Guaranteed error bounds for finite element approximations of noncoercive elliptic problems and their applications

Nakao，Mitsuhiro T．
Faculty of Mathematics，Kyushu University
Hashimoto，Kouji
Graduate School of Informatics，Kyoto University
https：／／hdl．handle．net／2324／3405

出版情報：Journal of Computational and Applied Mathematics． 218 （1），pp．106－115，2008－08－15．
Faculty of Mathematics，Kyushu University
バージョン：
権利関係：

MHF Preprint Series

Kyushu University
21st Century COE Program
Development of Dynamic Mathematics with High Functionality

Constructive error estimates of finite element approximations for non-coercive elliptic problems and its applications

M. T. Nakao \& K. Hashimoto

MHF 2007-5
(Received January 19, 2007)

Faculty of Mathematics
Kyushu University
Fukuoka, JAPAN

Constructive error estimates of finite element approximations for non-coercive elliptic problems and its applications

Mitsuhiro T. Nakao ${ }^{\dagger}$ and Kouji Hashimoto ${ }^{\ddagger}$
mtnakao@math.kyushu-u.ac.jp
${ }^{\dagger}$ Faculty of Mathematics, Kyushu University, Fukuoka 812-8581, Japan
\ddagger Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan

Abstract

In this paper, we show constructive a priori and a posteriori error estimates of finite element approximations for not necessary coercive linear second order Dirichlet problems. Here, 'constructive' means we can get the error bounds in which all constants included are explicitly given or represented as a numerically computable form. Using the invertibility condition of concerning elliptic operator, constructive a priori and a posteriori error estimates are formulated. This kind of estimates plays essential and important roles in the numerical verification of solitions for nonlinear elliptic problems. Several numerical examples that confirm the actual effectiveness of the method are presented.

Key words: Constructive a priori and a posteriori error estimates, linear elliptic problem.
Classifications: 35J25, 35J60, 65N25.

1 Introduction

In this paper, we consider the constructive a priori and a posteriori error estimates for the general linear elliptic boundary value problem of the form

$$
\begin{align*}
\mathcal{L} u \equiv-\Delta u+b \cdot \nabla u+c u & =f \text { in } \Omega \tag{1.1}\\
u & =0 \text { on } \partial \Omega,
\end{align*}
$$

where $f \in L^{2}(\Omega)$. Here, for $n=1,2,3$, we assume that $b \in\left(W_{\infty}^{1}(\Omega)\right)^{n}$, $c \in L^{\infty}(\Omega)$, where $\Omega \subset R^{n}$ is a bounded open domain with piecewise smooth boundary. In this paper, we use the terminology 'constructive error estimates'
means an error estimation that by some numerical computations based on the estimates, we can obtain the true error bounds between the exact solution and its approximation in mathematically rigorous sense, even if the concerning problem (1.1) is not coericive. This kind of estimations should be useful when the existence or uniqueness of solutions are not a priori assured, e.g., in case that the coefficient function c is not nonnegative. And it also be important for the numerical verification of solitions for nonlinear boundary value problems(e.g., [2] [4] [5]etc.).

Now, we denote the usual k-th order Sobolev space on Ω by $H^{k}(\Omega)$ and define $(\cdot, \cdot)_{L^{2}}$ as the L^{2} inner product. And we set $H_{0}^{1}(\Omega) \equiv\left\{v \in H^{1}(\Omega) ; v=\right.$ 0 on $\partial \Omega\}$ with the inner product $(\nabla u, \nabla v)_{L^{2}}$ for $u, v \in H_{0}^{1}(\Omega)$. Also, define $X(\Omega) \equiv\left\{v \in H^{1}(\Omega) ; \Delta v \in L^{2}(\Omega)\right\}$.
We now introduce the finite dimensional subspace S_{h} of $H_{0}^{1}(\Omega)$ depending on the parameter h with nodal functions $\left\{\phi_{i}\right\}_{1 \leq i \leq N}$. For each $v \in H_{0}^{1}(\Omega)$, define the H_{0}^{1}-projection $P_{h} v \in S_{h}$ by

$$
\left(\nabla\left(v-P_{h} v\right), \nabla \phi_{h}\right)_{L^{2}}=0, \quad \forall \phi_{h} \in S_{h}
$$

Also, corresponding to the usual finite element approximations of a solution u in (1.1), we define the \mathcal{L}-projection $P_{\mathcal{L}} v \in S_{h}$, whose existence is assumed, by

$$
\begin{equation*}
a\left(v-P_{\mathcal{L}} v, \phi_{h}\right)_{L^{2}}=0, \quad \forall \phi_{h} \in S_{h} \tag{1.2}
\end{equation*}
$$

where $a(u, v) \equiv(\nabla u, \nabla v)_{L^{2}}+(b \cdot \nabla u, v)_{L^{2}}+(c u, v)_{L^{2}}$. Further, we assume that there exists a positive constant $C(h)$ which can be numerically estimated satisfying, for any $u \in H_{0}^{1}(\Omega) \cap X(\Omega)$,

$$
\begin{equation*}
\left\|u-P_{h} u\right\|_{H_{0}^{1}} \leq C(h)\|\Delta u\|_{L^{2}} . \tag{1.3}
\end{equation*}
$$

Note that (1.3) is equivalent to the following estimation.

$$
\begin{equation*}
\left\|u-P_{h} u\right\|_{L^{2}} \leq C(h)\left\|u-P_{h} u\right\|_{H_{0}^{1}} . \tag{1.4}
\end{equation*}
$$

Then our main purpose of this paper is to determine explicitly a priori constants $K_{0}(h)$ and $K_{1}(h)$ satisfying

$$
\begin{align*}
& \left\|u-P_{\mathcal{L}} u\right\|_{L^{2}} \leq K_{0}(h)\|\mathcal{L} u\|_{L^{2}}, \tag{1.5}\\
& \left\|u-P_{\mathcal{L}} u\right\|_{H_{0}^{1}} \leq K_{1}(h)\|\mathcal{L} u\|_{L^{2}}, \tag{1.6}
\end{align*}
$$

respectively. Also we show a constant $K(h)$ satisfying

$$
\begin{equation*}
\left\|u-P_{\mathcal{L}} u\right\|_{L^{2}} \leq K(h)\left\|u-P_{\mathcal{L}} u\right\|_{H_{0}^{1}} . \tag{1.7}
\end{equation*}
$$

