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Abstract

   This paper presents a simple and efficient technique for improving

the existing optimal pressure regulation and leakage minimization algor-

ithms for supervisory water distribution networks. With the assistance of

Supervisory Control and Data Acquisition (SCADA) we have trained a

Self-Organized Map (SOM), an unsupervised artificial neural network

(ANN), to classify well regulated pressure cases for the water distribu-

tion network based on its actual values of flow meter readings which

reflect the real network water demands or consumption. After training

the SOM, a siinulation step is used to classify the unregulated pressure

cases into the different model classes. Based on these classifications the

appropriate electrical motor valves setting of the well pressure regulation

events are used for the unregulated ones. Regarding that ali the available

algorithms deal directly with the pressure regulation preblem from an

optimization point of view which required a computational time depend-

ing on the water network size and the used optimization method and in

most cases requires also a network simplification method which is consid-

ered as another optimization problem. Using SOM as a pre-optimization

method could prevent all errors resulting from applying optimization

models, save its computational time and provides us with an on-line

pressure regulation method. Computational results for Block 12 of
Fukuoka City water distribution network using a short-term data set
demofistrate the effectiveness of using SOM as a pre-optimization tool for

regulating 740/o of events within the target pressure range.
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1. intreductien

    Water loss occurs in all distribution systems - only the volume of loss varies, depending

on the characteristics of the pipe network aRd other local factors, the water company's
operational practice, and the level of technology and expertise applied to control it. These

losses can be severe, and may go undetected for months or even years. The larger losses are

usually from burst pipes, or from the sudden rupture of a joint, while smaller losses are from

leaking joints, fittings, service pipes, and connections. The volume lost will depend largely

on the characteristics of the pipe network and the leak detection and repair policy practiced

by the company, such as: (i) The pressure in the network, (ii) Whether the soil type allows

water to be visible at the surface or not, (iii) The "awareness" time (how quickly the loss
is noticed), and (iv) The repair time (how quickly the loss is corrected). Examples of water

loss as a percent of water supplied were surfimarized in an internatioRal survey by the
Interltational Water Services Association (IWSA) in 1991i) as: (i) Developed countries 8
-240/o, (ii) Newly-industrialized countries 15-24%, and (iii) Developing countries 25-450/o. In

Japan, the average amount of water loss in the biggest 12 Japanese cities was 7.40/o in 19972).

The lowest value occurred at Ful<uoka City, Western Japan; 3.50/o in 1997 which is considered

at thattime the minimurn rate in the world according to the UN-habitat prograrn3).

    Volume of water leakage frona water distribution networks represents a significant
amount from the total domestic water use; domestic water use in Japan was 16.4 billion in3

in 1999 which represents 190/o of the total water usage`). Therefore, in order to counteract

water leakage a lot of water companies and waterworks bureaus around the world have
established a "Water Leakage Prevention" sections which are responsible for: (i) detecting

leaks from water supply network at an early stage follewed by rapid repair, (ii) Improve-

ment of water pipes status by replacing the deteriorated pipes and performiRg routine
programs for pipes maintenance, and (iii) adjusting the water pressure.

    It is well known that water leakage from a supply-and-distribution network is directly
related to the system service pressure. The leakage volume increases proportionally with the

increase in the average system pressure5). Therefore, in order to improve the existing system

operation and management some waterworks bureaus in the developed countries around the
world has started to establish the supervisory system of water distribution network in which

sensor information from pressure gauges, flow meters, and electric valves connected to
important points of the network are continuously sent to a control ceRter where valve
openings are adjusted depending on the situation in the network given by the sensor informa-

tion. One of the purposes of the control is to minimize leakage and to maintain appropriate

hydraulic pressures for the consumers. By controlling the distribution of hydraulic pressures

in the network, pipe breaking could be lessened and water could be conserved. However to
achieve this kind of control, it is necessary to accurately estimate the distribution of
hydraulic pressures through the network and to properly control the valves.
    Available mathematical models that explore pressure regulation or leakage minimiza-
tioR problem through optimal control valve settings could be divided into types. In the first

type, the following mathematical statement for network pressure regulation is used as an
objective function to be minimized6)•7).

       nn
      J'=1

   where ffj is the head at node i, ffjT is the required target head at the sarce node and nn
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is number of junction nodes. The foregoing function is to be minimized under the following
constraints: (i) mass contiRuity should be satisfied for each node of the water supply
network, (ii) sum of the head losses around a closed loop must be equal to zero, and (iii)

Minimum and maximum head constraint for each node in the network.
    In the second type, the total amount of leaked water from the network will be used as
an objective function to be minimized as the following equation5).

       np    1=2.KiLip}"i8-->rr}in (2)       i

    where np number of links, Ki is an unknown experimental ceefficient depends on the
value of service pressure, age of the pipe, deterioration of the pipe and the soil properties, Li

pipe length and Pi average service pressure of the studied pipe. Eq. (2) is to be minimized

under the same constraints mentioned before.
    For the previous two methodologies the required optimal valves settiRgs are embedded
in the constraints represented by the sum of the head losses around a ciosed loop, in which

the hydraulic aRalysis of the Retwork is performed using the Hazen-Williams exnpirical
equation or Darcy-Weisbach in conjunction with Colebrook-White formula. The search-
analysis frameworks of this optirnization problem (see Fig. 1) require several repetitive

analysis of pipe network.

