SN KREZZ2MTIER Y R b

Kyushu University Institutional Repository

Application of Artificial Neural Networks for
Optimal Pressure Regulation in Supervisory
Water Distribution Networks

Awad, Haytham

Department of Urban and Environmental Engineering : Graduate Student

Kawamura, Akira
Department of Civil Engineering, Tokyo Metropolitan University : Professor

Jinno, Kenji
Institute of Environmental Systems : Professor

https://hdl. handle. net/2324/3410

HAREER : N AKZTEHREE. 65 (1), pp.29-51, 2005-03. AMKFEKRZEFETEMFIR
N—=T3 v

HEFIBAMR



Memoirs of the Faculty of Engineering, Kyushu University, Vol. 65, No. 1, March 2005

Applications of Artificial Neural Networks for Optimal Pressure
Regulation in Supervisory Water Distribution Networks

by
Haytham AwAD*, Akira KAWAMURA** and Kenji JINNO***

(Received December 15, 2004)

Abstract

This paper presents a simple and efficient technique for improving
the existing optimal pressure regulation and leakage minimization algor-
ithms for supervisory water distribution networks. With the assistance of
Supervisory Control and Data Acquisition (SCADA) we have trained a
Self-Organized Map (SOM), an unsupervised artificial neural network
(ANN), to classify well regulated pressure cases for the water distribu-
tion network based on its actual values of flow meter readings which
reflect the real network water demands or consumption. After training
the SOM, a simulation step is used to classify the unregulated pressure
cases into the different model classes. Based on these classifications the
appropriate electrical motor valves setting of the well pressure regulation
events are used for the unregulated ones. Regarding that all the available
algorithms deal directly with the pressure regulation problem from an
optimization point of view which required a computational time depend-
ing on the water network size and the used optimization method and in
most cases requires also a network simplification method which is consid-
ered as another optimization problem. Using SOM as a pre-optimization
method could prevent all errors resulting from applying optimization
models, save its computational time and provides us with an on-line
pressure regulation method. Computational results for Block 12 of
Fukuoka City water distribution network using a short-term data set
demonstrate the effectiveness of using SOM as a pre-optimization tool for
regulating 749 of events within the target pressure range.
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1. Introduction

Water loss occurs in all distribution systems - only the volume of loss varies, depending
on the characteristics of the pipe network and other local factors, the water company’s
operational practice, and the level of technology and expertise applied to control it. These
losses can be severe, and may go undetected for months or even years. The larger losses are
usually from burst pipes, or from the sudden rupture of a joint, while smaller losses are from
leaking joints, fittings, service pipes, and connections. The volume lost will depend largely
on the characteristics of the pipe network and the leak detection and repair policy practiced
by the company, such as: (i) The pressure in the network, (ii) Whether the soil type allows
water to be visible at the surface or not, (iii) The “awareness” time (how quickly the loss
is noticed), and (iv) The repair time (how quickly the loss is corrected). Examples of water
loss as a percent of water supplied were summarized in an international survey by the
International Water Services Association (IWSA) in 1991V as: (i) Developed countries 8
-249%, (ii) Newly-industrialized countries 15-24%, and (iii) Developing countries 25-45%. In
Japan, the average amount of water loss in the biggest 12 Japanese cities was 7.49% in 1997?.
The lowest value occurred at Fukuoka City, Western Japan; 3.5% in 1997 which is considered
at that time the minimum rate in the world according to the UN-habitat program?®.

Volume of water leakage from water distribution networks represents a significant
amount from the total domestic water use; domestic water use in Japan was 16.4 billion m?
in 1999 which represents 199 of the total water usage®. Therefore, in order to counteract
water leakage a lot of water companies and waterworks bureaus around the world have
established a “Water Leakage Prevention” sections which are responsible for: (i) detecting
leaks from water supply network at an early stage followed by rapid repair, (ii) Improve-
ment of water pipes status by replacing the deteriorated pipes and performing routine
programs for pipes maintenance, and (iii) adjusting the water pressure.

It is well known that water leakage from a supply-and-distribution network is directly
related to the system service pressure. The leakage volume increases proportionally with the
increase in the average system pressure®. Therefore, in order to improve the existing system
operation and management some waterworks bureaus in the developed countries around the
world has started to establish the supervisory system of water distribution network in which
sensor information from pressure gauges, flow meters, and electric valves connected to
important points of the network are continuously sent to a control center where valve
openings are adjusted depending on the situation in the network given by the sensor informa-
tion. One of the purposes of the control is to minimize leakage and to maintain appropriate
hydraulic pressures for the consumers. By controlling the distribution of hydraulic pressures
in the network, pipe breaking could be lessened and water could be conserved. However to
achieve this kind of control, it is necessary to accurately estimate the distribution of
hydraulic pressures through the network and to properly control the valves.

Available mathematical models that explore pressure regulation or leakage minimiza-
tion problem through optimal control valve settings could be divided into types. In the first
type, the following mathematical statement for network pressure regulation is used as an
objective function to be minimized®?".

J=33(H,~ H~min M

where H; is the head at node j, H7 is the required target head at the same node and #»
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is number of junction nodes. The foregoing function is to be minimized under the following
constraints: (i) mass continuity should be satisfied for each node of the water supply
network, (ii) sum of the head losses around a closed loop must be equal to zero, and (iii)
Minimum and maximum head constraint for each node in the network.

