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Abstract

The chaotic orbits in Rossler system is controlled into a periodic cycle by two methods; the delayed
feedback controlling method which continues to control chaos by self-controlling feedback, and a control
system including on-line trained neural network controller. It is found that (1) the stabilization of chaotic
orbit by former method depends on the choice’s of initial conditions and gain parameters and that (2) -
the linear neural controller fails to control chaotic orbit in Rossler system and the choice of the threshold
function (nonlinear function) is found to be essential in the second methods.
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1. Introduction

The chaotic phenomena are frequently observed in
plasma discharges and in the fundamental plasma exper-
iments[1]. The recent research extends not only to iden-
tify the chaos but also to control the chaos itself[2]. In
fusion plasmas, the control of plasma turbulence is criti-
cal issueto attain the self-ignition conditions. Some dy-
namics of ELM (Edge Localized Model) in fusion plasma
can be-explained by using the system with a few degrees
of freedom. In addition, inside of internal transport bar-
rier(ITB)[1] in a toroidal plasma, the turbulence is sup-
pressed and transport reduces to the level of neoclassical
values. In such a situation, a model with a few degrees of
freedom is still applicable. The technique of controlling
chaos gives the fundamental concept and can be applied
to that for fusion plasmas. Generally, chaos is defined
by a positive Lyapunov exponent. Plasma turbulence is
on one hand categorized as a hyper chaos and might be
characterized by several positive Lyapunov exponents.
To establish the controlling method of plasma turbu-
lence, we investigate the controlling of simple chaos as
a first step: . The original controlling method of chaos

is called OGY method developed by Ott, Grebogi and"

Yorke[3]. A chaotic orbit is stabilized by applying small
perturbations into the system. However, this method
requires the knowledge of the location of unstable fixed
point (UFP) in the system so that the location should
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be tracked in advance. Later, Pyragas proposed the
delayed feedback controlling method[4], which does not
require the knowledge of the location of UFP. The al-
ternative method of controlling chaos is to apply a Neu-
ral Network Controller (NNC). Recently, the NNC has
been proposed by Konishi and Kokame which is applied
to control the chaotic orbit in the two dimensional map
system[5,10]. This method does not require knowledge
of the location of the desired UFP or UPO.

In this thesis, both methods (delayed feedback con-
trolling method and neural controller) are tested to
Rossler system. In chapter 2, we review OGY method,
delayed feedback controlling method, neural controller
and also a genetic algorithm as an alternative method
for advancing the weights in neural controller. In chap-
ter 3, the control of chaos system using delayed feedback
controlling method is studied. In chapter 4, the control
of chaos system using a neural controller is investigated.
The advantage and disadvantage of this method are dis-
cussed comparing with the delayed feedback method. In
chapter 5, summary and discussion are given. Applica-
tion of genetic algorithm for NNC is briefly discussed in
Appendix. ‘ .

2. Review

2.1 OGY method

The pioneers of controlling chaos are Ott, Grebogi,
and Yorke[3]. They have proposed so called OGY
method, which utilizes the existence of UFP embedded
in the chaotic attractor(See Fig.1). The OGY method
is explained as follows: If we first determine some of
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the unstable low-period periodic orbits embedded in
the chaotic attractor, then we examine these orbits and
choose one which yeilds improved system performance.
Finally, we tailor our small time-dependent parameter
perturbations so as to stabilize this already exsiting or-
bit(See Fig.2). This method requires the knowledge
of the location of UFP so that the location should be
tracked in advance by the linear prediction.

The map system is generally written as

x(k +1) = f(x(k), u(k)), m

where x(k) is the state vector, u(k) is the control signal.
A fixed point x; of the map system is defined by

xs = f(x,0). @

Then, the linearized map system at the fixed point is
given by

x(k + 1) — x5 = A(x(k) — xz) + bu(k), 3)

where A = i(gﬂ, b = ‘—if(—:uLo). We set Ay, A; as
eigenvalues of 2 X 2 matrix A and e,, es as the cor-
responding eigenvectors. We introduce 2 x 2 matrix P
which consists of the first column e, and the second
column e,

P = (eu, &). 4)

