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Abstract

Linear stability analysis of neoclassical tearing mode(NTM) is performed on the basis of four-field
reduced magnetohydrodynamic(MHD) model which takes account of fluctuating ion parallel flow and jon
neoclassical viscosity. The dependence of the growth rate on the kinetic effects is investigated. It is shown
that the linear NTM is stabilized by ion neoclassical viscosity and that the stabilizing effect of ion parallel
compressibility is weak in low collisionality regime. The coexistence of ion and electron diamagnetic drifts

causes the stability.

Key words : neoclassical tearing mode, free energy source, ion neoclassical viscosity, ion neoclassical
flow, plasma B value, pressure gradient, four-field model

1. Introduction

Various types of transition phenomena are observed
in high temperature tokamak plasmas,‘ associated with
the structural formations such as the magnetic islands
1).8). Due to the formation of islands, the plasma con-
finement is degraded or sometimes discharges become
disruptive. The disruption is a combination of MHD
and transition phenomena, and its relation to the linear
stability of some modes is not clearly known. In TFTR
(Tokamak Fusion Test Reactor in Princeton Plasma
Physics Laboratory), tearing modes has been observed
in the most high confinement operation regimes N, Sig-
nificant degradation of confinement occurs by appear-
ance of magnetic island. In JT-60 exberiments, the
magnetic island has been also observed and the mea-
surement of # value normalized by poloidal magnetic
field at the mode onset is performed 4) 5), In these ex-

" periments, distinct changes of the pressure and pressure
gradient are not observed, nevertheless the mode rapidly
grows associated with discontinuous and large change of
the growth rate. In the conventional theoretical models
based on the linear instability, the temporal change of
the linear growth rate should follow the change of the
global plasma parameters. Namely, the abrupt change
of the growth rate requires the corresponding changes of
the global parameters such as safety factor g, pressure
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gradient p’ and so on.

Another features of the collapse phenomena are the
probabilistic excitation and hysteresis nature. In high
temperature plasma, the magnetic island is observed in
high 3 operations.

In order to achieve high performance in fusion plas-
mas, it is necessary to understand (1) the physical mech-
anism of island excitation and its saturation level in
high 3 plasma and (2) that of the associated collapse
phenomena. Several theoretical works of neoclassical
tearing mode (NTM) have been done 8)9)10), In the
conventional analysis, the linear stability is considered
for the tearing mode. However, the experimental result
also shows the linear tearing mode is stable, or, that the
most unstable mode is not necessarily exited. There-
fore, a certain nonlinear excitation mechanism which is
beyond the linear theory’s is needed to explain such a
mechanism for the acceleration of the trigger mode.

It is found that saturated island width, which is
determined by the competition between the bootstrap
current and the free energy source due to the current
density gradient is not inconsistent with experimental
observations 7). However, the onset condition or these
dynamics are not fully understood from the view point
of conventional analysis. In the previous analyses of
NTM based on three-field model, only the electron neo-
classical viscosity is included assuming that the collision
frequency is larger than the rotation frequency of the
NTM. Ion neoclassical viscosity is not considered in the
model. This is not appropriate for the case of the high
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temperature collisionless plasma. In addition, in order
to examine the dynamics of the island evolution, the for-
mer assumption of collision frequency is not valid with
respect to the timescale. In this thesis, we examine the
stability of NTM based on the four-field reduced MHD
model. Where the ion parallel flow, ion neoclassical vis-
cosity, and the parallel compressibility are included. In
the linear analysis, these effects stabilize the NTM and
the ion neoclassical viscosity strongly contributes the
stabilization.

This thesis is organized as follows. In Chapter 2., we
review collapse phenomena in high temperature toka-
mak plasma such as sawtooth oscillation and the tear-
ing mode. Theoretical approaches based on linear or
nonlinear theory of tearing modes are also explained.
In Chapter 3., linear analysis of NTM based on four-
field reduced MHD equation is performed. The com-
parison of results from three-field model with those are
discussed. Dependence of growth rate on various param-
eters are investigated. Finally, in Chapter 4., summary
and discussion are given.