In the second type, the total amount of leaked water from the network will be used as
an objective function to be minimized as the following equation®.

fngiLi 8 min (2)

where 7, number of links, K; is an unknown experimental coefficient depends on the
value of service pressure, age of the pipe, deterioration of the pipe and the soil properties, L;
pipe length and p; average service pressure of the studied pipe. Eq. (2) is to be minimized
under the same constraints mentioned before.

For the previous two methodologies the required optimal valves settings are embedded
in the constraints represented by the sum of the head losses around a closed loop, in which
the hydraulic analysis of the network is performed using the Hazen-Williams empirical
equation or Darcy-Weisbach in conjunction with Colebrook-White formula. The search-
analysis frameworks of this optimization problem (see Fig. 1) require several repetitive
analysis of pipe network.

Obtaining an optimal control of the distribution of system service pressures in a
municipal water distribution networks has always faced combinatorial problems due to its
complexity, scale of the problem, number of hydraulic variables to be optimized, variation of
water demand and the difficulty in estimating the roughness coefficient of old pipes.
Regarding that all the available algorithms deal directly with the pressure regulation problem
from an optimization point of view which requires a computational time depending on the
water network size and the used optimization method and in most cases required also a
network simplification method which is considered as another optimization problem. By
other words, the total computational could be divided into three main parts; optimization
algorithm time which depends upon the used optimization method, the time required to solve
the different components of the water distribution network in order to compute the value of
the objective function and the time required to deal with the real water supply network if no
simplification technique has been used. In addition to the previous three difficulties, the
estimation of the uncertainty values of water supply networks presented by nodal network
demands and pipes roughness could lead to significant errors in the application of the
developed model.

In this paper, we suggest to improve the available control schemes by using a pre-

Searching Model Using

Optimization Algorithm
‘ _ 4 ‘
Solution Specifications Objective Function Value
(Motor Valves Openings) (Solution Performance)
\
Pipe Network
Analysis Model

Fig. 1 Search-analysis frameworks.
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optimization method based on learning from historically cases of valves operation. For the
proposed algorithm, two different Artificial Neural Networks (ANNSs), unsupervised and
supervised learning algorithms, were applied to find the optimal electric motor valves setting
to regulate pressure and minimize water leakage in supervisory water supply networks.
First, a Feed-Forward Back-Propagation algorithm (FFBP), a supervised ANN, was applied
to predict the values of hydraulic pressures at the locations of different pressure gauges.
Second, a Self-Organizing Maps (SOM), an unsupervised ANN, was applied to regulate
hydraulic pressure. Using the proposed model as a pre-optimization method could prevent all
errors resulting from applying optimization models, save its computational time and provides
us with an on-line pressure regulation method.

2. Materials and Methods

2.1 Feed-Forward Back-Propagation (FFBP) algorithm

The FFBP algorithm is well-known approach for the prediction applications. In this
type, the network usually consists of an input layer, some hidden layers and an output layer.
In its simple form, each single neuron is connected to other neurons of a previous layer
through adaptable synaptic weights. Knowledge is usually stored as a set of connection
weights and training is the process of modifying the connection weights. The network uses
a learning mode, in which an input is presented to the network along with the desired output
and the weights are adjusted so that the network attempts to produce the desired output. The
weights, after training, contain meaningful information whereas before training they are
random and have no meaning. The success of applying such supervised neural networks on
any problem depends on training the net with sufficient range of data that spans a broad
range of conditions. In this study we used the typical FFBP algorithm, which was presented
by Rumelhart and McClelland®. For more details about ANN models and learning proce-
dures, readers may refer to the literature®'®V. General properties of neural networks, as
well as their application for the prediction and forecasting of water resources variables, have
been thoroughly covered in a number of publications'®'®. For background information the
reader could refer to this literature; only specific properties of the neural networks employed
are given here. FFBP algorithm has been used in the present study to estimate pressure
values at different pressure gauges of the application example of the supervisory water
supply network.

2.2 Self-Organizing Maps (SOM)

The SOM is relatively a simple unsupervised neural network used for the categorization
of input patterns into a finite number of classes. SOM consists of two layers units, the input
units which are a one-dimensional array that provides simulation to a usually two-
dimensional array of map space units (output units) and all units in the input layer are fully
connected with the units in the output layer (Fig. 2). The neurons of the output layer which
is preferably arranged into two dimensional grids for better visualization are connected to
adjacent neurons by a neighborhood relation dictating the structure of the map. The
arrangement of the output layer neurons are usually distributed in rectangular or hexagonal
arrangement. Generally it is preferable to use the hexagonal lattice, because it does not favor
horizontal and vertical directions as much as rectangular array'?.

When an input vector x is sent through the network, each neuron £ of the output
network, which is also called competitive layer computes the distance between the weight
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Fig. 2 Structure of SOM network.

vector w and the input vector x. Among all the output neurons, the so-called winning unit
or Best-Matching Unit (BMU) is determined by the similarity between the weight vector w
on that unit and the input vector x. For an input vector z, the BMU is determined by

|]x~wc|]:miin{||x—wi1|} (3)

in which the subscript ¢ refers to the winning unit (BMU), |...| is the distance measure
and 7 refers to all units in the competition layer, in Eq. (3) each unit in the two-dimensional
output layer is identified by a single subscript for simplicity. Accordingly, a second winning
unit will be determined with respect to the second input vector, and so forth. At the end of
competition only one unit in the competitive layer wins in corresponding to one input vector.

