
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Dynamic Tag-Check Omission: A Low-Power
Instruction Cache Architecture Exploiting
Execution Footprints

Inoue, Koji
Department of Computer Science and Computer Science, Fukuoka University

Moshnyaga, Vasily G.
Department of Computer Science and Computer Science, Fukuoka University

Murakami, Kazuaki
Department of Informatics, Kyushu University

https://hdl.handle.net/2324/3605

出版情報：Proc. of the Workshop on Power Aware Computer Systems, pp.15-22, 2002-02. the
Workshop on Power Aware Computer Systems
バージョン：
権利関係：

Dynamic Tag-Check Omission: A Low Power Instruction Cache

Architecture Exploiting Execution Footprints

Koji Inoue†, Vasily Moshnyaga†, and Kazuaki Murakami‡

†Department of Computer Science and Computer Science, Fukuoka University
8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180 JAPAN

{inoue, vasily}@tl.fukuoka-u.ac.jp

‡Department of Informatics, Kyushu University
6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580 JAPAN

murakami@c.csce.kyushu-u.ac.jp

Abstract

This paper proposes an architecture for low-power
direct-mapped instruction caches, called “history-based
tag-comparison (HBTC) cache”. The HBTC cache at-
tempts to detect and omit unnecessary tag checks at
run time. Execution footprints are recorded in an ex-
tended BTB (Branch Target Buffer), and are used to
know the cache residence of target instructions before
starting cache access. In our simulation, it is observed
that our approach can reduce the total count of tag
checks by 90 %, resulting in 15 % of cache-energy re-
duction, with less than 0.5 % performance degradation.

key words: cache, low power, tag check, dy-
namic optimization, BTB

1 Introduction

On-chip caches have been playing an important role
in achieving high performance. In particular, instruc-
tion caches give a great impact on processor perfor-
mance because one or more instructions have to be
issued on every clock cycle. In other words, from en-
ergy point of view, instruction caches consume a lot of
energy. Therefore, it is strongly required to reduce the
energy consumption for instruction-cache accesses.

On a conventional cache access, tag checks and data
read are performed in parallel. Thus, the total energy
consumed for a cache access consists of two factors:
the energy for tag checks and that for data read. In
conventional caches, the height (or the total number of
word-lines) of tag memory and that of data memory
are equal, but not for the width (or the total number
of bit-lines). The tag-memory width depends on the
tag size, while the data-memory width depends on the
cache-line size. Usually, the tag size is much smaller

than the cache-line size. For example, in the case of a
16 KB direct-mapped cache having 32-byte lines, the
cache-line size is 256 bits (32× 8), while the tag size is
18 bits (32 - 9bit index - 5bit offset). Thus, the total
cache energy is dominated by data-memory accesses.

Cache subbanking is one of the approaches to reduc-
ing the data-memory-access energy. The data-memory
array is partitioned into several subbanks, and only one
subbank including the target data is activated [6]. Fig-
ure 1 depicts the breakdown of cache-access energy of
a 16 KB direct-mapped cache with the varied number
of subbanks. We have calculated the energy based on
the Kamble’s model [6]. All the results are normalized
to a conventional configuration denoted as “1(8)”. It
is clear from the figure that increasing the number of
subbanks makes significant reduction for data-memory
energy. Since the tag-memory energy is maintained,
however, it becomes a significant factor. If the number
of subbanks is 8, about 30 % and 50 % of total energy
are dissipated by the tag memory where the word size
is 32 bits and 64 bits, respectively.

