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Abstract

The interaction between the universal drift wave and the convective cell in the shearless slab geometry
is investigated using a kinetic-fluid model based on nonlinear gyro-kinetic equations. It is found that the
convective cell is nonlinearly excited in a way, which is similar to the zonal flow generation of ITG turbulence.
On the other hand, if we introduce the large ion-ion collision effect, the zonal flow is damped and instead the
streamer and finite ky modes are excited in the convective cell mode. As the result, the flux is larger than
the one without collision. The forward cascade is observed in kz space and the forward/inverse cascade is
observed in ky space in the time evolution of energy spectrum.

Key words : Universal drift wave, Convective cell, Zonal flow, Streamer, Nonlinear simulation, The
effect of ion-ion collision, Kinetic-fluid model

1. Introduction

Research on anomalous transport in high tem-
perature plasmas is important issue in thermo-nuclear
fusion research. It is considered that the drift wave
contributes to anomalous transport. The ion temper-
ature gradient (ITG) driven turbulence is caused by the
drift wave destabilized by the ion temperature gradi-
ent. Recently, there has been a considerable progress in
the gyro-kinetic particle-in-cell simulation of ITG driven

1.2)  These simulations have demonstrated

turbulence
that zonal flows 3 play a crucial role in regulating drift
wave turbulence and the level of the anomalous ion
transport. The theoretical explanation for the gener-
ation of zonal flow has been proposed based on a mod-
ulational instability 5), Later, a four-mode model of
zonal flow growth in toroidal geometry has been devel-
oped 6). While works ¥ % © have provided a firm the-
oretical foundation on this subject, the direct compar-
isons to the gyro-kinetic simulation results have been
only possible in certain idealized cases. Simplified as-
sumptions made for analytic theory are not always satis-
fied in simulations of turbulence. It is worth performing
the simulations in a simplified geometry and comparing
the results with those from the theory.

In this thesis, a kinetic-fluid model " in a shearless.

*1 Interdisciplinary Graduate School of Engineering Sci-
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*2 Research Institute for Applied Mechanics, Kyushu Uni-
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slab geometry is used to study the problem. This model
is an extension of the model proposed by Smolyakov 8)
and Hinton 9), which include the nonlinear interaction
between z-axisymmetric potentials in zonal flows and 2-
nonaxisymmetric potentials in drift waves 9. The adi-
abatic electron is assumed, therefore, no unstable drift
wave is included. They assume the marginally stable
drift wave with w; = 0. Our model can describe the
universal drift wave turbulence and nonlinear excitation
of convective cells (CC) 1), in which zonal flows and
streamers by drift waves are included. The schematic
diagram of zonal flow and streamer is described in Fig.1.
The zonal flow and the streamer are one of Fourier com-
ponents which constitute the convective cell. In chapter
2, we review simulation and theory of drift wave tur-
bulence and convective cell dynamics in later 70’s, and
the recent theory of ITG and zonal flow turbulence dy-
namics. In chapter 3, we explain our model equations.
In chpater 4, simulation results are discussed. Finally,
discussion and summary are given in chapter 5.

2. Review

2.1 Convective Cell

2.1.1 Numerical Simulation of Drift Wave Tur-
bulence

In later 70’s, three dimensional particles simu-
lations were performed on the collisionless drift insta-

bilities in a cylindrical geometry 1) The simulation
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Fig. 1 Schematic diagram of zonal flow and
streamer. Red lines expresses maxi-
mum amplitude, blue lines expresses
minimum amplitude of the wave

model used was a straight cylinder in an uniform exter-
nal magnetic field By in the z direction with its length
L./p; = 640, p; = (T3/m;)'/?/<; being the ion gyrora-
dius, where m; is the ion mass, T; is the ion tempera-
ture and €Q; is the ion cyclotron frequency. For numer-
ical computation with its physical length L/p; = 32, a
64 x 64 (L?) spatial grid was used. The plasma was as-
sumed to be periodic in z direction. Initial conditions
of ions and electrons had Maxwellian velocity distribu-
tions with T, /T; = 4, where T, is the electron temper-
ature. Initial plasma density profile was taken to be
ne(r) = ni(r) = noexp(—4r2/a®) with the average den-
sity given by Q. /wpe = 5, mi/me = 100,a = L/2, where
Q. is the electron cyclotron frequency, wpe is the elec-
tron plasma frequency and o is a half width of density
profile; and there was no initial temperature gradient.
Seven Fourier modes n = 0,+1,+2, £3, where n is the
Fourier mode number in z direction and the mode with
n = O(w = 0) is defined as convective-cell mode, were
kept in z direction with the wave number k, = 2wn/L,.
Linear analysis predicts that the collisionless drift in-
stability (universal mode) is strongly unstable against
n = +1 perturbations, which becomes stable with in-
creasing |n| due to the onset of ion Landau damping.