    ObtainiRg an optimal control of the distribution of system service pressures in a
municipal water distribution networks has always faced combinatorial problems due to its
complexity, scale of the problem, number of hydraulic variables to be optimized, variation of

water derriand and the difficulty in estimating the roughness coefficient of old pipes.
Regarding that all the available algorithms deal directly with the pressure regulation problem

from an optimization point of view which requires a computational time depending on the
water network size and the used optimization method and in most cases required also a
network simplification method which is considered as another optimization problem. By
other words, the total computational could be divided into three main parts; optimization
algorithm tinae which depeRds upon the used optimization method, the time required to solve

the different components of the water distribution network in order to compnte the value of

the objective fuRction and the time required to deal with the real water supply network if no

simplification technique has been used. In addition to the previous three difficulties, the

estimatiofi of the uncertainty values of water supply networks presented by nodal network

demands and pipes roughness could lead to significant errors in the application of the
developed model.
   In this paper, we suggest to improve the available control schemes by using a pre-

Searching Model Using
Optlrnization Algorithm

Solutlon Specifications

(Motor Valves Openings)
Objective Function Valua
(Solution Performance)

Pipe Network
Analysis Model

Fig. 1 Search-analysis frameworks.
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optimizatioR method based on learning from historically cases of valves operation. For the
proposed algorithm, two different Artificial Neural Networks (ANNs), unsupervised aRd
supervised learning algorithms, were applied to find the optimal electric motor valves setting

to regulate pressure and minimize water leakage in supervisory water supply networks.
First, a Feed-Forward Back-Propagation algorithm (FFBP),a supervised ANN, was applied
to predict the values of hydraulic pressures at the locations of different pressure gauges.

Second, a Self-Organizing Maps (SOM), an unsupervised ANN, was applied to regulate
hydraulic pressure. Using the proposed model as a pre-optimization method could prevent all

errors resulting from applying optimization models, save its computational time aRd provides

us with an on-line pressure regulation method.

2. Materaags and Methods

2.1 Feed-Forward Back-Propagatieit (FFBP) aggorgtkm

    The FFBP algorithm is well-known approach for the prediction applications. In this
type, the network usually consists of an input layer, some hidden layers and an output layer.

In its simple form, each single neuron is connected to other neurons of a previous layer
through adaptable synaptic weights. Knowledge is usually stored as a set of connection
weights and training is the process of modifying the connection weights. The network uses
a learning mode, in which an input is presented te the network along with the desired output

and the weights are adjusted so that the network attempts to produce the desired output. The

weights, after training, contain meaningful information whereas before training they are

random and have no meaning. The success of applying such supervised neural networks on
any problem depends ofl trainiltg the net with sufficient range of data that spans a broad

range of conditions. In this study we used the typical FFBP algorithm, which was presented

by Rumelhart and McClelland8). Fer more details about ANN models and learning proce-
dures, readers may refer to the literature9)'iO)'ii). General properties of neural networks, as

well as their application for the prediction and forecasting of water resources variables, have

been thoroughly covered ifl a number of publicationsi2)'i3). For background information the

reader could refer to this literature; only specific properties of the neural networks employed

are given here. FFBP algorithm has been used in the present study to estimate pressure
values at different pressure gauges of the application example of the supervisory water
supply network.

2.2 Seaf-OrgaRiziRg Maps (SOM)

   The SOM is relatively a simple unsupervised neural network used for the categorization
of input patterns into a finite number of classes. SOM consists of two layers units, the input

units which are a one-dimensional array that provides simulation to a usually two-
dimensional array of map space units (output units) and all units in the input layer are fully

connected with the units in the output layer (Fig. 2). The neurofis of the outpudayer which

is preferably arranged into two dimeRsional grids for better visualization are connected to

adjacent neurons by a neighborhood relation dictating the structure of the map. The
arrangement of the output layer neurons are usually distributed in rectangular or hexagonal
arrangement. Generally it is preferable to use the hexagonal lattice, because it does Rot favor

horizontal and vertical directions as much as rectangular arrayi`).

   When an input vector x is sent through the network, each neuron k of the output
network, which is also called competitive layer computes the distance between the weight
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Fig.2 Structure of SOM network.

vector w and the input vector x. Among all the output neurons, the so-called winning unit
or Best-Matching Unit (BMU) is determiRed by the similarity between the weight vector w
on that unit and the input vector x. For an iRput vector x, the BMU is determined by

    Hx-wcli =:min{IIx-will} (3)              i

    in which the subscript c refers to the winning unit (BMU), Il...II is the distance rneasure

and i refers to all units in the competition layer, in Eq. (3) each unit in the two-dimensional

output layer is identified by a siRgle subscript for simplicity. Accordingly, a second winning

unit will be determined with respect to the second input vector, and so forth. At the end of

competition only one unit in the competitive layer wins in corresponding to one input vector.

    For the BMU and its neighborhood neurons, the weight vectors w are updated by the
SOM learning rule.

    w,(t+o== (l i,E2+ev(t)hci(t)(X(t)maWi(t)):2fl,. i(EiiNc(t) (4)

    where ev is the learning rate at time l; hci so-called neighborhood function that is valid

for the neighborhood Nc.
    The value of ev varies from O.O to 1.0, aRd it controls the rate of learning. An ev of 1.0

means it learns a new example as soon as it is presented. However, it forgets all previous
examples of that class. Similarly, an cr of O.O means that the network does not learn at all,

but classifies new examples based on previous experiences only. The neighborhood function
hci(t) is a time-variable and a decreasing function [hci(t).O when t.oo]. It is often

represented by a Gaussian function as follow

    h.i(l) .,. e-dgt/2d(t)2 (s)
   where d is the neighborhood radius at time t and dci--Nrc- rill is the distance between

map units c and i on the map grid. The training is usually performed iR two phases. In the
first phase, relatively large initial learniRg rate and neighborhood radius are used. In the
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secoRd phase both learning rate and neighborhood radius are small rightfrom the beginning.

