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Abstract. This paper studies a fuzzy graph rewriting with single pushout approach
from a viewpoint of fuzzy relational calculus. Two possible kinds of matchings for
fuzzy graph rewritings are given, namely, a rigorous matching which just generalizes
matchings for crisp (or ordinary) graph rewritings, and an e-matching which repre-
sents rather ambiguous or fuzzy one. Finally the pullback structure of fuzzy graphs
are analyzed for pullback rewritings.

1. Introduction

Since the late sixties the algebraic theory of graph grammar, moti-
vated from the study of graph grammars, has been studied by many
researchers, for example, Rosenfeld, Montanari, Courcelle, Schneider,
Ehrig and Kreowski. Since then the idea to transform graphs with so-
called double pushout derivations has been applied to various fields
[3, 6, 7, 8] of computer science. In 1984 Raoult [16] proposed anoth-
er idea for graph transformations, so-called single pushout rewritings
[13, 2], making use of a notion of partial morphisms of term graphs,
and discussed about the Church-Rosser property and critical pairs of
production rules by a categorical setting. So far the single pushout
rewritings has been extensively developed from various view points, for
example by [2, 4, 5, 11, 12, 16].

The aim of this paper is to generalize relational graph rewritings [14]
of (crisp or ordinary) graphs and to formalize a fuzzy graph rewriting
with single pushout approach from a viewpoint of fuzzy relational cal-
culus [9, 10]. A fuzzy graph here means a pair of a set of nodes and
a fuzzy (connection) relation on the nodes. Fuzzy Graphs are used to
represent fuzzy relations between objects such as fuzzy dynamic pro-
gramming and fuzzy citation diagram of documents [15]. To formalize
a fuzzy graph rewriting we first discuss about the algebraic and logical
structure of fuzzy relations. A partial morphism between fuzzy graphs
is a partial function between sets of nodes preserving fuzzy graph struc-
tures. As an application of relational calculus we show that the category
of fuzzy graphs and their partial morphisms has pushouts. Based on
these motivations we study a fuzzy graph rewriting with single pushout
approach. In general the definition (or choice) of matchings to produc-
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tion rules changes the aspect of graph rewritings. Thus we propose two
possible kinds of matchings for fuzzy graph rewriting. The former is a
rigorous matching, which leads a fact that if the production rule is a
partial morphism, then the rewriting square is a pushout. The latter is
rather ambiguous or fuzzy one, called an e-matching, where 0 < ¢ < 1.
The fuzzy graph rewriting with using e-matching generates an e-similar
fuzzy graph regarded as a fuzzy approximation to pushout rewritings.
Finally the authors will analyze the pullback structures of fuzzy graphs
for pullback rewritings, initiated by Bauderon[1].

In section 2 we briefly review some fundamentals of fuzzy relation
algebras as preliminaries. In section 3 two notions of relative crisp-
ness and e-crispness of fuzzy relations are introduced. The former is
equivalent to the existence of relative complements, and the latter is a
fuzzy approximation of relative crispness. The basic properties of rela-
tive crispness and e-crispness are studied. In section 4 a formalization
of fuzzy graph rewritings are proposed as a generalization of relation-
al graph rewritings due to [14]. Analogously we obtain a fundamental
fact that if the production rule is a partial morphism then the rewrit-
ing square is a pushout. The section 5 first introduces two possible
candidates of matchings for fuzzy graphs: rigorous matchings and e-
matchings. Then the main results in this paper are proved. In section
6 we finally mention a fact that the category of fuzzy 8 and total mor-
phisms between them has pullbacks. This fact suggests a possibility of
the pullback approach [1] to fuzzy graph rewritings.

2. Fuzzy Relations

The fuzzy relation algebra is investigated by [9, 10] in order to prove
the representation theorem. In this section we will review fuzzy relation
algebra.

