
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Low-Energy Real-Time OS Using Voltage
Scheduling Algorithm for Variable Voltage
Processors

Okuma, Takanori
Department of Computer Science and Communication Engineering

Yasuura, Hiroto
Department of Computer Science and Communication Engineering

https://hdl.handle.net/2324/3434

出版情報：The 10th Workshop on System And System Integration of Mixed Technologies(SASIMI
2001), pp.340-345, 2001-10. Workshop on System And System Integration of Mixed Technologies
バージョン：
権利関係：



Low-Energy Real-Time OS Using Voltage Scheduling Algorithm

for Variable Voltage Processors

Takanori Okuma Hiroto Yasuura
Department of Computer Science and Communication Engineering
Graduate School of Information Science and Electrical Engineering

Kyushu University
6–1 Kasuga-koen, Kasuga, 816-8580 Japan

Abstract— This paper presents a real-time OS

based on µITRON using proposed voltage scheduling

algorithm for variable voltage processors which can

vary supply voltage dynamically. The proposed volt-

age scheduling algorithms assign voltage level for each

task dynamically in order to minimize energy con-

sumption under timing constraints. Using the pre-

sented real-time OS, running tasks with low supply

voltage leads to drastic energy reduction. In addition,

the presented voltage scheduling algorithm is evalu-

ated by the built real-time OS.

I. Introduction

The demand for systems which can perform various pro-
cesses for a long time with the limited battery is increasing
by the spread of cellular phones or PDAs(Personal Digital
Assistant). Thus, design technology for high-performance
system-on-chips (SOCs) with low energy consumption is
an important research issue. Increasing clock frequency
of a processor contributes to high-performance systems,
but it dissipates more energy. Therefore, there is a trade-
off between clock frequency and energy consumption in
processor-based core systems.

The effective ways to reduce energy consumption of a
processor in CMOS technology are to shutdown the sup-
ply voltage when the system is not operated[12] and to
lower constantly the supply voltage level, which exploits
the quadratic dependence of energy on voltage[3]. How-
ever, to lower constantly the supply voltage level is usable
only if the system having loose deadline requirements.
A single tight latency constraint, as is often present
in embedded systems, renders the technique ineffective.
In recent years, variable voltage processors which can
vary their supply voltage dynamically are presented[1, 2].
Then, the clock frequency is adjusted to the supply volt-
age, to guarantee the correct operations. Using the vari-
able voltage processor, tasks with severe real-time con-
straints can be executed with a high supply voltage (there-
fore, high execution speed), and tasks with loose time
constraints are done with a low supply voltage. For vari-
ous applications, performance requirements of a processor

are different. It makes possible to lower energy consump-
tion using the difference of performance requirements. In
addition, the special instructions of the processor for con-
trolling the supply voltage makes possible to control the
supply voltage by the software applications[7]. Then, the
supply voltage of the processor is controlled by applica-
tion programs or operating systems. Therefore, it is im-
portant to establish compiler and operating system tech-
niques which control the supply voltage for energy mini-
mization of real-time systems.

We have presented voltage scheduling algorithms which
assign voltage level for each task in [13]. This algorithm
determines not only the executed task but also supply
voltage for processors. Then, the supply voltage for the
minimize energy is selected under the time constraints of
the whole tasks.

In this paper, we developed a real-time OS using the
presented voltage scheduling algorithm[13] and evaluated
the voltage scheduling algorithm.

The rest of the paper is organized in the following way.
Section 2 presents the related work. Section 3 explains
voltage scheduling algorithm. Section 4 describes the pre-
sented real-time OS using voltage scheduling algorithm
and Section 5 gives experiments and results. Section 6
concludes our works.

II. Related Work

Lee and Sakurai have proposed a runtime dynamic
voltage-scaling scheme for low-power real-time systems[8,
9]. This scheme employs a power control chip with an
on-chip DC-to-DC converter and frequency synthesizer,
as well as an embedded runtime power control algorithm
using the software feedback loop. The scheme avoids in-
terface problems by exploiting discrete levels of clock fre-
quency as fCLK , fCLK/2, fCLK/3, ..., where fCLK is the
master (highest) system clock frequency.