Inverse matrix P! is given by

p"=(:',: ) ()

where v., v, are raw vectors, respectively. Using the
relation P~!P = I, we obtain the following relations

e Vy =€y,vs =0 eyv, =e;vs =1 (6)

and
o M 0 ) 1
A= p( 0 A )p = Au€yuVu + As€sV, (7)
If x(k + 1) is in the neighbor of x, then x(k + 1) — x5
is parallel to e,. Therefore, the relation holds:
vu(x(k+ 1) —x¢) =0. (8)
From egs. (2.3), (2.7) and (2.8) , we obtain
Au(x(k) — x£) + vubu(k) = 0. (9)
Finally, u(k) is given by
— A — —
Mmz{oqxw@)xﬁ Ixe) =xsl <€ (10

where € is a small positive value.
Now let us consider the Henon map:

{ Xi(k+1) = 1.4 — X1(k)? + 0.3X, (k) + U(k),
Xg(k + l) = 0.3X1(k)
(11)

Linearing (2.11) at the fixed point Xy, we obtain

—2xy 0.3 1
a=( 3 9) () o

Hence the eigenvalues and eigenvectors of A are given
by

,\uz—Xf—,/X]%’+0.3, ,\s=—X,+,/X)%+0.3
(13)
A A
e=(7*-ﬁ=“) es=<7723), (14)
VA

_ 3{,\24.1 AsvV/AZ 41
Yu _( XooX; ‘_ECS = )’
ve = ( [VAVIE R WY/ XX} ) (15)

As—Ay As—Au

Using these relations, u(k) is written as
uk) == (1, =X )(x(k+1)—xs). (16)

Fig.3 shows the iterations of X in the Henon map.
By OGY method, the system can be stabilized to the
period-one cycle as shown in Fig.4. The control param-
eters Xy = 0.8, ¢ = 0.1 are used, and is applied during
the iterations k=1000-3000. The OGY method is gen-
erally inadequate when the system is far from the fixed
point, and the method is also limited to the case for
controlling only one or two-dimensional maps.

2.2 Deléyed feedback controlling method

Pyragas proposed the delayed feedback controlling
method by modifying the OGY method, which does not
require the knowledge of the location of the desired UFP
or UPO. The method is based on the idea of the sta-
bilization of UFPs or UPOs embedded in the chaotic
attractor. This is achieved by making a time-dependent
perturbation into the system. There are the infinite
number of different UPOs within the chaotic attractor.
Due to the infinite number of different UPOs in strange
attractor, chaotic system can be tuned to a large number
of distinct periodic regimes. This is done by switching
the temporal programing of small parameter perturba-
tion to stabilize different periodic orbits. The method

- can stabilize only those periodic orbits whose maximal

Lyapunov exponents is small compared to the reciprocal
of the time interval between parameter changes. Since
the corrections of the parameter are rare and small, the
fluctuation noise leads to occasional bursts of the sys-
tem into the region far from the desired periodic orbit
and these bursts are more frequent for large noise[3]. In
addition, the changes of parameter are discrete in time,
since OGY method deals with the Poincare map. On
the other hand, the delayed feedback controlling method
controls chaos by self-controlling delayed feedback, con-
tinuously not discretely and is not sensitive to the noise.
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This method is useful to maintain the control of practi-
cal chaotic systems, which are influenced by a change in
their environment (e.g., temperature, humidity, atmo-
spheric pressure and so on.)

It is assumed that the equations to describe the
system are unknown, however a certain scalar variable
could be measured as a system output, and then the
system has an input available for delayed output signal
y(t—7). These assumptions can be met by the following
model:

dy

W — P(y,%) + F(t)
&= - Q(y’ X) (17)
F(t) = K(y(t—7) —y()) = KD(?)

Here 7 is a delayed time, K is the gain of perturba-
tion, and the vector x describes the remaining variables
of the dynamic system which are not available or not
of interest for observation. The delayed time 7 corre-
sponds to the period of the UPO, since the relation
y(t) = y(t — 7) is hold for D(t) = 0. 7 is chosen nu-
merically such that it gives the local minimum value
of D*(t). K can be regarded as a criterion of UPO
stabilization. When this stabilization is achieved, K re-
duces to an extremely small value. As well as in the
OGY method, a small perturbation is used to stabilize
the UPOs. Therefore choosing an appropriate weight
value of K of the feedback, one can achieve the stabi-
lization. The delayed time 7 and the weight value of K
of the feedback should be adjusted in an experiment. By
this method, an experimental realization is very simple.
If appropriate values of K for systems are found, this
method is applicable to a variety of systems.