Let A and B be sets. A fuzzy relation a from A to B, denoted
by a: A — B, is a function from the Cartesian product A x B to the
unit interval [0, 1]. We denote the set of all fuzzy relations from A to B
by FRel(A, B). The zero relation O4 g : A — B and the universal
relation V4 : A — B are fuzzy relations with O4 p(a,b) = 0 and
Va,B(a,b) = 1 for any (a,b) € A x B, respectively. We abbreviate
Oa,B and V4 g to O and V if their domains are understood from the
contexts. The identity relation id4 on A is a fuzzy relation from A to
A defined by
1 ifa=4d,

0 otherwise

id(a,d') = {

for any a,a’ € A.
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A fuzzy relation a : A — B is contained by 5 : A — B, denoted by
a C 3, if and only if a(a,b) < f(a,b) for any (a,b) € A x B. Obviously
OCaCVforall a: A— B. The relation C is clearly a partial order
on FRel(A, B).

The infimum Mya) and the supremum Uya) of a family {a) : A —
B}y of fuzzy relations are given by

(Max)(a,b) = Alaa(a,b)]  and  (Urex)(a,b) = \/[ax(a,b)],

A A

where A and V denote the infimum and the supremum of real numbers,
respectively. For shorthand we write a M 3 and a U 5 for the infimum
and the supremum of {a, §}.

It is well-known that (FRel(A, B),C,M,U) is a complete distribu-
tive lattice with zero element, that is, a Heyting algebra. For a and /3
in FRel(A, B), the pseudo complement of a relative to 3 is given by

oo {0

We denote a=0 by —a.
For a fuzzy relation a : A — B the inverse (transposed) relation

a1 B — Ais defined by

def
al(y,z) = a(z,y).

The following properties hold: (af)! = ffat, (af)f = a and o C o
implies aof C o', The composite of fuzzy relations a : A — B and

B : B — (' is defined by

(af)(a,b) € \/ [a(a,b) A B(b, )]

beB

Note that the composition is distributive over the 0 operator, that is,
a(Uyfy) = Uyafy, and Oa = a0 = 0. Also the Dedekind formula,

equivalent to the Schréder rule [17] for Boolean relation algebras, holds.

afNyCa(fNaty)

fora:A—B,f:B—Candy:A4A—C.

Now in order to introduce the notion of crispness for fuzzy relations
we define a scalar multiplication, that is, for a fuzzy relationa : A — B
and a scalar k£ € [0, 1]

(ka)(a,b) % ka(a,b) for (a,b) € Ax B .
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We call a fuzzy relation a« : A — B crisp if a(a,b) = 1 or 0 for
any (a,b) € A x B. It is easy to see that a fuzzy relation « is crisp
iff aMkV = ka iff there exists a relation 3 such that a U3 = V and
alg = 0. Clearly 8 = na. Note that if 3 is crisp then a=( is crisp, and
in particular -« is always crisp. In this paper we set 8 ~ a = 81 -a,
called by pseudo subtraction. The pseudo subtraction can be written
as
if a(a,b) =0,

otherwise.

(5= a)ab) = { ")

If a crisp relation @ : A — B satisfies univalency ofa C idp it
is called a partial function. If a partial function o : A — B is
called function if it satisfies totality id4 C aaf. We use Roman let-
ters f,g,h,---, for partial functions and functions. We denote a partial
function f from A to B by f: A — B.

The domain of a fuzzy relation a : A — B is a fuzzy relation
d(a) = aaf Nidy.

Proposition 2.1. [14] Let « : A — B and § : B — C be fuzzy
relations and f : A — B a partial function.

1. d(af)d(a) = d(af).
2.d(fB)f = fd(B).

3. Relative Crispness of Fuzzy Relations

In this section we introduce relative crispness of fuzzy relations. A
fuzzy relation a : A — B is called crisp relative to a fuzzy relation
v:A— Bifalky = ka for all k € [0, 1], which is equivalent to a
condition that a(a,b) # 0 implies a(a,b) = v(a,b) for (a,b) € A x B.
Also it is known that a fuzzy relation o : A — B is crisp relative to
v : A — B if and only if there exists a unique fuzzy relation § : A — B
such that a U d = v and a M é = O. Such a fuzzy relation 4, the
complement of a relative to 74, can be given by

— 7(a,b) if a(a,b) =0,
6(a,b) = { 0 otherwise.

Thus we have the following fundamental fact.