Hong et al. describe a design methodology for a real-
time system on a chip that uses a dynamically variable
voltage processor core. This methodology provides an of-
fline scheduling heuristic to handle nonpreemptive, hard
real-time tasks and select the processor core. It also de-



termines the configuration and size of the instruction and
data caches[5]. Also, Hong and other colleagues have pro-
posed an online preemptive scheduling algorithm for on-
and offline tasks on a variable voltage processor to opti-
mize energy consumption while ensuring that all offline
tasks meet their deadlines. They also designed the al-
gorithm to accept the highest possible number of online
tasks that can be guaranteed to meet their deadlines[6]

Shin et al. proposed a power-efficient version of fixed-
priority preemptive scheduling, which is widely used in
hard real-time system design[11]. Their method reduces
energy consumption in the processor by exploiting system
inherent slack times, as well as slack times arising from
dynamic variations of execution times for the task.

Pering et al. presented an online scheduling algorithm
for soft real-time systems[10]. This algorithm relaxes the
deadline constraints and allows application frames to com-
plete after their deadlines. The scheduler can then absorb
the effects of high frame-to-frame application variance,
which might otherwise increase energy.

Burd et al. have demonstrated dynamic voltage scal-
ing on a complete embedded processor system[2]. This
prototype system contains four custom chips in 0.6µm
three-metal CMOS: a battery-powered DC-to-DC voltage
converter, a microprocessor (ARM8 core with 16-Kbyte
cache), SRAM memory chips, and an interface chip for
connecting to commercial I/O devices. The entire system
can operate from 1.2 to 3.8V and 580MHz, and energy
consumption varies from 0.54 to 5.6mW/MIP .

III. Voltage Scheduling Algorithm

A. Processor Model

To control supply voltage dynamically, a processor
which has special instruction is assumed. A program
can vary supply voltage by using this instruction. Fig.1
shows the architecture of a variable voltage system for
our processor model. The processor has limit voltage lev-
els. Therefore, the program can’t use continuous voltage
levels. The processor has the table of processor modes
in which the supply voltage and the clock frequency are
made as one pair. The program should select a processor
mode by referencing the table when it wants to change
supply voltage. In addition, we consider single processor
system.

For variable voltage systems, the time and power over-
head to change the supply voltage sometimes be an im-
portant issue. However, this paper ignores these overhead.
Because an extension of problem considering these over-
head is not difficult, and this issue has already discussed
in [8].

B. Task Model

In many real-time control applications, periodic activ-
ities represent the major computational demand in the

CPU

control register Volt&Freq
Controller

ROM RAM cl
oc

k

su
pp

ly
 v

ol
ta

ge

Table of processor mode

Fig. 1. Architecture of a Variable Voltage System

system. Such applications consist of several concurrent
periodic tasks with individual timing constraints. The
operating system has to guarantee that each periodic in-
stance is regularly activated at its proper rate and is com-
pleted within its deadline. In this paper, we consider a
set of periodic tasks. To facilitate the description of the
task model, the following notation is introduced:

• T denotes a set of periodic tasks.

• Ti denotes a generic periodic task.

• Ti,j denotes the jth instance of task Ti.

• ri,j denotes the release time of the jth instance of
task Ti.

• di,j denotes the absolute deadline of the jth instance
of task Ti.

The instances of a periodic task Ti are regularly acti-
vated at a constant rate. The interval pi between two
consecutive activations is the period of the task. All in-
stances of a periodic task Ti have the same worst case
execution cycles WCi and relative deadline Di which is
equal to the period pi. In addition, no task can suspend
itself, for example on I/O operations. The release time ri,j

and the absolute deadline di,j of the generic jth instance
can then be computed as

ri,j = (j − 1) · pi

di,j = ri,j + pi = j · pi

C. Application Program Model

An application program is structured by an operating
system and some user tasks (periodic tasks). When an ap-
plication program changes supply voltages, it determines
an processor mode by referencing clock frequencies not
by referencing voltage levels in processor mode table be-
cause timing constraints are more important than energy



constraints. In addition, User tasks can’t use special in-
struction which controls supply voltage because it is a
privileged instruction. Only an operating system can use
this instruction.

D. Energy Model

The energy consumption per clock cycle for a task is
shown by the following expression.

Ecycle =
M∑

k=1

LCk · SWk · VDD
2 (1)

where M is the number of gates in the circuit, LCk is the
load capacitance of a gate gk, SWk is the switching count
of gk per clock cycle for the task, and VDD is the supply
voltage. Let us consider a task with the number of total
execution cycles ECi. The energy consumption for the
task is formulated as (2).