This procedure corresponds to first tuning the SOM approximately to the same space as the

input data and then fine-tuning the map.
   There are two differeRt styles of training strategies. In sequential training the weights

are updated each time when an input vector is presented. In batch training the weights are
only updated afÅíer the presentation of all input vectors. In many applications, batch training

type is the preferred option, as it forces the search to move in the directiofl of the true

gradient at each weight update. However, several researchers suggest using the sequential
type, as it requires less storage and "...makes the search path in the weight space stochastic...

which allows for a wider exploration of the search space and, potentially, leads to better
quality solutions"i3)•is).

   After some training steps, the SOM will arrange high-dimensional input data along its
two-dimensional output space such that similar inputs are mapped onto neighboring regions

of the map which means that the similarity of the input data is preserved within the
representation space of the SOM. Usually, in the SOM application, in order to ensure that
all variables of any input vector x receive equal attention during the training process, it is

important to normalize the input vectors to unit length before the training steps.

   To measure the ability of SOM in arranging the different imput vectors through its
two-dimension grid, usually two evaluation criteria could be applied to measure the quality

of SOM; resolution and topology preservation. For identifying and measuring the resolution
ef the SOM, we compute the quantization errori`) which is the average distance between each

data vector and its winRing uRit (BMU). The topographic error which used to presentthe
accuracy of the training map in the preserving topology is also calculated. This error
represents the proportion of all input data vectors for which first and second BMUs are not

adjacent for the measurement of topology preservatien. The topographic error can be
calculated as followsi6):

    etr-Nl ,Z"..,zt(Jck) (6)
   where Ai is the number of input vectors; u(xi,) is O.O if the first aRd second BMU's of xk

are next to each other, other wise u(xk) is 1.0

2.3 Case study and data used

   In order to illustrate the capability of the proposed pressure regulation model, Block 12

of the supervisory Fukuoka City water supply network is selected as a case study. In this
Block (Fig. 3), there are 54 nodes, 74 pipes, and 9 inflows from outside the network at Rodes

1, 3, 10, 17, 20, 41, 50, 51 and 54. For the telemeters attached to the network, there are 7 flow

meters (Ml, ..., M7), 20 electric motor valves (Vl, ..., V20) and 11 pressure gauges (Pl, ...,

Pll). It is noticed from Fig. 3 that flow meters are connected to the main inlets and outlets

and a valve is connected adjacent to each flow meter in order to control the flow entering or

leaving the block. Motor valves are operated by remote control while pressure gauges and
flow meters fitted to distribution pipes are monitored. One of the main objectives of the
supervisory control of the water network of Block l2 is to regulate the pressure in all the

network nodes between an upper target value (32 m) and a lower value (24 m). The values
of flow rate passing each flow meter, the opening percentage of each motor valve aRd the
pressure intensity at each pressure gauge are recorded every minute. The analyzed data of

this study are based on one minute data for all flow meters, pressure gauges, and motor
valves for a randomly selected two days (Saturday and Sunday, 9th and 10th of November
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2002). The total number of data for each telemeter equal to 2880 (total minutes during those

two days).
    Figures 4, 5 and 6 show the box-whisker plots for all the 38 telemeters of Block 12 for

the data set used in this study. The box-whisker plots show the median, upper and lower

quartiles, and also the maximum and minimum recorded values for each telemeter.

                        3. Estgyg2atiRg ffydrauiic Pressures

    One of the main steps of the proposed method which will be presented in the next section

is to estimate the pressure values at the location of the ll pressure gauges of the application
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example. Therefore, the FFBP model preseflted in this section will be used to perform this
task.

    The number of input and output nodes in the FFBP model is determined according to the
nature of the studied problem, in the proposed model the number of input nodes are set to the

total Rumber of flow meters and electric motor valves (27 nodes) while the output nodes
number are set to the total number of pressure gauges (11 nodes). Regarding that the
dimension of the input vecter is large; it is useful in this situation to reduce the dimension of

the input vectors. Using one of the most effective procedures for performing this operation
(principal compoRent analysis) the total number of input nedes has been reduced from 27 to

7 nodes. The number of hidden layers and hidden nodes which depends on the coraplexity of

the mathematical nature of the problem is determined by trial afld error. One hidden layer
with 40 nodes is found to be suitable to describe the relationship between the input and output

variables. All transfer functions in the hidden and output layer are hyperbolic tangent
functions.

    Other additional information used in the model formulation is as follows: the mean
squared error is used as an error function, batch mode of training is used in which all weights

and biases are updated after presentatioRs of all training vectors, the maximum number of
learning counts is 2000, the initial weights and biases are randomly selected between -1 and

1, learning rate during training processes is O.Ol while the momentum constantis O.9.

    In developing the FFBP model, a cross-validation technique is used in which the data set

is divided into three subsets; a training set, validation set and testing set. The edd minutes

data are used for training while the even minntes data are divided to two subsets one for

validation and the other for testing. A data pre-processing has been used because it may have

a significant effect on model performance, all original data of input and output vectors of the

three previous sets are scaled separately in the range of the used hyperbolic tangent functions
(-O.9 to O.9).

