九州大学学術情報リポジトリ Kyushu University Institutional Repository

津屋崎沖観測塔で観測した海上風乱流 : I.計測法と 予備解析

增田,章 九州大学応用力学研究所

丸林, 賢次 九州大学応用力学研究所

石橋,道芳 九州大学応用力学研究所

奥野,章 九州大学応用力学研究所

https://doi.org/10.15017/3544

出版情報:九州大学応用力学研究所所報. 126, pp.23-39, 2004-03. Research Institute for Applied Mechanics, Kyushu University バージョン: 権利関係:

津屋崎沖観測塔で観測した海上風乱流 |.計測法と予備解析

增田 章*¹ 丸林 賢次*¹ 石橋 道芳*¹ 奥野 章*¹ (2004年1月30日受理)

Wind Turbulence over the Sea Surface Measured at the Tsuyazaki Station. I. Method of Measurement and Preliminary Analysis

Akira MASUDA, Kenji MARUBAYASHI Michiyoshi ISHIBASHI and Akira OKUNO

E-mail of corresponding author: masuda@riam.kyushu-u.ac.jp

Abstract

As regards the wave dependence of the roughness length, turbulence of the wind above the sea surface was measured at a station 2 km off Tsuyazaki, Fukuoka, Japan, in the autumn of 2003. The measurement system was designed to provide independent estimates of the friction velocity u_* and the surface roughness z_0 based on different principles: (a) the profile method, (b) the eddy-correlation method, and (c) the inertial dissipation method. For this purpose a vertical array of anemometers were fixed to the station for the simultaneous measurement of the wind turbulence and mean wind profiles. The array consists of four cup-type anemometers and three ultrasonic anemometers in between. The data analyzed were (1) mean wind profiles over the sea surface, (2) Reynolds stress, (3) spectral level of wind turbulence in the inertial subrange of wind turbulence, and (4) wind-waves measured by a wave-gauge of capacitance type. The measurement system worked well. However, most data obtained were not so good in quality primarily due to the unfavorable wind direction and low wind speeds in autumn, though the stratification was neutral throughout the period of experiment. Here only a preliminary analysis was presented for data of a good quality. For those data all the methods yielded a good agreement, though the eddycorrelation and profile methods were liable to give a larger scatter. The drag coefficient C_d against U_{10} was found in a reasonable range of $1 \times 10^{-3} \sim 2 \times 10^{-3}$. Most data of the nondimensional roughness were scattered in the range of $10^{-3} \sim 10^{-1}$ against the wave-wind parameter (inverse of the wave age) $\tilde{u} \equiv \omega_p u_*/g = 2 \times 10^{-2} \sim 7 \times 10^{-2}$, where ω_p denotes the peak frequency of wind-wave spectra and g the gravitational acceleration. The nondimensional roughness in the central part of the scattered data was about 3×10^{-2} , which was a little larger than a standard value of the Charnock constant 1.8×10^{-2} . The nondimensional roughness $\tilde{z}_0 \equiv g z_0 / u_*^2$ was observed to increase with the wave-wind parameter \tilde{u} like $\tilde{z}_0 \propto \tilde{u}$ in accordance with other field observations. As a whole the present results are close to those of the HEXOS experiment. Though more careful analysis and further experiment are needed, the present results suggest that the nondimensional roughness is not so large or small as has often been reported from the observation in the sea, and that it is somewhat larger than the Charnock constant.

Key words : wind turbulence over the sea surface, friction velocity, roughness, wind stress, profile method, eddy-correlation method, inertial dissipation method

1. はじめに

海面は大気と海との接点である.大気が海に渡す 運動量が海を駆動し海が大気に渡す熱が大気を駆動

*1 九州大学応用力学研究所

する.また人類が大気中に放出する二酸化炭素の一 部を海が吸収する.海面で海と大気が力・熱・物質 (気体)を交換する過程は海と大気の流れを理解する ためにも地球環境の長期変動を予測する上でも極め て重要である.この交換量・輸送量はどのようにし て決まるのだろうか.また具体的にその大きさをど のように見積もったら良いのだろうか.

精密ではないが強力な実用向き手法にバルク法が ある.おおよそ次のようなものである.ある高度の平 均風速 $\overline{u}(z)$,その高度におけるその量の平均値 $\overline{Q}(z)$, 水面におけるその量の平均値 $\overline{Q}_{\pi\bar{u}}$ を測定して輸送 量を知りたい.そのために

$$F_Q = C_Q \times \overline{u}(z) \times \Delta \overline{Q} \tag{1}$$

という概算公式を使う. 但し F_Q は量 Q の輸送量 (交換量), C_Q は輸送係数, $\Delta \overline{Q} (\equiv \overline{Q}(z) - \overline{Q}_{海\overline{n}})$ はその 高度と海面の間の \overline{Q} の差を表す. とくに $Q = u \sim \overline{u}$ 動量 としたときの輸送係数を普通,抵抗係数と云い C_d と書く.

こう書くと概算公式は尤もらしい. 輸送速度 $\propto w' \sim \Delta \overline{u}(z) \sim \overline{u}(z) - \overline{u}_{\pi\overline{u}} \sim \overline{u}(z), Q$ の違い $\propto \Delta \overline{Q}(z) \equiv \overline{Q}(z) - \overline{Q}_{\pi\overline{u}}$ だから,輸送量はこの二つに比例するだろうということである. 但しこの見積もりでは無次元の輸送係数 C_Q が分かっていなければならない. 海上での経験からは $C_Q \sim 1 \times 10^{-3}$ である.

輸送係数が高風速で大きくなることが経験から分 かっているので風速と輸送係数を関係づけることが 多い. とくに観測のしやすい海面上 10 m の高さの 平均風速 U₁₀ で表現する方式が種々提案されてきた (Deacon and Webb 1962, Garratt 1977, Large and Pond 1981, Mitsuyasu and Honda 1984, Yelland and Taylor 1996) ¹⁾²⁾³⁾⁴⁾⁵⁾. 無次元量である輸送係数な り抵抗係数を,風速という有次元量で表すことには 違和感があるので次元のある他の定数(表面張力係 数、粘性)を補って表現するものもある(Ueno 2003) ⁶⁾. 粗度を表現する Charnock (1955)⁷⁾の式も抵抗 係数を風速で表すものと見なせる.

この種の経験式は風速が分かっていれば良いので 使いやすい.しかし輸送係数なり抵抗係数は海面状 態にも依存すると考えるのが普通であろう.実際,固 体壁なら壁面状態を指定すれば(中立成層をしていれ ば)輸送係数が一通りに決まるとされている.固体の 壁面に対応するのは海なら海面である.波浪状況に 他ならない.波浪に覆われた海面状態は複雑極まり ない変化を示す.波浪と抵抗係数ないし粗度をどの ように結びつければよいのだろうか.波浪自体が風 速や吹送距離に依存する.風が強ければ波が発達す るので風と海面状態ないし波浪状況が密接な関係を 持つことは間違いない.ただし海面状態(波浪)が風 速のみで決まらないことは波浪の吹送距離則から明 らかである.

輸送係数を海面状況と結びつけ、海面状況を波浪で 表わすというのは自然な発想である. このような考 え方は昔からある (Kitaigorodskii and Volkov 1965. Stewart 1974)⁸⁾⁹⁾. 但し, この方法だと, 風速だけを 使って輸送係数を表現する方法と異なり波の情報も必 要になる、この問題が活発に議論がされるようになっ た一つのきっかけは Masuda and Kusaba (1987)¹⁰⁾ が風と局所平衡にある波浪の表す海面状態と無次元粗 度(抵抗係数と等価)の関係を論じる枠組みを提出し、 Geernaert et al. (1987)¹¹⁾ が抵抗係数に波齢依存性 があるとした論文を発表し、Toba et al. (1991)¹²⁾ が Bass 海峡での観測結果を基にこの問題を広く論 じたことであろう. その後, 実験・観測だけでなく 理論面からもこの問題を主題とする研究が相次いだ (例えば Jenkins 1992)¹³⁾. しかし未だに決着がつい ていない.

