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Abstract

In this paper, we show constructive a priori and a posteriori error estimates of
finite element approximations for not necessary coercive linear second order Dirich-
let problems. Here, ’constructive’ means we can get the error bounds in which all
constants included are explicitly given or represented as a numerically computable
form. Using the invertibility condition of concerning elliptic operator, constructive
a priori and a posteriori error estimates are formulated. This kind of estimates plays
essential and important roles in the numerical verification of solitions for nonlinear
elliptic problems. Several numerical examples that confirm the actual effectiveness
of the method are presented.

Key words: Constructive a priori and a posteriori error estimates, linear elliptic
problem.
Classifications: 35J25, 35J60, 65N25.

1 Introduction

In this paper, we consider the constructive a priori and a posteriori error
estimates for the general linear elliptic boundary value problem of the form

Lu ≡ −Δu+ b · ∇u+ cu = f in Ω,

u = 0 on ∂Ω,
(1.1)

where f ∈ L2(Ω). Here, for n = 1, 2, 3, we assume that b ∈ (W 1
∞(Ω))

n
,

c ∈ L∞(Ω), where Ω ⊂ Rn is a bounded open domain with piecewise smooth
boundary. In this paper, we use the terminology ’constructive error estimates’
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means an error estimation that by some numerical computations based on the
estimates, we can obtain the true error bounds between the exact solution
and its approximation in mathematically rigorous sense, even if the concern-
ing problem (1.1) is not coericive. This kind of estimations should be useful
when the existence or uniqueness of solutions are not a priori assured, e.g., in
case that the coefficient function c is not nonnegative. And it also be impor-
tant for the numerical verification of solitions for nonlinear boundary value
problems(e.g., [2] [4] [5]etc.).

Now, we denote the usual k-th order Sobolev space on Ω by Hk(Ω) and define
(·, ·)L2 as the L2 inner product. And we set H1

0 (Ω) ≡ {v ∈ H1(Ω) ; v =
0 on ∂Ω} with the inner product (∇u,∇v)L2 for u, v ∈ H1

0 (Ω) . Also, define
X(Ω) ≡ {v ∈ H1(Ω) ; Δv ∈ L2(Ω)}.
We now introduce the finite dimensional subspace Sh of H1

0 (Ω) depending on
the parameter h with nodal functions {φi}1≤i≤N . For each v ∈ H1

0 (Ω), define
the H1

0 -projection Phv ∈ Sh by

(∇(v − Phv),∇φh)L2 = 0, ∀φh ∈ Sh.

Also, corresponding to the usual finite element approximations of a solution u
in (1.1), we define the L-projection PLv ∈ Sh, whose existence is assumed, by

a(v − PLv, φh)L2 = 0, ∀φh ∈ Sh, (1.2)

where a(u, v) ≡ (∇u,∇v)L2 + (b · ∇u, v)L2 + (cu, v)L2. Further, we assume
that there exists a positive constant C(h) which can be numerically estimated
satisfying, for any u ∈ H1

0 (Ω) ∩X(Ω)，

‖u− Phu‖H1
0
≤C(h)‖Δu‖L2. (1.3)

Note that (1.3) is equivalent to the following estimation.

‖u− Phu‖L2 ≤C(h)‖u− Phu‖H1
0
. (1.4)

Then our main purpose of this paper is to determine explicitly a priori con-
stants K0(h) and K1(h) satisfying

‖u− PLu‖L2 ≤K0(h)‖Lu‖L2, (1.5)

‖u− PLu‖H1
0
≤K1(h)‖Lu‖L2, (1.6)

respectively. Also we show a constant K(h) satisfying

‖u− PLu‖L2 ≤K(h)‖u− PLu‖H1
0
. (1.7)
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Defining the compact oprator A : H1
0 −→ H1

0 by Au := Δ−1(b·∇u+cu), where
Δ−1 stands for the solution operator of the Poisson equation with homoge-
neous boundary condition, the invertibility of the elliptic operator L defined
in (1.1) is equivalent to the unique solvability of the following fixed point
equation:

u = Au.

