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                                       Abstract

    The chaotic orbits in RDssler system is controiled into a periodic cycle by two methods; the delayed
feedback controlkng method which continues to control chaos by seif-controlling fee(lback, and a control
system ineluding on-line trained neural network controller. It is found that (1) the stabilization of chaotic
orbit by former method depends on the choice's of initial conditions and gain parameters and that (2) '
the linear neural controller fails td control chaotic orbit in RDssleT system and the choice of the threshold

imction (nonlinear function) is found to be essential in the second methods.

                                                                   '' ''t
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1. Introduction

   The chaotic phenomena are frequently observed in
plasma discharges and jn the fundamental plasma exper-

iments[1]. The recent research extends not oniy to iden-

tify the chaos but also,to control the chaos it$elf{2]. in

fusion plasmas, the control of plasma turbulence is criti-

cal issue to attain the self-ignition conditions. Some dy-

namjcs of ELM (Edge Localized Model) in fusion plasrna

can be•explained by using the system with a few degrees

of freedom. In addition, inside of intemal transport bar-

rier(ITB)[ll in a toroida1 plasma, the turbulence is sup-

pressed and transport reduceS to the level of neoclassical

values. In such a situation, a model with a few degrees of

freedom is still applicable. The technique of cdntroding

chaos gives the imdamental concept and can be applied

to that for fusion plasmas.. Generally, chaos is defined

by a positive Lyapunov exponent. Plasma turbulence is

on one hand categorized as a hyper chaos and might be
charact6rized by several positive Lyapunov exponents.

To establish the controding,method of plasma turbu-

lence, we investigate the controlling of simple chaos as

a first step;•The original controding method of chaos

is called OGY method developed by Ott, Grebog} and'

Yorke[3]. A chaDtic orbit is stabilized by applying small

perturbations into the system. However, this method
requires the knowledge of the location of unst'able fixed

point (UFP) in the system so that the Iocation should
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be tracked in advance. Later, Pyragas prqposed the
delayed feedback controlhng method[4], which does not

require the knowledge of the location of UFP. The al-

ternative method of controlling chaos is to apply a Neu-

ral Network ControRer (NNC). RDcently, the NNC has

been proposed by Konishi and Kokame which is applied

to control the.chaotic orbit in the two dimensional map

system(5,101. This method does not require knowledge

of the locqtion of the desired UFP or UPO.

   In this thesis, both methods (delayed feedback con-

trolhng method and neural controller) are tested to
Ross}er system. In chapter 2, we review OGY method,
delayed feedback controding method, neural controller

and also a genetic algoritim as an alternative method

for advancing the weights in neural controller. In chap-

.ter 3, the control of chaos system using delayed feedback

controlhng method is studied. in chapter 4, the control

of chaos system using a neural controller is investigated.

The advantage and disadvantage of this method are dis-

cussed comparing with the delayed feedback method. in

chapter 5, sumrnary and discussion are given. Applica-

tion of genetic algorithm for NNC is briefly discussed in

Appendix. t.
2. Review
2.1 OGYmethod
   The pioneers of 6ontrolhng chaoS are Ott, Grebogi,

and Yorke[3]. They have proposed so called OGY
method, which utilizes the erdstence of UFP embedded

in the chaotic attractor(See Fig.1). The OGY method

is explained as follows: ff we fust determine some of
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the unstable low-period periodic orbits embedded in

the chaotic attractor, then we ercamine these orbits and

choose one which yeilds improved system perforrnance.

Finally, we tailor our small timedependent parameter
perturbations so as to stabilize this aiready exsiting or-

bit(See Fig.2). This method requires the knowledge

of the location of UFP so that the location should be

tracked in advance by the liiiear prediction.

   The map system is generally written as

            x(k+1)=f(x(k),u(k)), (1)
where x(le) is the state vector, u(k) is the control signal.