無次元粗度が波齢に依存しないとする Charnock 流の考え方のほか,波齢に比例する経験式 (Toba et al.)¹²⁾,波齢の逆数 (波風径数と呼ぶ) に比例する経 験式 (Kusaba and Masuda 1988, Smith et al. 1992, Donelan 1993) ¹⁴⁾¹⁵⁾¹⁶⁾,波齢によって増減する経験 式 (Nordeng 1991)¹⁷⁾が提案されている. 粗度を有義 波高で無次元化する方が良いとするものもある (Anctil and Donelan 1996, Taylor and Yelland 2001)¹⁸⁾¹⁹⁾. その一方で,風速だけで抵抗係数を決めるやり方が 昔からあり実用上も広く使われている. この混乱し た状況については最近出版された単行本 Jones and Toba (2001)²⁰⁾ を読んで頂くと良い. この本はこの 問題を主題として編まれたものであり,私の知る範 囲では,納得のいく結論が出ていないことを示して いる.

では解決に向けてどうすればよいだろうか.大きな 誤差の入りやすい粗度という微妙な量については何 よりも信頼のできる精密なデータが基本になる.誤 差は避けられないが,誤差の大きいデータを等しく 重視した議論では正しい結論が導けない.

先ず実験水槽と海上で信頼できるデータを得るこ とが先決である.実験水槽では再現性もあり曲りなり にも信頼性のある結果が得られる.こうして慎重に求 めた結果は既に発表している (Masuda and Kusaba 1987, Kusaba and Masuda 1988)¹⁰⁾¹⁴⁾.次に必要に なるのは吹送距離が大きく実用上の意義が大きい外 洋域のデータである.実際,内外の多くの研究者が外 洋でも計測してきた.しかしデータの散乱が大きい. 相互に矛盾することが多いので全てを信頼するわけ にはいかない (Jones and Toba, 2001)²⁰⁾.ではどの 観測が正しくどの観測が間違いなのだろうか.ある いはどの観測も真実なのだろうか.

この問題を調べるために津屋崎の観測塔で粗度を 計測したことがある (草場ほか 2002)²¹⁾. 三杯型風 速計配列で平均風速を求め分布法を用いて粗度を求 めた. 一台の超音波風速計で求めた渦相間法と分布 法の一致および対数速度分布形への適合度は良好だっ た、北西季節風の卓越する冬季なので風向と対数速 度分布を吟味しながら粗度を測った、しかしこの実験 では、従来発表されたものと比べると遙かに小さい 無次元海面粗度となった.本当とすれば多くの計測 実験と異なる新しい値域のデータである.一方,デー タは正しかったのだろうかという疑問が残った.実 際、冬季の実験であり中立成層とは限らない、 粗度 の推定に影響を与える密度成層の状態を計測してお らず確かなことは言えなかった. また, 風向・風速 が一定でない海上計測において殆ど分布法に頼って いるという限界もあった.

従って観測条件を抑えた信頼できる計測をする必 要がある.もし非常に小さい粗度を再び得,その値 が信頼できるものならば新しい発見であり従来の考 え方に修正を迫る.従来のものと合えばそれはそれ でまた良い.粗度を決める仕組み,合う理由・合わ ない理由を考える基礎となるデータを得たい.これ が今回海上実験を行う目的であった.

海上風乱流の精密計測を当面の目標にして海上実 験を行った.やってみると秋季で風が弱かった.ま た風速計が観測塔の風下に来る向きの弱い風が多く 解析しがいのあるデータは多くなかった.まだ冬期 の十分に発達した海面境界層風乱流のデータを得て いない.解析も十分と言えない段階である.しかし ながら,多くはない良質のデータから得た知見は重 要な内容を含んでいる.これを速報の形で紹介して おきたい.

なお海面の抵抗係数・粗度を解明する意義は運動量 の問題に留まらない.というのも様々な物理量,化 学物質の海面交換を担うのは大気乱流だからである. その大気乱流の様子を決めるのは運動量輸送である (対数分布則を考えれば明らか).すなわち運動量交 換過程は大気乱流過程を表すものであり局所大気海 洋相互作用の根幹を成す.なお海面境界過程には正 体の見えない砕波や分子規模の物性が大きな役割を 果たしている可能性があり,未解明の多くの重要な 主題がある.

本稿では問題の考え方と、計測法・解析法を中心 に記述する.ついで良質のデータに基づき求めた抵

Fig. 1 Side view of the Tsuyazaki station (unit in m). LWL means the low water level, and HWL the high water level.

抗係数・無次元粗度を予備解析の結果として示す.風 乱流の詳しい解析および粗度と抵抗係数に関する議 論は別の機会に譲る.

2. 津屋崎観測塔における計測

2.1 津屋崎観測塔での計測 -今回の狙い-

前回津屋崎観測塔で粗度を計測した際は結果の信 頼性に疑問が残った.そもそも信頼性そのものが評 価できない.これは他の計測についても同じである. データの散乱具合で判断しているに過ぎず納得のい く議論は難しい.

客観的信頼性を得るために次のような工夫をする. 後で述べるように海面抵抗・粗度の計測には三つの 方法が考えられる.それぞれ長所短所がある.誤差 の入る理由は様々であり全ての誤差を抑え切れない. 一つの方法では計測した結果が本当に信頼できるか どうかについて確信がもてない(判定基準がない). 三つの方法を複合して相互検定させ良い一致ないし 一貫性がある場合には計測データの信頼性は上がる. データの信頼性判定のために次の事項に注意する.

- 1. 観測塔の影響がないか (風向に注意)
- 2. 対数速度分布が成り立つか (粗度の意味)
- 運動量輸送一定高度と考えて良いか (対数分布則の意味)

4. 定常に近いか (風向,風速が一様か)

 5. 波は風と平衡状態にあるか (3/2 乗則または吹送距離則が成り立つか)

6. 密度成層を考慮した補正が必要か

計測した平均風速分布が対数速度分布と適合し,三 つの方法が一致しないまでもほぼ同様の摩擦速度を 与えれば信頼性は高いと判断してよいだろう.

繰り返すがここでの目的は対数風速分布・乱流状 況を判断できる計測を行うこと、そこで得た信頼性 のあるデータに基づき無次元粗度の波浪状況依存性 という問題に決着をつける(可能なら)ということで ある. 殆ど平均風速のみを計測した前回の実験では 未知の要素が多すぎて計測データの信頼性を欠いた. その経験を踏まえ海上風乱流の特性をいくつかの見 方を複合して調べることとする. 具体的には分布法, 渦相関法, 慣性散逸法の三者を複数高度で併用する (分布法は元来,複数高度を使用するもの). また三者 の異同・一致度・問題点を調べることもできる.

2.2 計測システム

そのために次のような海上計測を行う.計測に用 いる観測塔は津屋崎沖 2km の海上にある.水深は 15m である.位置は海洋観測年報(1989-2001)²²⁾を 参照して頂きたい.津屋崎沖の海上観測塔の側面図 を Fig. 1 に示そう.観測塔は 8m を一辺の長さとす る三角形をなす.南東に福間・津屋崎の海岸があり 冬季に北西の季節風が卓越するので(Masuda et al. 1999)²³⁾,北西風及び北西からの波浪を計測するため の配向を持つ.

実験目的に沿い次の項目を計測する.中心になるのは風速計の鉛直配列である (Fig. 2). 観測塔から張り出した位置に計測櫓を設置した.これに

- ・三杯型風速計配列4台(1,3,5,7番風速計)
- ・超音波風速計3台(2,4,6番風速計)

を上下に並べて装着する. 超音波風速計は変動を含め風速の三成分(および気温変動)を計測できるので 平均の風向・風速および乱流スペクトルが分かる. 三 杯型風速計は平均風速のみを計る. 海面に近いもの から順に風速計番号を付けた.

そのほか

- ・プロペラ式風向風速計1台(8番風速計)
 (観測塔最上部に固定した定時観測用測器)
- ・波高計2台(容量型とマイクロ波式各1台)
 (波浪状況との関係を見るために必要)
- ・水位計1台(風速計の水面からの高さを監視)

・気温計 4・水温計 3・簡易湿度計 1
 (密度成層状態に注意する)

を同時計測する. 浮きにつないで沈めた水温計で海 面下約 0.5 m, 1.5 m, 5.0 m の水温を監視する. 一方, 気温は下部ステージから 1~2 m 下のところ (無人計 測のときと有人計測のときで異なる),下部ステージ の手すり,上部ステージの手すり,及びプロペラ式 風向風速計の手すりに固定して測った. 用いたのは いずれも水晶温度計である.参考のために海面の温 度も赤外放射温度計で測った.また簡易湿度計を用 いて上部ステージにおける湿度変化を計測する.湿 度のみは自動でなく 15 分おきに表示を読みとり記録 した.なお,超音波風速計は Campbell 社製 CSAT3 型,三杯型風速計は牧野応用測器研究所製,水晶温 度計は東京電波社製である.