Fig.2 shows the particle diffusion, heat transfer,
electron velocity distribution, and radial-mode structure
for the 3% associated with the instability of the elec-
trostatic potential ¢mn, where m is the azimuthal mode
number with kg = m/r. While ions and electrons diffuse
more or less together in the early stage, large charge sep-
aration built up at a later stage. This is because of the
difference of radial cEy/B drifts of ions and electrons,
where Ey is the fluctuating azimuthal electric field as-
sociated with the drift wave. The observed anomalous
particle diffusion was mainly due to drift instabilities
at the early stage. At the later stage, it was due to
nonlinearly excited convective cells, which enhance the
diffusion even when the drift instability is quenched.

The electron parallel temperature T, rapidly de-
creases for r/a > 0.5 because of the inverse Landan
damping. It increases for r/a < 0.5 because of the ab-
sorption of wave energy. The electron parallel veloc-
ity distribution is steepened because of inverse Landau
damping. Ion perpendicular temperature T;, increases
due to the convective cells. Ion parallel temperature
T;) changes little because the contribution from the ion
Landau damping is weak. A typical drift-wave radial
mode-structure of [e@mn (r)/Te| with m/n = 3/1 shows
a peak near r/a = 0.5 at the early stage. After reach-
ing the maximum amplitude of 10% at wpet = 1040, it
begins to decrease as a result of nonlinear excitation of
convective cells (n = 0,w = 0).

Fig.3 shows more detailed diagnostic of the in-
stability: spectral distributions |E2(m)| and |E?(n)|,
and power spectrum Ppn(w,r) where |E*(m)| =
En | e¢m£(tﬂ‘)|2, lEz(n)I - Zm !e¢m£1(tx")12 and
Prn(w,r) = |<2ma@D 12 |E2(m)| indicates typical
spectral profile for drift turbulence as seen in the exper-

iments; it peaks around kg¢p; = 0.3 ~ 0.6, corresponding
to the m = 2,3 and 4 modes for this case. The ampli-
tude decreases rapidly for kgp; > 1 (m > 8). The shape
of the spectral distribution little changes from early
stage. The shift of the peak of the spectrum toward low
m numbers was seen. The shift of peak was due to the
nonlinear excitation of convective cells which tend to co-
alesce into large cells. |E2(n)|, on the other hand, shows
a drastic change when the instability develops into a
nonlinear regime. We see that at earlier times the spec-
trum was peaked at n = 1 (k, = 2n/L.) and decreases
rapidly with increasing n. The n = 0 mode, which may
be called ’convective-cell mode’ (k. = 0,w = 0), also
grows as the drift instability grows; and eventually they
dominate over the drift instability. Note that this state
is not the ambipolar field (m = n = 0) (it is called zonal
flow in the recent terminology). The excitation of con-
vective cells is clearly seen in the power-spectrum plots
Prmn(w) at r/a = 0.5, where we see both drift modes
(n # 0,w # 0) and convective cells {n = 0,w = 0). For
the case of m = 3 mode, the power spectrum indicates
that the amplitude of drift mode (n = 1) was much
larger than that of the convective cells (n = 0), while
for m = 1 case , convective cell components are much
stronger than the drift mode ones.

2.1.2 Nonlinear Mechanism for Excitation of
Convective Cell

In this section, the theoretical work for the ex-
citation of CC is reviewed. It is based on the decay
instability.

A system of equations describing the nonlinear inter-
action of the drift waves with the convective mode are
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Fig. 2 Time variation of (a) ion and elec-
tron density profiles n;(r) and n.(r)
in terms of number of particles
summed over a given volme; (b) elec-
tron parallel temperature T (r),
ion parallel temperature T;(r),
and ion perpendicular temperature
T;1(r) in terms of thermal electron
energy m.v2/2 = 6.2; (c) electron
velocity distribution; and (d) radial-
mode structures for the (m,n) =
(3,1) mode.

Fig. 3 Time variation of (a) spectral distri-
bution |E%(m)| and spectral distri-
bution |E%(n)|. Power spectra for
(c) the (m,n) = (1,1) and (1,0)
modes indicate two peaks near w ~
0 and w*.
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Fig. 4 Comparison of electron density dif-
fusion with and without convective
cells (k;) = 0. Note that at wpt =
1960, convective cells have larger
amplitudes than the drift waves
when the convective cells are not
delected.

on dpdn 8¢ on v
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lO—TT—V. is the ion viscosity, U = ¢ +
(Ti/e) Inn is the generahzed potential (¢ is the electro-
static potential), and A = 8/8x? + 6%/8y*. The last
term in eq.(2) describes the density perturbation due to
the longitudinal electron motion and is important only
for the drift mode, where H (B = pH) is the magnetic
intensity and wg; is the cyclotron frequency.