Defining the compact oprator $A: H_{0}^{1} \longrightarrow H_{0}^{1}$ by $A u:=\Delta^{-1}(b \cdot \nabla u+c u)$, where Δ^{-1} stands for the solution operator of the Poisson equation with homogeneous boundary condition, the invertibility of the elliptic operator \mathcal{L} defined in (1.1) is equivalent to the unique solvability of the following fixed point equation:

$$
u=A u
$$

As the preliminary, we define $N \times N$ matrices $\mathbf{G}=\left(\mathbf{G}_{i, j}\right)$ and $\mathbf{D}=\left(\mathbf{D}_{i, j}\right)$ by

$$
\begin{aligned}
& \mathbf{G}_{i, j}=\left(\nabla \phi_{j}, \nabla \phi_{i}\right)_{L^{2}}+\left(b \cdot \nabla \phi_{j}, \phi_{i}\right)_{L^{2}}+\left(c \phi_{j}, \phi_{i}\right)_{L^{2}} \\
& \mathbf{D}_{i, j}=\left(\nabla \phi_{j}, \nabla \phi_{i}\right)_{L^{2}}
\end{aligned}
$$

Note that \mathbf{D} is symmetric and positive definite. We denote the matrix norm by $\|\cdot\|_{E}$ induced from the Euclidean norm $|\cdot|_{E}$. Also, we define the following constants:

$$
\begin{aligned}
& C_{1}=C_{p} C_{\operatorname{div} b}+C_{b}, C_{3}=C_{b}+C_{p} C_{c} \\
& C_{2}=C_{p} C_{c}, \\
& C_{4}=C_{b}+C(h) C_{c} \\
& C_{\text {div } b}=\|\operatorname{div} b\|_{L^{\infty}}, C_{b}=\left\||b|_{E}\right\|_{L^{\infty}}, C_{c}=\|c\|_{L^{\infty}}
\end{aligned}
$$

where $\|\cdot\|_{L^{\infty}}$ means L^{∞} norm on Ω and C_{p} is a Poincaré constant such that $\|\phi\|_{L^{2}} \leq C_{p}\|\phi\|_{H_{0}^{1}}$ for an arbitrary $\phi \in H_{0}^{1}(\Omega)$.

In [5], authors show the following results.
Theorem 1 If the matrix \mathbf{G} is nonsingular, and for the constants defined above,

$$
\kappa(h) \equiv C(h)\left(C(h) M_{h}\left(C_{1}+C_{2}\right) C_{3}+C_{4}\right)<1
$$

holds, then the operator \mathcal{L} defined in (1.1) is invertible. Here, $M_{h} \equiv\left\|\mathbf{D}^{\frac{1}{2}} \mathbf{G}^{-1} \mathbf{D}^{\frac{1}{2}}\right\|_{E}$ and $C(h)$ is the same constant as in (1.3).

Moreover, we have the following a priori estimate for the H_{0}^{1}-projection.
Theorem 2 Assuming that same conditions in Theorem 1, let $u \in H_{0}^{1}(\Omega) \cap$ $X(\Omega)$ be a unique solution of (1.1). Then we have

$$
\left\|u-P_{h} u\right\|_{H_{0}^{1}} \leq C(h) \sigma\|f\|_{L^{2}}
$$

where the constant σ is given by $\sigma=\left(1+C_{p} M_{h} C_{3}\right)(1-\kappa(h))^{-1}$.
When the coefficient vector function b in (1.1) is not differentiable, we have the following alternative results.

Corollary 3 Let $b \in\left(L^{\infty}(\Omega)\right)^{n}$. If

$$
\hat{\kappa}(h) \equiv C(h)\left(M_{h}\left(\hat{C}_{1}+C(h) C_{2}\right) C_{3}+C_{4}\right)<1
$$

holds, then the operator \mathcal{L} defined in (1.1) is invertible. Here, $\hat{C}_{1}=C_{p} C_{b}$. Also we have

$$
\left\|u-P_{h} u\right\|_{H_{0}^{1}} \leq C(h) \hat{\sigma}\|f\|_{L^{2}}
$$

for a unique solution of $\mathcal{L} u=f$, where the constant $\hat{\sigma}$ is given by

$$
\hat{\sigma}=\left(1+C_{p} M_{h} C_{3}\right)(1-\hat{\kappa}(h))^{-1}
$$

2 Main results

In this section, we show the constructive a priori and a posteriori error estimates of finite element approximations (1.2) for linear elliptic problems (1.1). Note that the existence of the inverse $\mathcal{L}^{-1}: L^{2}(\Omega) \longrightarrow X(\Omega)$ is equivalent to the invertibility of $I-A$, where I denotes the identity operator in $H_{0}^{1}(\Omega)$. Using this fact, we first show the a priori error estimate between a solution of our problems and its H_{0}^{1}-projection. First, we show the following lemma.

Lemma 4 (cf.[5]) For an arbitrary $v \in H_{0}^{1}(\Omega)$, we have

$$
\begin{aligned}
\|A v\|_{H_{0}^{1}} & \leq\left(C_{1}+C_{2}\right)\|v\|_{L^{2}} \\
\left\|\left(I-P_{h}\right) A v\right\|_{H_{0}^{1}} & \leq C(h)\left(C_{3}\left\|P_{h} v\right\|_{H_{0}^{1}}+C_{4}\left\|v-P_{h} v\right\|_{H_{0}^{1}}\right) .
\end{aligned}
$$

Proof: Let $\psi:=-A v=-\Delta^{-1}(b \cdot \nabla+c) v \in H_{0}^{1}(\Omega) \cap X(\Omega)$. CThen we have

$$
\begin{aligned}
\|\psi\|_{H_{0}^{1}}^{2} & =(-\Delta \psi, \psi)_{L^{2}} \\
& =(v, \operatorname{div}(b \psi))_{L^{2}}+(v, c \psi)_{L^{2}} \\
& \leq\left(\|\operatorname{div}(b \psi)\|_{L^{2}}+\|c \psi\|_{L^{2}}\right)\|v\|_{L^{2}} \\
& \leq C(h)\left(\|\operatorname{div} b\|_{L^{\infty}}\|\psi\|_{L^{2}}+\left\||b|_{E}\right\|_{L^{\infty}}\|\psi\|_{H_{0}^{1}}+\|c\|_{L^{\infty}}\|\psi\|_{L^{2}}\right)\|v\|_{H_{0}^{1}}
\end{aligned}
$$

where we have used (1.4). Moreover, we have

$$
\begin{aligned}
\left\|\left(I-P_{h}\right) A v\right\|_{H_{0}^{1}} & =\left\|\left(I-P_{h}\right) \Delta^{-1}(b \cdot \nabla+c) v\right\|_{H_{0}^{1}} \\
& \leq C(h)\|(b \cdot \nabla+c) v\|_{L^{2}} \\
& \leq C(h)\left(\left\||b|_{E}\right\|_{L^{\infty}}\|v\|_{H_{0}^{1}}+\|c\|_{L^{\infty}}\|v\|_{L^{2}}\right)
\end{aligned}
$$

where we have used (1.3). Therefore, this proof is completed.