For the BMU and its neighborhood neurons, the weight vectors w are updated by the
SOM learning rule.

wil )+ a(B)he{t)2(t)—wl))~if  i€NL2)
wi(t) > else

wi(t + 1) :{ (4)
where ¢ is the learning rate at time #; k. so-called neighborhood function that is valid
for the neighborhood ..

The value of & varies from 0.0 to 1.0, and it controls the rate of learning. An « of 1.0
means it learns a new example as soon as it is presented. However, it forgets all previous
examples of that class. Similarly, an « of 0.0 means that the network does not learn at all,
but classifies new examples based on previous experiences only. The neighborhood function
he(t) is a time-variable and a decreasing function [/e(#)—>0 when f—oo0]. It is often
represented by a Gaussian function as follow

hc{(l‘)ze’“dgilaf(t)z (5)

where ¢ is the neighborhood radius at time ¢ and de.=|7.— 74| is the distance between
map units ¢ and 7 on the map grid. The training is usually performed in two phases. In the
first phase, relatively large initial learning rate and neighborhood radius are used. In the
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second phase both learning rate and neighborhood radius are small right from the beginning.
This procedure corresponds to first tuning the SOM approximately to the same space as the
input data and then fine-tuning the map.

There are two different styles of training strategies. In sequential training the weights
are updated each time when an input vector is presented. In batch training the weights are
only updated after the presentation of all input vectors. In many applications, batch training
type is the preferred option, as it forces the search to move in the direction of the true
gradient at each weight update. However, several researchers suggest using the sequential
type, as it requires less storage and “...makes the search path in the weight space stochastic...
which allows for a wider exploration of the search space and, potentially, leads to better
quality solutions”*¥»1%),

After some training steps, the SOM will arrange high-dimensional input data along its
two-dimensional output space such that similar inputs are mapped onto neighboring regions
of the map which means that the similarity of the input data is preserved within the
representation space of the SOM. Usually, in the SOM application, in order to ensure that
all variables of any input vector x receive equal attention during the training process, it is
important to normalize the input vectors to unit length before the training steps.

To measure the ability of SOM in arranging the different input vectors through its
two-dimension grid, usually two evaluation criteria could be applied to measure the quality
of SOM; resolution and topology preservation. For identifying and measuring the resolution
of the SOM, we compute the quantization error'® which is the average distance between each
data vector and its winning unit (BMU). The topographic error which used to present the
accuracy of the training map in the preserving topology is also calculated. This error
represents the proportion of all input data vectors for which first and second BMUs are not
adjacent for the measurement of topology preservation. The topographic error can be
calculated as follows'®:

€ :]Lvélu(xk) (6)

where N is the number of input vectors; u(xx) is 0.0 if the first and second BMU’s of xx
are next to each other, other wise u(xx) is 1.0

2.3 Case study and data used

In order to illustrate the capability of the proposed pressure regulation model, Block 12
of the supervisory Fukuoka City water supply network is selected as a case study. In this
Block (Fig. 3), there are 54 nodes, 74 pipes, and 9 inflows from outside the network at nodes
1, 3, 10, 17, 20, 41, 50, 51 and 54. For the telemeters attached to the network, there are 7 flow
meters (M1, ..., M7), 20 electric motor valves (V1, ..., V20) and 11 pressure gauges (P1I, ...,
PI11). It is noticed from Fig. 3 that flow meters are connected to the main inlets and outlets
and a valve is connected adjacent to each flow meter in order to control the flow entering or
leaving the block. Motor valves are operated by remote control while pressure gauges and
flow meters fitted to distribution pipes are monitored. One of the main objectives of the
supervisory control of the water network of Block 12 is to regulate the pressure in all the
network nodes between an upper target value (32 m) and a lower value (24 m). The values
of flow rate passing each flow meter, the opening percentage of each motor valve and the
pressure intensity at each pressure gauge are recorded every minute. The analyzed data of
this study are based on one minute data for all flow meters, pressure gauges, and motor
valves for a randomly selected two days (Saturday and Sunday, 9% and 10 of November
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Fig. 3 Skeletonized water distribution network of Block 12.
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Fig. 4 Box-whisker plots for the 7 flow meters of Block 12.
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Fig. 6 Box-whisker plots for the 11 pressure gauges of Block 12.

2002). The total number of data for each telemeter equal to 2880 (total minutes during those
two days).

Figures 4, 5 and 6 show the box-whisker plots for all the 38 telemeters of Block 12 for
the data set used in this study. The box-whisker plots show the median, upper and lower
quartiles, and also the maximum and minimum recorded values for each telemeter.

3. Estimating Hydraulic Pressures

One of the main steps of the proposed method which will be presented in the next section
is to estimate the pressure values at the location of the 11 pressure gauges of the application
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example. Therefore, the FFBP model presented in this section will be used to perform this
task.

The number of input and output nodes in the FFBP model is determined according to the
nature of the studied problem, in the proposed model the number of input nodes are set to the
total number of flow meters and electric motor valves (27 nodes) while the output nodes
number are set to the total number of pressure gauges (11 nodes). Regarding that the
dimension of the input vector is large; it is useful in this situation to reduce the dimension of
the input vectors. Using one of the most effective procedures for performing this operation
(principal component analysis) the total number of input nodes has been reduced from 27 to
7 nodes. The number of hidden layers and hidden nodes which depends on the complexity of
the mathematical nature of the problem is determined by trial and error. One hidden layer
with 40 nodes is found to be suitable to describe the relationship between the input and output
variables. All transfer functions in the hidden and output layer are hyperbolic tangent
functions.