As the preliminary, we define N ×N matrices G = (Gi,j) and D = (Di,j) by

Gi,j = (∇φj,∇φi)L2 + (b · ∇φj, φi)L2 + (cφj, φi)L2 ,

Di,j = (∇φj,∇φi)L2 ,

Note that D is symmetric and positive definite. We denote the matrix norm
by ‖ · ‖E induced from the Euclidean norm | · |E. Also, we define the following
constants:

C1 = CpCdiv b + Cb,

C2 = CpCc,

C3 = Cb + CpCc,

C4 = Cb + C(h)Cc,

Cdiv b = ‖div b‖L∞ , Cb = ‖ |b|E ‖L∞, Cc = ‖c‖L∞,

where ‖ · ‖L∞ means L∞ norm on Ω and Cp is a Poincaré constant such that
‖φ‖L2 ≤ Cp‖φ‖H1

0
for an arbitrary φ ∈ H1

0 (Ω).

In [5], authors show the following results.

Theorem 1 If the matrix G is nonsingular, and for the constants defined
above,

κ(h) ≡ C(h)
(
C(h)Mh(C1 + C2)C3 + C4

)
< 1

holds, then the operator L defined in (1.1) is invertible. Here, Mh ≡ ‖D 1
2G−1D

1
2‖E

and C(h) is the same constant as in (1.3).

Moreover, we have the following a priori estimate for the H1
0 -projection.

Theorem 2 Assuming that same conditions in Theorem 1, let u ∈ H1
0 (Ω) ∩

X(Ω) be a unique solution of (1.1). Then we have

‖u− Phu‖H1
0
≤ C(h)σ‖f‖L2,

where the constant σ is given by σ = (1 + CpMhC3)(1 − κ(h))−1.

When the coefficient vector function b in (1.1) is not differentiable, we have
the following alternative results.

Corollary 3 Let b ∈ (L∞(Ω))n. If

κ̂(h) ≡ C(h)
(
Mh(Ĉ1 + C(h)C2)C3 + C4

)
< 1
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holds, then the operator L defined in (1.1) is invertible. Here, Ĉ1 = CpCb．
Also we have

‖u− Phu‖H1
0
≤ C(h)σ̂‖f‖L2,

for a unique solution of Lu = f , where the constant σ̂ is given by

σ̂ = (1 + CpMhC3)(1 − κ̂(h))−1.

2 Main results

In this section, we show the constructive a priori and a posteriori error esti-
mates of finite element approximations (1.2) for linear elliptic problems (1.1).
Note that the existence of the inverse L−1 : L2(Ω) −→ X(Ω) is equivalent
to the invertibility of I − A, where I denotes the identity operator in H1

0 (Ω).
Using this fact, we first show the a priori error estimate between a solution of
our problems and its H1

0 -projection. First, we show the following lemma.

Lemma 4 (cf.[5]) For an arbitrary v ∈ H1
0 (Ω), we have

‖Av‖H1
0
≤ (C1 + C2)‖v‖L2 ,

‖(I − Ph)Av‖H1
0
≤ C(h)

(
C3‖Phv‖H1

0
+ C4‖v − Phv‖H1

0

)
.

Proof: Let ψ := −Av = −Δ−1(b · ∇ + c)v ∈ H1
0 (Ω) ∩X(Ω). CThen we have

‖ψ‖2
H1

0
= (−Δψ, ψ)L2

= (v, div (bψ))L2 + (v, cψ)L2

≤
(
‖div (bψ)‖L2 + ‖cψ‖L2

)
‖v‖L2

≤ C(h)
(
‖div b‖L∞‖ψ‖L2 + ‖ |b|E ‖L∞‖ψ‖H1

0
+ ‖c‖L∞‖ψ‖L2

)
‖v‖H1

0
,

where we have used (1.4). Moreover, we have

‖(I − Ph)Av‖H1
0

= ‖(I − Ph)Δ
−1(b · ∇ + c)v‖H1

0

≤ C(h)‖(b · ∇ + c)v‖L2

≤ C(h)
(
‖ |b|E ‖L∞‖v‖H1

0
+ ‖c‖L∞‖v‖L2

)
,

where we have used (1.3). Therefore, this proof is completed.