For the \mathcal{L}-projection, we have the following one of the main results of this paper.

Theorem 5 For an arbitrary $v \in H_{0}^{1}(\Omega)$, if \mathbf{G} is nonsingular, then for the same constants in Theorem 1, we have

$$
\begin{aligned}
\left\|v-P_{\mathcal{L}} v\right\|_{H_{0}^{1}} & \leq \alpha\left\|v-P_{h} v\right\|_{H_{0}^{1}} \\
\left\|v-P_{\mathcal{L}} v\right\|_{L^{2}} & \leq C(h) \beta\left\|v-P_{h} v\right\|_{H_{0}^{1}} \leq C(h) \beta\left\|v-P_{\mathcal{L}} v\right\|_{H_{0}^{1}}
\end{aligned}
$$

where $\alpha \equiv \sqrt{1+\left(C(h) M_{h}\left(C_{1}+C_{2}\right)\right)^{2}}, \beta \equiv 1+C_{p} M_{h}\left(C_{1}+C_{2}\right)$.
Proof: From the property of the H_{0}^{1} - and \mathcal{L}-projections, we can obtain

$$
\begin{equation*}
\left\|v-P_{\mathcal{L}} v\right\|_{H_{0}^{1}}^{2}=\left\|v-P_{h} v\right\|_{H_{0}^{1}}^{2}+\left\|P_{\mathcal{L}} v-P_{h} v\right\|_{H_{0}^{1}}^{2}, \tag{2.1}
\end{equation*}
$$

for an arbitrary $v \in H_{0}^{1}(\Omega)$. Let $e \equiv v-P_{h} v$.
Then since $P_{\mathcal{L}} v-P_{h} v=P_{\mathcal{L}}\left(v-P_{h} v\right)$, for all $\phi_{h} \in S_{h}$, we have

$$
\begin{aligned}
a\left(P_{\mathcal{L}} e, \phi_{h}\right) & =\left(\nabla e, \nabla \phi_{h}\right)_{L^{2}}+\left((b \cdot \nabla+c) e, \phi_{h}\right)_{L^{2}} \\
& =\left(b \cdot \nabla e+c e, \phi_{h}\right)_{L^{2}} \\
& =\left(\nabla P_{h} \psi, \nabla \phi_{h}\right)_{L^{2}},
\end{aligned}
$$

where we set $\psi \equiv-A e=-\Delta^{-1}(b \cdot \nabla+c) e$. It implies that

$$
\mathbf{G} \vec{e}_{h}=\mathbf{D} \vec{\psi}_{h}
$$

where \vec{e}_{h} and $\vec{\psi}_{h}$ are coefficient vectors of $P_{\mathcal{L}} e$ and $P_{h} \psi$, respectively. Thus in the similar way to the proof of Lemma 4, we can obtain the following estimate since $\left\|P_{\mathcal{L}} e\right\|_{H_{0}^{1}}=\left\|\mathbf{D}^{\frac{1}{2}} \vec{e}_{h}\right\|_{E},\left\|P_{h} \psi\right\|_{H_{0}^{1}}=\left\|\mathbf{D}^{\frac{1}{2}} \vec{\psi}_{h}\right\|_{E}$ and $\left\|P_{h} \psi\right\|_{H_{0}^{1}} \leq\|\psi\|_{H_{0}^{1}}$ for any $\psi \in H_{0}^{1}(\Omega)$.

$$
\begin{aligned}
\left\|P_{\mathcal{L}} v-P_{h} v\right\|_{H_{0}^{1}}=\left\|P_{\mathcal{L}} e\right\|_{H_{0}^{1}} & \leq M_{h}\left\|P_{h} \psi\right\|_{H_{0}^{1}} \\
& \leq M_{h}\left\|A\left(v-P_{h} v\right)\right\|_{H_{0}^{1}} \\
& \leq C(h) M_{h}\left(C_{1}+C_{2}\right)\left\|v-P_{h} v\right\|_{H_{0}^{1}} .
\end{aligned}
$$

Moreover, we have

$$
\begin{aligned}
\left\|P_{\mathcal{L}} v-P_{h} v\right\|_{L^{2}} & \leq C_{p}\left\|P_{\mathcal{L}} v-P_{h} v\right\|_{H_{0}^{1}} \\
& \leq C(h) C_{p} M_{h}\left(C_{1}+C_{2}\right)\left\|v-P_{h} v\right\|_{H_{0}^{1}} .
\end{aligned}
$$

Hence we can obtain the following estimate.

$$
\begin{aligned}
\left\|v-P_{\mathcal{L}} v\right\|_{L^{2}} & \leq\left\|v-P_{h} v\right\|_{L^{2}}+\left\|P_{\mathcal{L}} v-P_{h} v\right\|_{L^{2}} \\
& \leq C(h)\left\|v-P_{h} v\right\|_{H_{0}^{1}}+C(h) C_{p} M_{h}\left(C_{1}+C_{2}\right)\left\|v-P_{h} v\right\|_{H_{0}^{1}},
\end{aligned}
$$

where we have used (1.4). Therefore, the proof is completed from (2.1).
Note that the constant α in Theorem 5 tends to 1 if $h \rightarrow 0$ as illustrated in Figure 1.

Fig. 1. Image of the H_{0}^{1} - and \mathcal{L}-projections
Now, as in [7], let S_{h}^{*} be an appropriate finite element subspace of $H^{1}(\Omega)$ satisfying $S_{h} \subset S_{h}^{*}$, and let define $\left(\bar{\nabla} u_{h}\right) \equiv\left(P_{0} \nabla_{x} u_{h}, P_{0} \nabla_{y} u_{h}, P_{0} \nabla_{z} u_{h}\right) \in$ $\left(S_{h}^{*}\right)^{n}$, where $P_{0}: L^{2}(\Omega) \longrightarrow S_{h}^{*}$ means the L^{2}-projection defined by, for each $v \in L^{2}(\Omega)$,

$$
\left(v-P_{0} v, \phi_{h}^{*}\right)_{L^{2}}=0 \quad \text { for any } \phi_{h}^{*} \in S_{h}^{*} .
$$

Also note that, for the problem (1.1), the finite element solution u_{h} defined by

$$
\begin{equation*}
\left(\nabla u_{h}, \nabla \phi_{h}\right)_{L^{2}}+\left(b \cdot \nabla u_{h}+c u_{h}, \phi_{h}\right)_{L^{2}}=\left(f, \phi_{h}\right)_{L^{2}}, \quad \forall \phi_{h} \in S_{h} \tag{2.2}
\end{equation*}
$$

coincides with the \mathcal{L}-projection $P_{\mathcal{L}} u$.
Now, by using Theorems 1, 2 and 5 , we have the following constructive a priori and a posteriori error estimates for linear elliptic problems.