8 台ある風速計の高度は観測塔の下部ステージ (平 均潮位から約3m,高潮位から約2mの高さにある) を基準にしてそれぞれ

0.0, 1.96, 4.32 m (超音波風速計)

-1.03, 1.15, 3.15, 5.99 m(三杯型風速計) 9.0 m (風向風速計)

である. 下部の風速計は波に打たれて破損し故障す るおそれがあるので三杯型とする. また三杯型と超 音波式の風速計を交互に上下に並べた. 風速計間隔 を 約1m 強とした配置である.

風速計を上下に並べた櫓を観測塔から 8m (観測塔 の大きさ) だけ海上に張り出して設置する.風向きさ え良ければ (北西風〜南風),風乱流の計測に際し観 測塔の影響を殆ど受けないと考えられる.また,先に 述べたように荒天時には風速計が波に打たれて破損 するおそれがある.そのため風速計配列櫓を実験の 都度,設置し撤収する.この櫓の構成,櫓の設置・撤 収法及び計測系の詳細については丸林ほか (2004)²⁴⁾ を参照して頂きたい.

なお、定時観測に常用している太陽電池だけでは 不足なので内燃式発電機を用いている.このように 電源に問題があり風速計の破損を避けるための撤収 作業が必要なので実験は有人運転が基本となる.よっ て実験の都度調査艇「だんりゅう」で観測塔と臨海 基地を往復することになる.冬場は波が高く観測塔 に乗り移るのには危険を伴う.そのため高風速時の 観測は貴重だが現在の方式では実施が難しい.無人 で運転することもあったが、その場合は発電機の燃 料が続く限り連続計測した.

26

Fig. 2 Array of four anemometers of cup-type and three ultrasonic anemometers in between. The panel in the lower right shows that the array of the anemometers are sufficiently separated from the tower.

3. 計測原理と解析の手順

応力の鉛直輸送が高度に依らず一定となる層(高度) の中の話である.準定常で水平に準一様で Monin-Obukhov 相似則が成り立つような海上境界層乱流 であることが前提になる.但し今回の実験時には気 温・水温が殆ど同じで密度はほぼ中立成層だったの で Monin-Obukhov 長を無限大として良かった.以 下でも密度成層効果を無視する.今思えばこれは秋 季実験の利点であった.

3.1 摩擦速度・粗度を求める三つの方法

考え方については、慣性散逸法の実際を詳しく論 じた Large and Pond (1981)³⁾を見て頂きたい.但 し誤解のないよう定義を明記し、三つの方法の相互 関係を示しておく.

- z: 計測時の海面からの高度(潮汐補正)
- u_* : 摩擦速度 $\equiv \sqrt{-u'w'}$
- $g: 重力加速度 = 9.8 \text{ m/s}^2$
- κ : Kármán 定数 = 0.40

(u, v, w): 風速の三成分, 但し

(風下向き,風下を右手に見る向き,鉛直上向き)

- ●: 量 の時間平均または標本平均
- •':時間平均または標本平均からのずれ(変動分)

抵抗係数・粗度を計測するために本実験で用いた 方法三種は以下のとおりである.

- 1. 分布法
 - (a) 高度数点 (z_i) で平均風速 <u>u</u>(z_i) を計る.今
 後は <u>u</u>(z) を U(z) とも書くことにする.
 - (b) 乱流を測らなくても平均風速だけでよい.
 - (c) 観測した平均風速鉛直分布を対数風速分布

$$U(z_i) = \frac{u_*}{\kappa} \log \frac{z_i}{z_0} \tag{2}$$

に当てはめ u_* : 摩擦速度, z_0 : 海面粗度 を求める. 対数風速分布で $U(z_0) = 0$ とな る高度 z_0 が粗度の定義である.

(d) 基準高度 z_{ref} = 10 m における抵抗係数
 C_d を求めるには次のようにする. 任意高度 z m における抵抗係数 C_d(z) を

$$-\overline{u'w'} = u_*^2 = C_d(z)U^2(z) \Rightarrow C_d(z) = \frac{u_*^2}{U^2(z)} = \frac{\kappa}{\left[\ln\frac{z}{z_0}\right]^2}$$
(3)

と定義する. $U_{10} \equiv U(10)$ を当てはめた対数 分布から求め、上の定義により $C_d \equiv C_d(10)$ を決める.

(e) 中立成層なら海面粗度 *z*₀ は *C*_d(*z*) と等価 なので次のように求められる.

$$\frac{z_0}{z} = \exp\left[-\frac{\kappa}{\sqrt{C_d(z)}}\right] \tag{4}$$

すなわち平均風速の勾配から摩擦速度 u_{*} を,切 片から z₀ を決める. 最低 3-4 点は必要である. 比較的安定している平均風速分布を測るだけで よいのが長所である. 簡単な風速計でよく,資 料も少なくて済む. 欠点は対数分布を仮定する 間接法であること,海面近くの計測ができない と精度が悪くなることである.

2. 渦相関法

熱線風速計・超音波風速計などで高周波の乱流 変動を計測する. Large and Pond $(1981)^{3}$ で は Gill propeller-vane 風速計を使って乱流を計 測し風下成分 u と鉛直成分 w のコスペクトル から摩擦速度を決めている. ここでは超音波風 速計を用いて直接 -u'w'を計算する方式を採用 した.

- (a) 運動量輸送計測の原器(直接輸送量を計る) である.最大の長所は、直に乱流輸送を測っ ていることである.不確実な仮定とか径数 値を用いないという意味で乱流輸送量を測 る基準としての意味がある.
- (b) 欠点は風速計の配向に敏感なことと1時間 以上だと風の場の定常性が保証できないこ とである.かといって計測時間を短くする と低周波の寄与が正しく評価できないこと になる.また乱流変動を扱う以上,大量の データを処理しなければならない.
- (c) 摩擦速度の求め方は次の定義どおりである.

$$u_{\star}^2 \equiv -\overline{u'w'} \tag{5}$$

- (d) 平均風速 U と乱流速度 (u', w') が高度一 点で計測できればよい.
- (e) u_{*} と U(z) から基準高度 z = 10 m における風速 U₁₀ が求まる. u_{*} と U₁₀ から抵抗係数 C_d ≡ u²_{*}/U²₁₀ を計算する. 基準高度の平均風速に換算する際に誤差が入る. 海

面粗度 z₀ も U(z) と u_{*} を基に対数分布則 から求める.

3. 慣性散逸法

- (a) 一点で平均風速 U と乱流スペクトル (u' または w') が計測できればよい。これは渦相関法と同じである.
- (b) 動揺する船の上でも適用できる、渦相関法 は船上では難しい、慣性小領域の乱流スペ クトルレベルを見るので3-5分程度の短い 計測時間でも良い。
- (c) エネルギー生成散逸に関する量なので気流 が波浪に直に渡す運動量輸送には無関係で ある.
- (d) 原理は対数分布における散逸と慣性小領域 の存在に基づく:

 $\begin{cases} 散逸と生成の釣り合い: \epsilon = u_*^2 \frac{dU}{dz} = \frac{u_*^3}{\kappa z} \\ 慣性小領域: E_{\parallel}(k) = \frac{9}{55}C_K \epsilon^{\frac{2}{3}} k^{-\frac{5}{3}} \\ ただし C_K \approx 1.62 はコルモゴロフの普遍 \\ 定数である. また E_{\parallel}(k) は風下向きの速度 \\ 変動成分の波数スペクトルを表す. \end{cases}$

(e) 同様に、風下に直交する向きの速度変動成 分の波数スペクトルを E₁(k) と書く、鉛直 成分もこう書いてよい、このとき

$$E_{\parallel}(k):E_{\perp}(k)=3:4$$

が成り立つので、慣性散逸法の適用は風下 方向の速度成分に限らない。今回の経験に よると鉛直速度成分によるものが安定して いた。しかし鉛直速度成分を用いると推定 した摩擦速度が小さめになる傾向があった (後述).

