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                                       Abstract

     The interaction between the universal drift wave and the convective cell in the shearless slab geometry
is investigatod using a kinetic-fiuid model based on nonlinear gyrQkinetic equations. It is found that the
convective cell is nonlinearly excited in a way, which is similar to the zonal flow generation ofITG turbulence.
On the other hand, if we introduce the large ion-ion collision effect, the zonal flow is damped and instead the

streamer and finite ky modes are excited in the convective cell mode. As the result, the fiux is larger than
the one without coMsion. The forward cascade iS observed in kz space and the forward/inverse cascade is
observed in ky space in the time evolution of energy spectrum.

Key words: Universal drift wave, Conveetive eelg, Zonal flow, Streamer, Nonlinear simulation, The
            effect of ion-ion cotlision, Kinetic-fluid model

1. Introduction

     Research on anomalous transport in high tem-
perature plasmas is important issue in thermo-nucleaT

fusion research. It is considered that the drift wave

contributes to anomalous transport. The ion temper-
ature gradient (ITG) driven turbulence is caused by the

drift wave destabilized by the ion temperature gradi-

ent. Recently, there has been a considerable progress in

the gyro-kinetic particlein-cell simulatjon ofITG driven
turbulence i' 2). These simulations have demonstrated

that zonal flows 3) play a crucial role in regulating drift

wave turbulence and the level of the anomalous ion
transport. The theoretical explanation for the gener-

ation of zonal flow has been proposed based on a mod-
ulational instability 4' 5). Later, a four-mode model of

zonal flow growth in toroidal geometry has been devel-
oped 6). while works 4' 5' 6) have provided a firm the

oretical foundation on this subject, the direct compar-

isons to the gyro-kinetic simulation results have been

only possible in certain idealized cases. Simplified as-

sumptions made for analytic theory are not always satis-

fied in simulations ofturbulence. It is worth perfomiing

the simulations in a simplified geometry aBd comparing

the results with those from the theory.
  In this thesis, a kinetic-fluid model 7) in a shearless.

*1 Interdisciplinary Graduate School of Engjneering Sci-
  ences, Kyushu University
*2 Research Institute for Applied Mechanics, Kyushu Uni-
  versity

slab geometry is used to study the problem. This model
is an extension of the model proposed by Smolyakov 8)

and Hinton 9), which include the nonlinear interaction

between z-axisymmetric potentiaJs in zonal fiows and z-
nonaxisymmetric potentials jn drift waves 9). The adi-

abatic electron is assumed, therefore, no unstable drift

wave is included. They assume the marginally stable
drift wave with wi == O. Our model can describe the
universal drift wave turbulence and nonlinear excitation
of convective cells (CC) ii), in which zonal fiows and

streamers by drift waves are included. The schematic
diagram ofzonal flow and streamer is described in Fig.1.

The zonal fiow and the streamer are bne of Fourier com-

ponents which constjtute the convective cell. In chapter

2, we review simulation and theory of drift wave tur--
bulence and convective cell dynamios in later 70's, and

the recent theory of ITG and zonal fiow turbulence dy-

namics. In chapter 3, we explain our model equations.

In chpater 4, simulation results are discussed. Finally,

discussion and surnmary are given in chapter 5.

2. Review
2.1 ConvectiveCell
2.1.1 Numerical Simulation ofDrift Wave TUr-
      bulence

     In later 70's, three dimensional. particles simu-

lations were performed on the codisionless drift instde
bilities in a cylindrical geometry ii). The simulation
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Fig. 1 Schematic diagram ofzonal fiow and
      streamer. Red lines expresses maxi-
      mum amplitude, blue lines expresses
      mmimum amplitude of the wave

model used was a straight cylinder in an uniform exter-

nal magnetic field Bo in the z direction with its length
Lz/pi = 640, pi = (Ti/mi)i!2/sti being the ion gyrora-

dius, where mi is the ion mass, Ti is the ion temperth

ture and S)i is the ion cyclotron frequency. For numer-

ical computation with its physical length L/pi = 32, a
64 Å~ 64 (L2) spatial grid was used. The plasma was as-

sumed to be periodic in z direction. Initial con(litions

of ions and electrons had Maxwellian velocity distribu-

tions with Te/Ti = 4, where Te is the electron temper-

ature. Initial plasma density profile was taken to be
ne(r) = ni(r) == noexp(--4r2/a2) with the average den-

sity given by ste/wpe = 5, mi/me = 1oo,a = L/2, where

S)e is the electron cyclotron frequency, wpe is the elec-

tron plasma frequency and a is a half width of density

pTofile; and there was no initial temperature gradient.

Seven Fourier modes n == O,Å}1,Å}2, Å}3, where n is the

Fourier mode number in z direction and the mode with

n = O(w = O) is defined as convective-cell mode, were

kept in z directien with the wave number kz == 2Tn/Lz.

Linear analysis predicts that the collisionless drift in-

stability (universal mode) is strongly unstable against

n = Å}1 perturbations, which becomes stable with in-
creasing lnl due to the onset of ion Landau damping.