In this paper, we focus on the energy consumed for
tag checks, and propose an architecture for low-power
direct-mapped instruction caches, called “history-based
tag-comparison (HBTC) cache”. The basic idea of the
HBTC cache has been introduced in [4]. The HBTC
cache attempts to detect and omit unnecessary tag
checks at run time. When an instruction block is refer-
enced without causing any cache miss, a corresponding
execution footprint is recorded in an extended BTB
(Branch Target Buffer). All execution footprints are
erased whenever a cache miss takes place, because the
instruction block (or a part of the instruction block)
might be evicted from the cache. The execution foot-
print indicates whether the instruction block currently
resides in the cache. At and after the next execution

1

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

1 (8) 2 (4) 4 (2) 8 (1) 1 (8) 2 (4) 4 (2) 8 (1)

of Subbanks (# of Words in a Subbank)

32-bit word 64-bit word

Others

Energy Consumed in Bit-lines

Energy Consumed in Word-lines

base base

Figure 1: Effect of tag-check energy

of that instruction block, if the execution footprint is
detected, all tag checks are omitted. In our simulation,
it has been observed that our approach can reduce the
total count of tag checks by 90 %, resulting in 15 %
of cache-energy reduction, with less than 0.5 % perfor-
mance degradation.

The rest of this paper is organized as follows. Sec-
tion 2 shows related work, and explains the detail of
another technique proposed in [11] to omit tag checks
as a comparative approach. Section 3 presents the con-
cept and mechanism of the HBTC cache. Section 4
reports evaluation results for performance/energy effi-
ciency of our approach, and Section 5 concludes this
paper.

2 Related Work

A technique to reduce the frequency of tag checks
has been proposed [11]. If successively executed in-
structions i and j reside in the same cache line, then
we can omit the tag check for instruction j. Namely,
the cache proposed in [11] performs tag checks only
when i and j reside in different cache lines. We call
the cache interline tag-comparison cache (ITC cache).
This kind of traditional technique has been employed
at commercial microprocessors, e.g., ARMs. The ITC
cache detects unnecessary tag checks by monitoring
program counter (PC). Against to the ITC cache, our
approach exploits an extended BTB in order to record
instruction-access history, and can omit unnecessary
tag checks even if successive instructions reside in dif-
ferent cache lines. In Section 4.2.1, we compare our
approach with the ITC cache.

Direct Addressing (DA) is another scheme to omit
tag checks [13]. In DA, previous tag-check results are
recorded in the DA register, and are reused for future
cache accesses. The DA register is controlled by com-
piler, whereas our HBTC cache does not need any soft-
ware support. Note that the ITC cache and the DA
scheme can be used for both instruction caches and
data caches, while our HBTC cache can be used only
for direct-mapped instruction caches. The extension to
set-associative caches is discussed in Section 5. Ma et
al. [9] have proposed a dynamic approach to omitting
tag checks. In their approach, cache line structure is
extended for recording valid links, and a branch-link
is implemented per two instructions. Their approach
can be applied regardless of cache associativity. The
HBTC cache is another alternative to implement their
approach on direct-mapped instruction caches, and can
be organized with smaller hardware overhead. This is
because the HBTC cache records 1-bit cache-residence
information for each instruction block, which could be
larger than the cache line.

The S-cache has also been proposed in [11]. The S-
cache is a small added memory to the L1 cache, and
has statically allocated address space. No cache re-
placements occur in the S-cache. Therefore, S-cache ac-
cesses can be done without tag checks. The scratchpad-
memory [10], the loop-cache [3], and the decompressor-
memory [5] also employ this kind of a small mem-
ory, and have the same effect as the S-cache. In the
scratchpad-memory and the loop-cache, application pro-
grams are analyzed statically, and compiler allocates
well executed instructions to the small memory. For
the S-cache and the decompressor-memory, prior sim-
ulations using input-data set are required to optimize
the code allocation. They are differ from ours in two
aspects. First, these caches require static analysis. Sec-
ond, the cache has to be separated to a dynamically
allocated memory space (i.e., main cache) and a stat-
ically allocated memory space (i.e., the small cache).
The HBTC cache does not require these arrangements.