2. Reviews

Various types of collapse events in toroidal plasmas
have been reported in a review pa.perl) . In this chap-
ter, we review the magnetic reconnection and tearing
mode instability in high temperature tokamak plasmas
as examples of such collapse events. Table 1 shows the
characteristics of crash events, precursors and triggering
mode.
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Table 1 Crash events, precursors and trigger-
ing modes. Abbreviations:ELMs(edge-
localized modes), MTE(momentum trans-
fer events),BLM(barrier-localized mode),
IRE(internal reconnection events).(cited
from Ref. 1))

2.1 Trigger Events

One of the most important issue in confinement plas-
mas is the abruptness of the growth of perturbations
that lead to collapse. The fast sawtooth collapse is a
typical example. This phenomenon is known that the
m/n = 1/1 helical magnetic perturbation precedes the
decay of the central electron temperature, where m is
the poloidal mode number and 7 is the toroidal mode
number. This perturbation is called as a precursor 1),
The observation of the precursor stimulated the study
of the m/n = 1/1 instabilities in tokamaks 12)13) | pre-
cise measurements of the development of the helical de-
formation have been made over the years. A typical
example from the JET tokamak is shown in Figure 1.
The helical shift of the peak of the Soft Xray-emission

Fig. 1 Displacement of the soft x-ray emission
peak during a fast sawtooth collapse ob-
served on the JET tokamak (cited from
1))‘

intensity is plotted as a function of time. In the precur-
sor phase, the helical shift is in the range of 1-3 cm and
grows very slowly. The helical deformation, at some in-
stant, abruptly starts to grow. If one plots the temporal
evolution of the growth rate of the helical deformation,
it suddenly changes in an unpredictable manner, as is
illustrated in Figure 2. Tearing type mode is also con-
sider to be one of the trigger modes.

2.2 Measurement of Magnetic Islands

The magnetic island is widely observed in high 8
tokamak plasmas. This structure is formed by the re-
connection of the poloidal magnetic field line. Figure
3 shows the three-dimensional structure of m/n = 2/1
magnetic island in toroidal plasma. Inside an island, it
is considered that the temperature is flattened. The ex-
citation of these islands is a result of a difference in the
response of electrons and ions to the fluctuating electric
field. Tearing modes have been observed and analyzed
in the most high confinement operation in TFTR n14),
The island width determines the level of the degrada-
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Fig. 2 Abrupt increment of the growth rate takes
place at the onset of the crash. The
preceding activities (precursor) have very
small growth rates. The trigger mode has
a large growth rate that is often of that
of the order of the ideal MHD instabilities
(cited from V).

Fig.3 The three-dimensional structure of the
m/n = 2/1 island in a toroidal plasma.

tion of plasma confinement. Therefore, it is important
that the physical mechanism is clarified.

The different kinds of methods have been used
to measure the magnetic island width: external mag-
netic measurement, internal local temperature mea-
surement from electron cyclotron emission (ECE) di-
agnostic and a direct measurement from a major ra-
dius shift experiment(”Jog” experiments). Figure 4
shows a typical neutral-beam heated, high-performance
discharge 15) accompanied with a m/n = 3/2 mode.
Significant degradation in the Troyon-normalized 8
By = Bra(m)B:(T)/I,(MA)] and neutron rate have
been observed, which are correlated with the MHD phe-
nomena. The Fourier spectrum evolution from one mea-
surement coil is shown in Figure 4(b). The 3/2 mode
starts at about 3.8s (300ms after NBI) preceded by an
m/n = 1/1 fishbone-like mode '¥). There is a ~ 150
ms overlap period where both modes co-exist. The 3/2
mode decays after the NB phase and is terminated by
the injection of Lithium pellet at 5.03 s.
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Fig.4 Typical neutral-beam heated, high-
performance discharge 15) that developed
a m/n = 3/2 mode. Significant degra-
dation By and neutron rate are showed.
{cited from )

Magnetic island width is given by using the standard
cylindrical formula as,

at r=rs 1

where B, is the radial component of the magnetic fluc-
tuation. By is the equilibrium poloidal field, ¢ is the
safety factor, ¢’ = dg/dr, r, denotes the radial location
of rational surface. B, can be calculated numerically by
solving the MHD equation:

4. dp oo a4 (1dr\_
" dr mY 1—nq/mrdr<rdrq ¥=002)

4 is the perturbed poloidal magnetic flux, related to the
magnetic perturbation through B = Vi x %, ie., By =
—ay/dr, B, = im'l/;/r‘ The island width of an MHD
mode would be referred from the ”flat spot” in elec-
tron temperature profile using ECE(electron-cyclotron-
emission) diagnostics. Figure 5('%) shows comparison
of thus obtained magnetic calculation with data from
the ECE measurement, where (a) and (b) show the is-
land evolution of m/n = 3/2 nd m/n = 4/3 respectively.

_As we can see in Figure 5 the two independent measure-

ments are in good agreement for both m/n = 3/2,4/3
cases.