     Fig.2 shows the particle diffusion, heat transfer,

electron velocity distribution, and radiaLmode structure
for the 9Sll}. !L associatod with the instability of the elec-

trostatic potential ipmn, where m is the azimuthal mode

number with ke == m/r. While ions and electrons difuse

more or less together in the early stage, large charge sep-

aration built up at a later stage. This is because ofthe

difference of radial cEe/B drifts of ions and electrons,

where Ee is the fluctuating azimuthal electric field as-

sociated with the drift wave. The observed anomaleus

particle diffusion was mainly due to drift instabilities

at the early stage. At the later stage, it was due to

nonlinearly excited convective cells, which enhance the

diffusion even when the drift iBstability is quenched.

   The electron parallel temperature T.IE rapidly de-

creases for r/a > O.5 because of the inverse Landau
damping. It increases for r/a < O.5 because of the ab-

sorption of wave energy. The electron parallel veloc-

ity (listribution is steepened because of inverse Landau

damping. Ion perpendicular temperature Tii increases

due to the convective cells. Ion parallel temperature

Till changes little because the contribution from the ion

Landau damping is weak. A typical drift-wave radial
mode-structure of leipmn(r)/Tel with m/n == 3/1 shows

a peak near r/a == O.5 at the early stage. After reach-

ing the maximum amplitude of 10% at wpet = 1040, it
begins to decrease as a result of nonlinear excitation of

convective cells (n = O, w == O).

   Fig.3 shows more detailed diagnostic of the in-
stability: spectral distributions IE2(m)1 and IE2(n)l,

and power spectrum Pmn(w,r) where IE2(m)i ==
Z).I9fto(l!!iti:F!tUM".(t")l2, IE2(n)1 -- Z).le2ip!!!tiSiz!:'n tl(t'r)l2 and

P..(w,r) == lefipeXikzittÅ}Li!M ".(W'r)l2. IE2(m)l indicates typical

spectral profile for drift turbulence as seen in the exper-

iments; it peaks around leepi = O.3 N O.6, corresponding

to the m= 2,3 and4 modes for this case. The ampli-
tude decreases rapidly for kepi >m 1 (m ) 8). The shape

of the spectral distribution little changes from early

stage. The shift of the peak of the spectrum toward low

m numbers was seen. The shift of peak was due to the

nonlinear excitation of convective cells which tend to co-

alesce into large cells. IE2(n)l, on the other hand, shows

a drastic change when the instability develops into a

nonlinear regime. We see that at earlier times the spec-

trum was peaked at n :1 (k. = 27r/Lz) and decreases

rapidly with increasing n. The n == O mode, which may

be called 'convective-cell mode' (kz = O,w = O), aiso

grows as the drift instability grows; and eventually they

dominate over the drift instability. Note that this state

is not the ambipolar field (m == n = O) (it is called zonal

flow in the recent terminology). The excitation of con-

vective cells is clear}y seen in the power-spectrum plots

Pmn(w) at r/a == O.5, where we see both drift modes
(n f O, cd 7E O) and convective cells (n = O, cv = O). For

the case of m == 3 mode, the power spectrum indicates

that the amplitude of drift mode (n == 1) was much
Iarger than that of the convective cells (n = O), while

for m = 1 case , convective cell components are much

stronger than the drift mode ones.

2.1.2 Nonlinear
      Convective

Mechanism for
Cell

Excitatien of

     In this section, the theoretical work for the ex-

citation of CC is reviewed. It is based on the decay
instability.

  A system of equations describing the nonlinear inter-

action of the drift waves with the convective mode are
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Fig. 2 Time variation of (a) ion and elec-
tron density proMes ni(r) and ne(r)
in terms of ntmber of pardcles.
summed over a given volme; (b) elec-

tron parallel temperature Tell(r),
ion parallel temperature Ti"(r),
and ion perpendicular temperature
Tii(r) in terms of thermal electron
energy mev.2 /2 = 6.2; (e) electron
velocity distribution; and (d) radial-

mode structures foT the (m,n) =

(3,1) mode. '
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written by [131

Fig. 4 Comparison of electron density dif-
      fusion with and without convective
      cells (ki) -- O. Note that at wp.t =
      1960, convective cells have larger
      amplitudes than the drift waves
      when the convective cells are not
      delected.

fZt'+fi(g'tI]i)-2ip!i:3/ÅÄ)+no{lgie-=o (2)

Here p = fltT;.Sll;:..i.,vi is the ion viscosity, u == ip +

(Ti/e) lnn is the generaJized potential (ip is the electro-

static potential), and A = a2/ax2 + a2/Oy2. The last

term in eq.(2) describes the density perturbation due to

the longitudinal electron motion and is important only

for the drift mode, where H (B = pH) is the-in'a'gtietic

intensity and wHi is the cyclotron frequency.