    Figures 7 and 8 show scatter plots of the model estiixtated data versus observed data for

pressure gauges Pl (lowest mean value) and P3 (highest mean value), respectively. The
plotted results for those two pressure gauges are an example of the results obtained while all
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emaining pressure gauges show same trend. In both figures there is good agreement
etween both estimated and observed data for all model sets, the training set (1440 points),

he validation set (720 points) and the testing set (720 points). The Reot Mean Square Error

RMSE) for the estimated pressure values is relatively acceptable for all pressure gauges; it

aries between 1.066 m at pressure gauge P9 and 1.148 m at pressure gauge P3.
  It is important to notice that the applicability of the FFBP model presented in this
ection is limited to the water distribution network of Block 12 City and also to the upper and

ower values of telemetry data used in the training phase.

. Proposed Method

  Hydraulic pressures in water supply networks depend on several factors and values
elated to the system eperation. The values that could affectthe pressure at aRy node of the

etwork could be divided into passive and active values. Passive variables are constant in

ny loading condition. Examples of passive values are pipes diameters and lengths.
  For active variables, their values are changeable over the different loading coRditions. In

 water supply network operated without pumps (similar to that of Block 12), active
ariables are different nodal demands, electric motor valve openings, outflows from the
etwork•aRd hydraulic pressure at fixed grade nodes. The system responses due to all those
ariables (passive and active) are different pipes flow and the hydraulic pressure at all

etwork Rodes.
  System response variables which should be iflcluded in the formulation of an optiinal
ressure regulation model in a water supply network could be simplified by selecting the
ydraulic pressure at the location of all pressure gauges of the studied network. By this
ssumption, we have neglected all the pipes discharge as they are not related to the hydraulic

ressure; and the hydraulic pressure in the majority of water supply network nodes because
electing the locatiolt of pressure gauges is considered as a good indication of hydraulic

ressure in the different water supply network sub-areas.

  All active variables could be determined frorn the reading of flow meters and electric
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motor valves attached to the pipes of the water network. Nodai dernands are represented
indirectly in the flow meter readings. Total nodal demands equal to the summation of flow

meter readings connected to the water network main entrances excluding any intemal flow
meter reading. For pipes lengths and diameters which are considered as passive variables
they could be considered in the system as embedded values because they have always fixed
values. By other word, the water supply Retwork system could be efficiently represented by:
(i) flow rfleters readings, (ii) pressure gauges values; and (iii) electric motor valves openings.

This assumption is correct when the systeTn is represented by sufficient number of telerneters

and more accurate results are obtained with the increase of the total number of observation

polnts.

    The model presented in this paper used the Self-Organized Map (SOM) to classify flow
meter readings of well regulated pressure cases. After that a simulation step of flow meter

readings of unregulated vectors is performed. Each vector of flow meter used for training

or simulation has corresponding electric motor valve vector and hydraulic pressure vector.
When the simulation step is performed, the electric motor valve vector of the unregulated
case will be replaced by that of the regulated one and the resultant pressure will be tested in

that case using the FFBP model presented in the previous section.

4.i Model formugatien

    The application of SOM method as a pre-optimization tool for regulatiRg pressure in
water supply networks between an upper aRd lower target values is presented below aRd is
illustrated in Fig. 9:

    1. Inputthe simulation data which contaiRs P vectors; each has Pi readings from flow
meters, P2 readings from pressure gauges and P3 readings from electric motor valves. The
input matrix (I) has the dimension of PX(Pi+P2+P3)•
    2. Partition the input rnatrix (l) iRto two matrices (two groups of data) according to

the values of pressure gauges. Group A presented by the matrix (lreg) in which all P2
components of its pressure gauges vectors are well regulated within the required target range

(> r24m and < =32m). Group B presented by the matrix (lunreg) in which any P2 compo-
nents of lts pressure gauges vectors fall outside the target range (<24m or >32m). The size
of freg iS PregÅ~(Pi+P2+P3) and the Size Of Iunreg iS PunregÅ~(Pi+P2+P3) in which Preg+Punreg

-p.
    3. With the data of group A presented by the matrix lreg we will find a suitable size of

SOM. This SOM will be constructed with the assistance of flow meters readings oniy, which

represent the actual water demand of the network when the P2 pressure points are well
regulated aRd also the openings of the P3 electric motor valves give a good operation case of

the water supply network. The matrix used to construct a suitable SOM named FMreg and
it is a sub-matrix of Ireg and has the dimension of Preg Å~ Pi.

   4. Normalize the values of FMreg between O and l so that each component of FMreg will
receive equal attention during the trainiRg process.

   5. Assume a hexagonal arraRgement of the output layer of the SOM which is preferable
over the rectangular arrangement because it does not favor horizontal and vertical direc-
tions'`). The minimum arrangement dimension is 2Å~2 whiie the maximum size is related to
the problem size. In our applicatioR example which will be presented in the next section, the

SOM size doesn't exceed 30 Å~30.

   6. Initialize and train the selected SOM subjected to Eqs. (3), (4) and (5).

   7. Evaluate the selected SOM by computing both topographic and quantization errors.
   8. Check convergence based on the values of topographic and quantization errers. If the
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           Fig. 9 Flow chart of the SOM model used for regulating pressure in
                 water supply networks.

convergence criteria are satisfied, continue; otherwise return to step 5 by selecting another

hexagonal arrangement.
    9. Now we have an SOM of X neurons in x-direction and Y neurons in y-direction
trained with the matrix FMreg which represents the readings of flow meters of the different

well regulated pressure cases. The SOM has XX Y neurons. In some units of the trained
SOM there is a possibility that they didn't receive any flow meter vectors after the training

processes. For the remaining units of SOM, they have one or more electric motor valve
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vector of P3 components which corresponds to a well regulated pressure case of flow meter
readings and pressure gauges values. In this step we will make a simulation of the designed

SOM using the values of flow meter readings in group B presented by a matrix FMunreg which
is a sub-matrix of Iunreg and has the dimensioR of Punreg XPi•

    10. Put AI=1 iR which N represents the unit number of the trained SOM and the
maximum value of N is XX Y.
    11. For unit number N on the trained SOM. If there is a presence of vectors from both

FMunreg and FMreg, step 12; otherwise step 13.