Theorem 6 Assuming that Theorem 1 holds, then for a unique solution of $\mathcal{L} u=f$, we have

$$
\begin{aligned}
\left\|u-P_{\mathcal{L}} u\right\|_{H_{0}^{1}} & \leq C(h) \alpha \sigma\|f\|_{L^{2}} \\
\left\|u-P_{\mathcal{L}} u\right\|_{L^{2}} & \leq C(h)^{2} \beta \sigma\|f\|_{L^{2}} .
\end{aligned}
$$

And we have the following a posteriori error estimate for the finite element solution u_{h} defined by (2.2).

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{H_{0}^{1}} \leq\|R\|_{L^{2}}+C(h) \beta\|S\|_{L^{2}}+C(h)^{2} \beta \sigma\left(C_{b}+C(h) C_{c} \beta\right)\|f\|_{L^{2}}, \tag{2.3}
\end{equation*}
$$

where $R \equiv \nabla u_{h}-\left(\bar{\nabla} u_{h}\right)$ and $S \equiv f+\operatorname{div}\left(\bar{\nabla} u_{h}\right)-b \cdot \nabla u_{h}-c u_{h}$.

Proof: From Theorems 2 and 5, we can easily obtain the following inequalities.

$$
\begin{aligned}
\left\|u-P_{\mathcal{L}} u\right\|_{H_{0}^{1}} & \leq C(h) \alpha \sigma\|f\|_{L^{2}} \\
\left\|u-P_{\mathcal{L}} u\right\|_{L^{2}} & \leq C(h)^{2} \beta \sigma\|f\|_{L^{2}}
\end{aligned}
$$

Thus we consider the a posteriori error estimate below.
Let $e \equiv u-u_{h}$.

$$
\begin{aligned}
\left\|u-u_{h}\right\|_{H_{0}^{1}}^{2} & =(\nabla e, \nabla u)_{L^{2}}-\left(\nabla e, \nabla u_{h}\right)_{L^{2}} \\
& =(e, f)_{L^{2}}-(e, b \cdot \nabla u+c u)_{L^{2}}-\left(\nabla e, \nabla u_{h}\right)_{L^{2}} \\
& =\left(e, f-b \cdot \nabla u_{h}+c u_{h}\right)_{L^{2}}-(e, b \cdot \nabla e+c e)_{L^{2}}-\left(\nabla e, \nabla u_{h}\right)_{L^{2}} .
\end{aligned}
$$

Since $\left(\left(\bar{\nabla} u_{h}\right), \nabla v\right)_{L^{2}}=\left(-\operatorname{div}\left(\bar{\nabla} u_{h}\right), v\right)_{L^{2}}$ for any $v \in H_{0}^{1}(\Omega)$, taking as $v=e$, it implies that

$$
\begin{aligned}
\left\|u-u_{h}\right\|_{H_{0}^{1}}^{2} & =(e, S)_{L^{2}}-(e, b \cdot \nabla e+c e)_{L^{2}}-(\nabla e, R)_{L^{2}} \\
& \leq\|e\|_{L^{2}}\|S\|_{L^{2}}+\|e\|_{L^{2}}\|b \cdot \nabla e+c e\|_{L^{2}}+\|e\|_{H_{0}^{1}}\|R\|_{L^{2}} .
\end{aligned}
$$

Moreover, using Lemma 4, we have

$$
\|b \cdot \nabla e+c e\|_{L^{2}} \leq\left\||b|_{E}\right\|_{L^{\infty}}\|e\|_{H_{0}^{1}}+\|c\|_{L^{\infty}}\|e\|_{L^{2}}
$$

Hence using the fact $\|e\|_{L^{2}} \leq C(h) \beta\|e\|_{H_{0}^{1}}$ in Theorem 5, we have the estimate (2.3). Therefore, this proof is completed.

Remark. The last term in the estimates (2.3) looks like an a priori estimation. However, since the order $C(h)^{2}$ is higher than the usual optimal estimation in H^{1} norm, combining it with the first and second terms, this estimates can be considered as a kind of a posteriori error estimates.

From Theorems 5-6, we can take the constants $K_{0}(h), K_{1}(h)$ and $K(h)$ as

$$
K_{0}(h):=C(h)^{2} \beta \sigma, \quad K_{1}(h):=C(h) \alpha \sigma, \quad K(h):=C(h) \beta .
$$

Also we have the following estimates corresponding to Corollary 3.
Corollary 7 Let $b \in\left(L^{\infty}(\Omega)\right)^{n}$. Under the same assumptions in Corollary 3, we have

$$
\left\|u-P_{\mathcal{L}} u\right\|_{H_{0}^{1}} \leq C(h) \hat{\alpha} \hat{\sigma}\|f\|_{L^{2}},
$$

for a unique solution of $\mathcal{L} u=f$, where $\hat{\alpha} \equiv \sqrt{1+\left(M_{h}\left(\hat{C}_{1}+C(h) C_{2}\right) C_{3}\right)^{2}}$.
For usual finite element approximations in the one dimensional case, we can get the better estimates, even if the function b has no smoothness.

Lemma 8 Let S_{h} be a finite element subspace of $H_{0}^{1}(\Omega)$, where $\Omega=(p, q)$ is an interval in \mathbf{R}^{1}, comprising piecewise polynomials with the mesh

$$
p=x_{0}<x_{1}<\cdots<x_{N}<x_{N+1}=q .
$$

For an arbitrary $v \in H_{0}^{1}(\Omega)$, if $b \in \bigwedge_{i=0}^{N} W_{\infty}^{1}\left(I_{i}\right) \subset L^{\infty}(\Omega)$ then we have

$$
\left\|A\left(v-P_{h} v\right)\right\|_{H_{0}^{1}} \leq\left(D_{1}+C_{2}\right)\left\|v-P_{h} v\right\|_{L^{2}}
$$

where $D_{1}=C_{p} D_{\text {div } b}+C_{b}, D_{\text {div } b}=\max _{0 \leq i \leq N}\|b\|_{W_{\infty}^{1}\left(I_{i}\right)}$ and $I_{i}:=\left(x_{i}, x_{i+1}\right)$.
Proof: Let $\psi \equiv-\Delta^{-1}\left(b e^{\prime}+c e\right)$, where $e:=v-P_{h} v$. Then it implies that

$$
\|\psi\|_{H_{0}^{1}}^{2}=\left(\psi^{\prime}, \psi^{\prime}\right)_{L^{2}}=\left(b e^{\prime}+c e, \psi\right)_{L^{2}}=\left(e^{\prime}, b \psi\right)_{L^{2}}+(e, c \psi)_{L^{2}}
$$