For the L-projection, we have the following one of the main results of this
paper.
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Theorem 5 For an arbitrary v ∈ H1
0 (Ω), if G is nonsingular, then for the

same constants in Theorem 1, we have

‖v − PLv‖H1
0
≤ α‖v − Phv‖H1

0
,

‖v − PLv‖L2 ≤ C(h)β‖v − Phv‖H1
0
≤ C(h)β‖v − PLv‖H1

0
,

where α ≡
√

1 +
(
C(h)Mh(C1 + C2)

)2
, β ≡ 1 + CpMh(C1 + C2).

Proof: From the property of the H1
0 - and L-projections, we can obtain

‖v − PLv‖2
H1

0
= ‖v − Phv‖2

H1
0

+ ‖PLv − Phv‖2
H1

0
, (2.1)

for an arbitrary v ∈ H1
0 (Ω). Let e ≡ v − Phv.

Then since PLv − Phv = PL(v − Phv), for all φh ∈ Sh, we have

a(PLe, φh) = (∇e,∇φh)L2 + ((b · ∇ + c)e, φh)L2

= (b · ∇e+ ce, φh)L2

= (∇Phψ,∇φh)L2,

where we set ψ ≡ −Ae = −Δ−1(b · ∇ + c)e. It implies that

G	eh = D	ψh,

where 	eh and 	ψh are coefficient vectors of PLe and Phψ, respectively. Thus in
the similar way to the proof of Lemma 4, we can obtain the following estimate
since ‖PLe‖H1

0
= ‖D 1

2	eh‖E, ‖Phψ‖H1
0

= ‖D 1
2 	ψh‖E and ‖Phψ‖H1

0
≤ ‖ψ‖H1

0
for

any ψ ∈ H1
0 (Ω).

‖PLv − Phv‖H1
0

= ‖PLe‖H1
0
≤ Mh‖Phψ‖H1

0

≤ Mh‖A(v − Phv)‖H1
0

≤ C(h)Mh(C1 + C2)‖v − Phv‖H1
0
.

Moreover, we have

‖PLv − Phv‖L2 ≤ Cp‖PLv − Phv‖H1
0

≤ C(h)CpMh(C1 + C2)‖v − Phv‖H1
0
.

Hence we can obtain the following estimate.

‖v − PLv‖L2 ≤ ‖v − Phv‖L2 + ‖PLv − Phv‖L2

≤ C(h)‖v − Phv‖H1
0

+ C(h)CpMh(C1 + C2)‖v − Phv‖H1
0
,
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where we have used (1.4). Therefore, the proof is completed from (2.1).

Note that the constant α in Theorem 5 tends to 1 if h → 0 as illustrated in
Figure 1.
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Fig. 1. Image of the H1
0 - and L-projections

Now, as in [7], let S∗
h be an appropriate finite element subspace of H1(Ω)

satisfying Sh ⊂ S∗
h, and let define (∇uh) ≡ (P0∇xuh, P0∇yuh, P0∇zuh) ∈

(S∗
h)

n, where P0 : L2(Ω) −→ S∗
h means the L2-projection defined by, for each

v ∈ L2(Ω),

(v − P0v, φ
∗
h)L2 = 0 for any φ∗

h ∈ S∗
h.

Also note that, for the problem (1.1), the finite element solution uh defined
by

(∇uh,∇φh)L2 + (b · ∇uh + cuh, φh)L2 = (f, φh)L2 , ∀φh ∈ Sh, (2.2)

coincides with the L-projection PLu.
Now, by using Theorems 1, 2 and 5, we have the following constructive a priori
and a posteriori error estimates for linear elliptic problems.

Theorem 6 Assuming that Theorem 1 holds, then for a unique solution of
Lu = f , we have

‖u− PLu‖H1
0
≤ C(h)ασ‖f‖L2,

‖u− PLu‖L2 ≤ C(h)2βσ‖f‖L2.