Ei = ECi ·
M∑

k=1

LCk · SWk · VDD
2 (2)

We can reduce the energy consumption for the task
by lowering VDD. However, lowering VDD causes increase
of execution time for the task. The circuit delay τ and
execution time for the task ETi can be formulated as (3),
and (4), respectively.

τ ∝ VDD

(VG − VT )α ∼ 1
VDD

(1 < α ≤ 2) (3)

ETi = τ ·WCi (4)

where VT is the threshold voltage, and VG (∼ VDD) is the
voltage of input gate. The α is a factor depending on the
carrier velocity saturation and is about 1.3 in advanced
MOSFETs.

E. Scheduling Algorithm

In the presented voltage-scheduling algorithm, it is as-
sumed that the scheduler assigns a supply voltage to only
the next executed task just before task execution. Then,
the scheduler must assign supply voltage so that all tasks
executed later will not violate these real-time constraints.

We define a time slot for each task. The start time
of a time slot is the same as the start time of the task
execution. The end time is the maximum time which can
guarantee that all future executed tasks will not violate
these real-time constraints. Thus, if the next executed
task’s supply voltage lets it finish within the time slot
that the scheduler gives it, satisfaction of the real-time
constraints is always guaranteed.

In our techniques, the scheduler’s main work is to deter-
mine the time slot’s length for each task. The remained
scheduler’s work is to assign the minimum voltage to the
task so that it can finish within its time slot.

The presented voltage scheduling algorithm has three
main steps:

Step1: CPU time allocation. Assign CPU time to
the task set under the condition that all tasks ex-
ecute on Vmax and that the execution cycle for each
task is the worst case. This step is statically phase.

Step2: End-time prediction. Determine the
time slot’s end time for all tasks, considering real-
time constraints of all later executed tasks. This step
is statically phase too.

Step3: Start-time assignment. Determine the time
slot’s start time. The end time of the previously ex-
ecuted task dynamically moves to the start time; the
time slot can be lengthened if the previous task fin-
ishes ahead of schedule. This step is dynamically
phase.

IV. Low-Energy Real-Time OS

We built a real-time OS based on µITRON using the
presented voltage scheduling algorithm.

A. Target Architecture

The target architecture of the real-time OS is the fol-
lows:

• Instruction set is same as SH3 (Hitachi SuperH).

• The number of processor modes are m. The program
can use following frequencies to change the clock fre-
quency.

f,
f

2
,
f

3
, · · · , f

m
[Hz]

• The supply voltage changes automatically with the
clock frequency.

• The processor permits interrupt by interval timer.
If an interrupt handler is registered, interrupt can
execute the handler.

When the scheduler selects the processor mode, it de-
termines the value of m for clock frequency f

m .

B. System Clock

The interval timer handler counts the variable which
manages the time used by real-time OS. The variable is
called system clock. The time unit of real-time OS is the
period of interval timer. An interrupt handler is executed
after every N clock cycles. The period of interval timer
changes with the processor clock frequency. Another vari-
able is necessary for real-time OS to express real executed
time. The variable is called real clock. When the clock is
changed to f

m , the period of interval timer is m times of
the unit time. When system clock counted as 1 unit by
interval timer hander, it is possible to express executed
time if real clock counted as m by interval timer hander.



real clock: Variable of real clock

sys clock: Variable of system clock

N : cycle count during the period of system clock

P: a set of being preempted tasks (static variable)

Ti,j: jth instance of task Ti

si,j: execution start time of task Ti,j

ei,j: predicted end time of task Ti,j

wi,j: remaining worst case real clock time of task
Ti,j (initial: wi,j = �WCi

N �)
p time: sum of wi (static variable)

Input:
Ti,j(si,j , ei,j, wi,j): executed task by now
Tk,l(sk,l, ek,l, wk,l): next executed task

Algorithm:
1) if Ti,j is preempted then
2) wi,j = wi,j − (sys clock − si,j)
3) Insert Ti,j to P
4) end if
5)
6) if Tk,l ∈ P then
7) Remove Tk,l from P
8) if P is empty then
9) ek,l = ek,l + p time

10) p time = 0
11) end if
12) else
13) if P is not empty then
14) p time = p time + wk,l