Other additional information used in the model formulation is as follows: the mean
squared error is used as an error function, batch mode of training is used in which all weights
and biases are updated after presentations of all training vectors, the maximum number of
learning counts is 2000, the initial weights and biases are randomly selected between -1 and
1, learning rate during training processes is 0.01 while the momentum constant is 0.9.

In developing the FFBP model, a cross-validation technique is used in which the data set
is divided into three subsets; a training set, validation set and testing set. The odd minutes
data are used for training while the even minutes data are divided to two subsets one for
validation and the other for testing. A data pre-processing has been used because it may have
a significant effect on model performance, all original data of input and output vectors of the
three previous sets are scaled separately in the range of the used hyperbolic tangent functions
(-0.9 to 0.9).

Figures 7 and 8 show scatter plots of the model estimated data versus observed data for
pressure gauges P1 (lowest mean value) and P3 (highest mean value), respectively. The
plotted results for those two pressure gauges are an example of the results obtained while all

40
Line of Agreement
@B
35¢ 5
E
®
5 30t
w
w
@
a
o ;
3
© 25} . ] 4
£
= y
13}
20¢ . E
N
< Training (1440 points)
+ Validation (720 points)
= Testing (720 points)
15 . . . T
15 20 25 30 35 40

Observed pressure (m)

Fig. 7 Observed and estimated pressure values for pressure gauge Pl
(lowest mean value).



38 H. Awap, A. Kawamura and K. JINNG

45 -
Line of Agreement L -
2%
401 g
Oe

E
£ 35}
w
2]
<4
Q
o
Q
® 30f b
£
@
i}

25¢ b

Training (1440 points)
Validation (720 points)
«  Testing (720 points)
2 . . . T
020 25 30 35 40 45

Observed pressure (m)

Fig. 8 Observed and estimated pressure values for pressure gauge P3
(Highest mean value).

remaining pressure gauges show same trend. In both figures there is good agreement
between both estimated and observed data for all model sets, the training set (1440 points),
the validation set (720 points) and the testing set (720 points). The Root Mean Square Error
(RMSE) for the estimated pressure values is relatively acceptable for all pressure gauges; it
varies between 1.066 m at pressure gauge P9 and 1.148 m at pressure gauge P3.

It is important to notice that the applicability of the FFBP model presented in this
section is limited to the water distribution network of Block 12 City and also to the upper and
lower values of telemetry data used in the training phase.

4. Proposed Method

Hydraulic pressures in water supply networks depend on several factors and values
related to the system operation. The values that could affect the pressure at any node of the
network could be divided into passive and active values. Passive variables are constant in
any loading condition. Examples of passive values are pipes diameters and lengths.

For active variables, their values are changeable over the different loading conditions. In
a water supply network operated without pumps (similar to that of Block 12), active
variables are different nodal demands, electric motor valve openings, outflows from the
network-and hydraulic pressure at fixed grade nodes. The system responses due to all those
variables (passive and active) are different pipes flow and the hydraulic pressure at all
network nodes.

System response variables which should be included in the formulation of an optimal
pressure regulation model in a water supply network could be simplified by selecting the
hydraulic pressure at the location of all pressure gauges of the studied network. By this
assumption, we have neglected all the pipes discharge as they are not related to the hydraulic
pressure; and the hydraulic pressure in the majority of water supply network nodes because
selecting the location of pressure gauges is considered as a good indication of hydraulic
pressure in the different water supply network sub-areas.

All active variables could be determined from the reading of flow meters and electric



Applications of Artificial Neural Networks for Optimal Pressure Regulation in Supervisory Water Distribution Networks 39

motor valves attached to the pipes of the water network. Nodal demands are represented
indirectly in the flow meter readings. Total nodal demands equal to the summation of flow
meter readings connected to the water network main entrances excluding any internal flow
meter reading. For pipes lengths and diameters which are considered as passive variables
they could be considered in the system as embedded values because they have always fixed
values. By other word, the water supply network system could be efficiently represented by:
(i) flow meters readings, (ii) pressure gauges values; and (iii) electric motor valves openings.
This assumption is correct when the system is represented by sufficient number of telemeters
and more accurate results are obtained with the increase of the total number of observation
points.

The model presented in this paper used the Self-Organized Map (SOM) to classify flow
meter readings of well regulated pressure cases. After that a simulation step of flow meter
readings of unregulated vectors is performed. Each vector of flow meter used for training
or simulation has corresponding electric motor valve vector and hydraulic pressure vector.
When the simulation step is performed, the electric motor valve vector of the unregulated
case will be replaced by that of the regulated one and the resultant pressure will be tested in
that case using the FFBP model presented in the previous section.

4.1 Model formulation

The application of SOM method as a pre-optimization tool for regulating pressure in
water supply networks between an upper and lower target values is presented below and is
illustrated in Fig. 9:

1. Input the simulation data which contains p vectors; each has p; readings from flow
meters, p. readings from pressure gauges and ps readings from electric motor valves. The
input matrix (/) has the dimension of pX{(p1+ pa+ ps).