Note that the H_{0}^{1}-projection satisfies $e\left(x_{i}\right)=0$ for $i=0, \cdots, N+1$. Hence we have

$$
\begin{aligned}
\left(e^{\prime}, b \psi\right)_{L^{2}} & =\sum_{i}\left(e,(b \psi)^{\prime}\right)_{L^{2}\left(I_{i}\right)} \\
& \leq \sum_{i}\|e\|_{L^{2}\left(I_{i}\right)}\left\|(b \psi)^{\prime}\right\|_{L^{2}\left(I_{i}\right)} \\
& \leq \sum_{i}\|e\|_{L^{2}\left(I_{i}\right)}\left(\|b\|_{W_{\infty}^{1}\left(I_{i}\right)}\|\psi\|_{L^{2}\left(I_{i}\right)}+\|b\|_{L^{\infty}\left(I_{i}\right)}\left\|\psi^{\prime}\right\|_{L^{2}\left(I_{i}\right)}\right) \\
& \leq D_{\operatorname{div} b} \sum_{i}\|e\|_{L^{2}\left(I_{i}\right)}\|\psi\|_{L^{2}\left(I_{i}\right)}+C_{b} \sum_{i}\|e\|_{L^{2}\left(I_{i}\right)}\left\|\psi^{\prime}\right\|_{L^{2}\left(I_{i}\right)} \\
& \leq\left(D_{\operatorname{div} b}\|\psi\|_{L^{2}}+C_{b}\|\psi\|_{H_{0}^{1}}\right)\|e\|_{L^{2}} \\
& \leq\left(C_{p} D_{\text {div } b}+C_{b}\right)\|\psi\|_{H_{0}^{1}}\|e\|_{L^{2}}
\end{aligned}
$$

and $(e, c \psi)_{L^{2}} \leq C_{c}\|e\|_{L^{2}}\|\psi\|_{L^{2}}$. Therefore, the proof is completed.
Applying similar arguments in Theorems 5-6 with the above lemma, we have the following results for a special case.

Theorem 9 Under the same assumption in Lemma 8, if \mathbf{G} is nonsingular then we have

$$
\begin{aligned}
\left\|v-P_{\mathcal{L}} v\right\|_{H_{0}^{1}} & \leq \dot{\alpha}\left\|v-P_{h} v\right\|_{H_{0}^{1}} \\
\left\|v-P_{\mathcal{L}} v\right\|_{L^{2}} & \leq C(h) \dot{\beta}\left\|v-P_{\mathcal{L}} v\right\|_{H_{0}^{1}}
\end{aligned}
$$

where $\dot{\alpha} \equiv \sqrt{1+\left(C(h) M_{h}\left(D_{1}+C_{2}\right)\right)^{2}}$ and $\dot{\beta} \equiv 1+C_{p} M_{h}\left(D_{1}+C_{2}\right)$. Moreover, if

$$
\dot{\kappa}(h) \equiv C(h)\left(C(h) M_{h}\left(D_{1}+C_{2}\right) C_{3}+C_{4}\right)<1
$$

holds, then the operator \mathcal{L} is invertible, and we have the following a priori error estimate for a unique solution of $\mathcal{L} u=f$.

$$
\begin{aligned}
\left\|u-P_{\mathcal{L}} u\right\|_{H_{0}^{1}} & \leq C(h) \dot{\alpha} \dot{\sigma}\|f\|_{L^{2}} \\
\left\|u-P_{\mathcal{L}} u\right\|_{L^{2}} & \leq C(h)^{2} \dot{\beta} \dot{\sigma}\|f\|_{L^{2}}
\end{aligned}
$$

where $\dot{\sigma}=\left(1+C_{p} M_{h} C_{3}\right)(1-\dot{\kappa}(h))^{-1}$.

3 Numerical examples

In this section, we show several numerical results for linear elliptic problems. In the below, the 1-dimensional problems are presented in the examples 1-3 and 2-dimensional cases in 4-5.

Example 1 (nearly singular problem)

$$
\begin{aligned}
-u^{\prime \prime}+c u & =1 \text { in } \Omega=(0,1) \\
u & =0 \text { on } \partial \Omega
\end{aligned}
$$

where $c= \pm 10$. Note that if $c=-\pi^{2}=-9.8696 \cdots$ then this example has no solution.

Example 2 (linearized Burgers equation)

$$
\begin{aligned}
-u^{\prime \prime}+\lambda\left(\tilde{\phi}_{h}+2 x-1\right) u^{\prime}+\lambda\left(\tilde{\phi}_{h}+2 x-1\right)^{\prime} u & =1 \text { in } \Omega=(0,1), \\
u & =0 \text { on } \partial \Omega,
\end{aligned}
$$

where $\lambda=10$ and $\tilde{\phi}_{h} \in S_{h}$ is an approximation of the following Burgers equation.

$$
\begin{gathered}
\phi^{\prime \prime}=\lambda \phi \phi^{\prime} \text { in } \Omega \\
\phi(0)=-1, \quad \phi(1)=1
\end{gathered}
$$

Moreover, as a special case, we consider the following example.
Example 3 (discontinuous coefficient)

$$
\begin{aligned}
-u^{\prime \prime}+b u^{\prime} & =1 \text { in } \Omega=(0,1) \\
u & =0 \text { on } \partial \Omega
\end{aligned}
$$

where $b \in L^{\infty}(\Omega)$ is given by

$$
b \equiv b(x)=\left\{\begin{array}{lll}
4\left(8 x^{2}-x\right)^{\prime} & =4(16 x-1) & \text { if } x \in(0,0.25) \\
2\left(16 x^{2}-14 x+3\right)^{\prime}=4(16 x-7) & \text { if } x \in(0.25,0.5) \\
2(2 x-1)^{\prime} & =4 & \text { if } x \in(0.5,0.75) \\
4(1-x)^{\prime} & =-4 & \text { if } x \in(0.75,1)
\end{array}\right.
$$

In above examples, we take the finite element subspace S_{h} as piecewise quadratic functions with uniform mesh. Then it can be taken as $C(h)=(2 \pi)^{-1} h([3])$ for piecewise quadratic functions on $\Omega=(0,1)$ and $C_{p}=\pi^{-1}$.