The filter cache [8] achieves low power consumption
by adding a very small L0-cache between the proces-
sor and the L1-cache. The advantage of the L0-cache
largely depends on how many memory references hit
the L0-cache. Block buffering can achieve the same
effect of the filter cache [6]. Bellas et al. [2] pro-
posed a run-time cache-management technique to al-
locate the most frequently executed instruction-blocks
to the L0-cache. On L0-cache hits, accessing both the
tag-memory and data-memory of L1-cache is avoided,
so that of cause tag checks at L1-cache do not per-
formed. However, on L0-cache misses, the L1-cache is
accessed with conventional behavior (tag checks are re-

2

129.compress

1

2

3

4

5
6
7
8
9

10

20

30

40

50
60
70
80
90

100

0 127 255 383 511

Cache-line Address

1

2

3

4

5
6
7
8
9

10

20

30

40

50
60
70
80
90

100

0 127 255 383 511

Cache-line Address

132.ijpeg

A
ve

. #
 o

f
R

ef
er

en
ce

-C
ou

nt
s

pe
r

St
ab

le
-T

im
e

A
ve

. #
 o

f
R

ef
er

en
ce

-C
ou

nt
s

pe
r

St
ab

le
-T

im
e

Figure 2: Opportunity of tag-check omission

quired). Our approach can be used in conjunction with
the L0-caches in order to avoid L1-cache tag checks.

3 History-Based Tag-Comparison Cache

3.1 Concept

On an access to a direct-mapped cache, a tag check
is performed to determine whether the memory refer-
ence hits the cache. For almost all programs, instruc-
tion caches can achieve higher hit rates. In other words,
the state (or contents) of the instruction cache is rarely
changed. Only when a cache miss takes place, the state
of instruction cache is changed by filling the missed in-
struction (and some instructions residing in the same
cache line with the missed instruction). Therefore, if
an instruction is referenced once, it stays in the cache
at least until the next cache miss occurs. We refer the
period between a cache miss to the next cache miss as
a stable-time.

Here, we consider where an instruction is executed
repeatedly. At the first reference of the instruction,
the tag check has to be performed. However, at and
after the second reference, if no cache miss has occurred
since the first reference, it is guaranteed that the target
instruction currently resides in the cache. Therefore,
for accesses to the same instruction in a stable-time,
performing tag checks is absolutely required at the first
reference, but not for the following references. We can
omit tag checks if the following conditions are satisfied.

• The target instruction has been executed at least
once.

• No cache miss has occurred since the previous
execution of the target instruction.

Figure 2 shows how many unnecessary tag checks
are performed in a conventional 16 KB direct-mapped
cache for two SPEC benchmark programs. Simulation
environment is explained in Section 4.1. The y-axis is
the average reference-count (up to one hundred times)
for each cache line per stable-time. We ignored where
each cache line has never referenced in a stable-time.
The x-axis is the cache-line address. It can be un-
derstood from the figure that the conventional cache
wastes a lot of energy for unnecessary tag checks. Al-
most all cache lines are referenced more than four times
in a stable-time, and some cache lines are referenced
more than one hundred times.

In order to detect the conditions for omitting unnec-
essary tag checks, the HBTC cache records execution
footprints in an extended BTB (Branch Target Buffer).
An execution footprint indicates whether the target-
instruction block or fall-though-instruction block asso-
ciated with a branch resides in the cache. An execution
footprint is recorded after all instructions in the corre-
sponding instruction block are referenced. All execu-
tion footprints are erased, or invalidated, whenever a
cache miss takes place. At the execution of an instruc-
tion block, if the corresponding execution footprint is
detected, we can fetch instructions without performing
tag checks.

3.2 Organization

Figure 3 depicts the organization of the extended
BTB. The following two 1-bit flags are added to each
BTB entry.

• EFT (Execution Footprint of Target instructions):
This is an execution footprint of the branch-target-
instruction block whose beginning address is in-
dicated by the target address of current branch.

• EFF (Execution Footprint of Fall-through instruc-
tions): This is an execution footprint of the fall-
through-instruction block whose beginning ad-
dress is indicated by the fall-through address of
current branch.