  All quantities corresponding to the collective particle

motions were separated into two parts, describing the

drift and convective cell modes, respectively as:

  to = ipc(t, x, y) + ipd(t, r)

6n = 6nC(t, x, y) + 6nd(t, r) (3)

an csi + fi

e2

N

ratLfita-eLte.!LX eno

Naxay ayax7--iiw.,

H2 wHi

  a
+ ajno

i[ i7. no (g'ts Åí- {lj' zll.

(
)

o
bl

- pA) AU

(3/Åí-:'8.) 2U,]=o

ou
ax

(i)

where superfix c and d denote the convective cell and

drift wave, respectively. For the existence of the drift

wave, the condition lcvdl << k.vT. holds, so the Boltz--

man distribution was always established because of the

fast electron motion in the longitudinal direction;

did = lli'L in [i + no( 6nd
x) + 6nc ] (4)

Using eq.(4) and assuming that 6nC << no and
ltS:.T lnnol << 1, the equations for the density and the

potential variation in the drift wave are obtained from

eq.(1). For the slow mode of plasma motions which are

homogeneous along the magnetic field, we obtain the
following system of equations from eqs.(1) and (2):[131

a6nC c
 bl -lii

aipC dno

ay
      e

dx H
(ooip,c ag:c - lip.c og:c)(s)
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[2il - pA + lil} (Oato.C ;iil7 - Obyte zil.T)]Auc

.fi [( f.to,C - 0,28,C) giU.C -(Og.u,C - ec,u,c) ,a.2 gc,]

==D..7.Zeg<(agY;;i.;--agZdzl})A6.d>., (6)

where UC = toC + (Ti/e)(6nC/no) and DB is the Bohm

difusion coeMcient. The angle brackets on the right
hand side of eq.(6) denote an averaging over a spatial

interval AJ 1/kz. The nonlinear terms retained on the

Ieft hand side of eq.(6) are responsible fer the inherent

nonlinearity of the lez = O mode and describe the energy

pumping between different kÅ} scales. The terms in the

right hand side of eq.(6) are responsible for the excita-

tion of kx = O mode in the nonlinear interaction of drift

waves.

     Assuming that the contribution to anomalous
plasma transport is due to sloweT mode of the cen-

vective cells, the analysis is restricted below to this

mode, and assumes lwCl << w,d•, which corresponds to

eipC << Ti(6nC/no). Using the latter condition and omit-

ting those terms which are responsible for the inherent

nonlinearity ofthe drift waves and convective mode, the

folldwing system of equations, which describes the inter-

action of the drift waves and convective celis, is finally

derived l13].

       06antd - D.dl}.no ascd . p?. illA6.d

           D.B,(agzdOg:C agzdagn.e) ,,,

                        (g

   =- DB .lÅí, <(Oscd ,i.l -- Ogzd ,g;,

The dispersion relation of the

        wd = -leyDBdl}xnO i + ilp?

-th

 paA) A6nC

   )A6nd> (8)

drift waves in eq.(7),

(9)

follows from the general equation for the drift frequency
12):

       wd=-kyDBdl}.nOl+aTf,iiC2r(e) (10)

in the limit of Ti << Te, kÅ}pi(Ti/T.)i12 << 1, where
r(e) == e-9o(c) and C - kli.pi eTf.•

   In the shortwave Iength part of the spectrum,
kmi rv 1, we can always (listingnish the waves with
identical values of w and kz (and different values of kx

and ky), which interact and give rise to convective cells

(Fig.5). This is described in the right side of eq.(8) since

an averaging over the spatial interval rv k.-i and over the

fast time (wd)-i is taken.

   A simplest mechanism for the nonlinear generation

of convective motions is known to be the decay instabil-

ity of a monochromatic drift wave. Let us examine the

decay instability• of a mode which is localized along the

x direction

    snd = 6no(x) exp(thyoy + rkzoz - iwodt)

    +6ni(x)exp(ikyiy + ikzoz -- iwodt -- iwt) + c.c. (n)

        6nC=6n2(x)exp(ik,2y-iwt)+c.c. (12)

where the subscript "O" refers to the fundamental wave,

"1" refers to the test drift wave, and k2 = ki - ko. Sub-

stituting this equation into eqs.(7) and (8) the equation

for 6n2 is obtained as

  d36.n,2 + [W(`V liiit'pak;2) iS' (611i)2 hz,(kS,Z2- kz,)

  +k3oki,,kZi (6.i,), (dS.nO)2 - 2;i dd.2, in6nol 6n2

   Multiplying eq.(13) by 6n2 and integrating it over

the plasma slab, -a S x S a and assuming that the
spatial region to which the convective mode is confined

is much smaller than the drift wave region, AC << Ad,

we obtain the followjng approximate equation for the

instability growth rate

       7d==DBkyok; llt'(6.",O)2kZOk2,k;' (14)

where kg == T/AC. It is found that the characteristic

time of the convective mode growth in numerical simu-

lations agrees with that for the decay instability of drift

Waves.

