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Abstract

We propose a method to enclose solutions for the stationary Navier-Stokes equation in
nonconvex polygonal domains. Our method is based on an infinite dimensional Newton-type
formulation by using the finite element method with constructive error estimates and fixed
point theorems. Numerical examples related to the step flow problems in L-shape domain
are presented.
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1 Introduction

In the present paper, we consider a numerical method to verify the existence and the local
uniqueness of solutions for the following stationary Navier-Stokes equations:

−ν∆u + (u · ∇)u +∇p = 0 in Ω,
div u = 0 in Ω,

u = g on ∂Ω,
(1.1)

where u and p are the velocity vector and the pressure, respectively. Assume that Ω is a
nonconvex polygonal domain in R2. In addition, g is a given boundary vector function and
ν > 0 is a viscosity coefficient.

1.1 Motivation

The problem (1.1) is considered in [1]. For L-shaped domains, the equation (1.1) is known
as a mathematical model for the step flow problems. From the theoretical point of view on
the reliability of numerical computations, it is important to give a mathematically rigorous a
posteriori error analysis for the approximate solutions of the flow. However, the equation (1.1)
is also known as the difficult problem because of the singularity which is influenced by the
reentrant corner. Thus, our purpose in this paper is to find an exact solution of (1.1) and clarify
its behavior using a computer-asisted proof and some mathematical techniques.

In [9], there already exists a similar work for the convex domain in which the error estimates
are more easily given. They use a method that consists of two procedures; one is a finite
dimensional Newton-like iterative process, the other is the computation of the error caused by
the gap between the finite and infinite dimension in each iterative procedure. In general, the
method for the finite dimensional part utilizes a kind of interval Newton method; and it has
been recently observed that in the case of having the term with a first order derivative ∇u,
this iterative process sometimes fails due to the divergence of the interval computations. In
order to overcome this difficulty, in [5], some improvements are considered, which adopts a

1



technique with direct estimation of the norm for the inverse of a matrix corresponding to the
linearlized operator, instead of solving an interval system of equations for the finite dimensional
part. Moreover, in [4], some further extended techniques are presented to develop an infinite
dimensional Newton-like method for the second order elliptic problems.

In this paper, according to the analogous arguments to that in [4], which is a modified version
of one of the authors’ method (cf. [2][3] etc.), we present a guaranteed estimates of the inverse
of linearized operator for the Navier-Stokes equation (1.1) to get a verification condition based
on the infinite dimensional Newton-like procedure. On the other hand, Plum’s method which
is also well known to verify the solutions for nonlinear elliptic boundary value problems [7][8],
would also be applicable, provided that it is possible to bound the eigenvalues for linearlized
operator corresponding to (1.1). However, this eigenvalue bounding process for the present case
seems to be quite complicated.

In order to apply the method in [4], in general to use Nakao’s method, it is necessary to
obtain the constructive a priori error estimate between a function and its appropriate projections.
Namely, for example, when we denote the H1

0 -projection as Ph, it is necessary to determine the
constant C numerically in the a priori error estimate of the form:

‖v − Phv‖H1
0
≤ C‖∆v‖L2 ,

where C depends on the mesh size h of the finite element space such that C → 0 as h → 0.
This constant is naturally dependent on the regularity of solutions for the Poisson equation with
homogeneous boundary conditions. For example, it implies that C = O(h), if Ω is a convex
domain. However, the order of magnitude decreases for nonconvex polygonal domains, that
is, C ≈ O(h2/3), if Ω is the L-shaped domain. When we apply our method, it is essential
and important to determine the above constant as small as possible. However, for nonconvex
polygons, this task is usually not so easy but very hard by only theoretical considerations. As
one of the computational approaches by some guaranteed numerical computations, Yamamoto
and one of authors presented a computational method to get the explicit constant [10], which
will be used in Section 4 in this paper.

In the following section, we define the Stokes projection and describe its constructive error
estimates. The invertibility conditions of linearized operator and the norm estimation procedure
for its inverse are considered in Section 3, which play an essential role in the verification by the
infinite dimensional Newton-like method. In Section 4, we mention about the actual verification
procedure for solutions of the nonlinear Navier-Stokes problem (1.1). Some verification examples
of the step flow problem are presented in the last section.

1.2 Notations

We denote the usual k-th order Sobolev space on Ω by Hk(Ω) and define (·, ·)0 as the L2 inner
product. We also define the following Sobolev spaces as usual:

H1
0 (Ω) ≡ {v ∈ H1(Ω) ; v = 0 on ∂Ω},

L2
0(Ω) ≡ {q ∈ L2(Ω) ; (q, 1)0 = 0},

and set X ≡ (
H1

0 (Ω)
)2, Y ≡ L2

0(Ω), X(∆) ≡ {v ∈ X ; ∆v ∈ (
L2(Ω)

)2}. Moreover, we denote
that

V0 = {v ∈ X ; div v = 0},
V⊥ = {v⊥ ∈ X ; (∇v⊥,∇v)0 = 0, ∀v ∈ V0}.