2.3 FKR Theory of Tearing Mode

Magnetohydrodynamic modes in current-carrying
toroidal plasma, including the ordinary infinite-
conductivity kink mode and the kink-like tearing mode
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Fig. 5 Comparison of the magnetic calculation
with ECE measurement. (a) and (b) are
m/n = 3/2 and m/n = 4/3 islands re-
spectively. Similar agreements have been
found in these cases.(cited from 4))

have been studied. In this section, we review the linear
stability analysis of the resistive tearing mode.

The original analysis of Furth, Killeen, Rosenbluth,
which we shall refer to as FKR theory 16), is based on
a resistive MHD model with a simple Ohm’s law, E +
¢ v x B = J, where B and E are the electric and
magnetic field, v is the fluid velocity, J is the electrical
current density and 7 is the electrical resistivity. The
hydromagnetic approximation is assumed to be valid,
and the ion pressure and inertia terms are neglected in
Ohm'’s law.

8B/dt =V x (v x B) = V x [(n/4m)V x B]. (3)

An isotropic resistivity and the mass of the electrons
in Eq.3 is neglected. If the electron-inertia term is in-
cluded in the equation, it gives rise to a tearing mode in
collisionless limit. Additionally, viscosity is neglected,
so that the equation of motion may be written as

V x (pdv/dt) = V x [(1/47)(V x B) x B + gp} (4)

where p is the mass density and g the acceleration due
to gravity. As usual, the gp term may be interpreted
as resulting from acceleration of the current layer, or
from the interaction of a plasma pressure gradient and
a slight curvature of the current layer. The FKR the-
ory basically consists of these equations and continuity
equation

A(gp)/ot+v-V(gp) =0 (5)

on the assumption that the fluids is incompressible,
namely, V - v = 0. From the FKR theory, if the re-
sistivity is the main cause of the dissipation (for large
S = Tr/7H) and the growth rate of the island is esti-
mated by

-3/5_—2
v~ ol (6)

(v = 4ma®/n, ()
> i = a(4mp)'/?/B)

where 7r, 74 and a are resistive diffusion time, hydro-
magnetic transit time, and a measure of the thickness
of the current layer. However, this estimation does not
completely explain the observations which are reviewed
in section 2.1 and 2.2. Nonlinear analysis is needed for
understanding the acceleration of trigger mode as well as
the saturation mechanism of magnetic island. Also, the
neoclassical effect on tearing mode (driven not only by
current diffusivity but also by pressure gradient) should
be taken into account.

2.4 Boundary Layer Problem

The parameter S = Tr/7y = aB/n(4n/p)'/? is the
magnetic Reynolds number. To illustrate the boundary
layer nature of the problem forn — 0 and S = 7r/7H —
00, we consider the induction equation in the Cartesian
coordinates in a slab geometry,

8B.1/8t = i(k - Bo)vg + 70/47 V2B (8)

where 7o is assumed uniform for simplicity . Since S >
1, flux-freezing characterized by 8Bg1 /8t ~ i(k- Bo)vs
will hold to a good approximation everywhere except in
the neighborhood of the resonant surface where F =
k- Bo/(kB) = 0. Near this surface, the first term of
right hand side in Equation 8 is small and all three terms
will be comparable in magnitude. Since 70 is small, this
implies that V2B;1, and hence d?By (z)/dz?, must be-
come locally very large in a narrow resistive layer where
F =0 holds. States away from F' = 0 may be described
by the infinite conductivity limit. On the other hand,
resistivity effects is taken into consideration only in a
narrow boundary layer about F' = 0. Considering on
the scale of the current layer, the perturbed field com-
ponent ¥ = B;i1(z)/B appears to have a discontinuity
in its first derivative given by
s _ P(0+) —9¥'(0-) d o
-t
across the surface F' = 0, which we take without loss of
generality to be 2 = 0.
Note that A’ indicates the free energy source. The
growth rates of the resistive modes are then determined
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by requiring that the discontinuity of the ”inner” solu-
tion should match that of the "outer” solution. Then
we need to calculate the change in logarithmic deriva-
tive A . (v) of the ”inner” solution across the resistive
layer and the growth rate y can be obtained from the
eigenvalue equation

Aint (1) = Boxg- (10)

2.5 Rutherford Theory of Magnetic Island

Linear analysis is applicable within a linear tearing
layer around the rational surface, whose width is deter-
mined by the plasma inertia and resistivity 17) When
the magnetic island width exceeds the linear tearing
layer width, the island dynamic becomes strongly non-
linear and the linear treatment breaks down. For typical
plasma parameters in present-day tokamaks, the tearing
layer is so thin that any visible magnetic islands have to
be in the nonlinear stage.