   The mechanism for the nonlinear generation of con-

vective cells studied here is extremely irnportant to mag-

netic plasma confiment, since it is obvious that the slow

plasma motions in these cells can substantially raise the

diffusion confinement, as demonstrated in the numerical
simulations 11).

to

cOt

cat
-   i

---- p-.-.   I

Fig. 5

t/Pi ,c,,

Dispersion of drift waves in a non-
isothermal (Te > Ti) pla$ina. wi =

-DBdidn.no /2p,,w2-- -2;l':wi
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2.2 Dynamics of Zonal Flows and Drift
     Wave TUrbulence
     In this section, the recent theoretical works on

the zonal flow generation in ITG turbulence is reviewed.
Zonal flows i3) are poleidally and toroidally sytmnetric

(lee = kx = O), zero-frequency (w = O) vortex modes

with finite radial scale (kr finite), and thus constitute a

limiting case ofthe more general notion of a "convective
cell" i4). Since zonal flows are azimuthally symmetric,

they are unable to directly tap er[pansjon free energy

stored in radial gradients and are thus excite(l exclu-

sively via nonlinear process, such as "inverse cascade"

of drift wave turbulence. Zonal fiows are of great signifi-

cance to cpnfinement physics, since they are, effectively,

sheared E Å~ B flow layers which strain and distort the
drift waves they co-exsist with i5).

  Zonal flow $hearing is the principle saturation mech-'

anism operating in drift wave turbulence. Generic
drift(or drift-ITG) turbulence may be modeled as a self-

regulating, two component system, consisting of:

    a) drift waves(with ke l O), which cause anomalous

transport, and for which h/n tv eip/T.

    b) zonal flows with ke = O, for which ft/n N
(leftp2)e6/T,which share available gradient free energy.

The confinement regime quality is thus characterized by

the branching ratio of zonal fiow and drift wave energy.

2.2.1 Nonlinear Dynamics ofZonal Flows

     The equation for the zonal flow inter)sity U =
Iipgl2 is modeled as

        o        sTtU + 7dU = [Growth]U + INoise}.

Here 7d reffers to the collisional damping, ICrouth]U

refers to amplification due to drM-wave coupling and

[Noise] refers to incoherent emission of drift wave en-

ergy into the zonal flow. Since the drift wave gas must

maintain a divergencefree ra(lial current (composed of

polarization and transport-•induced currents) and since

the zonal shear flows modulate the transport-induced
current, it follows that zonal flow stabMty is determined

by:

          p28t(a.?ip)+Sl.T[6<6Jip'>ip]==o (is)

Here ip is the zonal flow potential, <Jr> is the transport-

induced radial current and p is the polarization screen-

ing length. Since the radial current is simply the differ-

ence of electron and ion radial fiux, it follows that the

frequency stq of a zK)nal flow mode with radial wavenum-

ber g is

           st,....(q2p2)'i(gtSI"-/6ipg) (16)

Here r•- is the relative fiux. r. is very detail-sensitive,

since it involves the (lissipative couplings of the various

species. However, the generalized quasi-linear vvave en-

ergy theorem (Poynting theorem) directly relates r-'to

radial wave energy density fiux at stationarity. Thus,

the 2x)nal flow frequency can be written as:

   S)qq2p2 = --iq26iig [pscs \keoai. .k el;k 2] (i7)

Here k and ediklT refer to drift waves (ke 7E O) and E is

the difference of the real part of ion and electron suscep

tibilities. For simple drift wave models, OE/akr N --krp.2

so w N kekrle61Tl2 N <Urdie>, the Reynolds stress.

Thus, zonal fiows are seen to arise from modurations

of the drift wave Reynolds stress.

  The appropriate adiabatic invariant for drift wave tur-

bulence in azimuthally symmetric shear fiows is

                              -2           N@=(1+klpZ)2 ei;E (ls)

N is, in general, the (conserved) potential enstrophy st

and is equal to the classical action only for the special

case of (zonal flow>(drift wave) interaction, for which

ke is censtant. Thus, the zonal flow growth rate may be

written as

    g,q2p2 -- -eq2pscs \ ke oai. (1 + i.2 p?)2 s6ipX (19)

The quantity 6N16ip may be straightforwardly com-
puted via linearization of the wave kinetic equation

                                      aN    olN+(!,+!L)•SLN-bT.(W+k•Y)'ok

     =7(k)N-Aw(k)N2 (2o)
Here .v.g is the drift wave group velocity, !c is the zonal

flow,7(le) is the drift wave growth rate and Aw(k)N2

represents a damping of drift wave quanta due to lo-

cal nonlinear coupling to damped scales. Linearizing
eq.(20) finally yields the zonal flow growth rate

      7q = - ft2,, q2c: \[(k3Pii) (2'leO.,<i\?>)/,Ok')

                                22

where

            xR(k, g) (i - i +9 kP2. p2 )]

R(k!, q) is the resonance function

  R(k, q) == 7le/ (72, + (stq - qVg (k))2)

(21)

(22)

and Vg refers to the radial component of the wave group

velocjty.