2.3 Neural controller

Neural controller proposed by Konishi and Kokame
consists of a watcher and Neural Network Controller
(NNC). Fig.5 shows the block diagram of a neural con-
troller. Here the NNC cousists of two layers such as
input layer and output layer. Let us consider the fol-
lowing chaotic system:

X(t+1) = F{X(t)} + BU@), (18)

where X(t) is the state vector, F' denotes chaotic system
and U(t) is the control signal. A fixed point Xy of the
map system is given by ’

X; = F(Xy). : (19)

The local dynamics of chaotic system at the fixed point
is approximately governed by

£t+1) =HE®R) +BU®), () =X(t) — Xy (20)

The matrix H is the local linearized map of F at X;.

_ 9F(X)

H X

(21)

When the orbits X(¢) and X(t—1) of the chaotic system
without control satisfy

1X() - X@ -1l < (22)

the watcher passes a control signal from NNC to the

chaotic system, and then the weights of connection from -
the input neuron to output neuron in NNC are updated

by back propagation method. An initial value of the

weight is determined by a random number. ¢ is assumed

to be a small positive value. Fig.6 shows that NNC

consists of two input neurons and two output neurons.

The NNC is governed by

Us(te) = f(Oi(tr) + 0i(k)), (23)
Oi(tk) = ZWij(k)Xj(tk)’ (24)
j=1

where j is the number of input neurons, ¢, the num-
ber of output neurons and k is the number of times at
which the NNC is trained(i.e., the number of times the
watcher operates), W;; is the weight of output neuron,
and O;(ti) is the signal which goes into neuron of out-
put layer through the weight from ith neuron of input
layer, and 0;(k) is the bias of the ith neuron of the out-
put layer. The weights and the biases are updated by

using
Wij(k + 1) = Wi; (k) + AWy (k), (25)
0;(k + 1) = 6;(k) + Ag; (k), (26)
where OE(K) OUs(m)
— _p OB\R) OYink)
AW‘U (k) - nan(,nk) 6W1](k) ’ (27)
P OE(k) 8U;(ny)
7 is the learning rate and the error is defined by
E(k) = kcEc/(k) + kv Eu (k), (29)

with
Fo = L[X(ta +1) - X)X (s + 1)~ X ()], (30)

and 1
Ey = —éBU(tk)TBU(tk), ) (31)

where B is a known constant matrix. Also, ko and
ky are the error weights for Ec(k) and Ey(k), respec-
tively. Ec(k) is an error function corresponding to the
Euclidean norm of [X(t; + 1) —~ X(t&)], and Ey (k) is
an error function corresponding to the Euclidean norm
of the input signal [BU(tx)]. The partial derivative
AE(k)/AU;(tx) in eqs(2.27),(2.28) is given by

OE(k)
an(tk)

BE, (k)
U (tr)

BE. (k)
ETACS!

= kc (32)
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N N m
= ke sz‘j (X (e +1) =X (tk))+ku Z bji ijlU,(tk).

i=1 j=1 =1

(33)

After the NNC has been sufficiently trained, the control
signal U(tx) of the trained NNC can be described by

V() = —eB T H-TX@) - X, (4)
X(tx) €6,
{ ¢ :"%: € (—1,4+00) (35)

Equation (2.34) produces the control signal U(tx) such
that the controlled orbit X (¢ + 1) is located in a line
between HIX(tk) - Xf] + Xy and X(tk) (see Fig.7).
The position of the controlled orbit X(¢x +1) in the line
depends on the ratio of the error weights, {. If the NNC
has been trained by a proper ratio ¢, the chaotic orbit
is stabilized onto the UFP.

Fig.8 shows Henon map without control. The bold
dot embedded in the chaotic attractor indicates a de-
sired UFP. The Henon map with a neural network con-
troller is given by

{ Xi(t+1) = =0.1X;(t) + Xa(t) + U (2)

Xo(t +1) = X1(t) ~ 1.6 + Un(t) (36)

The control system is used as = 0.01, { = 1.0
(ke = kv = 1.0). Figure 2.9 shows the result of the sta-
bilization of the chaotic system. It follows from Fig.9
that the stabilization of the map is successfully achieved
without a knowledge of the location of the UFP.