A fixed point xf of the map system is defined by

                 xf=f(xf,O). (2)
Then, the linearized map system at the fixed point is

given by

       x(k+1)-xf=A(x(k)-xf)+ha(k), (3)
where A = Ed!LSiXtlrZf(X. O), b : EdZS2t:Å}!tf(X. O). We set A., As as

eigenvalues of 2 Å~ 2 matrix A and eu, es as the cor-

responding eigenvectors. We introduce 2 Å~ 2 matrix P

which consists of the first colunm eu and the second

column es

                  p-- (eu7es). (4)
Inverse matrix P-i is given by

                p-'=( ".", ), (5)

where vu, vs are raw vectors, respectively. Using the
relation P-iP =I, we obtain the following relations

        esvu=euvs=Oeuvu=esvs=1 (6)
and

   A=p(Ao" AOs)p-i=Aueuvu+Asesvs (7)

If x(le + 1) is in the neighbor of xf, then x(le + 1) - xf

is parallel to e.. Therefore, the relation holds:

             v.(x(le+1)-xf)=O. (8)
FYom eqs. (2.3), (2.7) and (2.8), we obtain

          A.(x(le)--xf)+v.bu(k)=O. (9)

Finally, u(k) is given by

 u(k)={ o-"v`:S`iii'-b(X(k)--Xt) llX(k)-xfll<E ,(lo)

where E is a small positive value.

   Now let us consider the Henon map:

  { l;[k, .+ ,i] .-,' 61,4i,i,3(k)2 + o•3x, (k) +u(k),

                                          (11)

Linearing (2.11) at the fixed point Xf, we obtain

        A=(-21xf 063),b=(6) (12)

Hence the eigenvalues and eigenvectors of A are given

by

 A.=-Xf- Xf2+o.3, A.=-Xf+ xf2+o.3
                                          (13)
    eu-(fai, e.-(71iSRi, (i4)
         N731iiEtt1 N73?Xl

         vu=( )<ulll:El-As -AsA.-A2iti))

         vs=(XI.illlililll-A.-)`tk.-)`)g,.+i)' (i5)

Using these relations, u(k) is written as

    u(k)=---Au(1, --As)(x(k+1)--xf). (16)

   Fig.3 shows the iterations of X in the Henon map.

By OGY method, the system can be stabMzed to the
period-one cycle as shown in Fig.4. The control param-

etems Xf = O.8,E= O.1 are used, and is applied during

the iterations k=1000-30oo. The OGY method is gen-
erally inadequate when the system is far from the fixed

point, and the method is also' limited to the case for

controlhng only one or two-dimensional maps.

2.2 Delayedfeedbackcontrollingmethod
   Pyragas proposed the delayed feedback controlkng

method by modifying the OGY method, which does not
require the knowledge of the location of the desired UFP

or UPO. The method is based on the idea of the sta

bthzation of UFPs or UPOs embedded in the chaotic
attractor. This is achieved by making a timedependent

perturbation into the system. There are the infinite

number of different UPOs within the chaotic attractor.

Due to the infinite number of different UPOs in strange

attractor, chaotic system can be tuned to a Iarge number

of distinct periodic regimes. This is done by switching

the temporal programing of small parameter perturb&
tion to stabilize different periodic orbits. The method

can stabilize only those periodic orbits whose maximal

Lyapunov exponents is small compared to the reciprocal

of the time interval between parameter changes. Since

the corrections ofthe parameter are rare and small, the

fiuctuation nQise leads to occasional bursts of the sys-

tem. into the region far from the desiTed periodic orbit

and these bursts are more frequent for 1arge noiseI3]. In

addition, the changes of parameter are discrete in time,

since OGY method deals with the Poincare map. On
the other hand, the delayed feedback controlling method

controls chacs by seifcontrolkng delayed feedback, con-

tinuously not discretely and is not sensitive to the noise.

    tt
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This rnethod is usefu1 to maintain the control of practi-

cal chaotic systems, which are infiuenced by a change in

their environment (e.g., temperature, hurnidity, atm"

spheric pressure and so on.)

   It is assumed that the equations to describe the
system are unknown, however a certain scalar variable

could be measured as a system output, and then the
system has an input available for delayed output signal

y(t-7). These assumptions can be met by the following

model:

       dy       'Ei7t = P(y, x) + F(t)

       f:i/-=Q(y, x) (i7)
       F(t) - K(y(t - 7) - y(t)) == KD(t)

Here T is a delayed time, K is the gain of perturbar
tion, and the vector x describes the remaining variables

of the dynamic system which are not available or not

of interest for observation. The delayed time r corre-

sponds to the period of the UPO, since the relation
y(t) == y(t - 7) is hold for D(t) = O. T is chosen nu-

merically such that it gives the local minimum value
of D2(t). K can be regarded as a criterion of UPO

stabilization. When this stabilization is achieved, K re-

duces to an extremely small value. As well as in the

OGY method, a small perturbation is used to stabilize
the UPOs. Therefore choosing an appr6priate weight

value of K of the feedback, one can achieve the stabi-

lization. The delayed time T and the weight value of K

ofthe feedback should be adjusted in an experiment. By

this method, an experimental realization is very simple.