    12. Replace all electric motor valve vectors of FMornreg by that of FMreg associated with

unit number N. go to step 14.,
    13. This step is related to the units of SOM in which they have a minimum of one vector

from FMunreg and no vectors from FMreg. In that case we will search in the neighborhood of

unit N which varies betweeR 2 units for the four units located at the corners of SOM and 6
units for any middle unit of the SOM. Replace all electric motor valve vectors of FMunreg by

that of FMreg associated with the neighborhood units of unit number N.
    I4. Check pressure values at the P2 locations of different pressure gauges using the
modified matrix FMunreg. Store the results according to the values of pressure gauges. Store

in group C when pressure gauges vectors are well regulated within the required target range

(> == 24m and <==32m) while store in group D when any component of pressure gauges
vectors fall outside the target range (<24m or >32m). Predicted values of hydraulic
pressures are evaluated using the FFBP model presented iR the previous section.

    15. A[=N+l; if N<=XX Y then step 11. 0therwise continue (step 16).
    I6. Evaluate the SOM efficiency te regulate the pressure iR the locatioR of pressure
gauges between aR upper and lower target values. The (Iunreg) matrix is divided now into two

matrices; (O.eg) which is the summation of group C cases and have a dimension ef treg Å~(Pi

+P2+P3) and (Ounreg) which is the surnmation of group D cases and have a dimension of tu..eg

Å~(Pi+P2+P3); treg + tunreg =Punreg. The SOM efficiency could be defined as the percentage of

vectors that their hydraulic pressure has been regulated as:

                    lreg Å~loo (7)   SOM efficiency==
                   Punreg

   For group D cases presented by (Ounreg) matrix, an evolutionary computing technique to

regulate the pressure in all the network nodes within the required target range could be
usedi7). The objective function of this rriodel could be presented in the form of network
pressure regulation; Eq. (1) or as the total amount of leaked water from the network; Eq (2).

                                 5. Application

   This section presents an application example for the proposed algorithm of applying
SOM for optimal pressure regulation in water supply netwQrks. The selected data set is for

two days with one minute interval of telemetry data recorded from the 7 flow meters, ll
pressure gauges and 20 electric motor valves attached to the different nodes and pipes of
Block 12 of Fukuoka City water supply network. Therefore, the total number of vectors (P

=2880), pi=7, p2==11 aRd p3=20.
   The input matrix (I) has the dimension of 2880Å~38 representing all the data used for
this application. As a first step, we have divided the input matrix (I) into two matrices

according to the actual hydraulic pressure recorded at the il pressure gauges. The first
matrix (Ireg) which will be used to construct the SOM has a 949 well regulated vectors in
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which all pressure gauges vectors are well regulated within the required target range (> :

24m and < =32m). The second matrix (Iunreg) has a dirnension of 1931Å~38. For the pressure

gauge vectors of this matrix at least one component of the il components falls outside the

desired target range (<24m or >32m).

5.1 Map size

    Input vectors to the SOM are all sets of flow meter readings for (Ireg) matrix known as

FMreg matrix with dimension of 949 Å~7. The total numbers of training vectors are 949. Each

vector contaiRs 7 components representing the associated 7 flow meter readings. Normaiiza-
tion range of input vectors is from O to 1, batch mode of training is used, initial SOM weights

are set randomly between O and l, adaptive leamiRg rate is used which varies between O.1 to

O.4 and maximum allowed number of epochs is 200.
    DiffereRt map size has been evaluated by calculating both topographic and quantization

errors. All possible two-dimensional map sizes which vary from 2 to 30 neurons have been
tested. In general, increasing the map size will increase the topographic error which is
calculated using Eq. (6) while brings more resolution into mapping when the quantization
error decreases. The map size selected to presentthe different classification of flow meters

is hexagonal lattice with middle size of ll Å~ 16. At that size, the topographic and quantization

errors equal 2.0021 and 1.4561, respectively. That's mean that there is only 19 vectors in

which the first and second BMU aren't adjacent. For that selected map size the required
number of epochs for convergence is 88.

    Figure ig shows the trained SOM units using a hexagonal lattice of size 11Å~16. The
number written in the upper area of each unit indicates the total number of hits associated

with those units (nunriber of BMU) and representing the total Rumber of flow meter vectors

of well regulated cases (949 vectors). The minimum and maximum number of hits recorded
for any neuron in the trained SOM is O and 26, respectively. The number of units in which
they haven't any hits representing a regulated case in Fig. 10 is 52 out of the total 176 units.

5.2 Regulating the hydraulic pressure

   After training the SOM with the FMreg matrix, a simulation step is done using the
FMunreg matrix which is a sub-matrix of lunreg and has the dimension of l931 Å~ 7. The matrix

FMunreg represents all cases of flow meters values in which at least one component of the
pressure gauge vectors fall outside the desired target range. The number written in the lower

area of each unit in Fig. 10 indicates the number of flow meter vectors in which the pressure

is unregulated. The minimum and maximum number of hits recorded for any neuron in the
simulated SOM is O and 165, respectively. The number of units in which they haven't any hits

representing unregulated vectors in Fig. Xg is 50 out of the total 176 units.