Proposition 3.1. If « is crisp relative to 7, then (y ~a)Ua =5
and (y =~ a)Na=0.

main.tex; 25/03/1997; 16:53; no v.; p.4



Rewriting Fuzzy Graphs 5

It is easily proved if fuzzy relations a, @’ : A — B are crisp relative to 7 :
A — B then aNa’ and alla’ are crisp relative to 7. In order to formalize
ambiguous matchings which will be defined in section 5 for fuzzy graphs
we define e—crispness of fuzzy relations as an approximation of relative
crispness introduced above.

Definition 3.1. Given 0 < ¢ < 1. A fuzzy relation a« : A — B is
e—crisp relative to a fuzzy relation v : A — B if a(a,b) # 0 implies
v(a,b) # 0 and |a(a,b) — y(a,b)| < ¢ for (a,b) € A X B.

It is obvious that if a fuzzy relation a : A — B is crisp relative to
v : A — B then a is e—crisp relative to 7. We say that two fuzzy
relations are e—similar if each of them is ¢—crisp relative to the other.

Proposition 3.2. Let a, 8 and 4 be fuzzy relations from A to B.
If @ and /3 are e—crisp relative to 7, then both of a U 5 and a M 3 are
e—crisp relative to 7.

Proof : Suppose that (alf3)(a,b) # 0. Then a(a,b) # 0 or 3(a,b) # 0.
If a(a,b) # 0 and (a,b) # 0, then
ﬁ(aa b) 7£ 0 and |a(a7b)_7(aab)| Se and W(aa b)_7(a7b)| Se.

So that |(a U B3)(a,b) — v(a,b)| < . Else if a(a,b) # 0 or (a,b) =0
then
Y(a,b) #0 and |a(a,b) —y(a,b)| <e.

Hence |(a U §)(a,b) — v(a,b)| < e. The case of a M 3 can be proved
similarly. O

Lemma 3.1. If o : A — B is ¢—crisp relative to v : A — B, then
(7 = a)Ua is e—crisp relative to v and 7 is e—crisp relative to (y ~ a)Ua
(that is, (7 = a) U o and 7 are e-similar).

Proof : If a(a,b) # 0 then y(a,b) # 0 and |a(a,b) — v(a,b)| < ¢ by

the assumption. Note that

[(y = a)Ua](a,b) = { v(a,b) if a(a,b) =0,

a(a,b) otherwise.

Obviously (7 — @)U a is e—crisp relative to . Conversely if y(a,b) # 0
and a(a,b) = 0, then [(y = a)Ua](a,b) = y(a,b) # 0. Else if y(a,b) # 0
and a(a,b) # 0, then [(y ~ a) U a](a,b) = afa,b) # 0, and

[7(a,8) = [a U (v = a)l(a,b)] = [7(a,b) — a(a,b)] <e.

Hence v is e—crisp relative to (y ~ a)Ua. O
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Lemma 3.2. Let « : A — A and 7 : A — A be fuzzy relations and
f: A — B apartial function. If & and 5 are e-similar, then ffaf and
fi~ f are e-similar.

Proof : For b,b' € B we have

(flaf)b,b) = \/ [f'(b,a) Aa(a,a’) A f(d',b)]

a,a’'€A
\/{a(a,a') | b= f(a) and &' = f(d') for a,a’ € A}

and

(ffrN)b,6) =\ [fH(b,a) Av(a,a’) A fa', )]

a,a’ €A
= \/{’y(a,a’) | b= f(a) and b’ = f(d') for a,a’ € A }.

Suppose (flaf)(b,b') # 0. Then b = f(a), b’ = f(a') and a(a,a’) # 0
for some a,a’ € A. Hence by assumption (f*yf)(b,b') # 0. For ag,al €
A such that b = f(ao), b’ = f(ap) and a(ao, ay) # 0 we have

a(ao,ag) < 7(0’070’6) +e< (fﬁ7f)(b7bl) T+ €.