If appropriate values of K for systems are found, this

method is applicable to a variety of systerns.

2.3 Neuralcontroller
   Neural controller proposed by Konishi and Kokame

consists of a watcher and Neural Network Controller
(NNC). Fig.5 shows the block diagram of a neural con-

troller. Here the NNC consists of two layers such as

input layer and output 14yer. Let us consider the fol-

lowing chaotic system:

          X(t+1):F{X(t)}+BU(t),' (18)
where X(t) is the state vector, F denotes chaotic system

and U(t) is the control signal. A fixed point Xf of the

map system is given by '
                 Xf=F(Xf). (19)
The local dynamjcs of chaotic system at the fixed point

is approximately governed by

 g(t+1)==H6(t)+BU(t), 6(t)==X(t)--Xf.(20)

The matrix H is the local lmearized map of F at Xf.

                      0F (X)
                 H ==                                          (21)
                       ax

When the orbits X(t) and X(t-1) of the chaotic system

without control satisfy

             IIX(t)-X(t-1)ll<E, (22)

the watcher passes a control signal from NNC to the

chaotic system, and then the weights of connection from-

the input neuron to output neuron in NNC are updated

by back propagation method. An initial value of the

weight is determined by a random number. E is assumed

to be a small positive value. F-ig.6 shows that NNC

consists of two input neurons and two output neurons.

The NNC is govemod by

           Ui(tk)=f(Oi(tk)+ei(k)), (23)

                    2
           O,(tk)=:2Wij•(k)X,•(tk), (24)

                   j'=1
where 2' is the number of input neurons, i, the num-

ber of output neurons and k is the number of times at

which the NNC is trained(i.e., t,he number of times the

watcher operates), Wi2• is the weight of output neuron,

and Oi(tk) is the signal which goes into neuron of out-

put layer through the weight from ith neuron of input
layer, and ei(k) is the bias of the ith neuron of the out-

put layer.. The weights and the biases are updated by

uslng
         Wij (k + 1) = Wij (k) +AVVij (k),

           e,(k + 1) = e,(le) + Ae,(le),

where
                      aE(k) aU,(nk)
         AWij(k) == --nou,(nk) awij(k)'

                     0E(k) aUi(nle)
          Aei(k)= -nau,(nk) oei(k) '

n is the learning rate and the error is defined by

           E(k) == kcEe (k) + kuEu(k),

with

Ec - S (X(t, + 1) - X(t,)]T[X(t, + 1) -- X(t,)],

and
            Eu == }BU(tk)TBU(tk),

where B is a known constant matrix. Also,
ku'are the error weights for Ec(k) and Eu(k),

tively. Ec(k)

Euclidean norm of [X(tk + 1) - X(tk)], and

of the input signal [BU(tk)]. The partial
aE(k)/aUi(tk) in eqs(2.27),(2.28) is given by

(25)

(26)

(27)

(28)

(29)

(30)

                                          (31)

                                       lec and

                                       respec-
           is an error imction corresponding to the

                                      Eu(k) is
an error imction correspon(ling to the Euclidean norm

                                     derivative

OE(k)
aUi (tk)

               OE. (k)    0Ec (k)
          + ku== kc
               0Ui(tk)    aUi (tk)

(32)
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=kc2biJ'(Xj'(tk+1)-Xj(tle))+ku2b2'i2bj'tca(tk)•

    3'=1 j'=l l=1                                          (33)
After the NNC has been sufficiently trained, the contTol

signal U(tk) of the trained NNC can be described by

U(tk)=-1l<B-i[H-I][x(t,)-xfl,

              { ZlillltkL,ll4.EE6'(-i,+oo)

(34)

(35)

Equation (2.34) produces the control signal U(tk) such

that the controlled orbit X(tk + 1) is located in a line

between HIX(tk) - Xf] + Xf and X(tk) (see Fig.7).
The position of the controlled orbit X(tle + 1) in the line

depends on the ratio of the error weights, <. If the NNC

has been trained by a proper ratio <, the chaotic orbit

is stabili2ed onto the UFP.