Nonlinearity is important principally in the singular

layer around k- B = 0. In the case where the resistive
skin diffusion time is much longer than the hydrody-
namic time, the exponential growth of the field pertur-
bation is replaced by algebraic growth like t? at an am-
plitude of order (71 /7r)*® 17). The relative amplitudes
of the m = 4,3, and 2 modes shown in Figure 6 are in
good agreement with the observations 17) . The absolute
amplitudes of the modes are a little larger than those
of the observations. Figure 6 also shows that there is a
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Fig. 6 Mode amplitude as functions of time for
a constant current tokamak with shrink-
ing current channel, and three locations
zp of the conducting shell. Amplitude
are expressed by the half-width £ of the
magnetic island in terms of their radii .
Good agreements with the observed am-
plitudes of the m > 2 oscillations are
shown. (cited from 1))

small interval of time during which both the m = 3 and
m = 2 modes are present. This contradicts to the fact
that the m = 3 mode becomes stable before the onset
of the m = 2, if the linear stability criteria is taken.

2.6 Renormalized Theory

Nonlinear analysis of anomalous tearing mode
known as renoramlized theory have been developed in

recent years 18)

The theory predicts two principal
nonlinear effects: an anomalous flux diffusivity due to
turbulent fluid convection in Ohm’s law and a vortic-
ity damping term due to turbulent magnetic stresses
in the equation of motion.. Many numerical calcula-
tions of multi helicity tearing interaction have been done

19) Effects such as resistivity evolution 20), toroidic-

ity 21), noncircularity of the plasma cross section 22),
and diamagnetic rotation 23) have been included. It has
been shown that they do not modify the basic dynam-
ical mechanism of the nonlinear interaction of tearing
modes. Therefore, in the recent study, the large aspect
ratio, reduced set of resistive MHD equations applied to
cylindrical geometry is considered 18),

" The sequence of phenomena leading to the final dis-
ruptive phases is shown in Figure 7(cited from 18)).
First, following the overlap of the 2/1 and 3/2 mag-

ralx w0

°IO°T

0.5 1.0 13 20
(12103 v,

Fig. 7 The calculations are performed in such a
way that the various physical effects ap-
pear as a sequence of events. (a)The
radial extent of three magnetic islands.
(b)The instantaneous growth rate of the
3/2 mode. The overlap of magnetic is-
lands of 2/1 and 5/3 generates the mag-
netic stochasticity and accelerates the
growth of 3/2 mode. (cited from '®)

netic island, the large current gradient that develops
in the region between the two islands results in a
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positive A’ for the nonlinearly driven 5/3 fluctuation.
The nonlinear drive is a consequence of the overlap
of the 2/1 and 3/2 modes. The resonant mode cou-
pling of the 2/1 mode with the 5/3 mode then re-
sults in the rapid, nonlinear destabilization of the 3/2
mode. These nonlinear interactions are treated by
one-point renormalization method 18)  The direct in-
teractions of the test mode with background fluctua-
tions are reduced to the form of anomalous diffusivi-

ties, and the anomalous tearaing mode growth rate is
given as y ~ (Zk, k;2|¢k:|2) ¥ (A’")} which means that
the background fluctuations contribute to the anoma-
lous resistivity and accelerate the mode growth through
the nonlinearity. The anomalous growth rate of the 3/2
mode is calculated and its value is compared with the
nonlinear growth rate of this mode (Figure 8). The good

4
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Fig. 8 The growth rate of the 3/2 mode as ob-
tained from the model is compared with
the calculation. (cited from '®))

agreement is shown and it is also important to investi-
gate the correlation of this anomalous growth with the
buildup of the high-m fluid turbulence. This is one of
theoretical models which explains the mode acceleration
mechanism, however, the rapid growth of trigger mode
with a single helicity has not explicitly shown.

3. Linear Analysis of NTM based on
the Four-field Reduced Neoclassi-
cal MHD equation

3.1 Four-field MHD equation

We consider a high temperature plasma of major
and minor radii Ry and a with a toroidal magnetic field
By in the cylindrical coordinates (7,8, z). To analyze the
linear NTM, the four-field reduced neoclassical MHD
model is introduced??) . This model consists of the vor-
ticity equation:

%ViF +[F,ViF]| -V -[p,VLF]

=~V VIA-[Qp|+pi'VIF

_ 9, neo8Upi _ gMe neodUpe
et or emi' ¢ Or’ (1)

Ohm'’s law:

%(A —a?Tey? 4

mi

=~V (¢ aep) + o’ (¢, VIA] + 7 VI A
k2

cl Me Me neo
—4pa? ey ViA+ athE”e Upe, (12)

the evolution of ion parallel velocity:

4]
'a—_t‘vn + [yl =-Vp+ 4,uflV3_v”
neo me neo
—#i Upi — ;;“e Upe, (13)
3

and the electron continuity equation:

gt'P‘*’ (¢, 2] = BN, ¢ — cep] — V) (v) + VL A)

clg2 &g neoaUPe
+niVip o e 5 )s (14)
where
F = ¢+ aip, (15)
Upi = vy + 32 (6+ ap) (16)
» I e ar el
o
Upe = v + QV?LA + %E((b — aep); 1r7)
_ g P oS
Q = 2rcosf, 5—1+B, a_aw,n"
= D =
T TiAT. T T+ T
and P
V= i [A,}- (18)

The closed set of equations Equation11-14 is called as
four-field model’ in the following calculations. On the
other hand, the approximations Vyv = 0 and Up; = 0
give the three-field closed set of equations, in which
only the electron neoclassical viscosity is kept. We
call these equations as ’three-field model’. The vari-
ables of four-field {4, A,v,p} are the fluctuating elec-
trostatic potential, vector potential parallel to the mag-
netic field, parallel velocity and electron density, respec-
tively. In this model, the ion and electron tempera-
tures T; and T, are assumed to be constant and uni-
form. The coefficients {uS", p&, nﬁl, D} are classical ion
viscosity, electron viscosity(hyper-resistivity), resistiv-
ity and diffusivityzs) . @ is the normalized ion skin depth
(c/awpi), and Q is the normalized magnetic curvature,
which introduces the ballooning coupling. {q, €, wpi, 3}
indicates safety factor, inverse aspect ratio, ion plasma
frequency and plasma beta value respectively. The Pois-
son bracket is defined by [f,g] = b Vf x Vg where b
is an unit vector parallel to the magnetic field. These
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equations are normalized by toroidal Alfven time and
minor radius. The explicit forms are given as follows;

€vg

—=t -t LN r,
a a v
A Mo
Bocava é, @B A, B P (19)
L s ey, —EE— - X
Ho€av A " nomseava “ eava €

where v4 is Alfven velocity (va = B/\/Tiop). The elec-
tron inertia terms are included in Equation 12, which
are negligibly small in the linear regime. The energy
conservation relation is written by

1 .
H=3 /d%(IVLFlz +[VLAP + |y l?

LTy, 20)

pra / Sz |VIFI? + nj IVIAP
+4ps' |V Loy + IV pl® + 4ueaz%IV¢V1A|2

m,
P \Upsl* + —2 2% |Upel?). (21)

In this analysis, the flux surface averaged part of the
neoclassical viscous tensor is incorporated24' 26). The
parallel and cross viscous stress terms are approximated
as,

bV -1, = meneps B2Ups, (22)

V-(bXV-n"s)Q—J%(b'V'H"s), (23)

where the suffix s denotes species of charged particle.
The neoclassical viscosities are given by the interpolated
formula according to 7 as

e — 2.3\/eve
e - y
(14 1.0702% + 1020, ) (1 + 1.07vcue3/2)
' (249)
oo — 0.66./€v; (25)

(1 + 1.03v1/% + 03103 )(1 + 0.6614.¢3/2)

where v, = v,/ (63/ 2)(qR)/vths, vtns is thermal velocity
described by vns = /2T /ms. These viscosities are
assumed to be constant, since the viscous terms have
influence on the NTM only at the rational surface and
profile effects are less important for the NTM.

3.2 Numerical Analysis

A perturbed quantity f(z,t) is assumed to vary as
fm,n(r)explimb + inz + (v — iw)t] in the cylindrical co-
ordinates, where m is a poloidal mode number, n is a
toroidal mode number, v is the growth rate and w is the
rotation frequency of the linear tearing mode. The di-
rection of w > 0 is electron diamagnetic drift direction
and that of w < 0 is ion diamagnetic drift direction.
fmn(r) satisfies the boundary conditions; fm,(0) = 0

and fm,n{a) = 0. In this study a single helicity mode
with (m,n) = (2,1) is considered. The basic equations
Equation11-14 are linearized and thelinear contribution
from the ion convective term [F, V2 F| and gyro-viscous
term a;V | - [p, VF] are reduced as,

[F,V3iF] - V. -[p,VF]

_oi [ o dpol &g
Ty drs 90 ' dr r 0606r

_in s
dr? 860r |-
(26)