The end address of the branch-target- and fall-though-
instruction block is indicated by another branch-instruction
address which is already registered in the BTB, as
shown in Figure 3.

In addition, the following hardware components are
required.

3

Adr-A:

Adr-B:

Adr-C:

branch X

basic-block A

branch Y

basic-block B

basic-block C

Target of branch-K

Inst. Addr. of Branch-K Adr-A

Inst. Addr. of Branch-Y Adr-E

branch-inst.
addr.

target
addr.

Branch Target Buffer

Prediction
Result

PC

PC+1

 Branch Inst. Addr.

Prediction
 Result

PBAreg

Address

Direct-Mapped
Instruction Cache

tag-check omitting

Instruction-Fetch Addressbranch Z

Inst. Addr. of Branch-Z Adr-F

follow-though
address of Branch-Y

EFT EFF

Program Code

Mode
Controller

Figure 3: The Organization of a Direct-Mapped HBL
Cache

• Mode Controller: This component selects one of
the following operation modes based on the ex-
ecution footprints read from the extended BTB.
The detail of operation is explained in Section
3.3.

– Normal-Mode (Nmode): The HBL cache be-
haves as a conventional cache (tag checks are
performed).

– Omitting-Mode (Omode): Tag checks for
instruction-cache accesses are omitted.

– Tracing-Mode (Tmode): The HBL cache be-
haves as a conventional cache (tag checks are
performed). When a BTB hit is detected in
this mode, the execution footprint indexed
by the PBAreg is set to ’1’.

• PBAreg (Previous Branch-instruction Address REG-
ister): This is a register to keep the previous-
branch-instruction address. The prediction result
(taken or not-taken) is also kept.

3.3 Operation

Execution footprints (i.e., EFT and EFF flags) are
left or erased at run time. Figure 4 shows operation-
mode transition. On every BTB hit, the HBTC cache
works as follows:

1. Regardless of current operation mode, both EFT
and EFF flags associated with the BTB-hit entry
are read in parallel.

2. Based on the branch-prediction result, EFT for
taken or EFF for not-taken is selected.

3. If the selected execution footprint is ’1’, operation
mode is transited to Omode.

Normal
Mode

Omitting
Mode

Tracing
Mode

BTB Hit
EFT (or EFF) is ’1’

EFT (or EFF) is ’0’

GOtoNmode

GOtoNmode

I-Cache miss or
BTB replacement or
RAS access or
Branch misprediction

GOtoNmode

Figure 4: Operation-Mode Transition

4. Otherwise, operation mode is transited to Tmode.
At that time, current PC (branch-instruction ad-
dress) and the branch-prediction result are stored
into the PBAreg.

Whenever a cache miss takes place, operation mode
is transited to Nmode, as explained in the next para-
graph. Therefore, occurring a BTB hit on Tmode
means that there has never been any cache miss since
the previous BTB hit. In other words, the instruc-
tion block, whose beginning address is indicated by the
PBAreg and end address is indicated by the current
branch-instruction address, has been referenced with-
out causing any cache miss. Thus, when a BTB hit
occurs on Tmode, the execution footprint indexed by
the PBAreg is validated (set to 1).

If one of the followings takes place, execution foot-
prints have to be invalidated. In addition, the opera-
tion mode is transited to Nmode.

• instruction-cache miss: The state of instruction
cache is changed by filling the missed instruc-
tion. The cache-line replacement might evict the
instruction block (or a part of the instruction
block) corresponding to valid execution footprints
from the cache. Therefore, the execution foot-
prints of the victim line have to be invalidated.

• BTB replacement: As explained in Section 3.3,
the end address of an instruction block is indi-
cated by another branch-instruction address al-
ready registered in the BTB. We lose the end-
address information when the BTB-entry is evicted.
Thus, the execution footprints of the instruction
block, whose end address is indicated by the vic-
tim BTB-entry, have to be invalidated.

