. The protocol $P_1(X, Y) = \{\alpha_1^{xy} = E_yD_x, \alpha_2^{xy} = E_xD_y\}$ is vulnerable.

\[
\begin{align*}
(1.1) & \quad A \rightarrow B : E_bD_a(M) \\
(2.1) & \quad S \rightarrow B : E_bD_a(E_bD_a(M)) \\
& \quad \{S \text{ intercepts (1.1) and sends to } B. \} \\
(2.2) & \quad B \rightarrow S : E_xD_bE_yD_b(E_bD_a(E_bD_a(M))) \\
& \quad = E_xD_a(M) \\
& \quad \{\text{Eavesdropping has been successful.}\} \\
(3.1) & \quad S \rightarrow B : E_bD_aE_xD_a(E_xD_a(M)) \\
& \quad = E_bD_a(M) \\
& \quad \{\text{Preparation for responding to } A \} \\
(3.2) & \quad B \rightarrow S : E_xD_bE_yD_b(E_bD_a(M)) \\
& \quad = E_xD_b(M) \\
(1.2) & \quad S_b \rightarrow A : E_bD_a(E_xD_a(M)) \\
& \quad = E_bD_a(M) \\
& \quad \{A \text{ also successfully received the reply message.}\}
\end{align*}
\]
The saboteur S impersonate B in the final session to terminate the session beginning at (1.1). The underlined operator E_b is the target operator for the saboteur. Note that in (2.2) the signature D_b by B is abused for decryption of E_b.

Dolev et al. (1982) represented an $O(n^3)$ verification algorithm for ping-pong protocols where n is the number of operators appearing in a protocol. The protocol $P_2(X, Y) = \{\alpha_1^x = E_y i_x, \alpha_2^x = E_x\}$ was verified by the algorithm in Dolev et al. (1982). However if we add a digital signature D_y to α_2^x in $P_2(X, Y)$ then it becomes insecure.

Example 3.3. The protocol $P_3(X, Y) = \{\alpha_1^x = E_y i_x, \alpha_2^x = E_x D_y\}$ is vulnerable. One can attack in the following way. The underlined E_b is a target operator for the saboteur.

1. (1.1) $A \rightarrow B : E_b i_a(M)$
2. (2.1) $S \rightarrow B : E_b i_s (E_b i_a(M))$
 \{Intercept and apply $E_b i_s$\}
3. (2.2) $B \rightarrow S : E_b D_b d_s d_b (E_b i_s E_b i_a(M))$
 \[= E_b i_a(M)\]
 \{ S can obtain M. \}
4. (3.1) $S \rightarrow B : E_b i_s d_a d_s (E_b i_a(M))$
 \[= E_b i_s(M)\]
5. (3.2) $B \rightarrow S : E_b D_b d_s d_b (E_b i_s(M))$
 \[= E_b D_b(M)\]
6. (1.2) $S_b \rightarrow A : E_b D_b (E_b D_b(M))$
 \[= E_b D_b(M)\]
 \{ A received the message. \}

Note that the signature function D_b is abused to decrypt message as well as Example 3.2.

4. Secure Patterns

We will give a sufficient condition of ping-pong protocols in terms of security. Since the condition is simple, if one finds a security flaw in protocols with some verification algorithms almost all of the insecure protocols can be improved, or one can design a secure protocol satisfying the condition.

The definition of security of ping-pong protocols follows Dolev et al. (1982). Let the set Γ to be the saboteur’s devices in a given protocol $P(X, Y)$, that is,

$$\Gamma = [\Sigma_s \cup \{\alpha_1^x, x, y \in U\} \cup (\alpha_2^x)^{-1} \mid x, y \in U, x \neq y, 2 \leq k \leq n]^{*}.$$

where $x, y \in U$. In examples of the previous section, the saboteur attempts to lead legitimate participants to reduce messages using protocols $P(A, B)$, $P(S, A)$ and $P(S, B)$ except $\alpha_1^{ab}(M)$.