  The noise emitted into'the zonal flow may be deter-

mined by calculating the incoherent mode coupling into

modes with qr finite and qe = gz•= O. For a simple
plasma model(classical polarization), the calculation is
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most eMciently done using two dimentional hydrody-
namics. The result is:

   8Ilipgl2lnouse = (q2cz)>?) p2 (?iie2)l2 'ilii\lilliilifiINi l S2kp,29 23)

Note that the noise resembles the square of RÅíynolds

stress, as it should. The zonal fiow spectrum equation

thus fually is:

    ( 8ii + 'vd) lqsql2 -

    (-q2c.22, Se2+PZk)ip({}q;lkraSkN.>R(Et,q))lipg12

   +g2.g\pg(?{ie2)l2(i<+NkSl.l)ii),R(k,g) (24)

where f(gp) == p21p.2[1 - q2p21(1 + klp2)1.

   Zonal flows shear and distort the drift wave spec-

trum which drives them. Thus, the zonal flows constF

tute a random strain field which randomiy refracts drift

waves, causing a diffusive increase in kr which in turn

enhances their coupling to s!nall scale dissipation. The

quasi-linear equation is given by

  a<aNt>'oOk.DaSkN.>-7(kt)<N>-Aw(ts!)<N>2 (2s)

where

 D = \ lee2q2 (1 - i +q2kP,i pg )2 (pscsq)2R(kb q)tipq12

                                     (26)
LFYom eqs.(24) and (25), we obtain zerordmensional
model for U == 1ipl2 and <n> = <N>/(p21L2i) as

         ou         'zii-+7dU==a<n>U+iNetse) (27)

         an cs         bl=zr[6--<n>]<n>-a<n>U (2s)

where 7d ct uiilvtZ, a tv (qps)2cslLi6 and a ==
(q2c2)(q2p2)/(6c,)ILÅ}. The stable fixed point in these

equations is the finite flow state with

          22""6(;ft')2(c.7f.)31 (29)

which corresponds to a thermal difibsivity

           xr"DGB[62(.,7f.)iti] (30)

where DGB = p.2cs/Li, the gryo-Bolm diffusion coeff

cient. A striking feature of these results is the explicit

proportionality of the fluctuation level and transport cor

eMcient to the collisional flow damping 7d N vii. This

is a consequence of the fact that the fiow is both driven

by, and also regulates the strength of, the drift wave

spectrum. Hence, increased collisional damping of the

zonal fiow makes it more diMcult to excite the flow and

to saturate the drift waves, thus leading to increased

transport in this model.

3. Kinetic-FIuid Model for Drift
    Wave
    To investigate the interaction between univer-
sal drift wave alld convective cell in shearless slab ge
ometry, kinetic-fluid model ii'i2) is derived. To de

rive the model, we assume the distribution function

is maxweMan in vi space and integrate the nonlinear
gyro-kinetic equation i7) over the velocity space. The

linear closure telation is used for the first moment of v/1

which ensures the exact linear dispersion relation. The

ion continuity equation is written by

   ;IIInk - iEcd.rok<iZig6k + T(1 + rok<iZi);illt ipk + ii

  Å~ 2 (b•k"Å~k')ip,,)c,,t(n,,,+Tgb,,,)==O,(31)

   k=k'+k"

and the electron continuity equation is

    illnk - icv*<eZeipk " (1 + <eZe + k2A2)8Iipk + ii

  Å~ 2 (b•k"Å~k')ip,t(n,,t--k"2A2ip,,t)==O,(32)

   k=k'+ktt

where nk is the fluctuating ion density and ipk is the elec-

trostatic potential, w* = rkyp3- 1(2Ln) is the normalived

diamagnetic drift frequency by the ion cyclotron fre
quency S)i, pi is the ion gyro-radius, T == Te/Ti is the
ratio of electron and ion temperature, A2 == TS)?• /(2wjlt•),

wpi is the ion plasma frequency, rok = Io(bk)e-bk

with bk = kZpl•12, Zi,e are plasma dispersion imc-

tion with the aigument <i,e = wl(kzvthi,e) and Xk', ==
2 fo"O dexe--x2 Jo (bl/2x)Jo (bik/, 2x)Jo (bY,2x)lrokt,, where

Io is O-th order modified Bessel function and Jo is CPth

order B(ssel imction. The factor 1/2 in eqs.(31) and

(32) appears due to the definition of thermal velocity.

The Poisson equation is used to elminate the fluctuat-

ing electron demsity in the electron continuity equation
10).