   Fig.8 shows Henon map without control. The bold
dot embedded in the chaotic attractor indicates a de

sired UFP. The Henon map with a neural network con-
troller is given by

   {liliS[lItll:.limaX,,iStl.llil}2tSg),,lil-Ui(t) (36)

The control system is used as " == O.Ol, < == 1.0
(lec = leu = 1.0). Figure 2.9 shows the result of the sta-

bilization of the chaotic system. It follows from Fig.9

that the stabMzation ofthe map is successfully achieved

without a knowledge of the location of the UFP.

2.4 Geneticalgorithm
   A Genetic Algoritim (GA) is a method for searching

solutions to a given problem rapidly and efficiently. The

fitness of given solution can be determined; a solution

with a high fitness value is better than a solution with

a low fitness value, although the maximum possible fit-

ness might not be known. GA peTforms well in cases
for which gradient information is not available; in such

situations, an algorithm such as the conjugategradient

method cannot be used to find maxima in the solution

space. The basic idea of GA is to consider an ensemble,

or population, of possible solutions to the problem. A

genetic algoritim consists of a description of solutions,

a fitness function, and methods (such as crossover and

mutation) as shown in Fig.10. First, a population of

randomly generated solutions is foTmed and the fitness

of each solution is determined. After the population
has been evaluated, the best solutions are copied(1).

These copies are changed slightly, with the hope that

some of these random changes wiil produce a better
solution; this process is called mutation(2). Addition-

ally, randomly chosen elements from pairs of good solu-

tions are combined to form new solutions; this process is

called crossover(3). A new population is assembled from

the mutated copies, the new solutions are formed from

crossover, and the best solutions are forrned from the

original population. The fitness evaluation of the popu-

lation and the creation of new solutions is repeatod until

an adequate solution is found. Each evaluation of the

population is a generation. In this manner, the process

is evolving.

   A genetic algoritim is used to evo}ve neurons which

are used to form neural networks for stabilization of an

unstable fixed pointl6]. This method is a replacement

of backpropagation which requires gradient information.

The advantage of the genetic algorithm approach for the

chaos control problem is that the network weights can

be found by examining the performance of a network as

a controller ratheT than by providing correct control sig-

nals for various input data. Fig.11 shows the schematic

view of NNC with GA. Each output layer neuron is spec-

ified by its weights Wig-. A network is formed with sev-

eral neurons selected from the population. The fitness of

a network is used to determine the fitness of the individ-

ual neurons. The fitness imction is a statement of the

goals of GA. The proper choice of the fitness function

determines the speed with which the GA can converge
on the correct solution.

                       x'

stabieorb .it

f igggi2'"'tt'lrFp

         . ..tc"7/ unstabieorbit

        f/ /

Fig.1 UFP embedded in chaDtic attractor

i.u.F.,,. ,,,,,.,,2

. " .'r't"" Z' illi:' ,>../(1"'

Fig.2 OGYmethod

3. Controlofchaossystemusingde-
     layed feedback controlling method

   In this chapter, we applied a delayed feedback con-

trolkng method to Rossler system to control chaos.
Rossler system with the perturbation F(t) is written

by
            ( /itiill t;- g'.i+;o•i,(; -F(g.h (37)
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with

{    P(t)-K[y(t-7)--y(t)]=K[D(t)] (t>50)
    F(t)==O (tS50)

where K is a gain of perturbation and T is the de-
layed tjme explained in chapter 2. Fig.12 shows chaDtic

attractor of Rossler system without contTol. Fig.13

shows the x-y phase portrait of attractor. Fig.14
shows the dependence of the time averaged perturbation
< D2(t) > on 7. The time average is performed during

the time interval t == 150 - 300. < D2(t) > is calcu-

lated for the prescribed value of 7 with different initial

conditions such as xo == yo = zo = O.5,1.0,1.5,•••,10.

T is scanned from O to 20 vvith an interval of O.Ol. The

corresponding twenty values of < D2(t) > for each T

are shown. The value of K which gives local minimum
values of < D2(t) > for a fixed T is also found. Fig.15
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Form population of mitial solution
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(3)
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Highfitnessvalue?