Here g =

All quantities corresponding to the collective particle
motions were separated into two parts, describing the
drift and convective cell modes, respectively as:

¢ = ¢c(t9 z, y) + ¢d(t’ T) .
on = én°(t,z,y) + on’(t, r) (3)

where superfix ¢ and d denote the convective cell and
drift wave, respectively. For the existence of the drift
wave, the condition |w?| < k,v7e holds, so the Boltz-
man distribution was always established because of the
fast electron motion in the longitudinal direction;

d__ Le 5nd ]
= e ln[1+ no(z) + one @
Using eq.(4) and assuming that 6n° <« mno and

142 Inno| < 1, the equations for the density and the
potential variation in the drift wave are obtained from
eq.(1). For the slow mode of plasma motions which are
homogeneous along the magnetic field, we obtain the
following system of equations from egs.(1) and (2):[13]

65nc_i6¢°ii_7_z_9___c_ %&hc 8¢°66n (5)
9 Hdy de ~ H\ 9y or dr 8y
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where U° = ¢° + (Ti/e)(6n°/no) and Dp is the Bohm
diffusion coefficient. The angle brackets on the right
hand side of eq.(6) denote an averaging over a spatial
interval ~ 1/k,. The nonlinear terms retained on the
left hand side of eq.(6) are responsible for the inherent
nonlinearity of the k,
pumping between different k; scales. The terms in the

= 0 mode and describe the energy

right hand side of eq.(6) are responsible for the excita-
tion of k; = 0 mode in the nonlinear interaction of drift
waves.

Assuming that the contribution to anomalous
plasma transport is due to slower mode of the con-
vective cells, the analysis is restricted below to this
mode, and assumes |w®| < w, which corresponds to
e¢® K Ti(6n°/no). Using the latter condition and omit-
ting those terms which are responsible for the inherent
nonlinearity of the drift waves and convective mode, the
following system of equations, which describes the inter-
action of the drift waves and convective cells, is finally
derived [13].

dén? dlIn ng &6n? g2 8

o PP oy — b g Adn’
_ _Ds (65n" bn°  don® 8én° ) @
- 8z - By dy Oz

g c
(’a't - yA) Aén

T. 86n? 8 65n 8
= Do ((Ty 5~ B 3y) 20 ©
The dispersion relation of the drift waves in eq.(7),
_ dlnng 1
w? kyDp—— dr 14 k202 ¥ k2 2 ©)

follows from the general equation for the drift frequency
12).

dInng ING3)
& 1+ B(1-T()

w® = —kyDp (10)
in the limit of Ty < Te, k1 p:(T3y/Te)? <« 1, where
() = e%Io(¢) and £ = k1 p} .

In the short-wave length part of the spectrum,
kip; ~ 1, we can always distinguish the waves with
identical values of w and k, (and different values of k.

and ky ), which interact and give rise to convective cells
(Fig.5). This is described in the right side of eq.(8) since

an averaging over the spatial interval ~ k7! and over the
fast time (wq) " is taken.

A simplest mechanism for the nonlinear generation
of convective motions is known to be the decay instabil-
ity of a monochromatic drift wave. Let us examine the
decay instability. of a mode which is localized along the

z direction

6n? = bno(z) exp(ikyoy + ikz02 — iwdt)
+6n1(z) exp(iky1y + thzoz — iwat — iwt) + c.c. (11)

dn° = dng(x) exp(iky2y — iwt) + c.c. (12)
where the subscript ”0” refers to the fundamental wave,
?1” refers to the test drift wave, and kg = ki — ko. Sub-
stituting this equation into egs.(7) and (8) the equation
for dns is obtained as

d?ny | [ww+ipkl) T, nd k2o
dx? D% T. (8no)? k2,(k2, — K2,)
k2o — k3 1 (d&m) ky d?
——1Indno| dna
kg (5710)2 dz kyo dz dx?
=0 (13)

Multiplying eq.(13) by én2 and integrating it over
the plasma slab, —a < = < a and assuming that the
spatial region to which the convective mode is confined
is much smaller than the drift wave region, A° < A9,
we obtain the following approximate equation for the
instability growth rate

2 2 _ |2
Te (5n0) yOk2 y1 (14)

v% = DpkyokS
Y Tz 2,

where k§ = w/A°. It is found that the characteristic
time of the convective mode growth in numerical simu-
lations agrees with that for the decay instability of drift
waves.

The mechanism for the nonlinear generation of con-
vective cells studied here is extremely important to mag-
netic plasma confiment, since it is obvious that the slow
plasma motions in these cells can substantially raise the
diffusion confinement, as demonstrated in the numerical

simulations 1.