The electron collision frequency v, is the basic pa-
rameter which determines the strength of the neoclas-
sical viscoéity. The coefficients of the neoclassical vis-
cosities and total resistivity as a function of the elec-
tron collision frequency are calculated from equations
Equation11-14 shown in Figure 9. Four-field reduced

102 - 104
e |
10° 105
5 \
A hl p
10 . 104
e sl
. ° =~ ~
103 . 107
R ~ i
soal . => S
nl N N
10° - 10¢
10+ 10° 10! 107
Ve

Fig. 9 The collisionality dependencies of the neo-

classical v1scosmes and total resistivity

(it =nj +'n" "€}, The electron collision

frequency v, is normalized by the toroidal
Alfven time. v, ~ 1 corresponds to the
plateau regime. The high temperature
plasma lies in the banana regime(v. < 1)

MHD model {¢, A, vy,p} is numerically solved via ma-
trix method with inverse iteration and these eigen values
are evaluated. The safety factor profile is given as

o(r) = q(rs) q(O) (1 ( ))"

+q(0) - L) =40 (57)
where r; is rational surface. The magnetic shear param-
eter s is changed in accordance with the variations of a
and b or q(0). We set a = 3.0,b = 1.0,q(0) = 1.2 as
default values. Figure 10 shows safety factor profiles in
cases with ¢(0) =1.2,1.4 and 1.6.

The case with q(0) = 1.2,¢(r;) = 2.0, corresponds
to s(rs) = 1.2 Other plasma parameters are given by
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Fig. 10 The safety profiles ¢(r) are shown for the
case of ¢(0) = 1.2,1.4 and 1.6. The corre-
sponding values of local shear s(r, at the
rational surface are s = 1.2,0.9 and 0.6
respectively.

B = 00l,a = 001,¢e = 1/3 and T. = T; = const..
Figure 11 shows typical radial eigenmode functions of
linear NTM for the case with v, = 0.7.
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Fig. 11 Typical eigenmode profiles of linear NTM
in the four-field model. The electron col-
lision frequency is chosen to v, = 0.7 as
the normalized value.The eigenmode pro-
file is normalized by the maximum am-
plitude of each value. The relative am-
plitudes of the fluctuations are Finaz =
1, Amaz = 20.8,Ppmaz = 13.8 x 10? and
Umaz = 90.4 X 10?. v which is not con-
sidered in three-field model has big ampli-
tude at rational surface (r, = 0.6).

Figure 11 (a), (b), (c), (d) indicate the eigen func-
tions of v, p, F, A respectively. Solid line and dashed
line indicate the real and imaginary part of eigen func-
tion respectively. The eigenmode profile is normalized
by the maximum amplitude of each value. Fluctuat-
ing ion parallel velocity v which couples with density
perturbation through the parallel compressibility has a
large amplitude at the rational surface. It is seen that
F and p are localized at the rational surface (r, = 0.6)

from Figure 11, (a) (b) and the radial derivative of the
vector potential dA(r)/dr is discontinues at the rational
surface (Figure 11 (c)). These features show the typical
mode structures of tearing mode.

3.2.1 Dependence of Growth Rate on Free En-
ergy Source

The magnetic shear s indicates the gradient of safety
factor profile at the rational surface, which is given by
Ts dq (7’3)
= et A ML 28
s q(rs) drs (28)
In our model, s changes according to the change of ¢(0).
The shear parameter decreases as safety factor profile
is flattened. The values of local shear parameter s(r;)
are given by 1.2,0.9 and 0.6, for ¢(0) = 1.2,1.4,1.6,
respectively. The parameter A’ is known parameter to
indicate the free energy source of tearing mode. It is
defined by the jump of derivative of vector potential A
at the rational surface r, as
Alrs+0)— A(r, - 0)

Ars) ’

A=

(29)

The vector potential in the ideal region (outer region
of singular layer) can be calculated from the following
equation,

d? 1d 3ky ki m?

-—A-—-;—A-l— (;H-I-k—"-}-ﬁ- A (30)
A’ is determined by connecting these inner and outer
solutions in the limit of » — r,. Generally speaking,
if A’ is positive, the NTM is unstable while if A’ is
negative, the NTM is stable. Figure 12 shows the de-
pendence of A’ on the shear parameter. It is seen that

-3 T T T T T

15
A|

Fig. 12 The dependencies on free energy source A’
of the growth rate v for the cases with
three-field and four-field are compared,
where we set 8 = 0.0l,a = 001,05 =
a. =af2.