Yes
No

Stop

Fig. 10 Flew chart ofGenetic algorithm

corresponds to an unstable orbit. As well as the period-

one cyc}e of the Rossler system, a peTiod-two cycle can

be stabilized by choosing an appropriate weight K of

the perturbation. Fig.19 shows an example of a success

for the control of period-two orbit in the case with the

mitial condition xo = yo = zo = 5.5. It is found that

the control of chaos on the period-one cycle (T = 5.9)

or period two cycle (r = 11.75) is insensitive or, does

not depend on the initial condition. ()n the other hand,

it depends on the mitial condition for the control of

period-three cycle (7 = 17.5). Fig.20 shows an example

of a success for the control of period•-three orbit in the

case with xo = yo = z() =: 5.5. Fig.21 shows an example

of failure in the ca$e with xo = yo = zo = 9.5. In any

cases, the choice of K is found to be important to stabi-

lize UPO. It is concludad that this method is sensitive

to the choice of values of T, K and initial values. In

addition, the chaotic orbits of RDssler system are found

to converge to UFPs in the cases, which correspond to

7 = 3.3 and 7 = 9.3. in these cases, the value of K

weakly affects the stabilization of UFP compared with

the stabilization of UPO.

GA

Decide weight

Evaluate fimess

iXl,Xh.iX.-2i n

weight

-:tse&-:""

Mess, 1YnYtu1
Fig. 11 BIock of diagram Genetic algorithm

shows the dependence of < D2(t) > on K in the cases

with T = 5.9, T = 11.75 and 7 == 17.5, respectively. It is

seen that K == O.18, K == O.12 and K = O.06 correspond
to the local minimal of < D2(t) > for period one ,two

and three cycles, respectivelY. Fig.16 shows an example

of failure for controlhng chaos in the case with K == O.8,

7 = 5.9 for the initial condition xo =: yo =: zo =: 5.5.

The chaotic attractor is seen. Fig.17 shows an example

of a success for the control in the case with K = O.18,

T == 5.9, the same initial condition as those in Fig.16

The period-one cycle is seen as the result of stabiliza-

tion. Fig.18 shows the time evolution of y and F in
this case. The origin of the curve F corresponds to the

time when the perturbation is switch on. The pertur-

bation becomes small after a transient process and the

system comes into the periodic regime, which initially

4.

z

x
y

Fig. 12 Chaotic attractor of RDssler system
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Fig. 13 x-y phase portrait of Rossler system

Control of chaos system using a
neural controller

   in this chapter, we apply a neural network control-

ling method to Rossler system. Fig.22 shows the block
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diagram of the original neural controller. When the or-

bits X(t) and X(t -- 7) of the chaotic system without

control satisfy

              llX(t) -X(t- 7-)ll <c (38)

the watcher passes a control signal from NNC to the
chaotic system. We apply a neural controller to stabilize

UPO in Rossler system with three-dimensional chaotic

system in the following

            {Si} = -Y -z+ U, (t)

            :t3/ =: x+ O.2+U, (t) (39)
            3-/ = O.2 + z(x - 5.7) + U3 (t)

in this case, ]N[NC consists of three input neurons and

three output neurons as shown in Fig.23. In the follow-

ing, we examine the performance of threshold imctions

and the sensitivity to the initial conditions. Three cases

with different threshold imctions are investigated'for•

period-one, two and three: (1) linear function f(x) = x,

(2) the sigmoid function f(x) == ,+e-., (3) the hy-

perbolic tangent function f(x) = li.e-'I. Parameters :

c= 1.0, n == O.08, kc = 3.0 and ku == 1.0 are used. The

definitions are made in equztions (2.22),(2.27),(2.28)

and (2.29). It is found that the case (1) fails in the

application to all perjod cases, the case (2) fails jn the

application to period-two and three cases for ku = 1.0,

however, if we change ku == 4.2, then it could control

period-three. The case (3) works for all cases without

changing a parameter ku. Two cases with different mi-

tial values on the period-three cycle (7 == 17.5) are in-

vestigated x =y=z= 5.5, x == y=z = 9.5. It
is found that the control of chaos does not depend on

the choice of the initial condition. These results are

shown in Fig.24, Fig.25 and Fjg.26 for period-one, two

and three cases, respectively. We anaJized power spec--

trum to find the periodic orbits of the chaotic system.