1
g, ™

Fig. 5 Dispersion of drift waves in a non-
isothermal (T, > T;) plasma. wi =

dl . ]2T;
~D 38/, wn = /2 e
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2.2 Dynamics of Zonal Flows and Drift
‘Wave Turbulence

In this section, the recent theoretical works on
the zonal flow generation in ITG turbulence is reviewed.
Zonal flows 1% are poloidally and toroidally symmetric
(ks = k. = 0), zero-frequency (w = 0) vortex modes
with finite radial scale (k, finite), and thus constitute a
limiting case of the more general notion of a “convective
cell” 19 Since zonal flows are azimuthally symmetric,
they are unable to directly tap expansion free energy
stored in radial gradients and are thus excited exclu-
sively via nonlinear process, such as “inverse cascade”
of drift wave turbulence. Zonal fiows are of great signifi-
cance to confinement physics, since they are, effectively,
sheared E x B flow layers which strain and distort the
drift waves they co-exsist with 15)

Zonal flow shearing is the principle saturation mech-

anism operating in drift wave turbulence. Generic

drift (or drift-ITG) turbulence may be modeled as a self-

regulating, two component system, consisting of:

a) drift waves(with kg # 0), which cause anomalous
transport, and for which /n ~ ed/T.

b) zonal flows with k¢ = 0, for which fz/n ~
(k2 p2)ed /T, which share available gradient free energy.
The confinement regime quality is thus characterized by
the branching ratio of zonal flow and drift wave energy.

2.2.1 Nonlinear Dynamics of Zonal Flows

The equation for the zonal flow intensity U =
|¢q|? is modeled as

d
&U-i"YdU =

Here <4 reffers to the collisional damping, [Growth|U
refers to amplification due to drift-wave coupling and

[Growth|U + [Noise].

[Noise] refers to incoherent emission of drift wave en-
ergy into the zonal flow. Since the drift wave gas must
maintain a divergence-free radial current (composed of
polarization and transport-induced currents) and since
the zonal shear flows modulate the transport-induced

current, it follows that zonal flow stability is determined _

by:

5@+ 2|20 )

Here ¢ is the zonal flow potential, (J,) is the transport-
induced radial current and p is the polarization screen-
ing length. Since the radial current is simply the differ-
ence of electron and ion radial flux, it follows that the
frequency 2, of a zonal flow mode with radial wavenum-
ber ¢ is '

—(a°®) " (a8T- /585) (16)

Here I'_ is the relative flux. I'_ is very detail-sensitive,
since it involves the dissipative couplings of the various

species. However, the generalized quasi-linear wave en-
ergy theorem (Poynting theorem) directly relates I'_-to
radial wave energy density flux at stationarity. Thus,
the zonal flow frequency can be written as:

[Pacs Z ko — 6k;,

Here k and eq~5£ /T refer to drift waves (kg # 0) and € is
the difference of the real part of ion and electron suscep-
tibilities. For simple drift wave models, 8¢/0k, ~ —k. p2
s0 w ~ kok|ed/T|> ~ (inp), the Reynolds stress.
Thus, zonal flows are seen to arise from modurations
of the drift wave Reynolds stress.

The appropriate adiabatic invariant for drift wave tur-

e¢k
Q4q’p® = —ig® —

] (17)

bulence in azimuthally symmetric shear flows is

e¢h

_ k2 22
NE)=Q1+ T

(18)

N is, in general, the (conserved) potential enstrophy 2
and is equal to the classical action only for the special
case of (zonal flow)-(drift wave) interaction, for which
ko is constant. Thus, the zonal flow growth rate may be
written as

1
2
Qq‘fp - _7"1 pscs Zkoakr (1 + k2 p2)2 5¢ (19)

The quantity §N/d¢ may be straightforwardly com- .
puted via linearization of the wave kinetic equation

(7 a ON
&N‘F(EQ‘FK)'ZN—@(W‘FE'K)'&'

= y(k)N — Aw(k)N? ) (20)

Here u, is the drift wave group velocity, V is the zonal
flow,y(k) is the drift wave growth rate and Aw(k)N?
represents a damping of drift wave quanta due to lo-
cal nonlinear coupling to damped scales. Linearizing

©q.(20) finally yields the zonal flow growth rate

2 k2p2)(krO(N) Ok,
o= — ZQq E[( ap(i(+k2( 2)/2 )

xR(E, )1 - m)] (21)

where R(k, g) is the resonance function

R 0) = /(1R + Q- a%(0)?)  (22)

and Vj refers to the radial component of the wave group
velocity. .

The noise emitted into the zonal flow may be deter-
mined by calculating the incoherent mode coupling into
modes with g, finite and gs = ¢, = 0. For a simple
plasma model(classical polarization), the calculation is
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most efficiently done using two dimentional hydrody-
namics. The resuit is:

2 2 2
2 Pl = (g% W A )

k3)? (1+k2p2)%

423)

Note that the noise resembles the square of Reymolds
stress, as it should. The zonal flow spectrum equation
thus finally is:

( 5 +'Yd) |¢q| =
(o5 e, 0 o
&

4(’63’92)2 (N(K))®
+ 9203¥Ps (ki;z ar kf_p?)z R(k,q) (24)

where f(gp) = p*/p3[1 — /(1 + K1.02)].