Although it is possible to invalidate only the execution
footprints affected by the cache miss or the BTB re-
placement, we have employed a conservative scheme,
i.e., all execution footprints in the extended BTB are
invalidated. In addition, when an indirect jump is
executed, or a branch mis-prediction is detected, the

4

HBTC cache works on Nmode (tag checks are per-
formed as conventional organization). These decisions
make it possible to avoid area overhead and complex
control logic.

3.4 Advantages and Disadvantages

Total energy dissipated in the HBTC cache (ETOTAL)
can be expressed as follow:

ETOTAL = ECACHE + EBTBadd ,

where ECACHE is the energy consumed in the instruc-
tion cache and EBTBadd is the additional energy for
BTB extension. The energy consumed in conventional
BTB organization is not included. ECACHE can be
approximated by the following equation:

ECACHE = Etag + Edata + Eoutput + Eainput,

where Etag and Edata are the energy consumed in tag
memory and data memory, respectively. Eoutput is the
energy for driving output buses, and Eainput is that for
address decoding. In this paper, we do not consider
Eainput, because some papers reported that it is about
three orders of magnitude smaller than other compo-
nents [1] [8]. EBTBadd can be expressed as follows:

EBTBadd = EBTBef + EBTBlogic,

where EBTBef is the energy consumed for reading and
writing execution footprints, and EBTBlogic is that for
the control logic (i.e., mode controller and PBAreg).
The logic portion can be implemented by simple and
small hardware, so that we do not take account for
EBTBlogic.

On Omitting-Mode (Omode), the energy consumed
for tag checks (Etag) is completely eliminated. How-
ever, that for accessing execution footprints (EBTBef)
appears as energy overhead on every BTB access. On
the other hand, from performance point of view, the
HBTC cache causes performance degradation. Reading
execution footprints can be performed in parallel with
normal BTB access from the microprocessor. However,
for writing, the HBTC cache causes one processor-stall
cycle. This is because the BTB entry accessed for
execution-footprint writing and that for branch-target
reading are different. Whenever a cache miss or BTB
replacement takes place, execution-footprint invalida-
tion is required. This operation also causes processor-
stall cycles, because BTB access from the micropro-
cessor has to wait until the invalidation is completed.
The invalidation penalty largely depends on the imple-
mentation of the BTB. In Section 4.2.4, we discuss the
effects of the invalidation penalty on processor perfor-
mance.

4 Evaluation

4.1 Simulation Environment

In order to evaluate the performance-energy effi-
ciency of the HBTC cache, we have measured the total
energy consumption (ETOTAL) explained in Section 3.4
and total clock cycles as performance. We modified the
SimpleScalar source code for this simulation [15]. To
calculate energy consumption, the cache energy model
assuming 0.8 um CMOS technology explained in [6]
was used. We referred the load capacitance for each
node from [7] [12].

In this simulation, the following configuration was
assumed: instruction-cache size is 16 KB, cache-line
size is 32 B, the number of direct-mapped branch-prediction-
table entry is 2048, predictor type is bimod, the num-
ber of BTB set is 512, BTB associativity is 4, and RAS
size is 8. For other parameters, the default value of the
SimpleScalar out-of-order simulator was used. In addi-
tion, we assumed that all caches evaluated in this paper
employ subbanking approach, 16 KB data memory is
partitioned into 4 subbanks. The following benchmark
programs were used in this evaluation.

• SPECint95 [16]: 099.go, 124.m88ksim, 126.gcc,
129.compress, 130.li, 132.ijpeg (using training in-
put).

• Mediabench [14]: adpcm encode, adpcm decode,
mpeg2 encode, mpeg2 decode

4.2 Results

4.2.1 Tag-Check Count

Figure 5 shows tag-check counts required for whole pro-
gram executions. All results are normalized to a 16 KB
conventional cache. The figure includes the simulation
results for the ITC cache explained in Section 2 and the
combination of the ITC cache and the HBTC cache.