Definition 4.1. A protocol $P(A, B)$ is vulnerable if there exists $\gamma \in \Gamma$ such that $\gamma \alpha_1^x = \varepsilon$.

The first procedure of the next protocol includes a name-suffix operator. It is impossible for the saboteur to crack the protocol. The next proposition leads us to the general idea of a secure design of protocols.
PROPOSITION 4.2. Let a protocol

\[P_4(X, Y) = \{ \alpha_1^{xy} = E_{yix}, \alpha_2^{xy} = E_x \}. \]

\(P_4(A, B) \) is secure.

PROOF. Suppose \(P_4(A, B) \) to be insecure, i.e., \(\exists \gamma \in \Gamma \) such that \(\gamma \alpha_1^{ab} = \gamma E_{yia} = \varepsilon \). The \(B \)'s private key \(D_b \) which cancel with \(E_b \) in \(\alpha_1^{ab} \) appears in subsequences of \(\gamma \), that is, \(\alpha_2^{ab}(\alpha_1^{ab})^{-1} \) (for case 1.) or \(\alpha_2^{ab}(\alpha_1^{ab})^{-1} \) (for case 2.).

1. Assume that \(E_b \) is cancelled with \(D_b \) in \(\alpha_2^{ab}(\alpha_1^{ab})^{-1} \). Then we have the following: \(\gamma E_{yia} = \varphi \alpha_2^{ab} E_{yia} = \varphi E_{yia} D_b E_{yia} \) where \(\gamma = \varphi \alpha_2^{ab} (\alpha_1^{ab})^{-1} \) for some \(\varphi, \tau \in \Gamma \). By assumption the subsequence \(D_b \tau E_b \) would be reduced to \(\varepsilon \). But there is no \(i_a \) in the right side from \(d_a \), which should be cancelled with \(d_a \). This contradicts that \(\gamma \alpha_1^{ab} = \varepsilon \).

2. Next assume that \(E_b \) is cancelled with \(D_b \) in \(\alpha_2^{ab}(\alpha_1^{ab})^{-1} \). We have \(\gamma E_{yia} = \varphi \alpha_2^{ab} (\alpha_1^{ab})^{-1} E_{yia} = \varphi E_{yia} D_b \tau E_{yia} \) where \(\gamma = \varphi \alpha_2^{ab} (\alpha_1^{ab})^{-1} \tau \) for some \(\varphi, \tau \in \Gamma \). As the subsequence \(d_a D_b \tau E_{yia} \) is cancelled, it must holds that \(\varphi E_{yia} = \varepsilon \). Then we have two cases that \(E_a \) is cancelled with \(D_a \) which appears in \(\alpha_2^{ab}(\alpha_1^{ab})^{-1} \) or \(\alpha_2^{ab}(\alpha_1^{ab})^{-1} \). In case of \(\alpha_2^{ab}(\alpha_1^{ab})^{-1} \) it contradicts the assumption like case 1. The case of \(\alpha_2^{ab}(\alpha_1^{ab})^{-1} \) leads us to contradiction which conflicts finiteness of \(\gamma \).

Both case 1. and case 2. lead to contradiction. The proof completes. \(\square \)

It seems enough for secure protocols to have a name-suffix function in \(\alpha_1 \). However there is a counterexample shown in Example 3.3. Now we will state that protocols in which each procedure has a name-suffix function at the first operation are secure. In a name-suffixed protocol \(P(X, Y) = \{ \alpha_k^{xy} | x \neq y, 1 \leq k \leq n \} \), each encoding is of the following reduced form:

\[\alpha_k^{xy} = \xi_k^{xy} \pi_k^{xy} \]

where

\[\xi_k^{xy} \in \begin{cases} \Delta_1^* & \text{if } k \text{ is odd,} \\ \Delta_2^* & \text{if } k \text{ is even,} \end{cases} \]

\[\pi_k^{xy} \in \begin{cases} (\Delta_x - \{E_y\})^* & \text{if } k \text{ is odd,} \\ (\Delta_y - \{E_x\})^* & \text{if } k \text{ is even,} \end{cases} \]

and

\[(u, v) = \begin{cases} (x, y) & \text{if } k \text{ is odd,} \\ (y, x) & \text{if } k \text{ is even.} \end{cases} \]

That is, each encoding begins with a name-suffixed operator of the sender and has at least one encryption function. The next lemma is important.