(f) 慣性小領域におけるエネルギースペクトルの大きさ (レベル)から摩擦速度を間接推定する. 観測した周波数スペクトルを凍結仮説を用いて波数スペクトルに換算する. その際 uk = ω を用いるので平均風速の推定誤差からエネルギーレベルの誤差が生じる. 但しω は風速変動の角周波数を表す. 摩擦速度を求める手順は次のとおりである.

$$\begin{cases} E_{\parallel}(\omega) \Rightarrow E_{\parallel}(k) \\ E_{\perp}(\omega) \Rightarrow E_{\perp}(k) \end{cases} \Rightarrow \epsilon \Rightarrow u_{*}$$

 (g) z, U(z), u_{*} から他の諸量が推定できるの は渦相関法に同じである.

3.2 計測·解析手順

湿度を除き 24 個の計測項目を 50 Hz で自動計測・ 採標した. 2^{14} 個 \approx 5.46 分 を一単位として解析す る. 高周波スペクトルを対象にする慣性散逸法の適 用には問題ない (低風速ほど同一周波数に対応する波 数が小さくなると言う意味では問題がある). 渦相間 法の適用を考えると少し短い時間かもしれない. ま た波浪スペクトルの形が幾分滑らかでなくなる.

乱流と波浪を計るので膨大な量のデータが得られ る.好都合なことに実験期間が秋だったので中立成 層状態にあった.湿度も概ね 60% 程度で安定してい た.以下では全て中立成層を前提とした解析を行う. 実海上では風が始終変動し定常でないので 5.46 分を 単位として解析し風況変動の様子を見た.すなわち 解析はまず時系列の形で始める.実際,実験期間中 には東風が多かった.その場合,計測櫓が観測塔の 風下にきて観測には不適当になる.このような不具 合は風向きの時系列を見ればすぐに分かる.乱流計 測に不向きのデータが殆どだったが,その中で良質 のデータがあったのでその解析結果を後で示す.以 下,解析手法の概略を項目ごとに記しておく.

- 分布法:中立成層として平均風速観測値鉛直分 布を最小自乗法で対数分布に当てはめる.観測 塔最上部の固定式プロペラ風向風速計(8番風 速計)はこの解析から外した.定時観測に用いて きた古い測器で動作がおかしいことが多かった からである.また計測櫓上にあるもののうち7 番風速計(三杯型)も外すことが多かった.なる べく海面に近いものの方が対数領域高度の計測 で望ましいのと後で述べる難点があったからで ある.計6つの高度の平均風速を用いた分布法 とする.
- 渦相関法: コスペクトルをとるといった複雑な 計算を避け、平均を除いた変動成分の積として 単純に - u'w' を求めた. こうして 5.46 分単位 で求めた時系列に移動平均をかけてもあまり変 化しなかったのでこれで大体良かったと考えて いる.
- 3. 慣性散逸法: 複雑な方法もいろいろ試したが,後に示す解析結果は次のような簡易慣性散逸法による. 先ず速度変動のスペクトルを片側 20 本の三角フィルターを用いて平滑化する. 模擬実験によればこの程度の平滑化でレベル推定が十分可能であった. 次に周波数 3 Hz におけるエ

ネルギースペクトル密度から摩擦速度を計算した. 摩擦速度が分かれば,平均風速と対数分布 則を基に *U*₁₀, *z*₀ を求めることができる.

慣性散逸法では、三高度で計測した u, v, w 三 成分のそれぞれに対して摩擦速度を求めた.そ の中では w' のスペクトルが最も安定する傾向 があった.しかし他の結果と比較して明らかに 小さい摩擦速度が出ていた.理由は分からない. そこで以下の解析では風下成分 u' による結果 を示すことにする.今回は使わなかった鉛直速 度変動も、解析法次第では摩擦速度の推定に活 用することができそうである.但しその前に海 上風乱流の慣性小領域内の性質を更に詳しく調 べておく必要がある.

 風波が風と局所平衡状態にあるかどうかの検定 をするために、波浪エネルギーとスペクトルピー ク周波数が必要である.定時観測用のマイクロ 波波高計と容量型波高計の二つで波浪を計測し たが精度に優る後者を中心に解析した.エネル ギーは単にスペクトルエネルギーの総和から求 めた.ピーク周波数 ωp は

$$\omega_p = \frac{\int \omega F^3(\omega) \, d\omega}{\int F^3(\omega) \, d\omega} \tag{6}$$

として定義した. ここに F(ω) は角周波数 ω の 成分波のスペクトル密度を表す. 単峰性スペク トルの場合, この手法で求めたピーク周波数は 視察と良く一致する. うねりが混在する多峰性 スペクトルではピーク周波数の定義自体が難し い. 後で示す波浪スペクトルは周波数向きに片 側 10 本の三角フィルターを掛けて平滑化した ものである.

- 5. 風速計の海面からの高度は潮位計から求めた平 均水位を基に補正した.
- 気温・水温・湿度は計測したものの解析には用いなかった.中立密度成層と判断できたからである.

4. 結果

10月22日には計測櫓が観測塔の風下とならずし かも比較的強い風が吹いた.風速は前半でやや減少 し,突然風向を変えて漸増したので乱流計測には望 ましい条件であった.この日には5.46分を1単位 として263個,約24時間の連続したデータを得た. 以下に示すのはその解析結果である.

Fig. 3 Time series of wind and waves on October 22, 2004: (top) wind speed, (middle) wind direction, and (bottom) energy and spectral peak frequency of wind waves. The abscissa is the time from the beginning to the end of the measurement for about 24 hours. The top panel shows the temporal variation of wind speeds measured with 8 anemometers at different altitudes (the broken line is due to No. 8 anemometer of propeller-type, other details being omitted). The upper bound of the top panel is 13.4 m/s and the lower bound is 0.73 m/s. The middle panel shows the temporal variation of the wind direction measured with 3 ultrasonic and 1 propeller anemometers. The central horizontal line indicates the direction when the anemometers are located in the upwind side of the observation tower. The hatched area close to the upper or lower bound of the panel means that the array of anemometers is in the lee of the tower. The bottom panel shows the wave energy E (two increasing thick lines), spectral peak frequency ω_p (two decreasing gray lines), and $E\omega_p^3/gu_*$ (a broken line), where g denotes the gravitational acceleration and u_* the friction velocity. The upper bound of the panel corresponds to 0.15 m², 1.96 rad/s, and 0.1, respectively, for E, ω_p , and $E\omega_p^3/gu_*$.

4.1 風速・風向・波浪変化の概況

先ず概況を見るために、この間の風向・風速・波浪 の変化を時系列として三段に分けて示す(Fig. 3). 横 軸が時刻を表し全部で24時間である.上段は1番か ら8番まで全ての風速計で得た平均風速の時間変化 を表す.見づらいが風速計の違いを線種(または色) の違いで表す(詳細は省略).この観測期間中では比 較的強い風が吹いたこと、低風速のときは低い高度 から高い高度まで同じような風速であるが高風速に なると上下の速度差が大きくなることが確認できる.

中段には風向(この場合吹き去る方向)の時間変化 を示す. 超音波風速計3台とプロペラ式風速計1台 で風向を測っている. 枠中央の線が最適の風向を表 す. すなわち計測櫓が観測塔の風上になる風向であ る. 逆に, 枠の上限・下限は計測櫓が観測塔の風下 になってしまう最悪の風向を示す. 中段の上枠と下 枠に近い風向のときの計測資料は信頼できない.プ ロペラ式風速計の示す風向はこの計測期間の後半で 異常な変化を示した. このようなことが多かったし 海面からも遠いので8番風速計を分布法の適用対象 から外している。超音波風速計3台の風向は互いに 良く一致したが高度により微妙に異なる. 低風速の ときほど風向のずれが大きい傾向がある.この差は 解析単位時間を長くしても変らない、この期間の風 向から判断すれば風乱流は観測塔の影響を受けてい ない.

下段には波浪の時間変化を示す.次第に増加する のが波浪エネルギー E で減少するのがスペクトル ピーク周波数 ω_p である.マイクロ波式波高計と容 量式波高計によるデータでは概ね同じような値を示 すが,かなりの違いがある.解析には精度の良い容 量式波高計で得たデータを用いる.

中央よりやや下側を動く破線は鳥羽の定数に当たる無次元量 $E\omega^3/gu_*$ を表す. 但し u_* は2番風速 計データから渦相関法で求めたものを用いており波 浪エネルギーとスペクトルピーク周期は容量式波高 計によるものである. この量については枠の上限が 0.1 で下限が0を表す.