Since sequential accesses are inherent in programs,
the ITC cache works well for all benchmark programs.
While the effectiveness of the HBTC cache is appli-
cation dependent. The HBTC cache produces more
tag-check count reduction than the ITC cache for two
SPEC integer programs, 129.compress and 132.ijpeg,
and all media programs. In the best case, adpcm dec,
the tag-check count is reduced by about 90 %. How-
ever, for the other benchmark programs, the ITC cache
is superior to our approach. This result can be under-
stood by considering the characteristics of benchmark
programs. Media application programs have relatively
well structured loops. The HBTC cache attempts to

5

0.00

0.20

0.40

0.60

0.80

1.00
ITC: intraline tag-compare cache
HBTC: History-based Tag-Comparison cache
Comb: Combination of ITC and HBTC

N
or

m
al

iz
ed

 ta
g-

ch
ec

k
C

ou
nt

099.go

124.m88ksim

126.gcc

129.compress

130.li

132.ijpeg

adpcm_enc

adpcm_dec

mpeg2_enc
mpeg2_dec

Benchmark Programs

Figure 5: Tag-check count compared with other ap-
proaches

avoid performing unnecessary tag checks by exploiting
iterative execution behavior. Thus, we can consider
that if our main target is media applications, employing
the HBTC cache makes energy advantages. Otherwise,
we should employ the ITC cache.

The hybrid model of the ITC cache and the HBTC
cache makes significant reductions. It eliminates more
than 80 % and 95 % of unnecessary tag checks for
all benchmark programs. Therefore, we conclude that
combining the ITC and the HBTC caches is the best
approach to avoiding energy dissipation caused by un-
necessary tag checks.

4.2.2 Energy Consumption

Figure 6 reports energy consumption of the HBTC
cache and its break down for each benchmark program.
All results are normalized to the conventional cache.
As explained in Section 4.1, a 0.8 um CMOS technol-
ogy is assumed. The energy model used in this paper
does not take account for the energy consumed in sense
amplifiers. However, we believe that the energy reduc-
tion reported in this section can be achieved even if
sense amplifiers are considered. This is because tag-
memory accesses can be completely eliminated when
the HBTC cache works on Omitting-Mode, so that the
energy consumed in sense amplifiers is also eliminated.

As discussed in Section 4.2.1, the HBTC cache makes
a significant tag-check count reduction for 129.com-
press, 132.ijpeg, and all media application programs.
Since the extension of each BTB entry for execution
footprints is only 2 bits, the energy overhead for BTB
accesses (EBTBadd) does not have a large impact on the

0.00

0.20

0.40

0.60

0.80

1.00

1.20

E data

E tag

E output

E btbadd

N
or

m
al

iz
ed

 C
ac

he
-E

ne
rg

y
C

on
su

m
pt

io
n

099.go

124.m88ksim

126.gcc

129.compress

130.li

132.ijpeg

adpcm_enc

adpcm_dec

mpeg2_enc

mpeg2_dec

Benchmark Programs

Figure 6: Cache-Energy Consumption

total cache energy. As a result, the HBTC cache re-
duces the total cache energy by about 15 %. However,
for 099.go and 126.gcc, the energy reduction is only
from 2 % to 3 %. This is because the HBTC cache
could not eliminate effectively unnecessary tag checks
due to irregular behavior of the program execution.

4.2.3 Performance Overhead

As explained in Section 3.4, the HBTC cache causes
processor stalls when the extended BTB is up-dated for
recording or invalidating execution footprints. Figure
7 shows program-execution time in terms of the total
number of clock cycles. All results are normalized to
the conventional organization.

From the simulation results, it is observed that the
performance degradation is less than 1 % for all but
three benchmark programs. However, for 126.gcc, the
performance is degraded by about 2.5 %. This might
not be acceptable if high performance is strictly re-
quired. The processor-stalls are caused by conflicting
BTB accesses from the processor with up-date opera-
tions of execution footprints.