A’ decreases monotonously as the shear parameter in-
creases. In other words, A’ decreases monotonously as
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the profile of safety factor is peaked. Figure 13 shows
the dependencies of the growth rate (a) and the rotation
frequency (b) on the collisionality for various ¢(0) val-
ues. It is found that tearing mode tend to be unstable

(@)
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Fig. 13 The dependencies on collisionality of the
growth rate v (a) and the rotation fre-
quency w (b) for the cases of various g(0)
value. The local shear parameter s(7s)
are given by 1.2,0.9,0.6 when ¢(0) =
1.2,1.4,1.6 respectively. NTM is destabi-
lized by flattening of g-profile.

in the wide collisionality regime as g-profile is flattened.
However, in 0.8 < v, < 2.5 regime (plateau regime), this
tendency is changed. The threshold value of stability on
ve doesn’t change by change of ¢-profile. Therefore, it
is not crucial to stability of the NTM.

The dependence of the growth rate on the free en-
ergy source due to the plasma current gradient A’ is
analyzed and the result is compared with those of the
three-field model. Figure 14 shows the dependence of
the growth rate on A’ in the case with v. = 2.4 (plateau
regime). The dashed line and solid line indicate the
results from three-field model and four-field model, re-
spectively. In the four-field case, the threshold of the
instability Al(~ 10.2 > 0) appears while v > 0 holds
for A’ > 0 in the three-field case. In the four-field case,
the threshold increases from A, = 0 to A, = 10.2.
It is demonstrated that the ion neoclassical viscosity
and parallel compressibility, which are newly introduced
in the four-field model, have stabilizing effects on the
NTM.
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Fig. 14 The dependencies on free energy source A’
of the growth rate v for the cases with
three-field and four-field are compared,
where we set 8 = 0.01,a = 0.0l,a; =
a. = af2.

3.2.2 Stabilization Mechanism of NTM in
Four-field Model

In order to clarify the stabilization effects on the
NTM in the four-field model, the dependence of the
growth rate on the ion neoclassical viscosity is sepa-
rately investigated. Figure 15 shows the'dependence
of the growth rate on the collisionality. The solid line,
dashed line and long dashed line indicate the results in
the cases with four-field model, three-field model and
four-field model without ion neoclassical viscosity, re-
spectively. In the three-field model case, the NTM is
unstable in the entire collisionality regime. In the four-
field model, the NTM is stabilized by ion neoclassical
viscosity and parallel compressibility in the low colli-
sionality regime (i.e. banana-plateau regime). In the
four-field model without ion neoclassical viscosity case,
the effect of parallel compressibility exists. However,
comparing the four-field model without ion neoclassi-
cal case with the three-field model, it is found that the
compressibility effect is weak. Namely, from the com-
parison study between three-field model and four-field
model without ion neoclassical viscosity cases, it is con-
cluded that the stabilization effect of compressibility is
not crucial to the stability: of NTM. In other words,
NTM is more strongly stabilized by the ion neoclassical
viscosity than by the parallel compressibility.

3.2.3 Dependence of Growth Rate on Various
Parameters

The dependence of the growth rate on various pa-
rameters are investigated based on four-field model. At
first, the effect of fluctuating bootstrap current on the
NTM is analyzed. The last term of right hand side
in Ohm’s law, Equation 12, represents the fluctuat-
ing bootstrap current term. Changing the coefficient
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Fig. 15 The dependencies on collisionality of v
(a) and w (b) for the cases with three
and four-field. The solid line, dashed line
and long dashed line indicate the results
for the case of four-field model, three-
field model and four-field model with-
out ion neoclassical viscosity, respectively.
Where, ion finite Larmor radius effect and
electron diamagnetic drift effect are in-
cluded in each case.

hps, where hps is the parameter which determines the
strength of fluctuation bootstrap current, (i.e., the ef-
fective pressure gradient at the rational surface), we ex-
ame this effect. Figure 16 shows the dependence of the
growth rate on the collisionality for hps = 1.0 and
hps = 5.0. The solid line and dashed line indicate
the results in cases with hps = 1.0, hps = 5.0 respec-
tively. It is shown that the fluctuating bootstrap cur-
rent destabilizes NTM in low collisionality regime while
the destabilization effect is weak in high collisionality
regime(classical tearing mode).