Therefore
(fﬁaf)(b, bl) < (fﬁ'Yf)(ba bl) +¢,
and conversely
(S ))0,6) < (fraf)(b,b) + ¢,
which shows that ffaf is e—crisp relative to flyf. Again analogously
fi~ f is e—crisp relative to flaf. O

4. Rewriting for Fuzzy Graphs

Mizoguchi and Kawahara[14] discussed graph rewriting with ordinary
(namely, crisp) relations. This section presents a formalization of fuzzy
graph rewritings in the same manner as [14]. In this paper we will deal
with “ordinary” sets of nodes and “fuzzy” relations of edges, and par-
tial morphisms are (ordinary) partial functions preserving fuzzy graph
structures.

main.tex; 25/03/1997; 16:53; no v.; p.6



Rewriting Fuzzy Graphs 7

A fuzzy graph (A,a) is a pair of a set A and a fuzzy relation
a: A — A. A partial morphism of a fuzzy graph (A, ) into a fuzzy
graph (B, ) is a partial function f : A — B satisfying d(f)af C f5
(see [11]).

We denote the category of fuzzy graphs and their partial morphisms
by Pfn(F-Graph). Using a fact [16] that the category Pfn of sets and
partial functions has pushouts, we can prove the following theorem.

Theorem 4.1. The category Pfn(F-Graph) has pushouts.

Let us consider the following diagrams, which are in Pfn(F-Graph)
and Pfn. In the left hand side f and ¢ are partial morphisms of fuzzy
graphs. Construct a pushout in Pfn, which is in the middle.

(Ao)L(Bg) 4t p (Aa)—L=(B.5)

N N

Finally define 8§ = kf~vk U hiS3h as a fuzzy graph structure on D. Then
we obtain the pushout square in the right hand side.

Rewriting consists of two notions. One is a “rewriting rule” which is
a correspondence between nodes and can be formalized as partial func-
tions on sets of nodes. The other is a “matching” into which rewriting
rules are applied. Matchings have to indicate appropriate subgraphs in
objective graphs.

Definition 4.1. Let (A, a) and (B/3) be fuzzy graphs. A rewriting
rule is a triple p = ((4,«),(B,3),f : A — B), where f is a partial
function (which is not necessarily a partial morphism).

Let (A, a) and (G, £) be fuzzy graphs. A matching from (A4, o) into
(G, €) is an injective morphism g : (4,a) — (G,€) (that is, ¢*¢ C idg,
gg9" = id4 and ag C g3). From the discussion in [14] one may define
matchings as partial and injective morphisms.

1 g9(1)
NN BN
2 3 7="¢(2) 4 9(3)
(4,a) (G, €)
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In the above example (A, ) is matched into (G,£) by g, but is not
matched in the next example.

1 g
matching
2 3 "L )

(A, a) (G, €)

Given a rewriting rule p = ((4,a),(B,3),f : A — B) and a match-
ing g: (A,a) — (G,£), we construct a pushout

A—1>p
gl b

v
G o k>H

in Pfn. The graph (G, £) is said to be rewritten into (H,n) by apply-
ing a rewriting rule p along a matching g if a relation 7 is defined
as 1 = k(€ = g'ag)k U h!3h. Applying rewriting rule is viewed as a
rewriting square:

(A,a) —L= (B, 8)

.| |»
Remark that a rewriting square is not necessary a pushout in Pfn(F-
Graph). Mizoguchi and Kawahara [14] showed that rewriting squares
are pushouts in Pfn(Graph) if rewriting rules are partial morphisms

of graphs. To extend this fact for fuzzy graph rewritings we need to

defined the following.
Definition 4.2. Let (A, o) and (G, &) be fuzzy graphs. An injective
function ¢ : A — G is a rigorous matching from (A, a) into (G,£) if

glag is crisp relative to €.

Note that for a rigorous matching g : (A,a) — (G,£) the following
holds:

(€ = ¢'ag) = EU g'ag and (€ = glag) M glag = O.

main.tex; 25/03/1997; 16:53; no v.; p.8
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Theorem 4.2. Let p = ((A4,0a),(B,3),f : A — B) be a rewriting
rule and ¢ : (A, ) — (B, 3) a rigorous matching. If f: (4,a) — (B, )
is a partial morphism, then a rewriting square is a pushout in Pfn(F-
Graph).

Proof : As f is a partial morphism we have ffaf = fld(f)af C
fYfBE B by f=d(f)f and kfgtagk = hf flafh C h¥Bh C 7. Hence it
follows that

n = k€ = glag)k U hiBh

k(€ = glag)k U ktgtagk L bR
= K[(¢ = g'ag) U g* ag]k L h' Bh.