15) end if
16) end if
17)
18) if P is empty then

19) m =

⌊
ek,l − real clock

wk,l

⌋

20) if m < 1 then
21) m = 1
22) end if
23) else
24) m = 1
25) end if
26) sk,l = real clock
27) return m

Fig. 2. The Algorithm for Determining m

C. Implementing the Scheduling Algorithm

When it switches tasks, the scheduler determines the
next task and the value of m for clock frequency f

m
of

the processor. Then, the scheduler sends the instruction
which changes the clock frequency of the processor, and
move on the next task. The algorithm for determining m
is shown in Fig.2. It is called when a task is switched. In

READY RUN PREEMPT RUN WAIT READYWAIT

RUN RUNWAIT READY WAITWAIT

Fig. 3. An Example of Task State Transition

this algorithm, it determines the value of m for execution
task Tk,l when switching from Ti,j to Tk,l.

The predicted end time for each task ei,j is computed
statically. Then, it is set the value of real clock (the unit
time for real-time OS) corresponding real time. This algo-
rithm determines the scheduling based on the real clock.
Just like what we described in the previous section, ei,j

must be set so as to satisfy real-time constraints of all
tasks which will be executed after Ti,j , where all cases
should be considered.

Normally, the next executed task is assigned the maxi-
mum value of m for completion of the task from current
time to predicted end time by the scheduler (Fig.2: line
19). If the executed task is preempted, the value m = 1
is assigned to any other tasks until the task is executed
again (Fig.2: line 24). When the preempted task is ex-
ecuted again, the predicted end time is updated (Fig.2:
line 9) and the preempted task is assigned the maximum
value of m for completion of the task from current time
to the predicted end time.

The states of task include four states, which are
READY, RUN, PREEMPT and WAIT. The READY is
the state that the instance of a task is waiting for its ex-
ecution since it was released. The RUN is the state that
it’s running. The PREEMPT is the state that it’s waiting
for continuation of its execution since it was preempted.
Finally, the WAIT is the state that it’s waiting for its re-
lease of next instance since its execution was finished. An
example of task state transition is shown in Fig.3. When
all task are WAIT state, that is CPU idle, the system is
shutdown during the CPU idle for no energy consumption.

V. Experiments

We evaluated the presented voltage scheduling algo-
rithm by building a real-time OS. This section presents
our experiments and results.

A. Emulator for Variable Voltage Processor

In order to run the real-time OS, it is necessary to use a
hardware system or a software emulator for variable volt-
age processors. We had built an emulator to conduct our
experiments. The emulator can run the our real-time OS,
satisfy the target architecture for the presented scheduling



TABLE I
Task Set for Experiments

(unit: real clock cycle)
Parameter T0 T1

Period: pi 10 14
WCEC: wi = �WCi

N � 4 5
N = 1000

algorithm and evaluate the timing and energy constraints.
The developed emulator has the following functions:

• Simulation on instruction level.

• Interrupt by interval timer

• Dynamic variation of clock frequency

• Profiling of execution trace

In addition, we use GNU C Compiler (gcc) as a compiler
for the application program.

B. Experimental Results

In experiments, we verified timing constraints and eval-
uated energy consumption using several task sets on the
presented real-time OS. We consider task set which is
shown in TABLE I. In the table, the value of each pa-
rameters for T0 and T1 is shown. Because our scheduling
algorithm is designed based on the real clock, the time
unit of tasks is real clock cycle in the task set. In ad-
dition, the period of interrupt by interval timer N (the
period of system clock) is 1000 clock cycles. The set of
periodic tasks is schedulable with fixed voltage because
the following condition[4] is satisfy.

n−1∑
i=0

wi

pi
≤ 1 (5)

This task set and our built real-time OS are executed
on the emulator. Fig.4 shows analysis results of profile
information which was generated by the emulator.

(a) The task set is executed with fixed voltage (always
m = 1) and actual execution cycles of each task is
worst case.

(b) The task set is executed with variable voltage and
actual execution cycles of each task is worst case.

(c) The task set is executed with fixed voltage (always
m = 1) and actual execution cycles of each task is
about half of worst case.

(d) The task set is executed with variable voltage and
actual execution cycles of each task is about half of
worst case.