風速の増加と共に波浪エネルギーが増加しスペクト ルピーク周波数が減少している.記録の中程で風速・ 風向きの急変するところがある.そこでは Eω³/gu_{*} が異常に大きくなる.これは渦相間法で推定した摩 擦速度が低下したからである.ただし慣性散逸法で 推定した摩擦速度も低下する.

鳥羽の定数は $E\omega^3/gu_* \approx 0.05$ と考えられる

Fig. 4 Time series of friction velocities u_* obtained by the eddy-correlation method in comparison with the profile method. The abscissa is the same as in Fig. 3. The upper bound of the ordinate indicates $u_* = 0.623$ m/s and the lower bound $u_* = 0$ m/s. A thick broken line shows the friction velocity by the profile method and the other three solid those obtained by the eddy-correlation method at the three altitudes of ultrasonic. The broken line in the upper part indicates the coefficient of contribution when the observed profile of mean wind speeds were regressed to the logarithmic profile.

(Masuda and Kusaba 1987)¹⁰⁾. また Mitsuyasu $(1968)^{25}$ の吹送距離則によれば $E\omega^3/gu_* \approx 0.043$ である。しかしこの図ではやや小さい値を保持した まま推移している.このことから風と波浪が局所平 衡状態になかったとするのは早計であろう. 摩擦速度 の推定に問題があったということもないだろう. では 何か. 短時間記録からスペクトルピーク周波数を推 定するための後述の手順によりバイアスが生じたと いうのが最もありそうなことである.事実 $E\omega^3/gu_*$ は安定して 0.03 ~ 0.04 程度の値を示す、定常に近 い風が吹いていた図の前半でその値は安定していた し、風が強くなり波浪エネルギー、スペクトルピー ク周波数、摩擦速度の三つが次第に変化していた後 半にも安定していた. すなわちここで求めたスペク トルピーク周波数を用いると鳥羽の定数に相当する ものが 0.03 ~ 0.04 になるということである. この ことと風向・風速概況も合わせて風と波浪は局所平 衡に近いと判断した.

Fig. 5 The same as in Fig. 4 except that the inertial dissipation method is used instead of the eddy-correlation method. The upper bound of the ordinate indicates $u_* = 0.8$ m/s and the lower bound $u_* = 0$ m/s.

4.2 摩擦速度変化の概況

本実験の目的である摩擦速度の変化する様子を時 系列で見よう.渦相関法によるものを Fig. 4 に,慣 性散逸法によるものを Fig. 5 に示す. 横軸が時刻で Fig. 3 と同じである.

比較の基準として分布法による結果を点線で示し 二つの図に載せた.すなわち Fig. 4 では三つの高度 で求めた渦相関法による摩擦速度と分布法による摩 擦速度の時間変化が比較できる.一方, Fig. 5 には, 風下向きの風速成分の変動,それと直交する向きの 水平風速成分の変動,鉛直変動の三成分について慣 性散逸法を適用して三つの高度で得た摩擦速度の時 間変化を示す.やはり比較の基準として分布法で求 めたものも載せている.縦軸の範囲が僅かに異なる ので注意して頂きたい.

この二つの図から三つの方法を用いて三つの高度 で求めた独立な摩擦速度が良く連動して変化してい ることが分かる.分布法で1,渦相関法で3,慣性散 逸法で3×3=9計13個の独立に計測した摩擦速度 がほぼ連動している.すなわち誤差はあるものの概 ね一致して変化していた.このように順調なデータ を得た日は今回の秋季計測期間中で外にない.推定 原理も計測高度も異なる13種の見積もりから互いに ほぼ一致する摩擦速度が連続して得られたのである. 従ってこの日に計測した摩擦速度は概ね正しく推定 できていると判断した.すなわち,6番風速計以下 の高度では確かに運動量を下向きに一定量輸送して

Fig. 6 An example of a sequence of the observed profile of wind speeds and their regressions to the logarithmic profile. The abscissa shows the wind speed on a linear scale and the ordinate the altitude on the logarithmic scale. Note that the abscissa is from 7 m/s to 12 m/s.

おり、境界層乱流の議論を適用して良い.

当然ながら風速が増加する後半に摩擦速度が次第 に増加している.比較的短期の風速変動にも摩擦速 度が追随している様子が見える.慣性散逸法に比べ ると分布法と渦相関法は変動幅が大きいことが分か る.ばらつきはあるものの値そのものは全体として 相互に良く一致する.

Figs. 4-5 には動きの違う細い破線を 1 本加えた. これは観測した平均風速を最小自乗法で対数分布に 適合させたときの寄与率 (適合度) R^2 の時系列であ る.適合度がそんなに大きくない前半でも分布法の 与える摩擦速度は他の方法が与えるものと良く一致 している.また観測塔の影響を避けるという点では 前半の方が好ましい風向きだった.実際には,風向 きが少し悪くても風速の大きい後半に適合度が大き くなっていることが分かる.風速・風向が不連続と なる時刻 (前半と後半の境目) では風向が観測塔の風 下側になり適合度は急落し摩擦速度も不連続な変化 を示した.以下に示す解析結果では $R^2 \ge 0.81$ の基 準を満たすもののみを示すが,それは全期間のうち 後半の風速が漸増している時期のデータであること が分かる.

4.3 鉛直速度分布と波浪スペクトル

対数速度分布へ当てはめてどの程度合うかを確認す るために風速の大きい時期の例を Fig. 6 に示す(最

も適合度が良いというわけではない). 5.46 分平均風 速分布のほぼ一時間にわたる変化が見られる.風速 の違いを細かく見るため風速を表す横軸の原点を0 からずらせている.1時間の中でも「平均」風速は 一定でなく変動している.とはいえ対数風速分布を ほぼ保ちながら風の「息」に追随する様子が見える. この図でもそうであるが1番風速計の風速が遅めで 2番風速計で速く、3番風速計が遅くというふうにジ グザグになる例が多かった. 但し逆の場合も無いで はない. 試験のために, 第二ステージの高さで計測 櫓を水平にして風の水平分布を計測したことがある. その折りは、わずかのジグザグしか見られなかった. 少なくとも較正の間違いではない.風速計を1mお きに並べたためのある種の干渉が起きた可能性はあ る.しかし風速計配列を水平にした場合には出なかっ た. 理由はよく分からない.

次に波浪スペクトルの形を見る (Fig. 7). 波浪スペ クトルは片側10本の三角フィルターを用いて平滑化 した. この図も約一時間にわたる波浪の変化を示す. 5.46 分毎に求めたスペクトルを順次、上にずらして 描いた (大きさほか詳細は省略する). また図中の細 い縦線は先述のように計算したスペクトルピーク周 波数を示す. 短い縦線が最下段のスペクトル (早い時 刻のもの) に対するもの, 長い方が最上段のスペクト ル(遅い時刻のもの)に対するものである. 視察によ るスペクトルピーク周波数と良く一致する. ちなみ に複数の峰を持つ場合も比較的良く代表的ピーク周 波数を推定できるようである. この図によれば, 波 浪は単峰を持つ綺麗なスペクトル形を有し時間的に も連続している. $E\omega_p^3/gu_*$ が鳥羽の 3/2 乗則に基づ く定数よりやや小さめだったが (Fig. 3), 風と波浪は 概ね局所平衡にあると判断して良い.

4.4 摩擦速度・抵抗係数・無次元粗度

三つの手法,三つの高度で求めた摩擦速度の一致 具合を散布図で見よう (Fig. 8).2番の超音波風速計 で得た乱流データから渦相関法を用いて推定した値 を横軸にとる。同じ時刻に他の方法または他の高度 のデータで求めた摩擦速度をプロットする。直線に 並んでいる丸印は基準とした2番風速計の渦相関法 による摩擦速度を表す。分布法で適合度が R² < 0.81 となる時刻のデータは信頼できないとして除いた。ま た慣性散逸法は風下向きの速度成分に基づくものだ けに限っている。

全体として一致の度合いは悪くない.概況時系列 で見たように渦相関法と分布法はどちらも変動が激

Fig. 7 An example of a sequence of the observed spectra of wind waves. Ten spectra are drawn with a shift of spectral level; the lower spectrum indicates the earlier one. The vertical two lines show the spectral peak frequencies: the shorter one for the bottom spectrum while the longer one for the top spectrum. The top and bottom spectra are drawn by thick lines.