Zonal flows shear and distort the drift wave spec-
trum which drives them. Thus, the zonal flows consti-
tute a random strain field which randomly refracts drift
waves, causing a diffusive increase in k, which in turn
enhances their coupling to small scale dissipation. The
quasi-linear equation is given by

Ny 8 a(N)

ot " Por v(k)(N) — Aw(k)(N)?  (25)

where
2 2 q2P2 2 2 2
D= k 1——2F 9 R(k R
Eq 99 ( 1+kiP?) (pscsq)” Rk, q)|q]

(26)
From egs.(24) and (25), we obtain zero-dimensional

model for U = |¢|2 and (n) = (N)/(p3/L3) as
% + 74U = o{n)U + [Noise] (27)
on
¥ i [5 (M)](n) — a(n)U (28)

where v4 =~ wvii/\e, 0 ~ (gps)%cs/L.d and a =
(¢%c2)(¢%p2%)/(6¢cs)/L1. The stable fixed point in these
equations is the finite flow state with

2 2 %2
~o (L) B 29
L) Gy (29)

which corresponds to a thermal diffusivity

lr'z
n

2 v Kk
x~ Dgg [6 /L) -E-;] (30)
where Dgp = p2cs/L., the gryo-Bohm diffusion coeffi-
cient. A striking feature of these results is the explicit
proportionality of the fluctuation level and transport co-
efficient to the collisional flow damping va ~ v4;. This
is a consequence of the fact that the flow is both driven

by, and also regulates the strength of, the drift wave
spectrum. Hence, increased collisional damping of the
zonal flow makes it more difficult to excite the flow and
to saturate the drift waves, thus leading to increased
transport in this model.

3. Kinetic-Fluid Model for Drift
Wave

To investigate the interaction between univer-
sal drift wave and convective cell in shearless slab ge-
ometry, kinetic-fluid model *1'1?) js derived. To de-
rive the model, we assume the distribution function
is maxwellian in v, space and integrate the nonlinear
gyro-kinetic equation 17) over the velocity space. The
linear closure relation is used for the first moment of v,,
which ensures the exact linear dispersion relation. The
ion continuity equation is written by
%nk — dwaloriZipr + 7(1 + FoxCiZi) == e
X Z (b . k” X kl)¢k1xk11 (nku + Tqbku) =0, (31)

k=k' +k"

¢k+

and the electron continuity equation is

pi] o
ik — e Zedh — (L4 (2 + k%) i + g

x Z b-k" Xk )y (mr —k 2A\2,r) =0, (32)

k=k' +&"

where ny, is the fluctuating ion density and ¢ is the elec-
trostatic potential, w. = 7kyp?/(2L,) is the normalized
diamagnetic drift frequency by the ion cyclotron fre-
quency €, p; is the ion gyro-radius, 7 = T, /T; is the
ratio of electron and ion temperature, A2 = 707/ (2w;",,),
wpi is the ion plasma frequency, I'gx = Io(br)e "
with by = kZ2p?/2, Z;. are plasma dispersion func-
tion with the argument {; . = w/(k:v¢nie) and x» =
2f0 dzze™™ Jo(bl/2 z)Ji (bl/az)Jo(bi,/,zz)/I‘Oku, where
I is O-th order modified Bessel function and Jo is 0-th
order Bessel function. The factor 1/2 in egs.(31) and
(32) appears due to the definition of thermal velocity.
The Poisson equation is used to eliminate the fluctuat-
ing electron density in the electron continuity equation
10)

The energy conservation relation is obtained from
egs.(31) and (32)as

3 (Re(sz)-g—t Iée[? + 2Re(s1) | — 2Im(sz)

k
x Re(¢u)Im(¢n) - Im(¢k)R€(¢'k)) =0 (33)

where Re shows real part, Im shows imagenary part of
the argument, 81 = iwwe((cZe —0¢iZi), 82 = 14+(eZe+
k22 + Je(1+ To(:Z:) and ¢ = 32. In the fluid ion and
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near adiabatic electron response 1 < (;,{c < 1, ie,
Vehi K 3= K Vthe, it is reduced to

%( S {1 4K 471~ Tor)} Il

ko ky k20

+ Z {K*X* 4 7(1 — Tox)} |¢k{2> =0. (34)

- kg, ky, k=0

The first term in LHS (left hand side) represents the
drift wave energy and the second term represents the
convective cell energy. In the same limit, the dispersion
relation of universal drift wave is analytically evaluated

as
. weTok v (1+‘r)w*\/‘r_r
T 14+7(1—-Tok)  (14+7(1-T%))?
x ((1 — Tok)¢ee ™ — FOkCie_C?)~ (35)

The dispersion relation shows that the universal

drift wave is destabilized by the inverse Landau damp-
ing and is stabilized by the ion Landau damping. Based
on this model, the universal drift wave turbulence is
investigated numerically and is discussed in the next
Chapter.

4. Simulation results
4.1 Numerical Scheme

Eqs.(31) and (32) are solved as follows. Initially
the linear eigenvalue w and eigenfunction are calculated
for given parameters, then w is fixed as a constant in
plasma dispersion function. Now, egs.(31) and (32) are
formally expressed by the following equation

o
57 Yk + f(Ye, Ya) + AY, =0 (36)
where Y3, = {¢«,nr}, A is a numerical constant in-

cluding plasma dispersion function. The time step is
advanced by the predictor-corrector scheme. Nonlin-
ear Landau damping is not taken into account in this
scheme, however, it might be possible if A = A{w) is
advanced in time numerically.