   For the l76 uRits presented in Fig. 10, four types of units could be determined according

to the existence of regulated and unregulated vectors:

    1. Units that have both regulated and unregulated vectors. For those units, at least one

hit is recorded in both the upper and lower areas of any unit. Total number of units for that

type is 108 units. To regulate the pressure for those units, we have replaced all electric motor

valve vectors of FMunreg by that of FMreg associated with each unit. After replacement, we

have predicted the values of hydraulic pressures at the location of the ll pressure gauges

using the FFBP model.
   2. Units that have only unregulated vectors. For those units, at least one hit is recorded

in the lower area of the unit and there isn't any hit recorded in the upper area. Total number

of units representing that type is 18 units. In that case, we have replaced all electric motor
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Fig. iO SOM map of size IIX16 trained with the flow meters vectors of well
       regulated cases (upper number in each unit). The lower number in each unit
       indicates the number of vectors in which the pressure is unregulated.

valve vectors of FMunreg by that of FM.eg associated with the neighborhood units. The
Rumber of the Reighborhood units varies between 2 units for the four units located at the

corners of SOM and 6 units for any middle unit of the SOM. After replacement, we have
predicted the values of hydraulic press"res at the location of the 11 pressure gauges using the

FFBP model.
    3. Units that have only regulated vectors. For those units, at least one hit is recorded
in the upper area of the uRit and there isn't any hit recorded in the lower area. Total number

of units representing that type is 16 units. Those units could be useful if the SOM is supplied

with additional future data. The electric motor valve vectors associated with those units
could replace afly unregulated vectors fall in those units and by applying the methodology of

TyPe 1 the hydraulic pressure could be regulated.

    4. Units which lack aRy number of hits in both upper and lower areas. In Fig. 10 there
are 34 units of that type. Those units could be useful if the SOM is supplied with additional

future data. The electric motor valve vectors associated with the neighborhood units could

replace any unregulated vectors fall in those units and by applying the methodology of TyPe
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2 the hydraulic pressure could be regulated.

5.3 Resgits aRalysis

    Comparing the situation before and after applying the proposed algorithm for the
application example, Tabge a shows a comparison of regulated and unregulated cases. The
distribution of vectors is based on two-hour interval for the studied two-days. As example,

first row in Table i shows that there are IOO regulated vectors from 9:Ol to 11:OO and 140

vectors at the same tinf}e interval in which hydraulic pressure exceeds the desired target
range. After applying the SOM model, the ltumber of the regulated cases is increased by 83

(improved using SOM model) and for the remaining 57 cases the SOM model failed to
improve them. The SOM efficiency for that time intervai is 59.29% calculated using Eq. (7).

Maximum nurnber of uRregulated vectors after applying the SOM model is 73 recorded 5:Ol
to 7:OO. Tabge a shows that there are srriall number of regulated cases during night time; 15

cases from 1:Ol to 3:OO and 19 cases from 3:01 to 5:OO. After applying the proposed model, 170

and 171 cases has been improved for those two time intervals showing the effectiveness of the

proposed algorithm during the night time in regulating the pressure when water dernand is
fftinimum. The maximum efficiency of the proposed model is 95.l40/o recorded for the time
interval between 21:Ol and 23:00. For all the application cases, 1437 cases have been improved

out of the 1931 case with a percentage of 74.420/o.

    TabEe 2 compares between the pressure status at the location of each pressure gauge
before and after applyiRg the proposed algorithm. This comparison is based on the 1931 cases

in which the pressure was unregulated. For example, pressure gauge (Pl) has 863 cases in
which the pressure is less than 24 m but after applying the SOM model those cases have been

reduced to 242 cases only. Fer the same pressure gauge, the 87 cases in which the pressure
is bigger than 32 rn have been reduced to 22 cases after applying the proposed algorithm. The

highest value of events in which the pressure exceeds the upper target limit (32 m) is
recorded at the location of pressure gauge (P3) with 857 cases that have been reduced to 222

cases after applying the SOM model. All details of the pressure status for the 11 pressure

gauges are presented in Tabge 2. When considering all the pressure gauges as one group,
results show that: (i) the 996 cases in which the pressure is below than 24 m have been
reduced to 256 cases, (ii) the 908 cases in which the pressure is bigger than 32 m have been

                     [E]abge l Hourly distribution of pressure vectors.

Time

From To

No.ofwell
Regulated

vectors

No.of
unregulated

Vectors

No.ofvectors
Improveduslng

SOM

No.of
unregulated
vectorsafter

applyingSOM

SOM
Efficiency

(o/o)

9:el 11:OO 1OO 140 83 57 59.29
11:Ol 13:OO 123 "7 89 28 76.07
13:el 15:OO 82 158 134 24 84.8a
15:Ol 17:OO 102 G38 109 29 78.99
a7:ol Gg:oe 137 103 67 36 65.05
19:04 21:OO 137 103 79 24 76.70
21:Ol 23:OO 96 144 137 7 95.14
23:Ol A:OO 41 a99 149 50 74.87
1:eG 3:OO 15 225 170 55 75.56
3:Ol s:eo 19 22a 17G 50 77.38
5:Ol 7:OO 44 196 123 73 62.76
7:Ol 9:OO 53 187 126 61 67.38

Sum 949 G931 l437 494 74.42
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Table 2 Comparison between pressure vectors before and after applying
       the proposed SOM model.