しい. これに対し慣性散逸法は安定しており変動幅 が小さい. データ処理単位が 5.46 分と短いので渦相 関法の方が安定するものと考えられる. 全体として みれば三者は良く一致する. ただし慣性散逸法で鉛 直速度成分を用いると小さい値を与える傾向がある (図は省略). 鉛直速度成分を用いる慣性散逸法は安 定しているものの渦相関法と顕著な差を示したので 補正が必要かもしれない. その場合でも補正が必要 な理由を明らかにしなければならない. 今後の課題 であろう.

次に抵抗係数 *C_d* が *U*₁₀ に対しどのように依存す るかを示したのが Fig. 9 である. 図中の直線は Wu の経験公式²⁶⁾

$$C_d = 1 \times 10^{-3} \times (0.8 + 0.064U_{10}) \tag{7}$$

を表す.計測値はほぼ $1 \times 10^{-3} \sim 2 \times 10^{-3}$ の範囲に ある.従来の知見から見て妥当な結果であろう.こ の図で見ても渦相関法,分布法,慣性散逸法は良く 合う.Wuの経験公式²⁶⁾が与える抵抗係数より幾分 大きい.

渦相関法によって求めた抵抗係数をよく見ると $U_{10} \sim 7 \text{ m/s}$ 付近で大きい方に外れるものがある. この付近の U_{10} で抵抗係数が散乱しやすいというこ とは良く知られておりしばしば経験することである. 意外にも (私が知らないだけかもしれない) 慣性散逸

Fig. 8 Scatter diagram of the friction velocities (m/s) observed at different altitudes by different methods against that due to the eddy-correlation method at the altitude of the anemometer No.2. The data $R^2 < 0.81$ are excluded in the figure, where R^2 denotes the coefficient of contribution when the observed vertical distribution of mean wind speeds are fitted to the logarithmic profile.

Fig. 9 Drag coefficient C_d against U_{10} (m/s), the mean wind speed at z = 10 m. See also Fig. 8 for legend.

法にはそのような気配がない.

最後に無次元粗度 ž₀ を波風径数 ũ に対してプロットした (Fig. 10). ここでは慣性散逸法による計測資料を除いた.「原器」である渦相間法と従来の分布法を重視し,変化の様子を細かく見るためである.明らかに計測値のばらつきは極めて大きい.しかし値そのものは前回の観測塔での観測ほど小さくなかった.

Fig. 10 Nondimensional roughness $\tilde{z}_0 \equiv g z_0/u_*$ against the wave-wind parameter (inverse of the wave age) $\tilde{u} \equiv \omega_p u_*/g$. The data by the inertial dissipation method are omitted here. The dotted, chained, and dashed straight lines respectively show three typical empirical formulas for \tilde{z}_0 as a function of \tilde{u} : Charnock, Toba et al. and Kusaba and Masuda. If upper and lower wild data are omitted, the data seem to be aligned along a solid line of a slope of unity $(\tilde{z}_0 = 0.67\tilde{u}$, which is close to the HEXOS formula). See also Fig. 8 for legend.

前回は $\tilde{u} \sim 3 \times 10^{-2}$ 付近で $10^{-4} \sim 10^{-3}$ とかけ離 れて小さかった.また Toba et al. (1990)¹²⁾, Suzuki et al. (1998)²⁷⁾ に報告されているデータのように $10^{-1} \sim 10^{0}$ というほど大きくはない. Charnock 定 数より少し大きい程度に収まっていることには注意 すべきである.三法併用法で吟味しているので信頼 性の高い妥当な結果と考えている.なお,図中に付 した三つの直線は次の経験公式を表す.

(Charnock	$\tilde{z}_0 = 1.8 \times 10^{-2}$
Toba et al.	$\tilde{z}_0 = 2.5 \times 10^{-2} \tilde{u}^{-1}$ (8)
Kusaba and Masuda	$ ilde{z}_0 = 1.01 imes 10^{-2} ilde{u}$

前回の津屋崎観測塔の計測で得た無次元粗度は極めて小さく Kusaba and Masuda の経験式の延長上 にデータ中心部分があった.しかし本実験の中心部 は、上三つの中から選べば Charnock の線に近い.

全体の傾向から見ればどうなるだろうか.明らか に右肩上がりである.図中に引いた実線は

$$\tilde{z}_0 = \frac{2}{3}\tilde{u} \tag{9}$$

を表す. 波浪スペクトルピーク周波数 ω_p を小さく見 積もっていたとすると前にかかる係数が少し小さくな るかもしれない. 図の上方に外れたデータと左下方

Fig. 11 Nondimensional roughness $\tilde{z}_0 \equiv g z_0 / u_*$ against the wave-wind parameter (inverse of the wave age) $\tilde{u} \equiv \omega_p u_*/g$ in a wider realistic range of abscissa \tilde{u} , where the data based on the inertial dissipation method are included again. The straight lines in the figure are the same as in Fig. 10. The impression differs from that of Fig. 10: (1) the data seem to have a slope larger than unity; (2) the central value is fairly large than the ordinary Charnock constant 0.018; and (3) \tilde{z}_0 due to the inertial dissipation method appear to have a smaller scatter and also have somewhat smaller values than the other two methods.

に外れたデータを除き Kusaba and Masuda (1988) と同じ勾配をもたせて視察により引いた直線である. Charnock でも Toba et al. の勾配でもない. この 右上がりの傾向 (1 乗勾配またはそれより大きい勾 配) は,比較的丹念に計測した結果としてしばしば報 告されてきた (Kusaba and Masuda 1988, Smith et al. 1992, Donelan et al. 1993)¹⁴⁾¹⁵⁾¹⁶⁾. ちなみに HEXOS 実験では

$$\tilde{z}_0 = 0.48\tilde{u} \tag{10}$$

であった¹⁵⁾. この結果に極めて近い. 以上のように, 今回計測した無次元粗度は,大きさは中庸で勾配も 従来の比較的精密と考えられる海上計測結果と矛盾 しない.

4.5 解析の補足

まとめに入る前に三点だけ補足しておきたい.

Fig. 10 は細かい分布傾向を見るために狭い径数範 囲の図となっている.従来の図と比較しやすいよう, また今回の計測結果がどの辺にあるかを明確にして

Fig. 12 The same as Fig. 7 except that the profile method was applied to the wind speeds observed with anemometers Nos. 2-7 instead of Nos. 1-6. The cross symbol denotes the value due to the profile method.

Fig. 13 The same as Fig. 11 except that the profile method was applied to the wind speeds observed with anemometers Nos. 2-7 instead of Nos. 1-6. The cross symbol denotes the value due to the profile method.

おくために波風径数を実験水槽の範囲まで広げた図 にしてみる (Fig. 11). 図の直線の意味は Fig. 10 と 同じである. 慣性散逸法を用いて得たデータも加え ている. 全く同じ資料だが受ける印象は異なる. 無次 元粗度の散乱が大きいのが分かるし右上がりの傾向 が単なる 1 乗勾配よりずっと強いように見える. ま た中心部の値は Charnock の式による値に近いとい うもののかなり大きいところにある. このような傾 向は海上観測でしばしば報告されてきたことであり その意味を注意深く検討する必要があろう. そのほ か慣性散逸法によって求めた無次元粗度は他の二つ の方法で求めた値よりばらつきが小さい. 値そのも のもやや小さいように見える.

次に分布法の問題について触れる. これまでに示 した分布法の解析では7番,8番風速計を外した. 8番風速計を考慮しない理由はあった.しかし7番 風速計は海面からやや遠いだけのことである.明快 な理由ではない. 分布法において最下部の1番風速 計を外し最上部の7番を取り入れるとどうなるかを 試してみた. 最下部の風速計は波に打たれて破損し やすいので実際の計測では起こりそうな状況である. この場合に摩擦速度の散布図を描くと Fig. 12 のよ うになる.分布法による摩擦速度の推定は他の方法 より小さくなってしまった. 無次元粗度も同様であ る (Fig. 13). 驚いたことに 10⁻⁴ という前回の冬季 実験に近い無次元粗度となった.中心部は Kusaba and Masuda (1988)¹⁴⁾ の式に乗っているように見え る.ただの偶然かもしれない.しかし、前回の解析 で同様の誤差がなかったとは言い切れない.