And we have the following a posteriori error estimate for the finite element
solution uh defined by (2.2).

‖u− uh‖H1
0
≤ ‖R‖L2 + C(h)β‖S‖L2 + C(h)2βσ

(
Cb + C(h)Ccβ

)
‖f‖L2,(2.3)

where R ≡ ∇uh − (∇uh) and S ≡ f + div(∇uh) − b · ∇uh − cuh.
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Proof: From Theorems 2 and 5, we can easily obtain the following inequalities.

‖u− PLu‖H1
0
≤ C(h)ασ‖f‖L2,

‖u− PLu‖L2 ≤ C(h)2βσ‖f‖L2.

Thus we consider the a posteriori error estimate below.

Let e ≡ u− uh.

‖u− uh‖2
H1

0
= (∇e,∇u)L2 − (∇e,∇uh)L2

= (e, f)L2 − (e, b · ∇u+ cu)L2 − (∇e,∇uh)L2

= (e, f − b · ∇uh + cuh)L2 − (e, b · ∇e+ ce)L2 − (∇e,∇uh)L2 .

Since ((∇uh),∇v)L2 = (−div(∇uh), v)L2 for any v ∈ H1
0 (Ω), taking as v = e,

it implies that

‖u− uh‖2
H1

0
= (e, S)L2 − (e, b · ∇e+ ce)L2 − (∇e, R)L2

≤ ‖e‖L2‖S‖L2 + ‖e‖L2‖b · ∇e+ ce‖L2 + ‖e‖H1
0
‖R‖L2.

Moreover, using Lemma 4, we have

‖b · ∇e+ ce‖L2 ≤ ‖ |b|E ‖L∞‖e‖H1
0

+ ‖c‖L∞‖e‖L2.

Hence using the fact ‖e‖L2 ≤ C(h)β‖e‖H1
0

in Theorem 5, we have the estimate
(2.3). Therefore, this proof is completed.

Remark. The last term in the estimates (2.3) looks like an a priori es-
timation. However, since the order C(h)2 is higher than the usual optimal
estimation in H1 norm, combining it with the first and second terms, this
estimates can be considered as a kind of a posteriori error estimates.

From Theorems 5 - 6, we can take the constants K0(h), K1(h) and K(h) as

K0(h) := C(h)2βσ, K1(h) := C(h)ασ, K(h) := C(h)β.

Also we have the following estimates corresponding to Corollary 3.

Corollary 7 Let b ∈ (L∞(Ω))n. Under the same assumptions in Corollary 3,
we have

‖u− PLu‖H1
0
≤ C(h)α̂σ̂‖f‖L2 ,

for a unique solution of Lu = f , where α̂ ≡
√

1 +
(
Mh(Ĉ1 + C(h)C2)C3

)2
.

For usual finite element approximations in the one dimensional case, we can
get the better estimates, even if the function b has no smoothness.
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Lemma 8 Let Sh be a finite element subspace of H1
0 (Ω), where Ω = (p, q) is

an interval in R1, comprising piecewise polynomials with the mesh

p = x0 < x1 < · · · < xN < xN+1 = q.

For an arbitrary v ∈ H1
0 (Ω), if b ∈ ∧N

i=0W
1
∞(Ii) ⊂ L∞(Ω) then we have

‖A(v − Phv)‖H1
0
≤ (D1 + C2)‖v − Phv‖L2,

where D1 = CpDdiv b + Cb, Ddiv b = max
0≤i≤N

‖b‖W 1∞(Ii) and Ii := (xi, xi+1).