BeforeapplyingSOM AfterapplyingSOM
Pres$ure
Gauge P<24m P>32m

P<24m
and

P>32m

P>=24
and

P<=32m
P<24m P>32m

P<24m
and

P>32m

P>=24
and

P<za32m

Pl 863 87 o 981 242 22 o 1667
P2 245 226 o 1460 83 139 o 1709
P3 33 857 o 1041 18 222 o 3691

P4 117 312 o i502 50 157 o 1724
P5 95 325 o 1511 54 161 o a716
P6 481 166 o 1284 134 105 o 1692
P7 213 223 o 1495 93 139 o G699
P8 567 M6 o 1248 2oe 82 o l649
P9 246 215 o 1470 93 144 o 1694
PGe 459 178 e a294 M6 9f o 1724

PM 52 434 o 1445 36 174 o 1721

Ailgauges 996 908 27 o 256 238 o 1437

reduced to 238 cases, (iii) there are 27 cases in which seme points are below than 24 m afld

one or more gauges read more than 32 m, all those cases have vanished after appiying the
SOM model, and (iv) In general, 1437 cases have been improved out of the 1931 cases with
a percentage ef 74.420/o.

   [g]abge 3 compares between the pressure status at the location of pressure gauges before

and after applying the SOM model taking into consideration the number of unregulated
cornponents. For example, there are 88 cases out of the 1931 in which all the pressure gauges

exceed the target range. These cases are divided into 84 cases in which all the pressure
gauges read more than 32 m and 4 cases that all pressure gauges read less than 24 m. after

applying the SOM model those 88 cases have been reduced to 40 cases indicatiRg an improve-

ment of 48 cases with a 55 percent of improvement. Considering this comparison the highest

number of unregulated vectors are 814 cases when there is one pressure gauge read a value
exceed the target range (481 cases bigger than 32 m and 333 cases less than 24 m); those 814

cases has been reduced to 204 cases only (percentage of improvement is 750/o). From the last

column in Tabge 3 we could deduce that the percentage of improvement increase with the
decrease of the number of unregulated components in pressure vectors (55% when ll
components are unregulated and 750/o in case of ene unregulated component).
   In [X)abEe 4, distribution of pressure vectors components with the different zones of water

pressure are showlt for all the 11 pressure gauges. There are nine different zones starting

from "Zone I-A" to "Zone IV". Those nine zones are determined according to the hydraulic
pressure before and after applying the proposed model. For example, "Zone I-A" presents
any case in which the pressure is below the lower target value of 24 m before and after
applying the model, in "Zone I-B" the pressure is below the 24 m before applying the SOM
model aRd bigger than 32m after applying the model and "Zone IV" presents the situation in
which the pressure is well regulated in beth cases. Boundaries which determined the different

zones are mentiened in the second and third rows in Tabge 4.
   According to the different nine zones, three main classes could be determined based on
the efficiency of the proposed model te regulate the pressure at the ll tested points; (i) for

"Zone I" and "Zone II" the pressure is unregulated after applying the SOM taking into
consideration that "Zone II" presents the cases in which the original pressure is within the



46 H. AwAD, A. KAwAMuRA and K. JiNNo

Tabge 3 Comparison between pressure vectors components before and
       after applying the proposed SOM model.

No.of
unregulated

pointsin
eachvector

No.of
regulated
pointsin

each
vector

No.of
unregulated

pointsin
eachvector

(P<24m)

No.of
unregulated

pointsin
eachvector

(P>32m)

Number
of

vectors

Total

nuraber
of

vecters

No.of
vectors

lmproved
using

SOM

No.of
unreguiated
vectorsafter

applying

SOM

Percentage
of

improving
(elo)

Ga o o M 84

" o 4
88 48 40 55

o 10 24
10 i 9 3 f 62 42 20 68

10 o 37
o 9 29

9 2 8 1 1 53 35 as 66
9 o 23
o 8 16

8 3 7 1 1 36 28 8 78
8 o 19
o 7 19

7 4 6 1 2 65 49 16 75
7 o 44

6 5
o 6 35
6 o 66

AOI 82 19 81

o 5 54
5 6 4 1 2 138 t08 30 78

5 o 82
o 4 45

4 7 3 1 3 145 114 3a 79
4 e 97
o 3 43

3 8 2 1 42 154 M6 38 75
3 o 99
o 2 78

2 9 4 1 5 275 205 70 75
2 o 192

1 ao
o A 484
1 o 333

814 6GO 204 75

o M o o 949 949 ------- --------- ---------

2880 2880 1437 494

target range, (ii) "Zone III" preseflts the cases in which the SOM model has succeeded to
regulate the pressure, and (iii) "Zone IV" presents the cases in which the pressure status has

not changed; in both situations the pressure is within the target range. Total niamber of cases

associated with all the nine zones for the 11 pressure gauges are presented in details in Table

4 in which the last two rows indicate the number of cases recorded for the minimum and
maximum value of each pressure vector. The summation of any row shown in Tabge 4
presents the total Rumber of unregulated vectors before applying the proposed model (1931
vectors).