In order to alleviate the negative effect of the HBTC
cache, we can consider two approaches. First is to pre-
decode fetched instructions. Since conventional BTB is
accessed on every instruction fetch regardless of the in-
struction type, processor stalls occur whenever execu-
tion footprints are up-dated. By pre-decoding fetched
instructions, we can determine whether, or not, it has
to access the BTB before starting normal BTB access.
In this case, processor stalls occur only when branch
(or jump) instruction conflicts with up-dating execu-

6

0.90

0.95

1.00

1.05

1.10

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

(c
lo

ck
 c

yc
le

)

099.go

124.m88ksim

126.gcc

129.compress

130.li

132.ijpeg

adpcm_enc

adpcm_dec

mpeg2_enc

mpeg2_dec

Benchmark Programs

Figure 7: Program Execution Time

tion footprints. Another approach for compensating
the processor stalls is to add a decoder logic for ac-
cessing execution footprints. This makes it possible to
access BTB for obtaining branch-target address and
up-dating execution footprints simultaneously.

4.2.4 Effects of Execution-Footprint-Invalidation
Penalty

All execution footprints recorded in the extended BTB
are invalidated whenever a cache miss, or a BTB re-
placement, takes place. So far, we have assumed that
the invalidation can be completed in one processor-
clock cycle. However, the invalidation penalty largely
depends on the implementation of extended BTB.

Figure 8 depicts performance overhead caused by
the HBTC approach where the invalidation penalty
is varied from 1 to 32 cycles. The y-axis indicates
program-execution time normalized to conventional or-
ganization for all benchmark programs, and the x-axis
shows the invalidation penalty in terms of clock cycles.
For all benchmark programs, it is observed that perfor-
mance degradation is trivial if the invalidation penalty
is equal to or less than 4 clock cycles. We have an-
alyzed the break down of the invalidations, and have
found that more than 98 % are caused by cache misses
(less than 2 % are caused by BTB replacements). The
invalidation penalty can be hidden if it is smaller than
cache-miss penalty. Actually, in this evaluation, we
have assumed that cache-miss penalty is 6 clock cycles.

However, the invalidation penalty clearly appears
where it is grater than 6 clock cycles, so that we can see

0.80

1.00

1.50

2.00

2.50

3.00

1 2 4 8 16 32

099.go

126.gcc
124.m88ksim

130.li

mpeg2dec

132.ijpeg

adpcm_dec
adpcm_enc

mpeg2enc

129.compress

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

(c
lo

ck
 c

yc
le

)

Execution-Footprint Invalidation Penalty (clock cycle)

132.ijpegadpcm_encadpcm_decmpeg2enc

Figure 8: Effect of Execution-Footprint Invalidation
Penalty

large performance degradation for 099.go and 126.gcc.
On the other hand, for 132.ijpeg, adpcm enc, adpcm dec,
and mpeg2 decode, performance degradation is small
even if the invalidation penalty is large. This is be-
cause cache-miss rates for these programs are high, re-
sulting in the small number of invalidations. Actually,
each cache-miss rate of 099.go, 126.gcc, 132.ijpeg, and
mpeg2 decode was 4.7%, 5.5%, 0.5%, and 0.5%, respec-
tively.

5 Conclusions

In this paper, we have proposed the history-based
tag-comparison (HBTC) cache for low-energy consump-
tion. The HBTC cache exploits the following two facts.
First, instruction-cache-hit rates are much higher. Sec-
ond, almost all programs have many loops. The HBTC
cache records the execution footprints, and determines
whether the instructions to be fetched are currently
cache resident without performing tag checks. An ex-
tended branch target buffer (BTB) is used to record the
execution footprints. In our simulation, it has been ob-
served that the HBTC cache can reduce the total count
of tag checks by about 90 %, resulting in 15 % of cache-
energy reduction.