2.4 Genetic algorithmm

A Genetic Algorithm (GA) is a method for searching
solutions to a given problem rapidly and efficiently. The
fitness of given solution can be determined; a solution
with a high fitness value is better than a solution with
a low fitness value, although the maximum possible fit-
ness might not be known. GA performs well in cases
for which gradient information is not available; in such
situations, an algorithm such as the conjugate-gradient
method cannot be used to find maxima in the solution
space. The basic idea of GA is to consider an ensemble,
or population, of possible solutions to the problem. A
genetic algorithm consists of a description of solutions,
a fitness function, and methods (such as crossover and
mutation) as shown in Fig.10. First, a population of
randomly generated solutions is formed and the fitness
of each solution is determined. After the population
has been evaluated, the best solutions are copied(1).
These copies are changed slightly, with the hope that
some of these random changes will produce a better
solution; this process is called mutation(2). Addition-
ally, randomly chosen elements from pairs of good solu-
tions are combined to form new solutions; this process is
called crossover(3). A new population is assembled from

the mutated copies, the new solutions are formed from
crossover, and the best solutions are formed from the
original population. The fitness evaluation of the popu-
lation and the creation of new solutions is repeated until
an adequate solution is found. Each evaluation of the
population is a generation. In this manner, the process
is evolving.

A genetic algorithm is used to evolve neurons which
are used to form neural networks for stabilization of an
unstable fixed point[6]. This method is a replacement
of backpropagation which requires gradient information.
The advantage of the genetic algorithm approach for the
chaos control problem is that the network weights can
be found by examining the performance of a network as
a controller rather than by providing correct control sig-
nals for various input data. Fig.11 shows the schematic
view of NNC with GA. Each output layer neuron is spec-
ified by its weights W;;. A network is formed with sev-
eral neurons selected from the population. The fitness of
a network is used to determine the fitness of the individ-
ual neurons. The fitness function is a statement of the
goals of GA. The proper choice of the fitness function
determines the speed with which the GA can converge
on the correct solution.

Vo
=

Unstable orbit

i

Fig. 1 UFP embedded in chaotic attractor

Fig. 2 OGY method

3. Control of chaos system using de-
layed feedback controlling method

In this chapter, we applied a delayed feedback con-
trolling method to Rossler system to control chaos.
Rossler system with the perturbation F(t) is written
by

2
{ — 24024 F(t) (37)
£ _ 0242257
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Fig. 3 Dependence of y on k

0
0.0 SUD.0 1000.0 1S500.0 2000.0 2500.0 3000.0
k

Fig. 4 Dependence of y on k with OGY method

with

{ F(t) = K[y(t — 7) — y(t)] = K[D(®)] (t > 50)
F{t)=0 (t<50)

where K is a gain of perturbation and 7 is the de-
layed time explained in chapter 2. Fig.12 shows chaotic
attractor of Rossler system without control. Fig.13
shows the z — y phase portrait of attractor. Fig.14
shows the dependence of the time averaged perturbation
< D?(t) > on 7. The time average is performed during
the time interval t = 150 — 300. < D?(t) > is calcu-
lated for the prescribed value of 7 with different initial
conditions such as zo = yo = 20 = 0.5,1.0,1.5,---,10.
7 is scanned from O to 20 with an interval of 0.01. The
corresponding twenty values of < D%(t) > for each 7
are shown. The value of K which gives local minimum
values of < D?(t) > for a fixed 7 is also found. Fig.15

7 X+ 1)
Watcher 0
|ro-xe-n]<g

E® U
Neaural Network
Coutralier(NNC)
E,

® X (t+ 1)
-

Fig. 5 Block diagram of a neural controller

Input layer Output layer

Input neuron

output neuron

Fig. 6 Neural network controller

H(Xn)-X)+ X, ® Xin +1)

t

Fig. 9 Stabilization of chaos orbit in Henon map
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l Form population of initial solution |

I Evaluate fitness value Idg

]