すなわち分布法を用いて得られる粗度・摩擦速度 はデータの重み付けで顕著に異なりうるということ である. 乱流計測が面倒だった頃に分布法がよく使 われたらしい. 現象の再現・追試が可能な実験室なら 安心して分布法を適用できるだろう. しかし, 風が 非定常で種々の誤差の入りやすい外洋では分布法で 求めた摩擦速度の精度には十分な注意が必要である.

幸いなことに今回の実験では渦相関法と慣性散逸 法という別の手法で、また三つの高度で独立に摩擦 速度を求めている.従って(1番風速計がなく7番風 速計を信用した場合に得た)上の分布法の結果が怪し いということを判断できる.三つの方法を併用して 信頼度を判断できるようにした今回の実験法は実に 有効だった.ちなみに1番から7番まで全て用いて 分布法を適用すると1番から6番までの平均風速に 当てはめた結果と2番から7番までの平均風速に当 てはめた結果との中間に来る.また対数分布への適 合度が高くても周辺条件から見て摩擦速度の推定が 怪しいという場合が実際には少なくない. $R^2 \ge 0.81$ という基準を満たすデータだけを調べているのに2 番から7番までの平均風速に当てはめた結果は上の とおりであった.

最後に風向きの重要性に触れておく、観測塔の風 下に計測櫓が入ったとき慣性散逸法の与える摩擦速 度のみが異常に大きいということが起きた(図は省略 する).これは次のように考えれば理解しやすい、観 測塔背後には所謂後流ができていて水平剪断流の生 成する乱流エネルギーがある. これが鉛直剪断流の 生成する乱流エネルギーに加わるため慣性小領域の 乱流エネルギーレベルが高くなる. そのために乱流 エネルギーレベルからは摩擦速度を過大に推定して しまう.

このように典型的な変化は見えなくても風向きが 悪いと三つの方法で独立に推定した摩擦速度・粗度 が一致しない.分布法の適合度も悪いことが多い. $R^2 \ge 0.81$ を満たす資料が一つもなかった日もある. 勿論,風速が小さいと適合度が極端に悪くなった(逆 風のある高度が出たりする).

5. おわりに -まとめと展望-

海面粗度は、水面上の風速の鉛直分布と海面の抵抗 係数を決める重要な量である、この粗度が海面の波 浪状態とどのような関係にあるかという問題は長い 間研究されてきたが未だに決着がついていない. 球 の抵抗係数ならレイノルズ数依存性を示す図一枚が あれば良いだろう.精度や仕組みといった難しい問 題を別とすれば、一回精密に実験すれば済む話であ る. 海面の抵抗となるとそうはいかない. 風が吹け ば波が立つので海面状況自体が風とともに変わるか らである.そのため海面の抵抗係数・粗度が海面状 態にどのように依存するかという問題については混 乱した状況が続いてきた10)12)15)16)20). その一因は 精度の良い海上実験データが少ないためである.海 上では観測自体が容易でなく多くの場合データの散 乱が極めて大きい、互いに相矛盾する実験式が提案 されてもどれを信用して良いのか分からない.

私たちも津屋崎の観測塔を用いて海面粗度を計測 したことがある.その折りは驚くほど小さな水面租 度のデータを得た.私の知る限りこれまでに出版さ れた論文にあるものより遙かに小さかった²¹⁾.波齢 の大きい外洋域にも拘らず実験室の場合より小さい. 海上では無次元粗度が大きくなるという報告が多い のにそれとは全く正反対であった(結果として私たち の提案した経験式に近づいていた).風速の鉛直分布 は対数速度分布にまずまず当てはまる.超音波風速 計による渦相関法による測定とも悪くない一致を示 していた.しかし冬季で密度成層条件等を抑えてい なかったので,海面粗度の推定に今ひとつ確信がも てない.疑問が残った.

考えてみれば従来の実験は、多くの場合、高々一 つないし二つの方法だけで水面租度の風波依存性を 論じてきた. どの計測原理にも問題がある.検証の必 要な仮定や排除できない誤差要因がある.信頼でき る基礎データの蓄積が必要なのに単一の手法ではそ の結果が信用できるかどうか分からない.結局,曖 味さが残る.まず,平均風速の対数分布則,風波の 3/2 乗則が成り立ち,渦相関法による摩擦速度が高度 に依らず一定でなければ,海面粗度は絵空事になっ てしまう.信頼度自体を判定するには,海上風の乱 流特性を十分な信頼性で波浪と同時に把握すること から始める必要がある.対数分布法,渦相関法,慣 性散逸法を併用すれば計測データの質を厳しく吟味 できる.信頼性が上がるだけでなく更にその先の問 題の在処さえ見えてくるだろう.この認識が出発点 である.

まだ解析を少しずつ進めている段階であり間違い があるかもしれないが今回の実験結果をまとめ展望 を書いておく、以下は良質と判定できた 10 月 22 日 の計測資料に基づく、

1. 海象条件が良ければ意図した計測ができ計測系 自体はうまく働いた. 平均風速を対数分布に当ては めてみた場合,海面に最も近い風速計は小さめの,そ の次の風速計は大きめの平均風速を出す傾向があっ た. 風速計を近接して配置したので何らかの干渉が あったかもしれない.

2. 渦相関法・分布法・慣性散逸法が一致していれば 正確に乱流を計測していたと判断できる. 三者が揃っ て変化するデータは10月22日以外は殆どなかった. 風速計が観測塔の風下側にかかる風向が多かったの と風が全体に弱かったことが原因である.

3. 値そのものでみると、渦相関法・分布法・慣性 散逸法で推定した摩擦速度は良く一致していた. 鉛 直速度成分を用いる慣性散逸法で得られる摩擦速度 は他の方法で求めたものより小さかった.

4. 慣性散逸法は簡易法なので工夫する余地が多い. 慣性散逸法による摩擦速度は渦相関法による結果と 良く連動している.しかも安定しているので使い方 次第であろう.また風速の風下成分を用いる解析に 留めたがこれに直交する水平成分および鉛直成分の 活用を含め乱流スペクトルの解析はこれからである.

乱流スペクトルと対数分布が整合していることは 摩擦速度・抵抗係数・粗度を考える前提である. 摩 擦速度の計測結果の信頼度を判定するためには三法 併用法は極めて有用である.

5. 抵抗係数は $6 < U_{10} < 13$ (m/s) の範囲で $1 \times 10^{-3} \sim 2 \times 10^{-3}$ であった. 波風径数は $2 \times 10^{-2} < \tilde{u} < 7 \times 10^{-2}$ と外洋域条件を表す. 無次元 粗度は $10^{-4} < \tilde{z}_0 < 10^0$ の範囲にありその中心部は およそ3×10⁻² 付近にあり Charnock 定数の標準値 1.8×10⁻² より大きい.抵抗係数・無次元粗度の二 つとも分布法に頼った前回冬季の計測で得た値より ずっと大きい.しかし Bass 海峡での計測 (Toba et al. 1990)¹²⁾ や平塚での計測 (Suzuki et al. 1998)²⁷⁾ ほど大きくはない.全体に中庸の値であった.

6. 無次元粗度 z_0 には波風径数 \tilde{u} とともに増加 する傾向が見える. すなわち $z_0 \propto \tilde{u}$ となる. これ も従来の結果に近い (Smith et al. 1992, Donelan et al. 1993 ほか多数) ¹⁵⁾¹⁶⁾. とくに Smith et al. の HEXOS 実験に極めて近かった. 但し傾向は同じで も, 観測者により適合直線の位置が左右あるいは上 下にずれていることを注意しておきたい²⁰⁾.

無次元粗度を対軸に、波風係数を横軸にとって両 対数目盛りでプロットすると、前回の冬季観測結果 は水槽実験に基づく Kusaba and Masuda の経験式 ¹⁴⁾ $z_0 \propto \tilde{u}$ を左に (\tilde{u} の小さい方へ) 延長した線上に あった. 今回の計測結果を前回の結果と比較すれば 値そのものは遥かに大きいが勾配は同じ程度に見え なくもない.

7. 計測櫓が観測塔の風下に入ると三つの方法に よって求めた摩擦速度が合わなくなる. とくに乱流 強度が高くなり,慣性散逸法による推定が強すぎる 例があった.