2. Partition the input matrix (/) into two matrices (two groups of data) according to
the values of pressure gauges. Group A presented by the matrix ([ne) in which all 2.
components of its pressure gauges vectors are well regulated within the required target range
(>=24m and <=32m). Group B presented by the matrix (Ius) in which any p» compo-
nents of its pressure gauges vectors fall outside the target range (<24m or >32m). The size
Of Ireg 1S pres X (p1+ P2+ ps) and the size of Lunreg i Punres X (D1+ Do+ Ps) in Which Preg + Punres
=

3. With the data of group A presented by the matrix ., we will find a suitable size of
SOM. This SOM will be constructed with the assistance of flow meters readings only, which
represent the actual water demand of the network when the p. pressure points are well
regulated and also the openings of the ps electric motor valves give a good operation case of
the water supply network. The matrix used to construct a suitable SOM named FMe and
it is a sub-matrix of [ and has the dimension of pree X p1.

4. Normalize the values of F'Mr¢ between 0 and 1 so that each component of FMyee will
receive equal attention during the training process.

5. Assume a hexagonal arrangement of the output layer of the SOM which is preferable
over the rectangular arrangement because it does not favor horizontal and vertical direc-
tions'®. The minimum arrangement dimension is 2 X2 while the maximum size is related to
the problem size. In our application example which will be presented in the next section, the
SOM size doesn’t exceed 30 X% 30.

6. Initialize and train the selected SOM subjected to Egs. (3), (4) and (5).

7. Evaluate the selected SOM by computing both topographic and quantization errors.

8. Check convergence based on the values of topographic and quantization errors. If the
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Fig. 9 Flow chart of the SOM model used for regulating pressure in
water supply networks.

convergence criteria are satisfied, continue; otherwise return to step 5 by selecting another
hexagonal arrangement.

9. Now we have an SOM of X neurons in x-direction and Y neurons in y-direction
trained with the matrix FM, which represents the readings of flow meters of the different
well regulated pressure cases. The SOM has X X Y neurons. In some units of the trained
SOM there is a possibility that they didn’t receive any flow meter vectors after the training
processes. For the remaining units of SOM, they have one or more electric motor valve
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vector of ps components which corresponds to a well regulated pressure case of flow meter
readings and pressure gauges values. In this step we will make a simulation of the designed
SOM using the values of flow meter readings in group B presented by a matrix FMunree which
is a sub-matrix of Iunree and has the dimension of punres X p1.

10. Put N=1 in which N represents the unit number of the trained SOM and the
maximum value of N is XX Y.

11. For unit number N on the trained SOM. If there is a presence of vectors from both
FMunree and FMyeg, step 12; otherwise step 13.

12. Replace all electric motor valve vectors of FMunrez by that of FMrg associated with
unit number N. go to step 14. .

13. This step is related to the units of SOM in which they have a minimum of one vector
from FMunree and no vectors from FM,.. In that case we will search in the neighborhood of
unit N which varies between 2 units for the four units located at the corners of SOM and 6
units for any middle unit of the SOM. Replace all electric motor valve vectors of FMynree by
that of FMe associated with the neighborhood units of unit number N.

14. Check pressure values at the p. locations of different pressure gauges using the
modified matrix FMunre. Store the results according to the values of pressure gauges. Store
in group C when pressure gauges vectors are well regulated within the required target range
(>=24m and <=32m) while store in group D when any component of pressure gauges
vectors fall outside the target range (<24m or >32m). Predicted values of hydraulic
pressures are evaluated using the FFBP model presented in the previous section.

15. N=N+1; if N<=XXY then step 11. Otherwise continue (step 16).

16. Evaluate the SOM efficiency to regulate the pressure in the location of pressure
gauges between an upper and lower target values. The (Junreg) matrix is divided now into two
matrices; (Ore) which is the summation of group C cases and have a dimension of fee X (1
+ po+ ps) and (Ounres) Which is the summation of group D cases and have a dimension of funres
X(pr+ ot D3); treg + tunrege = Dunree. The SOM efficiency could be defined as the percentage of
vectors that their hydraulic pressure has been regulated as:

SOM efficiency:pt’eg %100 )

unreg

For group D cases presented by (Ounrez) matrix, an evolutionary computing technique to
regulate the pressure in all the network nodes within the required target range could be
used'”. The objective function of this model could be presented in the form of network
pressure regulation; Eq. (1) or as the total amount of leaked water from the network; Eq (2).

5. Application

This section presents an application example for the proposed algorithm of applying
SOM for optimal pressure regulation in water supply networks. The selected data set is for
two days with one minute interval of telemetry data recorded from the 7 flow meters, 11
pressure gauges and 20 electric motor valves attached to the different nodes and pipes of
Block 12 of Fukuoka City water supply network. Therefore, the total number of vectors (p
=2880), ;=17, po=11 and ps=20.

The input matrix (/) has the dimension of 2880 X 38 representing all the data used for
this application. As a first step, we have divided the input matrix (/) into two matrices
according to the actual hydraulic pressure recorded at the 11 pressure gauges. The first
matrix ([l.g) which will be used to construct the SOM has a 949 well regulated vectors in
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which all pressure gauges vectors are well regulated within the required target range (> =
24m and < =32m). The second matrix ([u.ree) has a dimension of 1931 X 38. For the pressure
gauge vectors of this matrix at least one component of the 11 components falls outside the
desired target range (<24m or >32m).

5.1 Map size

Input vectors to the SOM are all sets of flow meter readings for (/) matrix known as
FMee matrix with dimension of 949X 7. The total numbers of training vectors are 949. Each
vector contains 7 components representing the associated 7 flow meter readings. Normaliza-
tion range of input vectors is from 0 to 1, batch mode of training is used, initial SOM weights
are set randomly between 0 and 1, adaptive learning rate is used which varies between 0.1 to
0.4 and maximum allowed number of epochs is 200.