¢)) | Copy best solutions I

®
®
i

[ Create new.solutions I

Generation

l High fitness value ? |-—N

0
Yes

Stop

Fig. 10 Flow chart of Genetic algorithm

Decide weight

Apply perturbation

Fig. 11 Block of diagram Genetic algorithm

shows the dependence of < D?(t) > on K in the cases
with 7 = 5.9, 7 = 11.75 and 7 = 17.5, respectively. It is
seen that K = 0.18, K = 0.12 and K = 0.06 correspond
to the local minimal of < D?(t) > for period one ,two
and three cycles, respectively. Fig.16 shows an example
of failure for controlling chaos in the case with K = 0.8,
7 = 5.9 for the initial condition zp = yo = 20 = 5.5.
The chaotic attractor is seen. Fig.17 shows an example
of a success for the control in the case with K = 0.18,
7 = 5.9, the same initial condition as those in Fig.16
The period-one cycle is seen as the result of stabiliza-
tion. Fig.18 shows the time evolution of ¥ and F in
this case. The origin of the curve F corresponds to the
time when the perturbation is switch on. The pertur-
bation becomes small after a transient process and the
system comes into the periodic regime, which initially

corresponds to an unstable orbit. As well as the period-
one cycle of the Rossler system, a period-two cycle can
be stabilized by choosing an appropriate weight K of
the perturbation. Fig.19 shows an example of a success
for the control of period-two orbit in the case with the
initial condition zo = yo = zo = 5.5. It is found that
the control of chaos on the period-one cycle (7 = 5.9)
or period two cycle (7 = 11.75) is insensitive or, does
not depend on the initial condition. On the other hand,
it depends on the initial condition for the control of
period-three cycle (7 = 17.5). Fig.20 shows an example
of a success for the control of period-three orbit in the
case with zo = yo = zo = 5.5. Fig.21 shows an example
of failure in the case with z¢ = yo = 20 = 9.5. In any
cases, the choice of K is found to be important to stabi-
lize UPO. It is concluded that this method is sensitive
to the choice of values of 7, K and initial values. In
addition, the chaotic orbits of Rossler system are found
to converge to UFPs in the cases, which correspond to
7 = 3.3 and 7 = 9.3. In these cases, the value of K
weakly affects the stabilization of UFP compared with
the stabilization of UPO.

Fig. 12 Chaotic attractor of Rossler system

10

st

-10 -5 o 5 10 15

Fig. 13 x-y phase portrait of Rossler system

4. Control of chaos system using a
neural controller

In this chapter, we apply a neural network control-
ling method to Rossler system. Fig.22 shows the block
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Fig. 15 Dependence of D*(t) on K

diagram of the original neural controller. When the or-
bits X (¢) and X(t — 1) of the chaotic system without
control satisfy

IX(t) - X -7l <e (38)

the watcher passes a control signal from NNC to the
chaotic system. We apply a neural controller to stabilize
UPO in Rossler system with three-dimensional chaotic
system in the following

%ﬁ-=—y*z+Ul(t)
Tﬁ =z + 0.2+ Us(t) (39)
£ =02+ 2z(x—5.7) + Us(t)

In this case, NNC consists of three input neurons and
three output neurons as shown in Fig.23. In the follow-
ing, we examine the performance of threshold functions
and the sensitivity to the initial conditions. Three cases

with different threshold functions are investigated for.

period-one, two and three: (1) linear function f(z) = z,
(2) the sigmoid function f(z) = H%, (3) the hy-

perbolic tangent function f(z) = i;z::

Parameters :

10 T T

-10 -5 0 5 10 15
Fig. 16 x-y phase portrait of the Rossler

system(7 = 5.9, K = 0.8,t > 100)

10 T T T

Fig. 17 x-y phase portrait of the Rossler
system(r = 5.9, K = 0.18,¢ > 100)

€ =1.0, p=0.08, k¢ = 3.0 and ky = 1.0 are used. The
definitions are made in equations (2.22),(2.27),(2.28)
and (2.29). It is found that the case (1) fails in the
application to all period cases, the case (2) fails in the
application to period-two and three cases for ky = 1.0,
however, if we change ky = 4.2, then it could control
period-three. The case (3) works for all cases without .
changing a parameter ky. Two cases with different ini-
tial values on the period-three cycle (v = 17.5) are in-
vestigated t = y = 2 =55, z =y =2z = 9.5 It
is found that the control of chaos does not depend on
the choice of the initial condition. These results are
shown in Fig.24, Fig.25 and Fig.26 for period-one, two
and three cases, respectively. We analized power spec-
trum to find the periodic orbits of the chaoctic system.
Fig.27 shows the dependence of the power spectrum on
the frequency with/without control for 7 = 5.9. The
peak is clearly observed at f = 0.17 for the case with
control, which implies to correspond to period-one cycle
(f =1/1). Two cases with 7 = 11.75 and 7 = 17.5 are
shown in Fig.28. Corresponding peaks are observed at
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Fig. 18 Stabilization of period-one cycle of Rossler
system