Fig.27 shows the dependence of the power spectrum on

the frequency with/without control for T = 5.9. The
peak is clearly observed at f == O.17 for the case with

control, which implies to correspond to period-one cycle

(f == 1/7). Two cases with T -- 11.75 and T == 17.5 are

shown in Fig.28. Corresponding pealcs are observed at
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the Rossler

successfully controls the chaotic orbit to the periodic

cycle, or not.

   Finally, we extend the NNC with three layers such

as input layer, hidden layer and output layer. Fig.29

shows that NNC consists of three input neurons, five

hidden neurons and three output neurons. The NNC is

governed by

                    3
           Og'(tk)==2Wez(k)Xi(tk), (40)
                   t =1

f =: O.085 and f = O.057, respectively. For investigating

the power spectrum which depends on the frequency, it

is confirmed that the period-one,two and three cycle of

the Rossler system can be found by employing the NNC

with use of hyperbolic tangent function. It is tenta-

tively considired that the hyperbolic tangent imction is

the best candidate as the threshold imction of NNC for

controlling RDssler system. The numbers of updating

weights in NNC is a good indicator whether the NNC

           TJ•(tk)=f(Oj•(tk)+hj(k)), (41)
                     5
            Zi(tk)=2V,j(k)T,•(t,), (42)
                    3'=1
            Ui(tk)==f(Z,(tk)+e,(k)), (43)
wheret is the number of input neuron, 2' , the number of

hidden neuron, i, the number of output neuron, Wji is

the weight of hidden neuron, Vij, the weight of output

neuron, and Oj•(tk) is the signal which goes into neuron

of hidden layer through the weight of hidden neuron
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10

from lth neuron ofinput layer, Zi(tk) is the signal which

goes into neuron of output layer through the wieght of

output neuron from J'th neuron of hidden layer. hj•(k)

is the bias of the 2'th neuron of the hidden layer, and

ei(k) is the bias of the ith neuron of the output layer.

The weights and the biases are updated by using

                        3AWzJ (k) = 'nXiT, (1 -' TJ)2 VzJ Uz(1 --" Uz)oOuE, ((i)),

                        i= 1
                                          (44)

                       3  AhJ (k) == -nTJ (i - T2)2 Vz2 Ui(i -- Ut)aauE, ((.k,)),

                      i=1
                                          (45)
        AVz3(k)=-nTJUz(1'Uz)aOuE,((.k,)), (46)

                             OE(k)
                                    . (47)         Aei(k) == -nUi(1 - Ui)
                             aUi(nk)

   For controlkng chaos, we applied this method to the

RDssler system. But no advantage of this metod is found

so far compared with the NNC with two layers. There

fore we tentatively conclude that NNC with two layers

and hyperbolic tangent functjon as the threshold func-

tion shows the best peroformance to control the Rossler

system. It is aiso found that the suitable choice of pa-

rameter ( n, Kc, Ku ) which decide network weights
are important to stabilize the chaotic orbit.
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Fig. 22 Block diagram of the original neural con-
       troller
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Fig. 23 Neural network controller with two layers

   The Pyragas method and the on-line trained NNC
are tested for the Henon map and the Rossler system.

It is found that the desired UPO of Ressler system is

stabMzed by the delayed feedback controlling method.

However, the controllability depends on the choice of

the initial condition for period-thtee cycle as well as

the gain of perturbation. The .N. NC with linear thresh-

old function works well for the control of the chaos in

Henon map. It fails in the application to the Ross}er

system. The NNC is examined by introducipg the dif-
feTent thrE}shold function such as sigmoid function and

hyperbolic tangent function. We find that the NNC with

hyperbolic tangent imction shows the best,performace
among three cases for controlling the Rossler system. It

is also fotind that th6 suitable ehoice of parameter ( n,

kc, ku ) which decide thp, ,network weights are impor-

tant to stabilize the chaDtic orbit. We examine the NNC

with three layers. No advantage is found compared with

the ]woNIC with two layers for the Rossler system. Once



36 Takanori Saito et al .:Control of chaos by linear and nonlinear feedback methods

  10

  5

  o
y

  -5

 -10

 -15

 -10 -5 O 5               x

x-y phase portrait of
system(T :17.5,t > 1oo)

10 15

the RDssler

J
WJI

l V,iji

X(t) U,(t)

X2(t) U,(t)

X,(t) U,(t)

IhputLayer OutputLayer

Fig. 26

 1pt

 1or

lOOO

1oo

 10

  1

O.1

Fig. 29

          HidnLayer

Neural network controller with three lay-

ers

g
g.