In present numerical simulations, the following pa-
rameters are used: 16 x 32 x 8 modes in kg, ky, k-
space, kg0 = kyo = 0.15, k;o = 0.02, m;/m. = 1836,
Q3 /wz; = 10, p;/Ln = 0.2(the wave number is normal-
ized by ion gyro-radius). Fig.6 shows k, dependence of
the real frequency, which is normalized by the ion cy-
clotron frequency €2;, and growth rate of universal drift
wave in the cases with k; = 0.15 and 2.4 for k, = 0.02,
respectively. It is shown that the universal drift wave
is unstable in the short wavelength region (large-|ky|).
Larger |k;| makes the universal drift wave more stable.
It should also be mentioned that for larger k., the uni-
versal drift wave is stable.

4.2 1D and 2D Spectra of Energy

To investigate the normal cascade and inverse cas-
cade processes in the wave vector space, we define the
following power spectra according to eq.(34). The en-
ergy spectrum in k. space of drift wave is defined by

Bpw(k:) = Y _ {1+ k°A*+7(1 - To)}gwl* .(37)

kz,ky

Then the drift wave energy Epw and the convective cell
energy Ecc are written by

Epw = ZEDW(kz), (38)
kz

> PN Hr(1-Ton)} g (39)

kzyky:kz=0

Ecc =

In the components of Fourier modes which consti-
tute the convective cell, the zonal flow component cor-
responds to ks # 0,ky = k; = 0 and the streamer com-
ponent corresponds to k; = k; = 0,ky 7# 0. Similarly,
1-D(dimensional) and 2-D spectra of the potential and
internal energy Fy4 and E, are defined by

Ep(k:) = Y |onl>, Bnlka) = ) Ial®,  (40)

ke, ky kz,ky

and

Ep(ka,ky) = Y l64l, En(ka,ky) = D Inal®, (41)
kz ks
respectively.

4.3 Collisionless Simulation of Universal
Drift wave

Fig.7 shows the time evolution of the drift wave en-
ergy Epw and the convective cell energy Ecc. The
energy of each mode with k, = 0.02,0.04, and 0.06 is
also shown. The maximum growth rate of the drift
energy comes from the longest wavelength mode with
k, = £0.02. Tt is seen that the convective cell and the
drift wave with short wavelength of k. are also excited
at t > 800. The amplitudes of these modes are seen to
reach almost the same level as those with k., = +0.02
at t > 1300.

Fig.8 shows the time evolution of 1-D spectrum of
the potential and internal energy as the function of k..
Time slices of ¢t = 100,200, ...., 1600 are shown. It is
seen that the convective cell grows after the excitation
of k, ~ +0.06 modes and the cascade occurs in k. space,
simultaneously. As is also seen from Figure 4.3, the
spectrum are almost flat in k. space at t = 1300. The
normal cascade is observed in addition to the excitation
of the convective cell.
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Fig. 6 k, dependence of the real frequency
and growth rate of the universal
drift wave in the cases with k; =
0.15,2.4 for k., = 0.02.

Fig. 7 Time evolution of the drift wave en-
ergy Epw and the convective cell
energy Ecc. The energy for each
mode with k&, = 0.02,0.04,0.06 is
also shown

Fig.9 shows the time evolution of 2-D spectrum
of the potential and internal energy as the function
of k, for the case with k&, = 0.15. Time slices of
t = 10, 50, 100, 200, ..., 1600 are shown. The cascade and
inverse cascade occur in k, space, the spectrum tends
to be uniform at ¢ = 1400. The excitation of zonal flow
k, = 0 is observed. This might be explained by the
theory discussed in Chapter 2.

Fig.10 shows the 3-D power spectrum of convec-
tive cell energy of potential and density in k, space
at t = 1500. The corresponding time is marked in
Figure 4.2 by the arrow. The excitation of zonal flow
with £, = 0 component in the potential energy is seen.
The cases with k; = 0,40.15,+0.30 are plotted. It

Fig. 8 Time evolution of 1-D spectrum of
the potential and internal energy.
Time slices of ¢ = 100, 200, ..., 1600
are shown.

is clearly seen that the components of zonal flow with
kz = 20.15 are dominant in the convective cell energy
of potential. On the other hand, Fourier modes with
k; =0.3,k, = 0.3 and k; = —0.3,k, = —0.3 are domi-
nant in the convective cell energy of density.

Fig.11 shows the time evolution of the Fourier modes
in the convective cell energy of potential. The streamer
with k, = 0.15 is dominant in convective cell energy at
t = 1300 as is indicated by the arrow. The zonal flow
with k; = 0.15 grows gradually and becomes dominant
at ¢ ~ 1600.