10 T T

15

Fig. 19 x-y phase portrait of the Rossler
system(7T = 11.75, K = 0.12,¢ > 100)

f =0.085 and f = 0.057, respectively. For investigating
the power spectrum which depends on the frequency, it
is confirmed that the period-one,two and three cycle of
the Rossler system can be found by employing the NNC
with use of hyperbolic tangent function. It is tenta-
tively considired that the hyperbolic tangent function is
the best candidate as the threshold function of NNC for
controlling Rossler system. The numbers of updating
weights in NNC is a good indicator whether the NNC

Fig. 20 x-y phase portrait of the Rossler

system(zo = yo = zo = 5.5)

10 T T T T

-10 -5 0 5 10 15

Fig. 21 x-y phase portrait of the Rossler

system(zo = yo = 20 = 9.5)

successfully controls the chaotic orbit to the periodic
cycle, or not.

Finally, we extend the NNC with three layers such
as input layer, hidden layer and output layer. Fig.29
shows that NNC consists of three input neurons, five
hidden neurons and three output neurons. The NNC is
governed by

Oj(tx) = 23: Wii(k) Xa(tx), (40)
11

Tj(tx) = f(O;(tx) + hy(K)), (41)

Zs(tx) = 25: Vi (R)T; (), (42)

Us(te) = ;(ZZIi(tk) +8:(k)), (43)

where ! is the number of input neuron, j, the number of
hidden neuron, 7, the number of output neuron, Wj, is
the weight of hidden neuron, V;;, the weight of output
neuron, and O;(tx) is the signal which goes into neuron
of hidden layer through the weight of hidden neuron
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from /th neuron of input layer, Z;(tx) is the signal which
goes into neuron of output layer through the wieght of
output neuron from jth neuron of hidden layer. h;(k)
is the bias of the jth neuron of the hidden layer, and
0;(k) is the bias of the ith neuron of the output layer.
The weights and the biases are updated by using

AW;5(k) = =X, T3 (1 - Ty) in‘Ui(l - Ui)%’
(44)

Ahj(k) = —qT;(1 — Ty) ivijUi(l - Ui)%*
(45)
AVis (k) = —nT3Us(1 - Ui)%:%v (46)
AG; (k) = —nUs(1 - Ui)%l%. 47

For controlling chaos, we applied this method to the
Rossler system. But no advantage of this metod is found
so far compared with the NNC with two layers. There-
fore we tentatively conclude that NNC with two layers
and hyperbolic tangent function as the threshold func-
tion shows the best peroformance to control the Rossler
system. It is also found that the suitable choice of pa-
rameter ( 7, K¢, Ky ) which decide network weights
are important to stabilize the chaotic orbit.

X(+1)

U(} L——‘
c Chaotic System {f”)

Fig. 22 Block diagram of the original neural con-
troller

i IX(I)—X(:»‘!)‘ <a

Input layer Output layer

Input neuron

output neuron

Fig. 23 Neural network controller with two layers

10 r . T

N

-10 " A et
10 50 s 10
- -X .

Fig. 24 x-y phase portrait of the Rossler

system(r = 5.9,t > 100)

<o

Fig. 25 x-y phase portrait of the Rossler
system(r = 11.75,¢ > 100)

5. Conclusions

The Pyragas method and the on-line trained NNC
are tested for the Henon map and the Rossler system.
It is found that the desired UPO of Ressler system is
stabilized by the delayed feedback controlling method.
However, the controllability depends on the choice of
the initial condition for period-thrée cycle as well as
the gam of perturbation. The NNC with linear thresh-
old function works well for the control of the chaos in
Henon map. It fails in the application to the Rossler
system. The NNC is examined by introducing the dif-
ferent threshold function such as sigmoid function and
hyperbolic tangent function. We find that the NNC with
hyperbolic tangent function shows the best performace
among three cases for controlling the Rossler system. It
is also found that thé suitable choice of parameter ( 7,
kc, ku ) which decide the network weights are impor-
tant to stabilize the chaotic orbit. We examine the NNC
with three layers. No advantage is found compared with
the NNC with two layers for the Rossler system. Once
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Fig. 26 x-y phase portrait of the Rossler

system(r = 17.5,¢ > 100)
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Fig. 27 The dynamics of power spectrum on 7

we find a suitable value of K, then the delayed feedback
controlling method is faster than NNC with hyperbolic
tangent function, although it is not always possible for
the general case.