    Figures 11 and 12 show the relation between the initial and estimated pressure recorded

at the location of pressure gauges (Pl) and (P3), respectively. Boundaries of the differeRt

nine zones are plotted in both figures. Pressure gauges (Pl) and (P3) are selected as
representative of all pressure gauges because the majority of low pressure values are
recorded at the location of (Pl) while the majority of high pressure values are recorded at

the location of (P3). "Zone III" in Figs. Ii and 12 show the number of cases improved using
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Tab}e 4 Distribution of pressure

zones of water pressure.
vectors components with the different

1 ll lll

Zone
A B c D A B A B

iv

Pres$urebefore
applyingSOM <24m <24m >32m >32m

>ue24m
and

<=32m

>=24m
and

<=32m
<24m >32m

>=24m
and

<ur32m

Pressureafter
applyingSOM <24m >32m <24m >32m <24m >32m

>=24ra
and

<=32m

>ur24m
and

<=32m

>:24m
and

<xx32m

Pl MO 13 17 o 139 5 736 74 857
P2 9 8 2G 29 66 89 215 189 1305
P3 o 13 3 t32 5 87 30 7t2 949
P4 2 8 10 47 40 1OO 105 257 1362
P5 4 7 9 51 43 1Ol 82 267 i367
P6 32 7 6 31 95 68 443 128 142G

P7 13 8 7 42 72 90 193 t73 1333
P8 54 9 15 12 137 55 498 95 1056
P9 M 9 3 44 73 97 232 162 1300
PIO 24 7 4 34 85 53 431 137 M56
Pl1 4 7 4 70 28 1OO 47 357 1317

Mln.pressure 139 13 o o ao4' o 884 7G 720
Max.pressure o 13 o 149 4 89 4 773 899
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the SOM model. For pressure gauge (Pl),zoRes III-A and III-B show the improved 736 and
74 cases, respectively. For pressure gauge (P3), zones III-A and III-B show the improved 30

and 712 cases, respectively.

    Points in zones II-A and II-B represent the cases that are regulated before applying the

SOM rnodei for the related pressure gauge. For those cases there is aR existing of one or
more pressure gauges in which their pressure is unregulated. After applying the proposed
method, the pressure becomes unregulated for the studied pressure gauges and there is a
probability that the pressure status is improved in other pressure gauges. In general all cases
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     15 20 25 30 35 40           Original minimum pressure before applying SOM (m)

13 Relation between minimum initial and estimated pressure for all

   pressure gauges.

presented in zone II are classified under the same category of the cases of zone I in which the

SOM model fails to regulate the pressure within the required target range. Highest number
recorded in zone II-A is l37 cases existing at the location of pressure gauge (P8) while the

highest number recorded in zone II-B is 101 cases at the location of pressure gauge (P5); see

Tahle 4 for more details.

    In Fig. X3, the relation between the rninimum initial and estimated hydraulic pressure in

all pressure vectors is piotted. Zones III-A and III-B show the improved 884 and 71 cases,

respectively. The same procedure is repeated for the maximum initial and estimated
hydraulic pressure in all pressure vectors (see Fig. 14). The improved 4 and 773 cases are
shown in zones III-A and III-B, respectively.

    The proposed model has successfully irnproved 1437 cases out of the 1931 unregulated
cases for the application example. For the remaining 494 cases, results of other calculation
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     20 25 30 35 40 45          Original maxincum pressure before applying SOM (m)

i4 Relation between maximum initial and estimated pressure for all

   pressure gauges.

show an improvement in pressure status using the proposed modei in 298 cases.

6. Cencgusiens

    The study performed in this paper demonstrates the potential of applying Self-
Organizing Maps (SOM) for fiRding optimal electric rnotor valve settings to regulate the

pressure in water supply networks between upper and lower target values. The presented
application of Block l2 of Fukuoka City water distribution network achieves good perfor-
mance for the short term data set used. The SOM has successfully regulated 1437 cases out
of the 1931 unregulated cases in the application example. For the remaining 494 cases, an

improvement in pressure status using the proposed model are recorded in 298 cases compar-
ing to the situation before applying the SOM model.
    The model considered in this paper is classified as an "expert system model" as it is
based on learning from the past historical data. This model offers the opportunity of being

used directly for the on-line optimal pressure regulation in water supply networks without

any need to deal with the skeletonized network presented or knowiBg the real nodal demand.

The presented model uses a FFBP model to predict the hydraulic pressure at the location of
different pressure gauges.

    The proposed method shows high efficiency in case of regulating pressure during daily

operation with high performance for night time when there is an increase of hydraulic
pressure in the network (froin 1:OO a.m. to 5:Oe a.m.). Efficiency of SOM algorithm depends

on the number of poiRts to be regulated. For the appiication example when all points are
uRregulated the percentage of improvement is 55% while in case of one unregulated pointthe
efficiency increases to 750/o.

   This paper presents aRalysis and comparison for the situation of pressure before and
after applying the proposed method. This comparison is done for all the location of the 11

pressure gauges. Significant improvement was recorded at the location of pressure gauges
(Pl) and (P3). Those two pressure gauges are the most critical points as there pressures for

the majority of cases exceed the required target range before applying the proposed method.

   For demonstrating the efficiency of the proposed rnethod, we have used a short-term data



50 H. AwAD, A. KAwAMuRA and K. JiNNo
set. The same procedure could be repeated for a long-terrn data set taking into consideration

that the size of SOM should be big enough to represent the majority of operational cases.

   This paper evaluates also the potential of applying FFBP algorithm for pipe network
analysis, the model presented for the short-term data set of telemetry data has been applied

successfu11y for the prediction of hydraulic pressures at the location of the 11 pressure
gauges. The RMSE varies between a minimum value of 1.066 m at pressure gauge (P9) and
a maximum value of 1.148 m at pressure gauge (P3).
   Princlpal component analysis has beeB implemented successfully to reduce the big
number of neurons in the input layer of the FFBP model. The number of neurons has been
reduced from 27 to 7. By applying the principal component analysis the total number of
weights and biases to be determiRed by the FFBP models is reduced.
   FFBP model parameters has a significant effect on the model results, all those parame-

ters have been selected by trial and error based on the most recommended values in the
literature. A sensitivity analysis of different model paraineters should be considered in the

future improveinent of presented models.
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