Fig. 27

-WithOUtCOIItro}

--  -ntth eaxxtro
              ttt--s--tN"+-.----tttt
                fi

                t          t-               '     A IN
s-N'--'e"-"?"N N-i-

IM'1't'L""-N''"]-"'1"'l""'"-''v""--'llllss"

---N--v-"-'------------•..u-------.ny.....-R-)-1-r--N,

                       N

 O O.G5 O.1 O.15 O.2 025
         -. Frequency

The dynamics of power spectrum on 7

we find a snitable value of K, then the delayed feedback

controlling method is faster than NNC with hyperbolic

tangent imction, although it is not always possible for

the general case.

   As a future work, we will test the performance of

NNC in which the network weight is evolved by genetic

algorithm with good fitness function and compare the
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Appendix

Appendix: Symbiotic adaptive
neuroevolution

   In this appendix, we apply dsane(Directed Symbi-
otic Adaptive Neuro-Evolution)[6] to optimize weights

of NNC instead of backpropagation method. In this
case, the proper choice of the fitness function determines

the speed with which the GA can converge on the correct

solution.Our goal is to find a neural network that can

control a specific system such that the dynamics eventu-

ally reaches a fixed point. For simplicity, we consider a

period-1 fu(ed point difined by Xn = Xn-i, where X is

an observable and n is the n-th observation. The fitness

function consists of three parts: F = AFi + BF2 + CF3,

where A, B and C are adjustable parameters which are

system independent. The map to be controlled is iter-

ated 1000 times and the value of each part of the fitness

function is set by the behavior of the map and the net-

work.

   Fi = 1 - <An> indicates whether the network has
stabilized a fixed point by interations. An is defined by

=-- IXn -- Xn-iI/S and S is the size of the uncontrolled

attractor of the system. The average <•••> is taken over

the last 40 iterations of the map. The small values of

An result in a larger fitness Fi.

   F2 !ii 1-ln(A) quantifies the growth rate of A. near

the fixed point. If An is smaller than OLOI, the values

of An are stored until An grows larger than O.10. A is

the geometric mean of the quantities An+i/An for all

An which have been stored. When the fixed point is
successfuly stabilized by the neural network, A N 1.

   F3 rewards networks which are optimal controlleTs.

Randomly chosen network weights lead to a network
which applies the largest possible perturbation 6P to

the system. F3 is defined by the fraction of iterations

for which l6PI is smaller than O.956Prnax, where 6Pmax

is the magnitude of the maximum allowed perturbation.

If the system is exactly on the fixed point, the necessary

perturbation is 6P == e. .
   NNC consists of four input neurons, seven hidden

neurons, and one output neurons. The input neurons

are assigned the values Xn, Xn-i, Xn-2 and Xn-3•
The value y of the output neuron sets the perturba-
tion applied to the system 6P = 6PmaÅë(2y - 1), where

O < y < 1 and 16Pj < 6Pmax. Parameters for the evo--

lution in the GA are given as follows. (1) population

size consists of 1oo neurons, (2) neurons in 30 percent

of the population is preserved for each generation, (3)

neurons in 60 percent of the populations is formed by

crossover, and (4) neurons in 10 percent of the popula-

tion is formed by mutation.

   We have translated the original code written in C

into Fortran 9e. [[he benchmark of two codes aTe done,

however, it is found that GA depends on the random.
number(in other words, it is the probabilistic), therG

fore, both results are not agreed with each other. Some

numerical results foT Henon map are shown. The map
is described by

{ l$il)) :. k??.S ?'3,l (n)-Xi(n)2+E+6pi,

                                         (Al)
where E == O.oo1 is the noiselevel.

   We have three runs. Fig.Al shows the evolution
of the fitness in each generation for the Henon niap.

It is shown that the evolution of fitness depends on

initjal populatjons, mutation and crossover whjch are

controlled by random number. Two cases successfully
evoluve to high fitness values, however, one case fails.

Fig.A2 shows perfoTmance of the best network in cases

with fitness values: 600,800,850 and 9oo, respectively.

The Henon map is well controlled for the case with the

fitness value larger than 9oo.

   As a future work, this algoritim should be applied to

the Rossler system to evaluate the network performace.
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