Proof: Let ψ ≡ −Δ−1(be′ + ce), where e := v − Phv. Then it implies that

‖ψ‖2
H1

0
= (ψ′, ψ′)L2 = (be′ + ce, ψ)L2 = (e′, bψ)L2 + (e, cψ)L2

Note that the H1
0 -projection satisfies e(xi) = 0 for i = 0, · · · , N + 1. Hence we

have

(e′, bψ)L2 =
∑

i

(e, (bψ)′)L2(Ii)

≤ ∑
i

‖e‖L2(Ii)‖(bψ)′‖L2(Ii)

≤ ∑
i

‖e‖L2(Ii)

(
‖b‖W 1∞(Ii)‖ψ‖L2(Ii) + ‖b‖L∞(Ii)‖ψ′‖L2(Ii)

)

≤ Ddiv b

∑
i

‖e‖L2(Ii)‖ψ‖L2(Ii) + Cb

∑
i

‖e‖L2(Ii)‖ψ′‖L2(Ii)

≤
(
Ddiv b‖ψ‖L2 + Cb‖ψ‖H1

0

)
‖e‖L2

≤ (CpDdiv b + Cb) ‖ψ‖H1
0
‖e‖L2 ,

and (e, cψ)L2 ≤ Cc‖e‖L2‖ψ‖L2. Therefore, the proof is completed.

Applying similar arguments in Theorems 5 - 6 with the above lemma, we
have the following results for a special case.

Theorem 9 Under the same assumption in Lemma 8, if G is nonsingular
then we have

‖v − PLv‖H1
0
≤ α̇‖v − Phv‖H1

0
,

‖v − PLv‖L2 ≤ C(h)β̇‖v − PLv‖H1
0
,

where α̇ ≡
√

1 +
(
C(h)Mh(D1 + C2)

)2
and β̇ ≡ 1+CpMh(D1+C2). Moreover,

if
κ̇(h) ≡ C(h)

(
C(h)Mh(D1 + C2)C3 + C4

)
< 1

holds, then the operator L is invertible, and we have the following a priori
error estimate for a unique solution of Lu = f .

‖u− PLu‖H1
0
≤ C(h)α̇σ̇‖f‖L2,

‖u− PLu‖L2 ≤ C(h)2β̇σ̇‖f‖L2,
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where σ̇ = (1 + CpMhC3)(1 − κ̇(h))−1.

3 Numerical examples

In this section, we show several numerical results for linear elliptic problems.
In the below, the 1-dimensional problems are presented in the examples 1-3
and 2-dimensional cases in 4-5.

Example 1 (nearly singular problem)

−u′′ + cu = 1 in Ω = (0, 1),

u = 0 on ∂Ω,

where c = ±10. Note that if c = −π2 = −9.8696 · · · then this example has no
solution.

Example 2 (linearized Burgers equation)

−u′′ + λ(φ̃h + 2x− 1)u′ + λ(φ̃h + 2x− 1)′u = 1 in Ω = (0, 1),

u = 0 on ∂Ω,

where λ = 10 and φ̃h ∈ Sh is an approximation of the following Burgers
equation.

φ′′ = λφφ′ in Ω,

φ(0) = −1, φ(1) = 1.

Moreover, as a special case, we consider the following example.

Example 3 (discontinuous coefficient)

−u′′ + bu′ = 1 in Ω = (0, 1),

u = 0 on ∂Ω,

where b ∈ L∞(Ω) is given by

b ≡ b(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

4(8x2 − x)′ = 4(16x− 1) if x ∈ (0, 0.25),

2(16x2 − 14x+ 3)′ = 4(16x− 7) if x ∈ (0.25, 0.5),

2(2x− 1)′ = 4 if x ∈ (0.5, 0.75),

4(1 − x)′ = −4 if x ∈ (0.75, 1).
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In above examples, we take the finite element subspace Sh as piecewise quadratic
functions with uniform mesh. Then it can be taken as C(h) = (2π)−1h ([3])
for piecewise quadratic functions on Ω = (0, 1) and Cp = π−1.

We show validated numerical results using interval techniques ([1]) for Exam-
ples 1, 2 and 3 in Tables 1, 2 and 3, respectively.

