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DISCRETE FIXED POINT THEOREMS AND THEIR APPLICATION

TO NASH EQUILIBRIUM∗

JUN-ICHI SATO† AND HIDEFUMI KAWASAKI‡

Abstract. Fixed point theorems are powerful tools in not only mathematics but also economic.
In some economic problems, we need not real-valued but integer-valued equilibriums. However,
classical fixed point theorems guarantee only real-valued equilibria. So we need discrete fixed point
theorems in order to get discrete equilibria. In this paper, we first provide discrete fixed point
theorems, next apply them to a non-cooperative game and prove the existence of a Nash equilibrium
of pure strategies.
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1. Introduction. Existence theorem of Nash equilibrium is one of the most
important applications of fixed point theorems such as Bouwer’s, Kakutani’s, and so
on. In economics, we often encounter the situation that the equilibrium is not real-
valued but integer-valued. For example, it is nonsense to assert that the equilibrium
is to product 1.5 cars. In order to deal with such a case, we need a discrete fixed point
theorem. The aims of this paper are to provide discrete fixed point theorems and to
apply them to a non-cooperative game.

There are two types of discrete fixed point theorems. Tarski [5] gave some the-
orems on a lattice. Iimura-Murota-Tamura [2] gave one on an integrally convex set
by using Brower’s fixed point theorem, and Yang [6] obtained some extensions, see
Section 4 for details. On the other hand, our discrete fixed point theorem are based
on the following simple idea.

• The base set V is essentially finite, see (i) in Theorem 2.1.
• The mapping f : V → V reduces the area of candidates for fixed points.

We don’t need any convexity assumption.

This paper is organized as follows. In Section 2, we give discrete fixed point
theorems. In Section 3, we apply our fixed point theorems to a class of non-cooperative
games and obtain some existence theorems of a Nash equilibrium of pure strategies.
In Section 4, we compare our discrete fixed point theorems to the conventional one.

Throughout this paper, (V,≺=) is a partially ordered set in Z
n and f : V → V is

a nonempty set-valued mapping. For any x ∈ Z
n, xi denotes the i-th component of

x. The symbol x � y means x ≺
= y and x 6= y. We denote the component-wise order

by 5. Further, x ≤ y means x 5 y and x 6= y.

2. Discrete fixed point theorems. In this section, we present discrete fixed
point theorems. Although they are elementary, they are useful in Section 3.
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Theorem 2.1. Assume that there exist x0 ∈ V and x1 ∈ f(x0) such that x0 ≺
= x1

and {x ∈ V ; x0 ≺
= x} is finite. Further assume that for any x ∈ V and y ∈ f(x),

x � y ⇒ ∃z ∈ f(y) s.t. y ≺
= z.(2.1)

Then, f has a fixed point x∗, that is, x∗ ∈ f(x∗).
Proof. Assume that f has no fixed points. Then, x0 � x1. So, by (ii), there exists

x2 ∈ f(x1) such that x1 ≺
= x2. Since f has no fixed points, we are led to x1 � x2.

Repeating this procedure, we have a sequence {xm}m∈N satisfying xm � xm+1, which
contradicts that {x ∈ V ; x0 ≺

= x} is finite.
In particular, when V has a minimum element x0, the first assumption in Theorem

2.1 is trivially satisfied. Further, we can easily weaken the assumptions of Theorem
2.1 as follows. Since the proof is trivial, we omit it.

Theorem 2.2. Assume that there exists a sequence {xm}m≥0 in V such that

xm ≺
= xm+1 ∈ f(xm) for any m ≥ 0 and {x ∈ V ; x0 ≺

= x} is finite. Then, f has a

fixed point x∗ ∈ f(x∗).
When ≺

= is the component-wise order 5 or =, Theorem 2.4 below shows a way to
find x0 and x1 such that x0 5 x1 ∈ f(x0) in the case where V is a finite set.

Definition 2.3. For any k ∈ {1, . . . , n} and x ∈ Z
n, we denote K := {1, . . . , k},

xK := (xi)i∈K , K + 1 := {1, . . . , k + 1}, and xK+1 := (xi)i∈K+1. We call x ∈ V a

fixed point of f w.r.t. Z
k if xK ∈ fK(x) := {yK ; y ∈ f(x)}.

Theorem 2.4. Let V be a finite set in Z
n, and assume that for any k ∈

{1, . . . , n}, x ∈ V and y ∈ f(x),

xK ≤ (resp. ≥) yK ⇒ ∃z ∈ f(y) s.t. yK ≤ (resp. ≥) zK .