In our evaluation, it has been assumed that the BTB
size, or the total number of BTB entries, is fixed. Our
future work is to evaluate the effects of the BTB size
on the energy reduction achieved by the HBTC cache.
In addition, the effects of branch-predictor type will
be evaluated. Another future work is to establish a
microarchitecture for set-associative caches. By memo-
rizing way-access information as proposed in [9], we can

7

extend the HBTC approach for set-associative caches.

References

[1] R. I. Bahar, G. Albera, and S. Manne, “Power and Perfor-
mance Tradeoffs using Various Caching Strategies,” Proc.
of the 1998 International Symposium on Low Power Elec-
tronics and Design, pp.64–69, Aug. 1998.

[2] N. Bellas, I. Hajj, and C. Polychronopoulos, “Using dy-
namic cache management techniques to reduce energy in
a high-performance processor,” Proc. of the 1999 Interna-
tional Symposium on Low Power Electronics and Design,
pp.64–69, Aug. 1999.

[3] N. Bellas, I. Hajj, C. Polychronopoulos, and G. Sta-
moulis,“Energy and Performance Improvements in Micro-
processor Design using a Loop Cache,” Proc. of the 1999
International Conference on Computer Design: VLSI in
Computers & Processors, pp.378–383, Oct. 1999.

[4] K. Inoue and K. Murakami,“A Low-Power Instruction
Cache Architecture Exploiting Program Execution Foot-
prints,” International Symposium on High-Performance
Computer Architecture, Work-in-progress session (included
in the CD proceedings), Feb. 2001.

[5] T. Ishihara and H. Yasuura,“A Power Reduction Technique
with Object Code Merging for Application Specific Embed-
ded Processors,” Proc. of the Design, Automation and Test
in Europe Conference, pp617–623, Mar. 2000.

[6] M. B. Kamble and K. Ghose,“Analytical Energy Dissipation
Models For Low Power Caches,” Proc. of the 1997 Interna-
tional Symposium on Low Power Electronics and Design,
pp.143–148, Aug. 1997.

[7] M. B. Kamble and K. Ghose,“Energy-Efficiency of VLSI
Caches: A Comparative Study,” Proc. of the 10th Interna-
tional Conference on VLSI Design, pp.261–267, Jan. 1997.

[8] J. Kin, M. Gupta, and W. H. Mngione-Smith, “The Filter
Cache: An Energy Efficient Memory Structure,” Proc. of
the 30th Annual International Symposium on Microarchi-
tecture, pp.184–193, Dec. 1997.

[9] A. Ma, M. Zhang, and K. Asanović,“Way Memorization to
Reduce Fetch Energy in Instruction Caches,” ISCA Work-
shop on Complexity Effective Design, July 2001.

[10] R. P. Panda, D. N. Dutt, and A. Nicolau,“Efficient Utiliza-
tion of Scratch-Pad Memory in Embedded Processor Ap-
plications,” Proc. of European Design & Test Conference,
Mar. 1997.

[11] R. Panwar and D. Rennels,“Reducing the frequency of tag
compares for low power I-cache design,” Proc. of the 1995
International Symposium on Low Power Electronics and
Design, Aug. 1995.

[12] S. J. E. Wilton and N. P. Jouppi, “An Enhanced Access and
Cycle Time Model for On-Chip Caches,” WRL Research
Report 93/5, July 1994.

[13] E. Witchel, S. Larsen, C. S. Ananian, and
K. Asanović,“Direct Addressed Caches for Reduced Power
Consumption,” Proc. of the 34th International Symposium
on Microarchitecture, Dec. 2001.

[14] MediaBench, URL:
http://www.cs.ucla.edu/̃leec/mediabench/.

[15] “SimpleScalar Simulation Tools for Microprocessor and Sys-
tem Evaluation,” URL:http://www.simplescalar.org/.

[16] SPEC (Standard Performance Evaluation Corporation),
URL: http://www.specbench.org/osg/cpu95.

8