Then, we have X = V0 ⊕ V⊥, where the orthogonality means in H1
0 sense.
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For v ∈ H1
0 (Ω), we also define the H1

0 -norm by ‖v‖H1
0
≡ (∇v,∇v)1/2

0 . And, < ·, · > denotes
the duality pairing between X and X ′ which is the dual space of X. Moreover, Xh ⊂ X and
Yh ⊂ Y denote finite element subspaces which depend on the mesh size h.

2 The constructive a priori and a posteriori error estimations

In this section, we show the constructive a priori and a posteriori error estimations for the Stokes
equation. These estimates are essentially presented in [6], so we show some modifications for
our present purpose.

For each v ∈ X, we define the H1
0 -projection Phv ∈ Xh by

(∇(v − Phv),∇φh)0 = 0, ∀φh ∈ Xh,

where we used the same notation (·, ·)0 for vector functions as the L2 inner product for scalar
case. Further, we assume the following a priori error estimates.

Assumption 1 For an arbitrary v ∈ X(∆), there exists a constant C(h) depending on h such
that

‖v − Phv‖H1
0
≤ C(h)‖∆v‖L2 .

Here, C(h) has to be numerically determined.

Notice that Assumption 1 is equivalent to the following inequality:

‖v − Phv‖L2 ≤ C(h)‖v − Phv‖H1
0
.

We first refer the following well known result.

Lemma 2 (Babus̃ka-Aziz) For all q ∈ Y , there exists a unique v⊥ ∈ V⊥ such that

div v⊥ = q, ‖v⊥‖H1
0
≤ β‖q‖L2 ,

where β > 0 is a constant depending on Ω.

Now, we define the following functionals.

X (u, p) ≡ sup
v∈X

ν(∇u,∇v)0 − (p, div v)0
‖v‖H1

0

, Y(u) ≡ sup
q∈Y

(q, div u)0
‖q‖L2

.

Then, we have the following result.

Theorem 3 For an arbitrary (u, p) ∈ X × Y , it implies that

‖u‖H1
0
≤ 1

ν

[(
X (u, p)

)2
+

(
νβY(u)

)2
]1/2

,

‖p‖L2 ≤ βX (u, p) + νβ2Y(u).

Proof : First, for an arbitrary u ∈ X, we decompose it as u = u0 ⊕ u⊥ ∈ V0 ⊕ V⊥. Then, we
have

X (u, p) ≥ sup
v∈V0

ν(∇u,∇v)0 − (p,div v)0
‖v‖H1

0

= sup
v∈V0

ν(∇u0,∇v)0
‖v‖H1

0

= ν‖u0‖H1
0
.
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Also by Lemma 2, we have

Y(u) ≥ 1
β
‖u⊥‖H1

0
.

Thus the first part of the theorem is obtained.
Next, for (u, p) ∈ X × Y , from Lemma 2, there exists v⊥ ∈ V⊥ satisfying div v⊥ = −p.

Setting q ∈ Y as q = K · div u⊥ , where K =
ν(∇u⊥,∇v⊥)0
‖div u⊥‖2

L2

, it implies that

‖p‖2
L2 = ν(∇u⊥,∇v⊥)0 + ‖p‖2

L2 − (q, div u⊥)0

= ‖v⊥‖H1
0

ν(∇u⊥,∇v⊥)0 − (p,div v⊥)0
‖v⊥‖H1

0

− ‖q‖L2
(q, div u⊥)0
‖q‖L2

≤ ‖v⊥‖H1
0
X (u, p) + ‖q‖L2Y(u).

Moreover, we have

‖q‖L2 = K‖div u⊥‖L2 =
ν(∇u⊥,∇v⊥)0
‖div u⊥‖L2

≤
ν‖u⊥‖H1

0
‖v⊥‖H1

0

‖div u⊥‖L2

≤ νβ2‖p‖L2 .

From ‖v⊥‖H1
0
≤ β‖div v⊥‖L2 , we obtain the second result. Therefore, this proof is completed.