Then, f has a fixed point x∗ ∈ f(x∗).
Proof. (By induction on k) Assume that f has no fixed points w.r.t. Z. Then,

taking arbitrary points x ∈ V and y ∈ f(x), we have either x1 < y1 or x1 > y1.
Without loss of generality we may assume that x1 < y1. By the assumption, there
exists z1 ∈ f(y) such that y1 ≤ z1

1 . Since f has no fixed points w.r.t. Z, we are
led to y1 < z1

1 . Repeating this procedure, we obtain a sequence {zm}m∈N such that
zm
1 < zm+1

1 , which contradicts that V is finite.
Next, assume that f has a fixed point, say, x0, w.r.t. Z

k and no fixed points w.r.t.
Z

k+1. Then, since x0
K ∈ fK(x0), there exists y0 ∈ f(x0) such that x0

K = y0
K . However,

since f has no fixed points w.r.t. Z
k+1, we are led to x0

K+1 ≤ y0
K+1 or x0

K+1 ≥ y0
K+1.

Here we may assume that x0
K+1 ≤ y0

K+1. So by the assumption of the theorem, there

exists z1 ∈ f(y0) such that y0
K+1 5 z1

K+1. Since f has no fixed points w.r.t. Z
k+1, we

have y0
K+1 ≤ z1

K+1. Repeating this procedure, we obtain a sequence {zm}m∈N such

that zm
K ≤ zm+1

K+1 for any m ∈ N, which contradicts that V is finite.
Remark 2.1. Let σ be an arbitrary permutation of order n. Then, it is evident

that one can replace K of Theorem 2.4 by {σ(1), . . . , σ(k)}.

3. Nash equilibrium of pure strategies. As an application of our discrete
fixed point theorems, we shall present a class of non-cooperative games that have
a Nash equilibrium of pure strategies. We consider the following non-cooperative
n-parson game G = (N, {Si}i∈N , {pi}i∈N ), where

• N := {1, . . . , n} is the set of all players.
• For any i ∈ N , Si denotes the set of player i’s strategies. Its element is

denoted by si. We assume that each Si is a finite subset of Z.
• s−i := (s1, . . . , si−1, si+1, . . . , sn).
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• S =
∏n

j=1 Sj is equipped with a signed component- wise order, that is, N is
divided into two subsets (possibly empty) N+ and N−, εj = ±1 are allocated
to j ∈ N+ and j ∈ N−, respectively, and s ≺

= t is defined by εjsj 5 εjtj for
any j ∈ N . S−i =

∏

j neqi Sj is also equipped with the signed component-wise
order.

• pi : S → R denotes the payoff function of player i.
• For any given s−i ∈ S−i, player i maximizes pi(si; s−i). We denote by fi(s−i)

the set of best responses of player i, that is,

fi(s−i) :=

{

si ∈ Si ; pi(si, s−i) = max
ti∈Si

pi(ti, s−i)

}

.

• f(s) := f1(s−1) × · · · × fn(s−n) for any s = (s1, . . . , sn).

We call an n-tuple of pure strategies a Nash equilibrium if s∗ ∈ f(s∗).

Definition 3.1. (Monotone game) We say a game G monotone if, for any i ∈ N ,

s0
−i, s

1
−i ∈ S−i with s0

−i � s1
−i and for any t1i ∈ fi(s

0
−i), there exists t2i ∈ fi(s

1
−i) such

that εit
1
i 5 εit

2
i .

Theorem 3.2. Any monotone n-person non-cooperative game G has a Nash

equilibrium of pure strategies.

Proof. We apply Theorem 2.1 to G. Since S is a product set, it has a minimum
element. So it suffices to show that for any s0 ∈ S and s1 ∈ f(s0) satisfying s0 � s1,
there exists s2 ∈ f(s1) such that s1 ≺

= s2. Now, assume that s0 ∈ S and s1 ∈ f(s0)
satisfy s0 � s1, and define N1 := {i ∈ N ; s0

−i = s1
−i} and N2 := {i ∈ N ; s0

−i � s1
−i}.

Then, N1 ∩ N2 = ∅, N = N1 ∪ N2, N1 has at most one element, and εis
0
i < εis

1
i for

i ∈ N1. Thus, by taking s2
i := s1

i for i ∈ N1, we have s2
i = s1

i ∈ fi(s
0
−i) = fi(s

1
−i).

On the other hand, by definition of N2, we have s0
−i � s1

−i and s1
i ∈ fi(s

0
−i) for any

i ∈ N2. Hence, by monotonicity, there exists s2
i ∈ fi(s

1
−i) such that εis

1
i 5 εis

2
i .