8. 海上で分布法を適用するのには細心の注意が必要である.計測櫓の最高高度の風速計を除く場合と 最低高度の風速計を除く場合では二つの推定摩擦速 度に顕著な違いがあった.海面に近い風速データを 捨て海面から遠い平均風速を用いると渦相間法・慣 性散逸法との一致が悪くなった.なるべく海面に近 いものを用いて摩擦速度と粗度を推定する方が良い と思われる.

なお、解析では対数分布への当てはめが悪いもの を除いている、上の結果は、対数分布への適合度が 多少良くても、乱流実態に対応するとは限らないこ とを意味する、すなわち対数分布への適合度だけで は分布法の推定結果を必ずしも信頼できない、今回 の経験で言えば、少なくとも $R^2 \ge 0.81$ という基準 では緩過ぎた.

今回の実験では風向が悪い日や低風速の日が多かった.対数分布への適合度基準で全部不適格と言う日もあった.計測系自体はうまく働くことが確認できたので今後得られる計測資料に期待している.

前回実験をした冬には定常性のよい強い北西風(風 速計配列櫓が観測塔の影響を受けない)が吹く.その 意味では抵抗係数・粗度の解析に最適な季節である. また前回の冬季観測では 10⁻⁴ の桁の極めて小さい 無次元粗度が得られた²¹⁾ がこれには疑問がある.果 たして正しかったのだろうか.本当なら従来の考え 方には重大な欠陥があるし間違いだったのならその 原因は何だったのだろうか.これを解決するために も冬季の観測に期待している.今回試験した三法併 用法の有効性を試験したいし,今回は不要だった密 度成層効果の補正法の精度を吟味できるのではと考 えている.

但し現在の有人計測系では冬季の実験が難しい.何 といっても海が荒れ高い波が立っているため観測塔 に人が移って実験することができない時期である.無 人では現在のような乱流計測ができない.一つには 計測を続けるための発電機を維持する燃料が数日以 上は保たない.また風速計配列櫓の保全が難しいと いうことがある.乱流計測にはなるべく海面に近い 高度の計測をしたい.しかし波が高いと風速計が波 に叩かれて故障する.そこで計測櫓を適宜海上観測 塔に撤収しなければならない.つまり冬季は無人計 測が前提であるが,実験用電源を確保し計測装置を 保全するのが難しい.この点の改良が必要になる.

また、この海域では夏季に南ないし南西から風が 吹きやすい.その場合、吹送距離が小さいので波風 係数 $\tilde{u} = \omega_p u_*/g$ も小さくなる.地形から見て逆行 するうねりと風波の存在する状況が発生する.この ような状況でも今回の計測結果と同じようになるだ ろうか.この疑問に答えられる計測ができたら更に 理解が進む.

今から考えると前後したけれども風洞水槽で同様 の実験をする計画である.すなわち,分布法・渦相 関法・慣性散逸法を併用し水面上(海上)風乱流と波 浪の関係を再現性のある風洞水槽を用いた実験で徹 底的に解明したいと考えている.その際,水面下の 乱流を同時計測し,海面を特徴づける波浪の果たす 役割を海面の上下両側から解明していく必要がある。

謝辞

本研究は、科学研究費基盤研究(A)「波浪の発達・ 減衰と運動量・二酸化炭素などの海面フラックスに 砕波が果たす役割」の一環として行ったものである.

参考文献

1) Deacon, E. L. and E. K. Webb: Small scale interactions, In: *The Sea*, Vol. 1, edited by M. N. Hill, Interscience, New York, (1962) 43-87.

- Garratt, J. R.: Review of drag coefficients over oceans and continents, *Mont. Wea. Rev.*, Vol. 105, (1977) 915-929.
- Large, W. G. and S. Pond: Open ocean momentum flux measurements in moderate to strong winds, J. Phys. Oceanogr., Vol. 11, (1981) 324-336.
- Mitsuyas, H. and K. Honda: Drag coefficient over water surface under the action of strong wind. *Natural Disaster Science*, Vol. 6, No.2, (1984) 43-72.
- Yelland, M. and P. K. Taylor: Wind stress measurements from the open ocean, J. Phys. Oceanogr., Vol. 26, (1996) 541-558.
- Ueno, K. and M. Deushi: A new empirical formula for the aerodynamic roughness of water surface waves, J. Oceanogr., Vol. 59, (2003) 819-831.
- Charnock, H.: Wind stress on a water surface, Quart. Roy. Meteor. Soc., Vol. 81, (1955) 639– 640.
- 8) Kitaigorodskii, S. A. and Y. A. Volkov: On the roughness parameter of the sea surface and the calculation of momentum flux in the near-water layer of the atmosphere, *Izv. At*mos. Ocean. Phys., vol.1, (1965) 973–988.
- 9) Stewart, R. W.: The air-sea momentum exchange, Boundary-Layer Meteorol., vol.6, (1974) 151-167.
- Masuda, A. and T. Kusaba: On the local equilibrium of winds and wind-waves in relation to surface drag, J. Oceanogr. Soc. Jap, Vol. 43, (1988) 28-36.
- Geernaert, G. L., S. E. Larsen and H. Hansen: Measurements of the wind stress, heat flux and turbulent intensity during storm conditions over the North Sea, J. Geophys. Res., Vol. 92, (1987) 13127-13139.

- Toba. Y., N. Iida, H. Kawamura, N. Ebuchi and I. S. F. Jones: Wave dependence of sea surface wind stress, J. Phys. Oceanogr., Vol. 20, (1990) 705-721.
- 13) Jenkins A. D.: A quasi-linear eddy-viscosity model for the flux of energy and momentum to wind waves using conservation-law equations in a curvilinear coordinate system, J. Phys. Oceanogr., Vol. 22, (1992) 843-858.
- 14) Kusaba, T. and A. Masuda: The roughness height and drag law over the water surface based on the hypothesis of local equilibrium, J. Oceanogr. Soc. Japan, Vol. 44, (1988) 200-214.
- 15) Smith, S. D., R. J. Anderson, W. A. Oost, C. Kraan, N. Maat, J. DeCosmom, K. B. Katsaros, K. L. Bumke, L. Hasse and H. M. Chadwick: Sea surface wind stress and drag coefficients: The HEXOS Results, *Boundary-Layer Meteor.*, Vol. 60, (1992) 109-142.
- 16) Donelan, M. A., F. W. Smith and R. J. Anderson: On the dependence of sea surface roughness on wave development, J. Phys. Oceanogr., Vol. 23, (1993) 2143-2149.
- Nordeng, T. E.: On the wave age dependent drag coefficient and roughness length at sea, J. Geophys. Res., Vol. 96, (1991) 7167-7174.
- Anctil, F. and M. A. Donelan: Air-water momentum flux observations over shoaling waves, J. Phys. Oceanogr., Vol. 26, (1996) 1344-1353.
- 19) Taylor, P. K. and M. J. Yelland: The dependence of sea surface roughness on the height

and steepness of the waves, J. Phys. Oceanogr., Vol. 31, (2001) 572-590.

- 20) Jones and Y. Toba: Wind stress over the Ocean, Cambridge University Press, (2001) 307 pp.
- 草場忠夫,増田章,丸林賢次,石橋道芳: 津屋崎沖観測塔における海上風の計測, *Rep. Res. Inst. Appl. Mech.*, Vol.122, (2002) 37-42.
- 22) 海洋観測ステーション専門委員会:沿岸海象観測 年報 1989 ~ 2001,九州大学応用力学研究所.
- 23) Masuda, A., T. Kusaba, K. Marubayashi and M. Ishibashi: Statistics of wind and waves off Tsuyazaki, Fukuoka, in the eastern Tsushima Strait, J. Oceanogr., Vol. 55, (1999) 289-305.
- 24) 丸林賢次,石橋道芳,渡邊公彦:海上観測タワーでの計測について,九州大学応用力学研究所技術職員技術レポート,No. 5, (2004) 39-48.
- 25) Mitsuyasu, H.: On the growth of the spectrum of wind-generated waves I, *Rep. Res. Inst. Appl. Mech., Kysusu Univ.*, Vol.16, (1968) 459-465.
- 26) Wu, J.: Wind stress coefficients over sea surface near neutral conditions — A revisit, J. Phys. Oceanogr., Vol. 10, (1980) 727-740.
- 27) Suzuki, N., N. Ebuchi, M. Akiyama, J. Swa and Y. Sugimori: Relationship between nondimensional roughness length and wave age investigated using tower-based measurement, J. Adv. Mar., Sci. Tech., Soc., Vol. 4, (1998) 217-224.