Fig.12 shows the time evolution of the convective cell
energy spectrum of density for finite k. modes. This is
plotted because the spectrum of E, is different from
the spectrum of Ey. The modes with k. = 0.15 and
kz = 0.30 are plotted for k, = 0.0,0.15,0.30 and 0.45.
It is seen that all Fourier modes in CC start to grow
t ~ 600. This is a clear identification of the nonlinear
growth of CC with finite k£, modes.

Fig.13 shows the contour plot of the flux I'(z,y,z =
0) at ¢t = 390 and ¢ = 1590. The flux is cal-
culated by the inverse Fourier transformation( which
means the transforming a physical quantity from the
wave vector space into the real vector space) of I' =
Dok T (—tky #,). Longitudinal or transverse
axis is the y or the z axis, respectively. The red part



Reports of Research Institute for Applied Mechanics, Kyushu University No.127 September 2004 21

——fxz 0.150:T= 10
iz 0.160:F2 50
[J

Fig. 9 Time evolution of 2-D spectrum of
the potential and internal energy
with k; = 0.15. Time slices of t =
10, 50, 100, 200, ..., 1600 are shown.

indicates high level of flux. It is seen that the large
size vortex collapses into the small size elongated vor-
tex at ¢ = 1590. This collapse means that the irregular
contour of flux(including the convective cell mode and
the other modes) becomes eventually the similar level.
These vortices move to the direction of E x B , which
are similar to the motion of the zonal flow.

4.4 Collisional Simulation of Universal
Drift Wave

To investigate zonal flow damped by collision 5) , the
effect of ion-ion collision is investigated. It is included
into the model equations by replacing 7% - % + Vi in
the ion continuity equation.

Fig.14 shows the time evolution of the drift wave
energy Fpw and the convective cell energy Fcc in col-
lisional case. It is found that the convective cell energy
is more rapidly growing and is larger than the drift wave
energy compared with those in collisionless case.

Fig.15 shows the 1-D spectrum of the potential en-
ergy E4 and internal energy E, as the function of k..
Cascade occurs in k, space and the convective cell is ex-
cited. It is found that the excitation of CC is stronger
than that in collisionless case. The growth of linear drift
wave is not clearly observed in spectral space.

Fig.16 shows the time evolution of 2-D spectrum of
the potential and internal energy as the function of ky
for the case with k; = 0.15. The cascade and inverse
cascade occur in ky space. It is found that the excitation

0.0 —

Y

[X " o kx= -0.30 § ]

—O-—~kx= 0.15
& fx= 0.30

Fig. 10 3-D power spectrum of the convec-
tive cell energy of potential and den-
sity in ky space at ¢t = 1500. The
cases with k, = 0,1+0.15, +£0.30 are
plotted.
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Fig. 11 Time evolution of Fourier modes in
CC energy of potential

of zonal flow is weak in this case. Other Fourier modes
are dominant in CC energy as is shown in the next two
figures.

Fig.17 shows the 3-D power spectrum of CC energy
at t = 800 in the collisional case with v;; = 0.01. The
time ¢ = 800 corresponds to the almost final phase of
simulation and after that, the simulation breaks down
due to the numerical instability. It is found that the
zonal flow is damped by collision, however, the finite k,
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Fig. 12 Time evolution of Fourier modes in
CC energy of density for finite k,
modes. The modes with k, = 0.15
and k; = 0.30 are plotted for ky =
0.0,0.15,0.30 and 0.45.

sopt

T8 093155060
FiL 10 Te . SREH3

ko]

GI-IGE  O1SWED Lol
FLUZ wintes =0 1IE-O2 0.4 90800

Fig. 13 Contour plot of the flux I'(z,y,z =
0) at £ = 390 and ¢t = 1590.

modes are excited instead, which are large contribution
of CC energy.

Fig.18 shows the time evolution of CC energy spec-
trum of potential for the case with v;; = 0.01. It is
seen that the component of streamer k. = 0.0,k, = 0.3

Fig. 14 Time evolution of the drift wave en-
ergi Epw and CC energy Ecc for
vii = 0.01(collisional-case). The
energy for each mode with k, =
0.02,0.04,0.06 is also shown.

Fig. 15 Time evolution of 1-D spectrum of
the potential and internal energy for

vi; = 0.01(collisional-case). Time
slices of ¢ = 100,200, ...,800 are
shown.

is dominant in CC energy in this case. Zonal flow
ke = 0.15, ky = 0.0 gradually stays in quasi-steady state
during ¢t = 670 ~ 720, then starts to grow again. The
collisional effect makes the zonal damping, however it
also contributes to the excitation of other modes. The
simple conclusion for saturation mechanism is not drawn
in this case comparing to ITG case. The difference
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Fig. 16 Time evolution of 2-D spectrum
of the potential and internal en-
ergy with k, = 0.15 for v =
0.01(collisional-case). Time slices of
t = 100, 200, ..., 800 are shown.