Next, the effect of the diamagnetic drift on NTM is
analyzed. Essentially, two terms contribute the stability.
One is the ion diamagnetic drift effect proportional to
a; which appears in the vorticity equation Equation11
and the other is the electron diamagnetic drift effect
proportional to a. in the Ohm’s law Equation12. The
dependence of the growth rate with/without «; and c.
is examined for entire collisional regime. In the large

(a)
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-0.0014 | B
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Fig. 16 The dependencies on collisionality of - (a)
and w (b). The solid line and dashed
line indicate the results for the case with
hps = 1.0,hgs = 5.0, respectively.

or middle size tokamak plasma, the normalized skin
depth « is estimated to be 0.01 ~ 0.1 and a;,. to be
0.005 ~ 0.1 for T; = T.. By use of typical values above
the results are shown in Figure 17. The solid line, long
dashed line and dashed line indicate the results in the
cases with a; = 0.005,a. = 0.005;a; = 0,a. = 0.005
and a; = 0.005,a. = 0O respectively. Here we fix
a = 0.01 for all cases and change o; or o, separately.
Namely, we rewrite V(¢ — a.p) term in Ohm’s law
as V|(F — (ae + cu)p). It is found that jon and elec-
tron diamagnetic drift effects stabilize the NTM. It is
found that the NTM is stabilized in the low collision-
ality regime by the combined effect of ion neoclassical
viscosity and both ion and electron diamagnetic drift.
These are seen from Figures 15 and 17.

Finally, the finite-beta effect on the NTM stabil-
ity is analyzed. For various value of 3, the growth
rates are examined. Figure 18 shows the dependence
of the growth rate on the collisionality. The cases with
B = 0.005,0.01 and 0.02 are plotted. It is seen that ~
decreases as 8 value increases and the rotation to the di-
rection of the ion diamagnetic drift direction enhances.
This result shows the finite-3 stabilization effect on the
NTM. It is expected that the linear NTM becomes sta-
ble as B increases and the diamagnetic drift effect be-
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Fig. 17 The dependencies on collisionality of v (a)
and w (b). The solid line, long dashed line
and dashed line indicate the results for the
case of &y = a. = 0.005,0s = 0,a, =
0.005 and a; = 0.005, o, = 0, respectively.
Where, ion neoclassical viscosity effect is
included in each case.

comes strong. Figures 17(b) and 18 (b) also reveal that
the NTM is stabilized as the magnetic island rotates in
the direction of the ion diamagnetic drift direction.

On the other hand, the NTM is frequently observed
in high B plasmas. From these observations, it is re-
ported that NTM tends to be driven and that the is-
land width is outspread as # increases. These results
contradict to our linear four-field analysis. Therefore,
the nonlinear analysis is also necessary to resolve this
contradiction.

4. Summary and Discussion

The linear stability of NTM is investigated based on
four-field reduced MHD equations in which ion neoclas-
sical viscosity and fluctuating ion parallel flow are taken
into account. The results are compared with those from
conventional three-field model which only includes the
electron neoclassical viscosity.

It is found that 1) the stable regime of NTM exists
even if A’ > 0 in four field model, which shows that
the careful examinations are necessary for experimental
interpretations. 2) The upshifted threshold value, A},
depends on the collisionality and we obtain A, ~ 10.2
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Fig. 18 The dependencies on collisionality of v (a)
and w.The solid line, long dashed line and
dashed line indicate the results for the case
of B = 0.005,0.01, 0.02, respectively.

for ve = 2.4(plateau regime).

In order to clarify whether the ion neoclassical vis-
cosity or the ion parallel flow plays the more important
role on the stabilization of NTM, the dependence on the
compressibility of the growth rate without jon neoclas-
sical viscosity is investigated. It was found that 3) the
stabilization effect of ion neoclassical viscosity is much
more dominant than that of the parallel compressibility
in the low collisionality regime. In fact, it is consid-
ered that free energy is strongly scattered and lost by
magnetic pumping(trapped ion plays important role for
NTM stabilization). This stability effect is weak in the
collisional regime.

Dependence of the NTM stability on various param-
eters are investigated based on four-field model. The
fluctuating bootstrap current effect on the stability -of
NTM is examined. It is found that 4) the fluctuating
bootstrap current destabilizes the NTM in low collision-
ality regime while the effect is weak in the collisional
regime (classical tearing mode). This result indicates
that the NTM is destabilized as the pressure gradient
becomes steep. The diamagnetic drift effect was also an-
alyzed. It is found that 5) the ion and electron diamag-
netic drifts stabilize the NTM. 6) The NTM becomes
stable only if the ion and electron diamagnetic drift ef-
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fects and ion neoclassical drift effect coexist. Finally,
the finite-beta effect is examined. 7) The NTM is stabi-
lized by the finite-beta effect in a wide collision regime.
However, in some experiments, it is observed that NTM
tend to be driven as 8 increases. The nonlinear analysis
is also necessary to resolve this contradiction.
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