Therefore, s2 := (s2
1, . . . , s

2
n) belongs to f(s1) and s1 ≺

= s2. So, by Theorem 2.1, f has
a fixed point.

As a special case of game G, let us consider the following bimatrix game.

• A = (aij) is a payoff matrix of player 1 (P1), that is, p1(i, j) = aij .
• B = (bij) is a payoff matrix of player 2 (P2), that is, p2(i, j) = bij .
• S1 := {1, . . . , m1} is the set of strategies of P1.
• S2 := {1, . . . , m2} is the set of strategies of P2.
• I(j) := {i ∈ S1 ; aij = maxi∈S1

aij} is the set of best responses of P1 to
j ∈ S2.

• J(i) := {j ∈ S2 ; bij = maxj∈S2
bij} is the set of best responses of P2 to

i ∈ S1.
• f(i, j) := I(j) × J(i) denotes the set of best responses of (i, j) ∈ S1 × S2.
• A pair (i∗, j∗) is a pure strategy Nash equilibrium if (i∗, j∗) ∈ f(i∗, j∗).

Then Definition 3.1 reduces to Definition 3.3 below.

Definition 3.3. (Monotone bimatrix game) We say payoff matrix A monotone if

for any j0, j1 ∈ S2 such that ε2j
0 < ε2j

1 and for any i1 ∈ I(j0), there exists i2 ∈ I(j1)
such that ε1i

1 5 ε1i
2. Also, we say payoff matrix B monotone if for any i0, i1 such

that ε1i
0 < ε1i

1 and for any j1 ∈ J(i0), there exists j2 ∈ J(i1) such that ε2j
1 5 ε2j

2.

When both A and B are monotone, we say the bimatrix game monotone.

The following corollary is a direct consequence of Theorem 3.2.

Corollary 3.4. Any monotone bimatrix game has a Nash equilibrium of pure

strategies.
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Example 3.1. The following matrices are monotone for (ε1, ε2) = (1, 1), where
framed numbers correspond to best responses, and circled numbers correspond to the
Nash equilibrium.

A =











5 7 1 9

8 2 3 5

4 7 4© 8

7 6 2 9











, B =











7 2 6 3

3 9 5 4

8 6 8© 5

1 3 3 2











.

Indeed, the following inequalities show that they are monotone.

I(1) = {2} I(2) = {1, 3} I(3) = {3} I(4) = {1, 4}

∈ ∈ ∈ ∈

2 5 3 5 3 5 4

J(1) = {1} J(2) = {2} J(3) = {1, 3} J(4) = {2, 3}

∈ ∈ ∈ ∈

1 5 2 5 3 5 3.

Moreover, since (i, j) = (3, 3) belongs to the set of best responses to (3, 3), (3, 3) is a
pure strategy Nash equilibrium.

Remark 3.1. Suppose that both players test whether each payoff matrix is mono-
tone, respectively. If they answer “yes”, then the matrix game has a pure strategy
Nash equilibrium. They don’t need to answer the set of their best responses. This is
an advantage of Theorem 3.4.

Example 3.2. The following matrices are not monotone for (ε1, ε2) = (1, 1).

A′ =











5 1 7 9

8 3 2 5

7 2 6 9

4 4© 7 8











, B′ =











7 6 2 3

3 5 9 4

1 3 3 2

8 8© 6 5











However, we can transform them into monotone matrices. Indeed, by exchanging the
second and third columns and the third and fourth rows, A′ and B′ are transformed
into A and B in Example 3.1, respectively. Thus, the original matrix game has a pure
strategy Nash equilibrium (4, 2).

Example 3.3. The following matrices are monotone for (ε1, ε2) = (1,−1). So the
matrix game has a pure strategy Nash equilibrium (2, 3).

A =





4 2 1

5 7 4©

8 6 3



 , B =







2 3 9

4 5 6©

7 8 6







Further, we can weaken monotonicity as follows.
Definition 3.5. (Sequentially monotone bimatrix game) We say payoff matrix

A sequentially monotone if there exists a sequence of best responses jk ∈ J(k) such

that ε2j
k 5 ε2j

k+1 for any k = 1, . . . , m1 − 1. We say payoff matrix B sequentially

monotone if there exists a sequence of best responses ik ∈ I(k) such that ε1i
k 5 ε1i

k+1

for any k = 1, . . . , m2 − 1. When both A and B are sequentially monotone, we say

the bimatrix game sequentially monotone.



DISCRETE FIXED POINT THEOREMS AND THE NASH EQUILIBRIUM 5

It is obvious that any monotone bimatrix game is sequentially monotone.
Corollary 3.6. Any sequentially monotone bimatrix game has a Nash equilib-

rium of pure strategies.