Table 1
Numerical results for Example 1

h−1 α β σ κ(h) Mh Cdiv b Cb Cc c

100 1.0000 2.0132 2.0133 5.09e-5 0.9999 0.0 0.0 10 +10

200 1.0000 2.0132 2.0132 1.27e-5 1.0000 0.0 0.0 10 +10

400 1.0000 2.0135 2.0135 3.18e-6 1.0003 0.0 0.0 10 +10

800 1.0000 2.0248 2.0248 8.01e-7 1.0114 0.0 0.0 10 +10

100 1.0709 77.69 77.84 1.96e-3 75.69 0.0 0.0 10 −10

200 1.0182 77.71 77.75 4.92e-4 75.71 0.0 0.0 10 −10

400 1.0046 78.05 78.06 1.23e-4 76.04 0.0 0.0 10 −10

800 1.0013 83.72 83.72 3.31e-5 81.64 0.0 0.0 10 −10
Table 2
Numerical results for Example 2

h−1 α β σ κ(h) Mh Cdiv b Cb Cc

100 1.4245 203.91 134.09 5.85e-2 14.94 51.30 10.00 51.30

200 1.1212 203.88 128.61 1.86e-2 14.94 51.28 10.00 51.28

400 1.0318 204.35 127.36 6.64e-3 14.97 51.28 10.00 51.28

800 1.0092 219.33 136.13 2.70e-3 16.08 51.28 10.00 51.28
Table 3
Numerical results for Example 3

h−1 α̇ β̇ σ̇ κ̇(h) Mh Ddiv b Cb Cc

100 1.0260 23.97 9.9857 4.69e-2 2.2296 64.00 12.00 0.0

200 1.0065 23.97 9.7242 2.12e-2 2.2298 64.00 12.00 0.0

400 1.0016 23.97 9.6146 1.00e-2 2.2298 64.00 12.00 0.0

800 1.0004 23.99 9.5719 4.91e-3 2.2318 64.00 12.00 0.0

Next we consider the following 2-dimensional problems.

Example 4 (linearized Emden’s equation)

−Δu − 2φ̃hu =
√

5
2

in Ω = (0, 1)2\[0, 1
5
]2,

u = 0 on ∂Ω,
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where φ̃h ∈ Sh is an approximation of the following Emden’s equation.

−Δφ = φ2 in Ω,

φ = 0 on ∂Ω.

Example 5

−Δu+ ũh(∇ûh) · ∇u−
(
λ− 1

2
|∇ũh|2

)
u = 1 in Ω = (0, 1)2,

u = 0 on ∂Ω,

where λ = 40 and ũh ∈ Sh is an approximation of Plum’s example.

−Δφ = φ
(
λ− 1

2
|∇φ|2

)
in Ω,

φ = 0 on ∂Ω.

In this example, we considered two cases for the coefficient vector function b,
taht is, in case of (∇ûh) ≡ ∇ũh, discontinuous, and (∇ûh) ≡ (P0∇xũh, P0∇yũh),
where ũh is an approximate solution in Sh and P0 stands for the L2-projection
into S∗

h defined in Section 2.

In above two examples, we take the finite element subspace Sh as piecewise
bi-linear functions with uniform mesh. Note that we can take the constant Cp

for Ω = (0, 1)2\[0, 1
5
]2 and Ω = (0, 1)2 as Cp =

√
10

−1
and Cp = (

√
2π)−1,

respectively. Moreover, we can obtain the a priori constant C(h) for the L-
shaped domain by techniques in [7], and it is taken as C(h) = π−1h for bi-linear
functions on Ω = (0, 1)2. We show validated numerical results for Example 4
in Table 4. Also, for Example 5, we illustrate several numerical results for
(∇ûh) = ∇ũh and (∇ûh) = (P0∇xũh, P0∇yũh) in Tables 5 and 6, respectively.
As shown in these tables, the capability for the verifivcation of invertibility
seems to be influenced by the smoothness of the function b.

All computations in these tables are carried out on the Dell Precision 650
Workstation Intel Xeon CPU 3.20GHz using INTLAB, a tool box in MATLAB
developed by Rump [6] for self-validating algorithms.
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MHF2006-15 Raimundas VIDŪNAS
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