Energy[0 : 70] = 208.2mJ

0 10 20 30 40 50 60 70 80
real clock cycle

T1

T0

(a) Fixed Voltage and Worst Case Execution Cycle

Energy[0 : 70] = 174.9mJ

0 10 20 30 40 50 60 70 80
real clock cycle

T1

T0

m = 2

(b) Variable Voltage and Worst Case Execution Cycle

Energy[0 : 70] = 113.5mJ

0
0 10 20 30 40 50 60 70 80

real clock cycle

T1

T0

(c) Fixed Voltage and WCEC/2

Energy[0 : 70] = 50.1mJ

0 10 20 30 40 50 60 70 80
real clock cycle

T1

T0

m = 2

(d) Variable Voltage and WCEC/2

Fig. 4. Execution Results of Task Set

In Fig.4(b) and Fig.4(d) (the case of execution with vari-
able voltage), parts of lowering voltage level are expressed
shadow region. Fig.4 shows that our proposed algorithm
is right behavior.

We assume that energy consumption per instruction
cycle is 4µJ at m = 1 and 1µJ at m = 2. Fig.4 shows the



total energy consumption from 0 to 70 cycles (Energy[0 :
70]). We can achieve 16% energy saving in the case that
actual execution cycles of each task is worst case and 56%
energy saving in the case that actual execution cycles of
each task is about half worst case.

VI. Conclusion

In this paper, we built a real-time OS based on µITRON
using the presented voltage scheduling algorithm for real
time variable voltage processor based embedded sys-
tem. Our experimental results show that the presented
real-time OS using the voltage scheduling algorithm can
achieve low energy consumption under timing constraints
for real time embedded system. A new voltage schedul-
ing algorithm considering capacitance of task is our future
work.

References

[1] http://www.transmeta.com/crusoe/.
[2] T. Burd, T. Pering, A. Stratakos, and R. Brodersen.

“A Dynamic Voltage Scaled Microprocessor System”. In
Proc. of IEEE International Solid-State Circuits Confer-
ence, pages 294–295, 2000.

[3] A. P. Chandrakasan, S. Sheng, and R. W. Broderson.
“Low-power CMOS digital design”. IEEE Journal of
Solid-State Circuits, 27(4):473–484, 1992.

[4] C.L. Liu and J.W. Layland. “Scheduling algorithms
for multiprogramming in a hard-real-time environment”.
Journal of the Association for Computing Machinery,
20(1), 1973.

[5] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. Sri-
vastava. “Power optimization of variable voltage core-
based systems”. In Proc. of 35th Design Automation
Conference, pages 176–181, 1998.

[6] Inki Hong, Miodrag Potkonjak, and Mani B. Srivastava.
“On-Line Scheduling of Hard Real-Time Tasks on Vari-
able Voltage Processor”. In Proc. of ICCAD-98, pages
653–656, 1998.

[7] T. Ishihara and H. Yasuura. “Voltage Scheduling Prob-
lem for Dynamically Variable Voltage Processors”. In
Proc. of International Symposium on Low Power Elec-
tronics and Design(ISPLED’98), pages 197–202, August
1998.

[8] S. Lee and T. Sakurai. “Run-time Power Control Scheme
using Software Feedback Loop for Low-power Real-time
Application”. In Proc. of Asia and South Pacific Design
Automation Conference 2000, pages 381–386, 2000.

[9] S. Lee and T. Sakurai. “Run-time Voltage Hopping for
Low-power Real-time Systems”. In Proc. of 37th Design
Automation Conference, pages 806–809, 2000.

[10] T. Pering, T. Burd, and R. Brodersen. “Voltage Schedul-
ing in the lpARM Microprocessor System”. In Proc. of
International Symposium on Low Power Electronics and
Design(ISPLED’00), pages 96–101, 2000.

[11] Y. Shin and K. Choi. “Power Conscious Fixed Prior-
ity Scheduling for Hard Real-Time Systems”. In Proc.
of 36th Design Automation Conference, pages 134–139,
1999.

[12] M. Srivastava, A. P. Chandrakasan, and R. W. Broder-
sen. “Predictive System Shutdown and Other Archi-
tectural Techniques for Energy Efficient Programmable
Computation”. IEEE Transactions on VLSI Systems,
4(1):42–55, 1996.

[13] T. Okuma, T. Ishihara, and H. Yasuura. “Real-Time
Task Scheduling for a Variable Voltage Processor”. In
Proc. of 12th International Symposium on System Syn-
thesis, pages 25–29, 1999.