We show validated numerical results using interval techniques ([1]) for Examples 1, 2 and 3 in Tables 1, 2 and 3, respectively.
Table 1
Numerical results for Example 1

h^{-1}	α	β	σ	$\kappa(h)$	M_{h}	$C_{\text {div } b}$	C_{b}	C_{c}	c
100	1.0000	2.0132	2.0133	$5.09 \mathrm{e}-5$	0.9999	0.0	0.0	10	+10
200	1.0000	2.0132	2.0132	$1.27 \mathrm{e}-5$	1.0000	0.0	0.0	10	+10
400	1.0000	2.0135	2.0135	$3.18 \mathrm{e}-6$	1.0003	0.0	0.0	10	+10
800	1.0000	2.0248	2.0248	$8.01 \mathrm{e}-7$	1.0114	0.0	0.0	10	+10
100	1.0709	77.69	77.84	$1.96 \mathrm{e}-3$	75.69	0.0	0.0	10	-10
200	1.0182	77.71	77.75	$4.92 \mathrm{e}-4$	75.71	0.0	0.0	10	-10
400	1.0046	78.05	78.06	$1.23 \mathrm{e}-4$	76.04	0.0	0.0	10	-10
800	1.0013	83.72	83.72	$3.31 \mathrm{e}-5$	81.64	0.0	0.0	10	-10

Table 2
Numerical results for Example 2

h^{-1}	α	β	σ	$\kappa(h)$	M_{h}	$C_{\text {div } b}$	C_{b}	C_{c}
100	1.4245	203.91	134.09	$5.85 \mathrm{e}-2$	14.94	51.30	10.00	51.30
200	1.1212	203.88	128.61	$1.86 \mathrm{e}-2$	14.94	51.28	10.00	51.28
400	1.0318	204.35	127.36	$6.64 \mathrm{e}-3$	14.97	51.28	10.00	51.28
800	1.0092	219.33	136.13	$2.70 \mathrm{e}-3$	16.08	51.28	10.00	51.28

Table 3
Numerical results for Example 3

h^{-1}	$\dot{\alpha}$	$\dot{\beta}$	$\dot{\sigma}$	$\dot{\kappa}(h)$	M_{h}	$D_{\text {div } b}$	C_{b}	C_{c}
100	1.0260	23.97	9.9857	$4.69 \mathrm{e}-2$	2.2296	64.00	12.00	0.0
200	1.0065	23.97	9.7242	$2.12 \mathrm{e}-2$	2.2298	64.00	12.00	0.0
400	1.0016	23.97	9.6146	$1.00 \mathrm{e}-2$	2.2298	64.00	12.00	0.0
800	1.0004	23.99	9.5719	$4.91 \mathrm{e}-3$	2.2318	64.00	12.00	0.0

Next we consider the following 2-dimensional problems.
Example 4 (linearized Emden's equation)

$$
\begin{aligned}
-\Delta u-2 \tilde{\phi}_{h} u & =\frac{\sqrt{5}}{2} \text { in } \Omega=(0,1)^{2} \backslash\left[0, \frac{1}{5}\right]^{2}, \\
u & =0 \quad \text { on } \partial \Omega,
\end{aligned}
$$

where $\tilde{\phi}_{h} \in S_{h}$ is an approximation of the following Emden's equation.

$$
\begin{aligned}
-\Delta \phi & =\phi^{2} \text { in } \Omega \\
\phi & =0 \text { on } \partial \Omega .
\end{aligned}
$$

Example 5

$$
\begin{aligned}
-\Delta u+\tilde{u}_{h}\left(\bar{\nabla} \hat{u}_{h}\right) \cdot \nabla u-\left(\lambda-\frac{1}{2}\left|\nabla \tilde{u}_{h}\right|^{2}\right) u & =1 \text { in } \Omega=(0,1)^{2} \\
u & =0 \text { on } \partial \Omega
\end{aligned}
$$

where $\lambda=40$ and $\tilde{u}_{h} \in S_{h}$ is an approximation of Plum's example.

$$
\begin{array}{rlrl}
-\Delta \phi & =\phi\left(\lambda-\frac{1}{2}|\nabla \phi|^{2}\right) & \text { in } \Omega \\
\phi & =0 & & \text { on } \partial \Omega
\end{array}
$$

In this example, we considered two cases for the coefficient vector function b, taht is, in case of $\left(\bar{\nabla} \hat{u}_{h}\right) \equiv \nabla \tilde{u}_{h}$, discontinuous, and $\left(\bar{\nabla} \hat{u}_{h}\right) \equiv\left(P_{0} \nabla_{x} \tilde{u}_{h}, P_{0} \nabla_{y} \tilde{u}_{h}\right)$, where \tilde{u}_{h} is an approximate solution in S_{h} and P_{0} stands for the L^{2}-projection into S_{h}^{*} defined in Section 2.

In above two examples, we take the finite element subspace S_{h} as piecewise bi-linear functions with uniform mesh. Note that we can take the constant C_{p} for $\Omega=(0,1)^{2} \backslash\left[0, \frac{1}{5}\right]^{2}$ and $\Omega=(0,1)^{2}$ as $C_{p}=\sqrt{10}^{-1}$ and $C_{p}=(\sqrt{2} \pi)^{-1}$, respectively. Moreover, we can obtain the a priori constant $C(h)$ for the L shaped domain by techniques in [7], and it is taken as $C(h)=\pi^{-1} h$ for bi-linear functions on $\Omega=(0,1)^{2}$. We show validated numerical results for Example 4 in Table 4. Also, for Example 5, we illustrate several numerical results for $\left(\bar{\nabla} \hat{u}_{h}\right)=\nabla \tilde{u}_{h}$ and $\left(\bar{\nabla} \hat{u}_{h}\right)=\left(P_{0} \nabla_{x} \tilde{u}_{h}, P_{0} \nabla_{y} \tilde{u}_{h}\right)$ in Tables 5 and 6 , respectively. As shown in these tables, the capability for the verifivcation of invertibility seems to be influenced by the smoothness of the function b.

All computations in these tables are carried out on the Dell Precision 650 Workstation Intel Xeon CPU 3.20 GHz using INTLAB, a tool box in MATLAB developed by Rump [6] for self-validating algorithms.

References

[1] G. Alefeld, J. Herzberger; Introduction to Interval Computations, Academic Press, New York, 1983.
[2] Nakao, M.T., A numerical approach to the proof of existence of solutions for elliptic problems, Japan Journal of Applied Mathematics 5 (1988), 313-332.