As a future work, we will test the performance of
NNC in which the network weight is evolved by genetic
algorithm with good fitness function and compare the
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Fig. 28 The dynamics of power spectrum on 7

i

Hidden Layer

Fig. 29 Neural network controller with three lay-

ers

result it with that by the back propagation method.
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Appendix

Al. Appendix: Symbiotic adaptive
neuro-evolution

In this appendix, we apply dsane(Directed Symbi-
otic Adaptive Neuro-Evolution)[6] to optimize weights
of NNC instead of backpropagation method. In this
case, the proper choice of the fitness function determines
the speed with which the GA can converge on the correct
solution.Our goal is to find a neural network that can
control a specific system such that the dynamics eventu-
ally reaches a fixed point. For simplicity, we consider a
period-1 fixed point difined by X, = X,_1, where X is
an observable and n is the n-th observation. The fitness
function consists of three parts: F' = AFy+ BF> -+ CF3,
where A, B and C are adjustable parameters which are
system independent. The map to be controlled is iter-
ated 1000 times and the value of each part of the fitness
function is set by the behavior of the map and the net-
work.

Fi =1 - (A,) indicates whether the network has
stabilized a fixed point by interations. A,, is defined by
= | X7 — Xn-1]/8 and S is the size of the uncontrolled
attractor of the system. The average {---) is taken over
the last 40 iterations of the map. The small values of
A, result in a larger fitness Fy.

F, = 1-In(A) quantifies the growth rate of A, near
the fixed point. If A, is smaller than 0.01, the values
of A, are stored until A, grows larger than 0.10. X is
the geometric mean of the quantities A, y1/A, for all
A, which have been stored. When the fixed point is
successfuly stabilized by the neural network, A ~ 1.

F3 rewards networks which are optimal controllers.
Randomly chosen network weights lead to a network
which applies the largest possible perturbation §P to
the system. Fj is defined by the fraction of iterations
for which [8P} is smaller than 0.956 Pz, where 6 Prax
is the magnitude of the maximum allowed perturbation.

If the system is exactly on the fixed point, the necessary
perturbation is 6P = 0. )

NNC consists of four input neurons, seven hidden
neurons, and one output neurons. The input neurons
are assigned the values X,, Xp_1, Xn—2 and Xn_3.
The value y of the output neuron sets the perturba-
tion applied to the system 6P = §Pmaz(2y — 1), where
0 <y <1 and |6P] < 6Pnax. Parameters for the evo-
lution in the GA are given as follows. (1) population
size consists of 100 neurons, (2) neurons in 30 percent
of the population is preserved for each generation, (3)
neurons in 60 percent of the populations is formed by
crossover, and (4) neurons in 10 percent of the popula-
tion is formed by mutation.

We have translated the original code written in C
into Fortran 90. The benchmark of two codes are done,
however, it is found that GA depends on the random.
number(in other words, it is the probabilistic), there-
fore, both results are not agreed with each other. Some
numerical results for Henon map are shown. The map
is described by

{ Xi(n41) = 1.29 4+ 0.3X2(n) — X1(n)? + e+ 6P,
Xo(n+ 1) = Xi(n) +4P,.

(A1)
where € = 0.001 is the noiselevel.

We have three runs. Fig.A1l shows the evolution
of the fitness in each generation for the Henon map.
It is shown that the evolution of fitness depends on
initial populations, mutation and crossover which are
controlled by random number. Two cases successfully
evoluve to high fitness values, however, one case fails.
Fig.A2 shows performance of the best network in cases
with fitness values: 600,800,850 and 900, respectively.
The Henon map is well controlled for the case with the
fitness value larger than 900.

As a future work, this algorithm should be applied to
the Rossler system to evaluate the network performace.
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Fig. A1 Neural network controller
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Fig. A2 History of the evolution for the Henon
map
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