   The energy conservation relation is obtained from

eqs.(31) and (32)as

    \ (Re(s2)8IJ 1ipkl2 + 2Re(si)lipkl2 - 2Im(s2)

  xRe(ipk)Im(dik)--Im(ipk)Re(dik))=O (33)

where Re shows real part, Im shows imagenary part of

the argument, si = iw*e(<eZe - ro<iZi), s2 = 1+<eZe +
k2A2+ l2't(1+ I7o<iZi) and di = {}9,. In the fiuid ion and
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near adiabatic electron response 1 << <i,<e << 1, i.e.,

vthi << jlll; << vthe, it is reduced to

     iil (k.,k2,,,.s,{1 + k2A2 + 7(1 " rok)} lipkt2

     +,.,,Åí,,,.=,{k2A2 + '(1 - rok)}lipkl2) =. o (34)

The first term in LHS (left hand side) represents the

drift wave energy and the second term represents the

convective cell energy. In the same limit, the dispersion

relation of universal drift wave is analytically evaluated

as

      w=, cv*Fok +i(1+7)cv.V7F
                         (1 + T(1 - Irg,))2          1+ 7(1 - rok)

        Å~((1-rok)<.e-Ce2-rok<ie-Ct2'). (3s)

   The (lispersion relation shows that the universal

drift wave is destabilized by the inverse Landau damp-

ing and is stabilized by the ion Landau damping. Based

on this model, the universal drift wave turbulence is

investigated numerically and is discussed in the next

Chapter.

4. Simulationresults

4.1 NumericalScheme
     Eqs.(31) and (32) are solved as follows. Initially

the linear eigenvalue w and eigenfunction are calculated

for given parameters, then w is fixed as a constant in

plasma dispersion imction. Now, eqs.(31) and (32) are

formally expressed by the following equation

           a           ziTtYk+f(Yk,Yk)+AYk==O (36)

where Yk = {dik,nk}, A is a numerical constant in-

cluding plasma dispersion function. The time step is

advanced by the pTedictor-corrector scheme. Nonlin-
ear Landau damping is not taken into account in this

scheme, however, it might be possib}e if A : A(w) is

advanced in time numerically.

  In present numerical simulations, the following pde

rameters are used: 16 Å~ 32 Å~ 8 medes in kx,ky,kz
space, kxo = kyo = O.15, lezo = O.02, mi/me = 1836,
S)?•/cv& = 10, pi/Ln = O.2(the wave number is normal-

ized by ion gyro-radius). Fig.6 shows ky dependence of

the real frequency, which is normalized by the ion cy-

clotron frequency sti, and growth rate of universal drift

wave in the cases with k. == O.15 and 2.4 for k. = O.02,

Tespectively. It is shown that the universal drift wave

is unstable in the short wavelength region (largelkyl).

Larger lkxl makes the universal drift wave more stable.

It should also be mentioned that for larger kz, the uni-

versal drift wave is stable.

4.2 IDand2DSpectraofEnergy .
     To investigate the normal cascade and inverse cas-

cade processes in the wave vector space, we define the

following power spectra according to eq.(34). The en-

ergy spectrum in k. space of drift wave is defined by

   EDw(k.) == 2 {1 + k2A2 + r(1 - rok)} ldikl2 .(37)

             kx,ky

Then the drift wave energy EDvv and the convective cell

energy Ecc are written by

             EDw=2EDvv(kz), (38)
                     kz

     Ecc= ]Ili {le2A2+7(1--rok)}lipk12.(3g)

           kx}ky,kz= O

   In the components of Fourier modes which consti-

tute the convective cell, the zonal flow component cor-

responds to kÅë l O, ky = lez =O and the streamer com-

ponent corresponds to k. = kz = O,ky f O. Similarly,

1-D(dimensional) and 2-D spectra of the potential and

intemal energy Eip and E. are defined by

     Eip(kz) == 2 lipkl2,En(kz) == 2 lnkl2, (40)

             kx,ky kx,ky
and

   Eip(kÅë, ky) = 2 lipkl2,En(kx, ky) == 2 lnkl2,(41)

               kz kz
respectively.

4.3 Cellisionless Simulation of Universal
     Drift wave

   Fig.7 shows the time evolution of the drift wave en-

ergy EDvv and the convective cell energy Ecc. The
energy of each mode with kz = O.02,O.04, and O.06 is

also shown. The maximum growth rate of the drift
energy comes from the longest wavelength mode with
kz == Å}O.02. It is seen that the convective cell and the

drift wave with short wavelength of lez are also excited

at t ) 8oo. The amplitudes of these modes are seen to

reach almost the same level as those with kz = Å}O.02

at t> 1300.

   Fig.8 shows the time evolution of 1-D spectrum of
the potential and internal energy as the function of kz.

Time slices of t = 100,2oo,....,1600 are shown. It is

seen that the convective cell grows after the excitation

of lez or Å}O.06 modes and the cascade occurs in kz space,

simultaneously. As is also seen from Figure 4.3, the

spectrum are almost flat in kz space at t = 1300. The

normal cascade is observed in addition to the excitation

of the convective cell.
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seo m m m m) nen 1-n teo          t

Time evolution ofthe drift wave en-

ergy EDvv and the convective cell
energy Ecc. The energy for each
mode with k. = O.02,O.04,O.06 is
also shown

   Fig.9 shows the time evolution of 2•-D spectrum
of the potential and intemal energy as the function

of ky for the case with k. = O.15. Time slices of
t = 10, 50, 1oo, 2oo, ..., 16oo are shown. The cascade and

inverse cascade occur in ky space, the spectrum tends

to be uniform at t == 14oo. The excitation of zonal fiow

k, = O is observed. This might be explained by the
theory discussed in Chapter 2.