Proof. Define the initial point x1 by (min{1, m1}, min{1, m2}). Then x1 is a min-
imum point of S = {1, . . . , m1}×{1, . . . , m2} w.r.t. the signed component-wise order.
Suppose that we have obtained xk = (i, j) ∈ S. Then, by sequential monotonicity,
there exist ij ∈ I(j) and ji ∈ J(i) such that (ε1i, ε2j) 5 (ε1i

j , ε2j
i), which implies

(i, j) ≺= (ij , ji). Define xk+1 := (ij , ji), then xk+1 ∈ I(j) × J(i) = f(i, j) = f(xk) and
xk ≺

= xk+1. Therefore, by Theorem 2.2, the bimatrix game has a Nash equilibrium of
pure strategies.

Example 3.4. Although matrix A below is not monotone for (ε1, ε2) = (1, 1), it is
sequentially monotone. In fact, asterisked numbers give a sequence of best responses
in Definition 3.5.

A =











5 2 1 9

8∗ 7∗ 4©∗ 5

4 7 3 8

8 6 2 9∗











, B =











7 2 6 3

3 5 9© 4

8 6 8 5

1 3 3 2











.

4. Concluding remarks. In this section, we compare our discrete fixed point
theorems to Iimura-Murota-Tamura’s [2]. Throughout this section, V is a subset of
Z

n and f : V → V is a nonempty set-valued mapping, and we use the following
notation.

• d·e is a rounding up to the nearest integer.
• b·c is a rounding down to the nearest integer.
• Let N(y) := {z ∈ Z

n ; byc 5 z 5 dye} for all y ∈ R
n. It is called the integral

neighbourhood.
• We denote by coV the convex hull of V .
• ‖y‖2 := (

∑n
i=1 y2

i )1/2 and ‖y‖∞ := max{|yi| ; i ∈ N} for y ∈ R
n.

• For x1, x2 ∈ Z
n, x1 ' x2 is defined by ‖x1 − x2‖∞ 5 1.

We say V integrally convex if

y ∈ co(V ∩ N(y)) for all y ∈ coV,

see e.g. [2][3]. For each x ∈ V , πf (x) denotes the projection of x onto co f(x), that is,

‖πf (x) − x‖2 = min
y∈co f(x)

‖y − x‖2.

We say f direction preserving if for any x, y ∈ V with x ' y

xi < (πf (x))i ⇒ yi 5 (πf (y))i ∀i = 1, 2, . . . , n.(4.1)

Theorem 4.1. ([2, Theorem 2]) Let V be a nonempty finite integrally convex

set. If f is a nonempty- and discretely convex-valued direction preserving set-valued

mapping. Then f has a fixed point.

For the sake of simplicity, we consider the case where f is single-valued. Then
πf (x) = f(x) for any x. So (4.1) reduces to

xi < fi(x) ⇒ yi 5 fi(y) ∀i = 1, 2, . . . , n.(4.2)
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On the other hand, (2.1) in Theorem 2.1 reduces to

x ≤ f(x) ⇒ f(x) 5 f(f(x)).(4.3)

In Figures 4.1 and 4.2, V consists of sixteen points, so that it is integrally convex.

y

f(x)

x

Fig. 4.1.

f(x)

x

Fig. 4.2.

When we apply Theorem 4.1, we have to test (4.2) for eight solid points in Figure 4.1.
On the other hands, when we apply our results, it suffices to test (4.3) only for one
point in Figure 4.2. This is an advantages of our results. Another advantage is that
we don’t impose any convexity assumption on V . Yang [6] extended Theorem 4.1 by
introducing a local gross direction preserving correspondence, which is weaker than
direction preserving correspondence. However, when we apply his theorem, we also
need information on eight solid points in Figure 4.1, see [6, Definition 4.6, Theorem
3.12] for details.

On the other hand, Tarski [5] provided some fixed point theorems on a complete
lattice, that is, every subset of the lattice has a least upper bound and a greatest
lower bound, see [5, pp. 285, Theorem 1]. Further he assumed that a mapping f is
increasing, that is, x � y implies f(y) ≺

= f(y). These assumptions seem restrictive.
For example, when V is equipped with the component-wise order and has a hole as in
Figure 4.3, it is not a complete lattice. In fact, let U consist of two solid points. Then
gray points are upper bounds. However, U has no least upper bound. Our theorems

U

Fig. 4.3.

are more flexible. They can deal with not only the above V but also the case that
the best response is not unique. So Examples 3.1, 3.2, and 3.4 are outside of Tarski’s
scope.

Acknowledgment. The authors would like to thank Prof. T. Tanino for some
helpful suggestions.
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