Different map size has been evaluated by calculating both topographic and quantization
errors. All possible two-dimensional map sizes which vary from 2 to 30 neurons have been
tested. In general, increasing the map size will increase the topographic error which is
calculated using Eq. (6) while brings more resolution into mapping when the quantization
error decreases. The map size selected to present the different classification of flow meters
is hexagonal lattice with middle size of 11X 16. At that size, the topographic and quantization
errors equal 2.0021 and 1.4561, respectively. That’s mean that there is only 19 vectors in
which the first and second BMU aren’t adjacent. For that selected map size the required
number of epochs for convergence is 88.

Figure 10 shows the trained SOM units using a hexagonal lattice of size 11X16. The
number written in the upper area of each unit indicates the total number of hits associated
with those units (number of BMU) and representing the total number of flow meter vectors
of well regulated cases (949 vectors). The minimum and maximum number of hits recorded
for any neuron in the trained SOM is 0 and 26, respectively. The number of units in which
they haven’t any hits representing a regulated case in Fig. 10 is 52 out of the total 176 units.

5.2 Regulating the hydraulic pressure

After training the SOM with the FM,, matrix, a simulation step is done using the
FMunree matrix which is a sub-matrix of Iuree and has the dimension of 1931 X7. The matrix
FMunreg represents all cases of flow meters values in which at least one component of the
pressure gauge vectors fall outside the desired target range. The number written in the lower
area of each unit in Fig. 10 indicates the number of flow meter vectors in which the pressure
is unregulated. The minimum and maximum number of hits recorded for any neuron in the
simulated SOM is 0 and 165, respectively. The number of units in which they haven’t any hits
representing unregulated vectors in Fig. 10 is 50 out of the total 176 units.

For the 176 units presented in Fig. 10, four types of units could be determined according
to the existence of regulated and unregulated vectors:

1. Units that have both regulated and unregulated vectors. For those units, at least one
hit is recorded in both the upper and lower areas of any unit. Total number of units for that
type is 108 units. To regulate the pressure for those units, we have replaced all electric motor
valve vectors of FMunreg by that of FMs associated with each unit. After replacement, we
have predicted the values of hydraulic pressures at the location of the 11 pressure gauges
using the FFBP model.

2. Units that have only unregulated vectors. For those units, at least one hit is recorded
in the lower area of the unit and there isn’t any hit recorded in the upper area. Total number
of units representing that type is 18 units. In that case, we have replaced all electric motor
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Fig. 10 SOM map of size 11X16 trained with the flow meters vectors of well
regulated cases (upper number in each unit). The lower number in each unit
indicates the number of vectors in which the pressure is unregulated.

valve vectors of FMunree by that of FMy,g associated with the neighborhood units. The
number of the neighborhood units varies between 2 units for the four units located at the
corners of SOM and 6 units for any middle unit of the SOM. After replacement, we have
predicted the values of hydraulic pressures at the location of the 11 pressure gauges using the
FEFBP model.

3. Units that have only regulated vectors. For those units, at least one hit is recorded
in the upper area of the unit and there isn’t any hit recorded in the lower area. Total number
of units representing that type is 16 units. Those units could be useful if the SOM is supplied
with additional future data. The electric motor valve vectors associated with those units
could replace any unregulated vectors fall in those units and by applying the methodology of
Type 1 the hydraulic pressure could be regulated.

4. Units which lack any number of hits in both upper and lower areas. In Fig. 10 there
are 34 units of that type. Those units could be useful if the SOM is supplied with additional
future data. The electric motor valve vectors associated with the neighborhood units could
replace any unregulated vectors fall in those units and by applying the methodology of Type
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2 the hydraulic pressure could be regulated.
5.3 Results analysis

Comparing the situation before and after applying the proposed algorithm for the
application example, Table 1 shows a comparison of regulated and unregulated cases. The
distribution of vectors is based on two-hour interval for the studied two-days. As example,
first row in Table 1 shows that there are 100 regulated vectors from 9:01 to 11:00 and 140
vectors at the same time interval in which hydraulic pressure exceeds the desired target
range. After applying the SOM model, the number of the regulated cases is increased by 83
(improved using SOM model) and for the remaining 57 cases the SOM model failed to
improve them. The SOM efficiency for that time interval is 59.29% calculated using Eq. (7).
Maximum number of unregulated vectors after applying the SOM model is 73 recorded 5:01
to 7:00. Table 1 shows that there are small number of regulated cases during night time; 15
cases from 1:01 to 3:00 and 19 cases from 3:01 to 5:00. After applying the proposed model, 170
and 171 cases has been improved for those two time intervals showing the effectiveness of the
proposed algorithm during the night time in regulating the pressure when water demand is
minimum. The maximum efficiency of the proposed model is 95.149% recorded for the time
interval between 21:01 and 23:00. For all the application cases, 1437 cases have been improved
out of the 1931 case with a percentage of 74.42%.

Table 2 compares between the pressure status at the location of each pressure gauge
before and after applying the proposed algorithm. This comparison is based on the 1931 cases
in which the pressure was unregulated. For example, pressure gauge (P1) has 863 cases in
which the pressure is less than 24 m but after applying the SOM model those cases have been
reduced to 242 cases only. For the same pressure gauge, the 87 cases in which the pressure
is bigger than 32 m have been reduced to 22 cases after applying the proposed algorithm. The
highest value of events in which the pressure exceeds the upper target limit (32 m) is
recorded at the location of pressure gauge (P3) with 857 cases that have been reduced to 222
cases after applying the SOM model. All details of the pressure status for the 11 pressure
gauges are presented in Table 2. When considering all the pressure gauges as one group,
results show that: (i) the 996 cases in which the pressure is below than 24 m have been
reduced to 256 cases, (ii) the 908 cases in which the pressure is bigger than 32 m have been

Table 1 Hourly distribution of pressure vectors.