Table 4
Numerical results for Example 4

h^{-1}	$C(h)$	α	β	σ	$\kappa(h)$	M_{h}	$C_{\text {div } b}$	C_{b}	C_{c}
10	$1.8433 \pi^{-1} h$	3.4498	18.79	Fail	4.0656	2.8320	0.0	0.0	62.83
20	$2.2063 \pi^{-1} h$	2.2159	18.80	Fail	1.4244	2.8994	0.0	0.0	61.41
30	$2.4772 \pi^{-1} h$	1.7862	18.80	91.57	$7.94 \mathrm{e}-1$	2.9118	0.0	0.0	61.15
40	$2.6992 \pi^{-1} h$	1.5718	18.85	40.33	$5.32 \mathrm{e}-1$	2.9159	0.0	0.0	61.22

Numerical results for Example 5 for $\left(\bar{\nabla} \hat{u}_{h}\right)=\nabla \tilde{u}_{h}$

h^{-1}	$\hat{\alpha}$	$\hat{\sigma}$	$\hat{\kappa}(h)$	M_{h}	$C_{\text {div } b}$	C_{b}	C_{c}
10	6.2448	Fail	6.1895	1.3365	-	19.21	40.00
20	5.8008	Fail	2.7618	1.3556	-	18.08	40.00
30	5.6214	Fail	1.7563	1.3595	-	17.65	40.00
40	5.5576	Fail	1.2963	1.3608	-	17.52	40.00

Table 6
Numerical results for Example 5 for $\left(\bar{\nabla} \hat{u}_{h}\right)=\left(P_{0} \nabla_{x} \tilde{u}_{h}, P_{0} \nabla_{y} \tilde{u}_{h}\right)$

h^{-1}	α	β	σ	$\kappa(h)$	M_{h}	$C_{\text {div } b}$	C_{b}	C_{c}
10	5.5421	39.54	Fail	5.6096	1.6630	330.81	19.51	40.00
20	3.3515	46.23	Fail	1.6841	1.7513	389.06	18.19	40.00
30	2.4286	47.94	62.61	$8.14 \mathrm{e}-1$	1.7723	404.84	17.56	40.00
40	1.9588	48.64	22.94	$4.95 \mathrm{e}-1$	1.7801	410.88	17.41	40.00

[3] Nakao, M.T., Yamamoto, N. \& Kimura, S., On best constant in the optimal error stimates for the H_{0}^{1}-projection into piecewise polynomial spaces, Journal of Approximation Theory 93, (1998), 491-500.
[4] Nakao, M.T., Numerical verification methods for solutions of ordinary and partial differential equations, Numerical Functional Analysis and Optimization 22 (2001), 321-356.
[5] M.T. Nakao, K. Hashimoto, Y. Watanabe; A numerical method to verify the invertibility of linear elliptic operators with applications to nonlinear problems, Computing 75 (2005), 1-14.
[6] S.M. Rump; INTLAB-INTerval LABoratory, a Matlab toolbox for verified computations, Inst. Infomatik, Technical University Hamburg-Harburg.
[7] N. Yamamoto, M.T. Nakao; Numerical verifications of solutions for elliptic equations in nonconvex polygonal domains, Numer. Math. 65 (1993), 503-521.

List of MHF Preprint Series, Kyushu University
 21st Century COE Program
 Development of Dynamic Mathematics with High Functionality

MHF2005-1 Hideki KOSAKI
Matrix trace inequalities related to uncertainty principle
MHF2005-2 Masahisa TABATA
Discrepancy between theory and real computation on the stability of some finite element schemes

MHF2005-3 Yuko ARAKI \& Sadanori KONISHI
Functional regression modeling via regularized basis expansions and model selection

MHF2005-4 Yuko ARAKI \& Sadanori KONISHI
Functional discriminant analysis via regularized basis expansions
MHF2005-5 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA \& Yasuhiko YAMADA
Point configurations, Cremona transformations and the elliptic difference Painlevé equations

MHF2005-6 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA \& Yasuhiko YAMADA
Construction of hypergeometric solutions to the q - Painlevé equations
MHF2005-7 Hiroki MASUDA
Simple estimators for non-linear Markovian trend from sampled data:
I. ergodic cases

MHF2005-8 Hiroki MASUDA \& Nakahiro YOSHIDA
Edgeworth expansion for a class of Ornstein-Uhlenbeck-based models
MHF2005-9 Masayuki UCHIDA
Approximate martingale estimating functions under small perturbations of dynamical systems

MHF2005-10 Ryo MATSUZAKI \& Masayuki UCHIDA
One-step estimators for diffusion processes with small dispersion parameters from discrete observations

MHF2005-11 Junichi MATSUKUBO, Ryo MATSUZAKI \& Masayuki UCHIDA Estimation for a discretely observed small diffusion process with a linear drift

MHF2005-12 Masayuki UCHIDA \& Nakahiro YOSHIDA
AIC for ergodic diffusion processes from discrete observations

MHF2005-13 Hiromichi GOTO \& Kenji KAJIWARA
Generating function related to the Okamoto polynomials for the Painlevé IV equation

MHF2005-14 Masato KIMURA \& Shin-ichi NAGATA
Precise asymptotic behaviour of the first eigenvalue of Sturm-Liouville problems with large drift

MHF2005-15 Daisuke TAGAMI \& Masahisa TABATA
Numerical computations of a melting glass convection in the furnace
MHF2005-16 Raimundas VIDŪNAS
Normalized Leonard pairs and Askey-Wilson relations
MHF2005-17 Raimundas VIDŪNAS
Askey-Wilson relations and Leonard pairs
MHF2005-18 Kenji KAJIWARA \& Atsushi MUKAIHIRA
Soliton solutions for the non-autonomous discrete-time Toda lattice equation
MHF2005-19 Yuu HARIYA
Construction of Gibbs measures for 1-dimensional continuum fields
MHF2005-20 Yuu HARIYA
Integration by parts formulae for the Wiener measure restricted to subsets in \mathbb{R}^{d}

MHF2005-21 Yuu HARIYA
A time-change approach to Kotani's extension of Yor's formula
MHF2005-22 Tadahisa FUNAKI, Yuu HARIYA \& Mark YOR
Wiener integrals for centered powers of Bessel processes, I
MHF2005-23 Masahisa TABATA \& Satoshi KAIZU
Finite element schemes for two-fluids flow problems
MHF2005-24 Ken-ichi MARUNO \& Yasuhiro OHTA
Determinant form of dark soliton solutions of the discrete nonlinear Schrödinger equation