   Fig.10 shows the 3-D power spectrum of convec-
tive cell energy of potential and density in ky space

at t == 15oo. The corresponding time i$ marked in
Figure 4.2 by the arrow. The excitation of zonal flow

with ky == O component in the potential energy is seen.

The cases with k. = O,Å}O.15,Å}O.3C} are plotted. It

Time evolution of 1-D spectrum of
the potential and intermal energy.
Time slices of t = 1oo,200,...,1600
are shown.

is clearly seen that the components of zonal flow with

kx : Å}O.15 are dominant in the convective cell energy

of potentiaJ. On the other hand, Fourier modes with

k. = O.3, ky = O.3 and k. = -O.3, ky = -O.3 are domi-

nant in the convective cell energy of density.

   Fig.11 shows the time evolution of the Fourier modes

in the convective cell energy of potential. The streamer

with ky = O.15 is dominant in convective cen energy at

t = 1300 as is indjcated by the arrow. The zonal fiow

with k. == O.15 grows gradually and becomes dominant
at t f>t 1600.

   Fig.12showsthetimeevolutionoftheconvectivecell
energy spectrum of density for finite kx modes. This is

plotted because the spectrum ef E. is dfferent from

the spectrum of Eip. The modes with k. = O.15 and
k. == O.30 are plotted for k, =: O.O,O.15,O.30 and O.45.

It is seen that all Fourier modes in CC start to grow

t [y 600. This is a clear identMcation of the nonlinear

growth of CC with finite fo, modes.

   Fig.13 shows the contour plot of the flux r(x, y,z =

O) at t = 390 and t = 1590. The flux is cal-
culated by the inverse Fourier transformation( which

means the transforming a physical quantity from the

wave vector space iiito the real vector space) of r ==
2ic=ict+ktt nkt(-ikg'ql>k,,). LongitudinaJ or transverse

axis is the y or the x axis, respectively. The red pait
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indicates high level of flux. It is seen that the Iarge

size vortex collapses into the small size elongated vor-

tex at t == 1590. This collapse means that the irregular

contour of flux(including the convective cell mode and

the other modes) becomes eventually the similar level.

These vortices move to the direction of E Å~ B , which

are similar to the motion of the zonal fiow.

4.4 Collisional Simulation of Universal
     Drift Waye
   To investigate zonal flow damped by collision 5), the

effect of ion--ion collision is investigatod. It is included

into the medel equations by replacing llltT --> iil,T + yii in

the ion continuity equation.

   Fig.14 shows the time evolution of the drift wave

energy EDvv and the convective cell energy Ecc in col-

lisional case. It is found that the convective cell energy

is more rapidly growing and is larger than the drift wave

energy compared with those in collisionless case.

   Fig.15 shows the 1-D spectrum of the potential en-

ergy EÅë and intemal energy En as the function of kz.

Cascade occurs in kz space and the convective cell is ex-

cited. It is found that the excitation of CC is stronger

than that in collisionless case. The growth of linear drift

wave is not clearly observed in spectral space.

   Fig.16 shows the time evolution of 2-D spectrum of

the potential and intemal energy as the function of ky

for the case with kx :O.15. The cascade and inverse
cascade occur in ley space. It is found that the excitation

i

w

.t

Fig. IO

4.s g

ty

e.s 1

3-D power spectrum of the convec-
tive cell energy of potential and den-

sity in ky space at t= 15oo. The
cases with kx = O, Å}O.15, Å}O.30 are
plotted.
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11 Time evolution of Fourier modes in
   CC energy of potential

of zonal fiow is weak in this case. Other Fourier modes

are dominant in CC energy as is shown in the next two

figures.

   Fig.17 shows the 3-D power spectrum of CC energy
at t == 800 in the collisional case with yii = O.Ol. The

time t = 800 corresrponds to the almost final phase of

simulation and after that, the simulation breaks down

due to the numerical instability. It is found that the

zonal fiow is damped by collision, however, the finite ky
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          x

Contour plot of the fiux r(x,y,z ==
O) at t= 390 and t = 1590.

modes are excited instead, which are large contribution

of CC energy.

   Fig.18 shows the time evolution of CC energy spec-

trum of potential for the case with uii == O.Ol. It is

seen that the component of streamer kx = O.O, ky == O.3

4." ab.n -.e .e.or

Fig. 15

 e
ti

t

e.pt n.N e.n e.le

Time evolution of 1-D spectrum of
the potential and internal energy for

uii = O.Ol(colhsioBal-case). Tiine
slices of t == 1oo,200,...,800 are
shown.

is dominant in CC energy in this case. Zonal fiow
kx = O.15, ky == O.O gradually stays in quasi-steady state

during t == 670 rv 720, then starts to grow again. The

collisional effect makes the zonal damping, however it

also contributes to the excitation of other modes. The

simple conclusion for saturation mechanism is not drawn

in this case comparing to ITG case. The difference
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might come from shearless and sheared slab geometry.