LEMMA 4.3. For every procedure \(\alpha_k^{ab}(k \geq 1) \) in a name-suffixed ping-pong protocol \(P(A, B) \), it holds that \(\gamma \alpha_k^{ab} \neq \varepsilon \) for any \(\gamma \in \Gamma^* \).

PROOF. Suppose that there exists \(\gamma \in \Gamma \) such that \(\gamma \alpha_k^{ab} = \gamma E_{yia} \pi_k^{ab} \). By assumption there is a decryption function \(D_b \) which is cancelled with \(E_b \) in \(\alpha_k^{ab} \), that is, we can assume that there exists \(j \geq 2 \) where such \(D_b \) is included in subsequences,
24M. Mori

\[\alpha_j^{ab}(\alpha^{ab}_{j-1})^{-1} \]

\[\text{or} \alpha_j^{bs}(\alpha^{bs}_{j-1})^{-1} \]

if \(j \) is even, else \(\alpha_j^{bs}(\alpha^{bs}_{j-1})^{-1} \) or \(\alpha_j^{bs}(\alpha^{bs}_{j-1})^{-1} \).

Now we prove the case that \(j \) is even. Assume that the saboteur does not take part in the execution, i.e., the sequences neither \(\alpha_j^{ab}(\alpha^{ab}_{j-1})^{-1} \) nor \(\alpha_j^{bs}(\alpha^{bs}_{j-1})^{-1} \) appears in \(\gamma \) for any \(i \geq 2 \). Then we can set \(\gamma = \varphi \alpha_j^{ab}(\alpha^{ab}_{j-1})^{-1} \varphi' \) for some \(\varphi, \varphi' \in \Gamma \). So that

\[\gamma \alpha_k^{ab} = \varphi \cdot \xi_j^{ab} A_{\alpha_j^{ab} \xi_j^{ab} i_b} \cdot d_a(\pi_j^{ab} i-b) D_b(\xi_j^{ab} i-b) \varphi' \cdot \xi_k^{ab} E_b \alpha_k^{ab} i_a \]

Let us call the underlined \(E_b \) the target \(E_b \). It is possible to include \(D_b \) in either \(\xi_j^{ab} \) or \(D_b(\xi_j^{ab})^{-1} \). Consider that the target \(E_b \) is cancelled with \(D_b \) in \(\xi_j^{ab} \), that is in the case of \(\xi_j^{ab} = \rho D_b \rho' \) for some \(\rho \) and \(\rho' \), then the subsequence

\[\rho' E_a \pi_j^{ab} i_b \cdot d_\alpha(\pi_j^{ab} i-b) D_b(\xi_j^{ab} i-b) \varphi' \xi_j^{ab} \]

should corrupts by itself. As \(\alpha_j^{ab} \) is reduced \(i_b \) in \(\alpha_j^{ab} \) cannot be cancelled. This is a contradiction. Next consider the target \(E_b \) is cancelled with \(D_b \) in \(D_b(\xi_j^{ab})^{-1} \). Note that it is possible to include \(D_b \) in \(\xi_j^{ab} \). Then \(E_a \) in \(\alpha_j^{ab} \) must be cancelled with \(D_a \) in \(\varphi \) because \(i_b \cdot d_\alpha \notin \varepsilon \) and \(\alpha_j^{ab} \) is a reduced form. Now we have series of the same arguments as cancellation so far. By assumption that the saboteur does not participate in the execution, \(\gamma \) is of the following form: \(\gamma = \cdots \alpha_{j_i}(\alpha^{ab}_{j_i-1})^{-1} \cdots \alpha_{j_i}(\alpha^{ab}_{j_i-1})^{-1} \cdots \alpha_3(\alpha^{ab}_{j-i})^{-1} \).