We need to show that 7 = k*¢k L R#Sh. But (€ = gfag) U glag = ¢
because g'ayg is crisp relative to £. The proof completes. O

5. Main Theorem

In this section we state the main theorem in this paper. First we define
ambiguous matchings called e-matching. Resultant graph applied by
an ambiguous matching is e—similar to a pushout of fuzzy graphs.

Definition 5.1. A matching g : (4,a) — (G,§) is an e—matching
from (A, a) to (G, &) if and only if a relation gfag is e—crisp relative to

By Lemma 3.2 we can prove the following.

Theorem 5.1. Let p = ((A4,a),(B,5),f : A — B) be a rewrit-
ing rule. If f in p is a partial morphism of fuzzy graphs and ¢ :
(A,a) — (G,€) is an e-matching, then n = k*¢k U hfSh and 7 =
kY€ = g*ag)k UR!Bh are e~similar. (That is, a fuzzy graph (H,7) gives
an approximation of a fuzzy graph (H,n).)

Proof : From the computation in the proof of Lemma 3.2 we have

i = K[(€ = g*ag) U g*ag]k U hi3h.

Since glag is e—crisp relative to £, two fuzzy relations (¢ = glag)Uglag
and £ are e—similar from Lemma 3.1. Next it follows from Lemma 4.2
that k4[(€ = glag) U g'ag)k and kf&k are e-similar, and hence 7 and 7
are e—similar. This completes the proof. O

main.tex; 25/03/1997; 16:53; no v.; p.9
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Here we give examples of rewriting squares of fuzzy graphs, which
shows e¢—similarity of resultant graphs and pushouts. Let ¢ = 0.2. The
first example exhibits a pushout square since the rewriting rule f is a
partial morphism of fuzzy graphs.

a f(a)

g(a)
0.71 0.61
_—
[ ]
g(b) g(c)

The second example exhibits a rewriting square with an ambiguous
matching. Observe that the resultant graph of the second one is e—
similar to the resultant one in the first one.

. £(a)
b . (D) pg f(c)

gla)

|

°
g(b) g1c)
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6. Pullbacks of Fuzzy Graphs

In this section we finally mention just a fact that the category Pfn(F-
Graph) of fuzzy graphs and partial morphisms between them has pull-
backs. This fact suggests a possibility of the pullback approach [1] to
fuzzy graph rewritings. Recall an elementary fact that the category
Pfn of sets and partial functions has pullbacks.

Theorem 6.1. The category Pfn(F-Graph) of fuzzy graphs and
partial morphisms between them has pullbacks.

Proof : Assume that h: (B,5) — (H,n) and k : (G,€) — (H,n) be
two partial morphisms of fuzzy graphs. Then we construct a pullback
of h: B — H and k : G — H in the category Pfn, illustrated by the
following;:

Alep
N
G——1H.

in the category of fuzzy graphs and partial morphisms. Define a fuzzy
relation o = 3 fiMgégt as a fuzzy graph structure on A. We will prove
the following square

(A,0) —L> (B, 3)

| |»

is a pushout in Pfn(F-Graph). To check this fact we first show that
f:(Aa) = (B,B) and g : (A,a) — (G,£) are morphisms of fuzzy
graphs. But it is trivial from d(f)af C f8fif C fB8 by fif C idp.
Let f': (A",a') — (B,f3) and ¢' : (A',a’') — (G,£) be two partial
morphisms of fuzzy graphs such that f'h = ¢'k. Since A is a pullback
in the category Pfn, there exists a unique partial function ¢ : A’ — A
such that ¢f = f" and tg = ¢’. Note that ¢t = f'ffM¢'¢g" by the pullback
property and so d(t) C d(f'f*) C d(f'). Then we have

d(t)a’(f'f* 1 g'g")
(D)o’ f'ff 1 d(t)a’g'g"
(

d(t)a't
d
d f/)a/f/fu M d(g/)a/g/gﬁ
fBfing'eqt
tfBfinigty”

I im

main.tex; 25/03/1997; 16:53; no v.; p.11
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t(fBf4 M gtgh)

= la,

and consequently ¢ is a partial morphism of fuzzy graphs, which com-
pletes the proof. O

10.

11.

12.

13.

14.

15.

16.
17.
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