MHF2005-25 Alexander V. KITAEV \& Raimundas VIDŪNAS
Quadratic transformations of the sixth Painlevé equation
MHF2005-26 Toru FUJII \& Sadanori KONISHI
Nonlinear regression modeling via regularized wavelets and smoothing parameter selection

MHF2005-27 Shuichi INOKUCHI, Kazumasa HONDA, Hyen Yeal LEE, Tatsuro SATO, Yoshihiro MIZOGUCHI \& Yasuo KAWAHARA
On reversible cellular automata with finite cell array

Cyclic cubic field with explicit Artin symbols
MHF2005-29 Mitsuhiro T. NAKAO, Kouji HASHIMOTO \& Kaori NAGATOU
A computational approach to constructive a priori and a posteriori error estimates for finite element approximations of bi-harmonic problems

MHF2005-30 Kaori NAGATOU, Kouji HASHIMOTO \& Mitsuhiro T. NAKAO
Numerical verification of stationary solutions for Navier-Stokes problems
MHF2005-31 Hidefumi KAWASAKI
A duality theorem for a three-phase partition problem
MHF2005-32 Hidefumi KAWASAKI
A duality theorem based on triangles separating three convex sets
MHF2005-33 Takeaki FUCHIKAMI \& Hidefumi KAWASAKI
An explicit formula of the Shapley value for a cooperative game induced from the conjugate point

MHF2005-34 Hideki MURAKAWA
A regularization of a reaction-diffusion system approximation to the two-phase Stefan problem

MHF2006-1 Masahisa TABATA
Numerical simulation of Rayleigh-Taylor problems by an energy-stable finite element scheme

MHF2006-2 Ken-ichi MARUNO \& G R W QUISPEL
Construction of integrals of higher-order mappings
MHF2006-3 Setsuo TANIGUCHI
On the Jacobi field approach to stochastic oscillatory integrals with quadratic phase function

MHF2006-4 Kouji HASHIMOTO, Kaori NAGATOU \& Mitsuhiro T. NAKAO
A computational approach to constructive a priori error estimate for finite element approximations of bi-harmonic problems in nonconvex polygonal domains

MHF2006-5 Hidefumi KAWASAKI
A duality theory based on triangular cylinders separating three convex sets in R^{n}

MHF2006-6 Raimundas VIDŪNAS
Uniform convergence of hypergeometric series
MHF2006-7 Yuji KODAMA \& Ken-ichi MARUNO
N-Soliton solutions to the DKP equation and Weyl group actions

MHF2006-8 Toru KOMATSU

Potentially generic polynomial

MHF2006-9 Toru KOMATSU

Generic sextic polynomial related to the subfield problem of a cubic polynomial
MHF2006-10 Shu TEZUKA \& Anargyros PAPAGEORGIOU
Exact cubature for a class of functions of maximum effective dimension
MHF2006-11 Shu TEZUKA
On high-discrepancy sequences
MHF2006-12 Raimundas VIDŪNAS
Detecting persistent regimes in the North Atlantic Oscillation time series
MHF2006-13 Toru KOMATSU
Tamely Eisenstein field with prime power discriminant
MHF2006-14 Nalini JOSHI, Kenji KAJIWARA \& Marta MAZZOCCO
Generating function associated with the Hankel determinant formula for the solutions of the Painlevé IV equation

MHF2006-15 Raimundas VIDŪNAS
Darboux evaluations of algebraic Gauss hypergeometric functions
MHF2006-16 Masato KIMURA \& Isao WAKANO
New mathematical approach to the energy release rate in crack extension
MHF2006-17 Toru KOMATSU
Arithmetic of the splitting field of Alexander polynomial
MHF2006-18 Hiroki MASUDA
Likelihood estimation of stable Lévy processes from discrete data
MHF2006-19 Hiroshi KAWABI \& Michael RÖCKNER
Essential self-adjointness of Dirichlet operators on a path space with Gibbs measures via an SPDE approach

MHF2006-20 Masahisa TABATA
Energy stable finite element schemes and their applications to two-fluid flow problems

MHF2006-21 Yuzuru INAHAMA \& Hiroshi KAWABI
Asymptotic expansions for the Laplace approximations for Itô functionals of Brownian rough paths

MHF2006-22 Yoshiyuki KAGEI
Resolvent estimates for the linearized compressible Navier-Stokes equation in an infinite layer

MHF2006-23 Yoshiyuki KAGEI
Asymptotic behavior of the semigroup associated with the linearized compressible Navier-Stokes equation in an infinite layer

MHF2006-24 Akihiro MIKODA, Shuichi INOKUCHI, Yoshihiro MIZOGUCHI \& Mitsuhiko FUJIO
The number of orbits of box-ball systems
MHF2006-25 Toru FUJII \& Sadanori KONISHI
Multi-class logistic discrimination via wavelet-based functionalization and model selection criteria

MHF2006-26 Taro HAMAMOTO, Kenji KAJIWARA \& Nicholas S. WITTE Hypergeometric solutions to the q-Painlevé equation of type $\left(A_{1}+A_{1}^{\prime}\right)^{(1)}$

MHF2006-27 Hiroshi KAWABI \& Tomohiro MIYOKAWA
The Littlewood-Paley-Stein inequality for diffusion processes on general metric spaces

MHF2006-28 Hiroki MASUDA
Notes on estimating inverse-Gaussian and gamma subordinators under highfrequency sampling

MHF2006-29 Setsuo TANIGUCHI
The heat semigroup and kernel associated with certain non-commutative harmonic oscillators

MHF2006-30 Setsuo TANIGUCHI
Stochastic analysis and the KdV equation
MHF2006-31 Masato KIMURA, Hideki KOMURA, Masayasu MIMURA, Hidenori MIYOSHI, Takeshi TAKAISHI \& Daishin UEYAMA
Quantitative study of adaptive mesh FEM with localization index of pattern
MHF2007-1 Taro HAMAMOTO \& Kenji KAJIWARA
Hypergeometric solutions to the q-Painlevé equation of type $A_{4}^{(1)}$
MHF2007-2 Kouji HASHIMOTO, Kenta KOBAYASHI \& Mitsuhiro T. NAKAO
Verified numerical computation of solutions for the stationary Navier-Stokes equation in nonconvex polygonal domains

MHF2007-3 Kenji KAJIWARA, Marta MAZZOCCO \& Yasuhiro OHTA A remark on the Hankel determinant formula for solutions of the Toda equation

MHF2007-4 Jun-ichi SATO \& Hidefumi KAWASAKI
Discrete fixed point theorems and their application to Nash equilibrium
MHF2007-5 Mitsuhiro T. NAKAO \& Kouji HASHIMOTO
Constructive error estimates of finite element approximations for non-coercive elliptic problems and its applications