   Fig.19 shows the time evolution of the CC energy
spectrum of density for finite kx modes in the presence of ,

ion-ion collision (uii == O.Ol). The modes with k. == O.15

and k. == O.30 are plotted for k, == O.O,O.15,O.30 and

O.45. For k. = O.15 modes, ley == O.15 mode starts to

grow rapidly at t = 5oo and reaches almost the same

amplitude as other modes at t or 7oo. For k. = O.3
modes, the growth of zoBal fiow and ley = O.15 mode

is similar for t > 5oo and both become dominant in
t cy 650. The amplitude of the CC energy is almost
the same as the one of codision-less case (Figure 4.7)

when the CC energy starts to grow. Comparing the
result in Figure 4.7 and Figure 4.14, we see that the time

necessary to reach the sall}e level is (lifferent. Namely,

the coMsional case is almost the half ofthe codisionless

case.
   Fig.20 shows the contour plot of the fiux r(x,y,z =

O) at t= 490 and t= 690 for uii = O.Ol, respectively.

The similar patterns are observed comparing with col-

lisionless case. However, the vortex size is smaller than

that in colhsionless case.

   Fig.21 shows the time evolution of convective cell en-

ergy and flux for the cases with yii = O and yii = O.Ol.

in the case with uii == O.Ol, the growth of flux and con-

vective cell energy is rapid compared to the one without-''

collision, since the zonal flow is damped by colhsion. It

is found that the flux and convective cell energy cor-

relate to each other and reach almost the same levels.

Fig. 17

 '1 as - -jS •,.t,              k               V.111• ,,.,

3-D power spectrum of CC energy of
potential and density in ky space at
t == 800 for vii = O.Ol(colhsional-

case). The cases with kx =
O, Å}O.15, Å}O.30 are plotted.
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Time evolution of Fourier modes
CC energy of potential for vii
O.Ol(colisienal-case).

Streamer and finite ky

this codisional case.

modes

m

contribute to the flux in

5. SummaryandDiscussion
     Kinetic-fiuid model in the shearless slab geometry
is introduced iO) using linear closure relation for the first

moment of vll, which is an extention of the model pro-
posed by Smolyakov 8) and Hinton 9). This model can

simultaneously describe the universal drift wave turbu-

lence and the convective cell dynamics, in which zonal

flows and streamers are included.

  Nonlinear simulations of universal drift wave turbu-
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Fig. 19 Time evolution of Fourier modes in

CC energy of density for finite k.
modes with ion-ion colision(yii =
O.Ol). The modes with k. = O.15
and k. == O.30 are plotted for k, =
O.O, O.15, O.30, O.45.

lence are performed for the collsional and colhsionless

cases by using this model. For the spectrum dynamics,

the forward cascade is observed in kz space and the for-

ward/inverse cascade is observed in ky space in the time

evolution of energy spectrum. Simulation results show

the excitation of convective cell. It is also observed that

the ion--ion collision Ieads to strong excitation of CC en-

ergy and flux.

  It is shown that the CC is nonlinearly excited which

is similar to the case of zonal fiow generation of ITG

turbulence. However, no saturation is attained in our

simulations. This is attributed from the fact that in-

stability source exists in the short wavelength region of

ley space. On the other hand for ITG turbulence, the

instability source exists in the Iong wavelength region

and there is enough energy sink in the short wavelength

region. Failure to attain the saturation in our simula-

tion makes it diMcult to compare results of the univer-
sal drift wave turbulence with the theory 2). Further-

more, the theory assumes the marginally stable system

to derive the model equations, then add the prescribed

growth rate, arbitrarily. One possible way to avoid the

numerical divergence is that we kill the instability and

investigate the damped DW turbulence or mitially we

set finite amplitude of modes and investigate the non--

Fig. 20

'

Contour plot of the fiux r(x,y,z
O) at t = 490 andt == 690 for vii
O.O1(collisional-case).
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linearly self-sastained DW turbulence.

  The ion-ion colhsion effect on zonal flow is aiso in-

vestigated. This effect makes the growth of CC energy

stronger. It is concluded that the ion-ion colhsion damps

the zonal fiow and breaks down a self-regurating system

between drift wave and zonal fiow. It also excites the

streamer and finite ky modes, which dominate the am-

plitude of convective cell instead of the zonal flow. As

the result, the fiux is larger than the one without coM-

sion.

  Fig.22 shows the flow diagram of the universsal drift
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wave energy and convective cell energy. We have shown

that the colhsion causes the damping of the zonal flow

and the rapid excitation of streamer and other finite

ky modes. However, we don't know how much energy
is transferred from of the universal drift wave to each

Fourier mode (zonal flow, streamer and other finite ky

modes) in CC energy. It should be clarified. We should

also explore the mechanism of the drift wave in sheared

slab case and the zonal flow induced random shearing
as possible nonlinear saturation mechanism 5, i6).
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Fig. 22 Flow diagram about the universal
drift wave energy and the convective
cell energy.
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