The participants must be \(A \) or \(B \) but cannot be determined for \(j_1, j_2, j_3, \ldots \). This contradicts to the corruption of the whole string \(\gamma \alpha_k^{ab} \) because of the fact that \(E_a \) or \(E_b \) will remain anyway. Whence the saboteur must participate in the execution \(\gamma \).

Now assume that \(E_b \) in \(\gamma \alpha_k^{ab} \) is cancelled with \(D_b \) in \(\alpha_j^{ab}(\alpha^{ab}_{j-1})^{-1} \). We have

\[\gamma \alpha_1^{ab} = \varphi \cdot \xi_j^{ab} E_a \pi_j^{ab} i_b \cdot d_\alpha(\pi_j^{ab} i-b) D_b(\xi_j^{ab} i-b) \varphi' \cdot \xi_k^{ab} E_b \alpha_k^{ab} i_a \]

It is possible to consider that \(E_b \) is cancelled with \(D_b \) in either \(\xi_j^{ab} \) or \((\alpha_j^{ab} i-b)^{-1} \). The operator \(i_b \) cannot be cancelled for the former case and neither can \(d_\alpha \) for the latter case. This contradicts. We can prove the case that \(j \) is odd by symmetry.

If there is \(k \geq 1 \) such that \(\exists \gamma' \in \Gamma : \gamma' \alpha_k^{ab} = \varepsilon \), then the protocol is vulnerable because we can set \(\gamma = \gamma' \alpha_k^{ab} \cdots (\alpha_1^{ab})^{-1} \).

From Lemma 4.3 it is easy to state the theorem:

Theorem 4.4. For a name-suffixed ping-pong protocol \(P(X, Y) \), \(P(A, B) \) is secure.

Proof. It is clear by the case of \(k = 1 \) in Lemma 4.3.

Now we need a reconsideration about the definition of security in the sense of Dolev et al. (1982) since there exists an attack example which would be noticed by legitimate users. We leave this discussion in the next section.
5. Discussion

In this paper we represented a sufficient condition of security for ping-pong protocols from a standpoint of Dolev et al. (1982). Now we need to discuss attacking methods and definitions of security. Here are examples which are verified to be vulnerable by means of the algorithm in Dolev et al. (1982), but smart attacks cannot be found.

Example 5.1. The protocol $P_5(X, Y) = \{\alpha_1^{xy} = E_yD_x, \alpha_2^{xy} = E_x\}$ and $P_6(X, Y) = \{\alpha_1^{xy} = E_yD_x, \alpha_2^{xy} = E_x\}$ are vulnerable by setting $\gamma = E_yD_xD_\alpha\alpha_1^{xy}(\alpha_1^{xy})^{-1}$ for both P_5 and P_6.

Those examples are determined to be vulnerable by the algorithm in Dolev et al. (1982), but such smart attack as in Example 3.2 and 3.3 have not been found, i.e., during decoding the responder of the first session would notice intervention. In those smart attacks, message-direct digital signatures in the second (and more, maybe) procedure are abused for illegitimate decryption of public keys. For these reasons it is necessary to pay attentions for distinguishing between smart attack, successful attack except that some execution are aborted, and attack which can be noticed because of verifying digital signatures and name-suffixing.

Recalling the proof in Lemma 4.3 we can conclude two principles about robustness of name-suffixing as follows. Firstly, secure cryptographic protocols are required that each procedure cannot be decoded in illegitimate ways. This is a trivial principle. Secondly, name-suffixing contributes security cooperating with encryption by public keys. It is important that decryption in procedures before and after does not disturb machinery of name-suffixing. The condition presented in this paper is one of the most essential and simple instance satisfying this principle. However, more efficient and non-redundant name-suffixing condition would be studied, taking account of simple feature of protocols. As Lowe (1995), and Abadi and Needham (1996) have pointed out, it is worth researching with respect to practical cryptographic protocols.

References

Received March 1, 2002
Revised March 11, 2002