Time No.ofwell |  No. of No. of vectors No. of SOM
Regulated | unregulated | Improved using ;'géfg.:'gf:r Efficiency

From To vectors Vectors SOM applying SOM (%)
9:01 11:00 100 140 83 57 59.29
11:01 | 13:00 123 117 89 28 76.07
13:01 | 15:00 82 158 134 24 84.81
15:01 | 17:00 102 138 109 29 78.99
17:01 | 19:00 137 103 67 36 65.05
19:01 | 21:00 137 103 79 24 76.70
21:01 | 23:00 96 144 137 7 95.14
23:01 1:00 41 199 149 50 74.87
1:01 3:00 15 225 170 55 75.56
3:01 5:00 19 221 171 50 77.38
5:01 7:00 44 196 123 73 62.76
7:01 9:00 53 187 126 61 67.38
Sum 949 1931 1437 494 74.42
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Table 2 Comparison between pressure vectors before and after applying
the proposed SOM model.

Before applying SOM After applying SOM

Pée::;;e P<24am | P>=24 P<24m | P>=24
P<24m | P>32m and and P<24m | P>32m and and

P>32m | P<=32m P>32m | P<=32m
P1 863 87 0 981 242 22 0 1667
P2 245 226 0 1460 83 139 0 1709
P3 33 857 0 1041 18 222 0 1691
P4 117 312 0 1502 50 157 0 1724
P5 95 325 0 1511 54 161 0 1716
P6 481 166 0 1284 134 105 0 1692
P7 213 223 0 1495 93 139 0 1699
P8 567 116 0 1248 200 82 0 1649
P9 246 215 0 1470 93 144 0 1694
P10 459 178 0 1294 116 91 0 1724
P11 52 434 0 1445 36 174 0 1721
All gauges 996 908 27 0 256 238 0 1437

reduced to 238 cases, (iii) there are 27 cases in which some points are below than 24 m and
one or more gauges read more than 32 m, all those cases have vanished after applying the
SOM model, and (iv) In general, 1437 cases have been improved out of the 1931 cases with
a percentage of 74.429.

Table 3 compares between the pressure status at the location of pressure gauges before
and after applying the SOM model taking into consideration the number of unregulated
components. For example, there are 88 cases out of the 1931 in which all the pressure gauges
exceed the target range. Those cases are divided into 84 cases in which all the pressure
gauges read more than 32 m and 4 cases that all pressure gauges read less than 24 m. after
applying the SOM model those 88 cases have been reduced to 40 cases indicating an improve-
ment of 48 cases with a 55 percent of improvement. Considering this comparison the highest
number of unregulated vectors are 814 cases when there is one pressure gauge read a value
exceed the target range (481 cases bigger than 32 m and 333 cases less than 24 m); those 814
cases has been reduced to 204 cases only (percentage of improvement is 75%). From the last
column in Table 3 we could deduce that the percentage of improvement increase with the
decrease of the number of unregulated components in pressure vectors (5595 when 11
components are unregulated and 75% in case of one unregulated component).

In Table 4, distribution of pressure vectors components with the different zones of water
pressure are shown for all the 11 pressure gauges. There are nine different zones starting
from “Zone I-A” to “Zone IV”. Those nine zones are determined according to the hydraulic
pressure before and after applying the proposed model. For example, “Zone [-A” presents
any case in which the pressure is below the lower target value of 24 m before and after
applying the model, in “Zone I-B” the pressure is below the 24 m before applying the SOM
model and bigger than 32m after applying the model and “Zone IV” presents the situation in
which the pressure is well regulated in both cases. Boundaries which determined the different
zones are mentioned in the second and third rows in Table 4.

According to the different nine zones, three main classes could be determined based on
the efficiency of the proposed model to regulate the pressure at the 11 tested points; (i) for
“Zone 1”7 and “Zone II” the pressure is unregulated after applying the SOM taking into
consideration that “Zone II” presents the cases in which the original pressure is within the
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Table 3 Comparison between pressure vectors components before and
after applying the proposed SOM model.

No. of No. of No. of No. of Total No. of No. of Percentage
unregulated reg.ulatgd unrggulqted unrqgulgted Number number vectors | unregulated of
porisin | P | o erer | obomaaer | vocmrs | - [ TErore [t sl i proing
eachvedlor | vestor | (P<24m) | (P>32m) vectors | G5t | Teom” |
0 11 84
11 0 P o 2 88 48 40 55
0 10 24
10 1 9 1 1 62 42 20 68
10 0 37
0 9 29
9 2 8 1 1 53 35 18 66
9 0 23
0 8 16
8 3 7 1 1 36 28 8 78
8 0 19
0 7 19
7 4 6 1 2 65 49 16 75
7 0 44
6 5 9 6 35 1 101 82 19 81
6 0 66
0 5 54
5 6 4 1 2 138 108 30 78
5 0 82
0 4 45
4 7 3 1 3 145 114 31 79
4 0 97
0 3 43
3 8 2 1 12 154 116 38 75
3 0 99
0 2 78
2 9 1 1 5 275 205 70 75
2 0 192
1 10 0 L 481 1 814 | s10 204 75
1 0 333
0 11 0 0 949 949 i I M
Sum 2880 2880 1437 494

target range, (ii) “Zone III” presents the cases in which the SOM model has succeeded to
regulate the pressure, and (iii) “Zone IV” presents the cases in which the pressure status has
not changed; in both situations the pressure is within the target range. Total number of cases
associated with all the nine zones for the 11 pressure gauges are presented in details in Table
4 in which the last two rows indicate the number of cases recorded for the minimum and
maximum value of each pressure vector. The summation of any row shown in Table 4
presents the total number of unregulated vectors before applying the proposed model (1931
vectors).