might come from shearless and sheared slab geometry.
Fig.19 shows the time evolution of the CC energy

spectrum of density for finite k, modes in the presence of

ion-ion collision (v;; = 0.01). The modes with k; = 0.15
and k; = 0.30 are plotted for k, = 0.0,0.15,0.30 and
0.45. For k; = 0.15 modes, k, = 0.15 mode starts to
grow rapidly at ¢t = 500 and reaches almost the same
amplitude as other modes at ¢t ~ 700. For k. = 0.3
modes, the growth of zonal flow and k, = 0.15 mode
is similar for ¢ > 500 and both become dominant in
t ~ 650. The amplitude of the CC energy is almost
the same as the one of collision-less case (Figure 4.7)
when the CC energy starts to grow. Comparing the
result in Figure 4.7 and Figure 4.14, we see that the time
necessary to reach the same level is different. Namely,
the collisional case is almost the half of the collisionless
case.

Fig.20 shows the contour plot of the flux ['(z,y,z =
0) at ¢ = 490 and t = 690 for v; = 0.01, respectively.
The similar patterns are observed comparing with col-
lisionless case. However, the vortex size is smaller than
that in collisionless case.

Fig.21 shows the time evolution of convective cell en-
ergy and flux for the cases with v;; = 0 and v;; = 0.01.
In the case with v;; = 0.01, the growth of flux and con-

vective cell energy is rapid compared to the one without- --

collision, since the zonal flow is damped by collision. It
is found that the flux and convective cell energy cor-
relate to each other and reach almost the same levels.

Fig. 17 3-D power spectrum of CC energy of
potential and density in k, space at
t = 800 for »; = 0.01{collisional-
case). The cases with k: =
0, +0.15, +0.30 are plotted.
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Fig. 18 Time evolution of Fourier modes in
CC energy of potential for v; =
0.01(colisional-case).

Streamer and finite k, modes contribute to the flux in
this collisional case.

5. Summary and Discussion

Kinetic-fluid model in the shearless slab geometry
is introduced 19 using linear closure relation for the first
moment of v/, which is an extention of the model pro-
posed by Smolyakov 8) and Hinton ). This model can
simultaneously describe the universal drift wave turbu-
lence and the convective cell dynamics, in which zonal
flows and streamers are included.

Nonlinear simulations of universal drift wave turbu-
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Fig. 19 Time evolution of Fourier modes in
CC energy of density for finite k,
modes with ion-ion colision(v;; =
0.01). The modes with k; = 0.15
and k; = 0.30 are plotted for k, =
0.0,0.15,0.30, 0.45.

lence are performed for the collsional and collisionless
cases by using this model. For the spectrum dynamics,
the forward cascade is observed in k. space and the for-
ward/inverse cascade is observed in &, space in the time
evolution of energy spectrum. Simulation results show
the excitation of convective cell. It is also observed that
the ion-ion collision leads to strong excitation of CC en-
ergy and flux.

It is shown that the CC is nonlinearly excited which
is similar to the case of zonal flow generation of ITG
turbulence. However, no saturation is attained in our
simulations. This is attributed from the fact that in-
stability source exists in the short wavelength region of
k, space. On the other hand for ITG turbulence, the
instability source exists in the long wavelength region
and there is enough energy sink in the short wavelength
region. Failure to attain the saturation in our simula-
tion makes it difficult to compare results of the univer-
sal drift wave turbulence with the theory 2). Further-
more, the theory assumes the marginally stable system
to derive the model equations, then add the prescribed
growth rate, arbitrarily. One possible way to avoid the
numerical divergence is that we kill the instability and
investigate the damped DW turbulence or initially we
set finite amplitude of modes and investigate the non-
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Fig. 20 Contour plot of the flux I'(z,y,2 =
0) at t = 490 and t = 690 for v;; =
0.01(collisional-case).

Fig. 21 Time evolution of CC energy and
flux in cases with »; = 0.0 and
Vi3 = 0.01.

linearly self-sastained DW turbulence.

The ion-ion collision effect on zonal flow is also in-
vestigated. This effect makes the growth of CC energy
stronger. It is concluded that the ion-ion collision damps
the zonal flow and breaks down a self-regurating system
between drift wave and zonal flow. It also excites the
streamer and finite k, modes, which dominate the am-
plitude of convective cell instead of the zonal flow. As
the result, the flux is larger than the one without colli-
sion.

Fig.22 shows the flow diagram of the universsal drift
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wave energy and convective cell energy. We have shown
that the collision causes the damping of the zonal flow
and the rapid excitation of streamer and other finite
ky modes. However, we don’t know how much energy
is transferred from of the universal drift wave to each
Fourier mode (zonal flow, streamer and other finite &,
modes) in CC energy. It should be clarified. We should
also explore the mechanism of the drift wave in sheared
slab case and the zonal flow induced random shearing

as possible nonlinear saturation mechanism 5, 16),

Ecc>Epw

Loss ot} suppression mecharism

Fig. 22 Flow diagram about the universal
drift wave energy and the convective
cell energy.
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