Figures 11 and 12 show the relation between the initial and estimated pressure recorded
at the location of pressure gauges (P1) and (P3), respectively. Boundaries of the different
nine zones are plotted in both figures. Pressure gauges (P1) and (P3) are selected as
representative of all pressure gauges because the majority of low pressure values are
recorded at the location of (P1) while the majority of high pressure values are recorded at
the location of (P3). “Zone III” in Figs. 11 and 12 show the number of cases improved using
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Table 4 Distribution of pressure vectors components with the different
zones of water pressure.
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Fig. 11 Relation between initial and estimated pressure recorded at (P1).

47

the SOM model. For pressure gauge (P1), zones III-A and III-B show the improved 736 and
74 cases, respectively. For pressure gauge (P3), zones I1I-A and III-B show the improved 30

and 712 cases, respectively.

Points in zones II-A and II-B represent the cases that are regulated before applying the
SOM model for the related pressure gauge. For those cases there is an existing of one or
more pressure gauges in which their pressure is unregulated. After applying the proposed
method, the pressure becomes unregulated for the studied pressure gauges and there is a
probability that the pressure status is improved in other pressure gauges. In general all cases
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Fig. 13 Relation between minimum initial and estimated pressure for all

pressure gauges.

presented in zone II are classified under the same category of the cases of zone I in which the
SOM model fails to regulate the pressure within the required target range. Highest number
recorded in zone II-A is 137 cases existing at the location of pressure gauge (P8) while the
highest number recorded in zone II-B is 101 cases at the location of pressure gauge (P5); see
Table 4 for more details.

In Fig. 13, the relation between the minimum initial and estimated hydraulic pressure in
all pressure vectors is plotted. Zones III-A and III-B show the improved 884 and 71 cases,
respectively. The same procedure is repeated for the maximum initial and estimated
hydraulic pressure in all pressure vectors (see Fig. 14). The improved 4 and 773 cases are
shown in zones III-A and III-B, respectively.

The proposed model has successfully improved 1437 cases out of the 1931 unregulated
cases for the application example. For the remaining 494 cases, results of other calculation
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Fig. 14 Relation between maximum initial and estimated pressure for all
pressure gauges.

show an improvement in pressure status using the proposed model in 298 cases.
6. Conclusions

The study performed in this paper demonstrates the potential of applying Self-
Organizing Maps (SOM) for finding optimal electric motor valve settings to regulate the
pressure in water supply networks between upper and lower target values. The presented
application of Block 12 of Fukuoka City water distribution network achieves good perfor-
mance for the short term data set used. The SOM has successfully regulated 1437 cases out
of the 1931 unregulated cases in the application example. For the remaining 494 cases, an
improvement in pressure status using the proposed model are recorded in 298 cases compar-
ing to the situation before applying the SOM model.

The model considered in this paper is classified as an “expert system model” as it is
based on learning from the past historical data. This model offers the opportunity of being
used directly for the on-line optimal pressure regulation in water supply networks without
any need to deal with the skeletonized network presented or knowing the real nodal demand.
The presented model uses a FFBP model to predict the hydraulic pressure at the location of
different pressure gauges.

The proposed method shows high efficiency in case of regulating pressure during daily
operation with high performance for night time when there is an increase of hydraulic
pressure in the network (from 1:00 a.m. to 5:00 a.m.). Efficiency of SOM algorithm depends
on the number of points to be regulated. For the application example when all points are
unregulated the percentage of improvement is 559 while in case of one unregulated point the
efficiency increases to 75%.

This paper presents analysis and comparison for the situation of pressure before and
after applying the proposed method. This comparison is done for all the location of the 11
pressure gauges. Significant improvement was recorded at the location of pressure gauges
(P1) and (P3). Those two pressure gauges are the most critical points as there pressures for
the majority of cases exceed the required target range before applying the proposed method.

For demonstrating the efficiency of the proposed method, we have used a short-term data
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set. The same procedure could be repeated for a long-term data set taking into consideration
that the size of SOM should be big enough to represent the majority of operational cases.

This paper evaluates also the potential of applying FFBP algorithm for pipe network
analysis, the model presented for the short-term data set of telemetry data has been applied
successfully for the prediction of hydraulic pressures at the location of the 11 pressure
gauges. The RMSE varies between a minimum value of 1.066 m at pressure gauge (P9) and
a maximum value of 1.148 m at pressure gauge (P3).

Principal component analysis has been implemented successfully to reduce the big
number of neurons in the input layer of the FFBP model. The number of neurons has been
reduced from 27 to 7. By applying the principal component analysis the total number of
weights and biases to be determined by the FFBP models is reduced.

FFBP model parameters has a significant effect on the model results, all those parame-
ters have been selected by trial and error based on the most recommended values in the
literature. A sensitivity analysis of different model parameters should be considered in the
future improvement of presented models.
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