Now, let define the map B : X × Y −→ X ′ × Y by B(u, p) ≡ (
S(u, p), −div u

)
, where

S(u, p) ≡ −ν∆u +∇p for (u, p) ∈ X × Y . Then, for an arbitrary (u, p) ∈ X × Y , we define the
Qh-projection Qh(u, p) ≡ (uh, ph) ∈ Xh × Yh by

ν(∇(u− uh),∇vh)0 − (p− ph,div vh)0 = 0, ∀vh ∈ Xh,
−(div (u− uh), qh)0 = 0, ∀qh ∈ Yh.

Then, we have the following main result of this section.

Theorem 4 Let (u, p) ∈ V0 × Y and let (uh, ph) ∈ Xh × Yh be the Qh-projection of (u, p). We
assume that S(u, p) ∈ (

L2(Ω)
)2 and that there exist constants η and σ satisfying

‖∇ph‖L2 ≤ η‖S(u, p)‖L2 ,
‖div uh‖L2 ≤ σ‖S(u, p)‖L2 .

Then, we have the following a priori error estimations.

‖u− uh‖H1
0
≤ ν−1Eu(h)‖S(u, p)‖L2 ,

‖p− ph‖L2 ≤ Ep(h)‖S(u, p)‖L2 ,

where Eu(h) :=
[(

C(h)(1 + η)
)2

+ (νβσ)2
]1/2

and Ep(h) := C(h)
(
1 + η

)
β + νβ2σ. Here, the

constant β is defined in Lemma 2.
Moreover, defining, as in [6], ∇uh ∈ (Xh)2 and ∆uh ≡ ∇ · ∇uh, where ∇uh is determined by

(∇uh,vh)0 = (∇uh,vh)0, for all vh ∈ (Xh)2.

Then, we have the following a posteriori error estimations.

‖u− uh‖H1
0
≤ 1

ν

[(
C(h)K1 + νK2

)2
+

(
νβK3

)2
]1/2

,

‖p− ph‖L2 ≤ β
(
C(h)K1 + νK2

)
+ νβ2K3,
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and

‖u− uh‖L2 ≤ E(h)‖u− uh‖H1
0

+ σ‖p− ph‖L2 , (2.1)

where E(h) := Eu(h) + Ep(h) and the constants Ki, (1 ≤ i ≤ 3) are defined as

K1 ≡ ‖S(u, p) + ν∆uh −∇ph‖L2 , K2 ≡ ‖∇uh −∇uh‖H1
0
, K3 ≡ ‖div uh‖L2 .

Proof : First, from the property of the Qh-projection, i.e., ν(∇(u − uh),∇vh)0 − (p −
ph, div vh)0 = 0 for all vh ∈ Xh, it implies that

X (u− uh, p− ph) = sup
v∈X

ν(∇(u− uh),∇(v − Phv))0 − (p− ph, div (v − Phv))0
‖v‖H1

0

= sup
v∈X

(−ν∆u +∇p−∇ph, v − Phv)0
‖v‖H1

0

≤ C(h)‖S(u, p)−∇ph‖L2 , (2.2)

where we have used the fact ‖v − Phv‖L2 ≤ C(h)‖v − Phv‖H1
0
≤ C(h)‖v‖H1

0
.

Next, we have

Y(u− uh) = sup
q∈Y

(q,div uh)0
‖q‖L2

≤ ‖div uh‖L2 . (2.3)

Hence, using assumptions of this theorem, we have the following estimations.

X (u− uh, p− ph) ≤ C(h)(1 + η)‖S(u, p)‖L2 ,

Y(u− uh) ≤ σ‖S(u, p)‖L2 .

Combining these inequalities with Theorem 3, we obtain the desired a priori estimates.

Now, from the fact that (∇uh,∇(v − Phv))0 = 0 and (∇uh,∇φ)0 = (−∆uh, φ)0 for φ ∈ X,
we have

X (u− uh, p− ph) = sup
v∈X

(−ν∆u +∇p−∇ph, v − Phv)0 − ν(∇uh,∇(v − Phv))0
‖v‖H1

0

= sup
v∈X

(S(u, p) + ν∆uh −∇ph, v − Phv)0 + ν(∇uh −∇uh,∇(v − Phv))0
‖v‖H1

0

≤ C(h)‖S(u, p) + ν∆uh −∇ph‖L2 + ν‖∇uh −∇uh‖H1
0
. (2.4)

Thus, we obtain the a posteriori error estimates for the Qh-projection by (2.3) and (2.4).
We now finally present the L2-estimation of u− uh.

For (u− uh, 0) ∈ X × L2(Ω), we consider the following Stokes equation.

Find (v, q) ∈ X × Y such that B(v, q) = (u− uh, 0) in Ω.

From the property of the Qh-projection, setting (vh, qh) := Qh(v, q), we have

‖u− uh‖2
L2 = (u− uh, u− uh)0

= (−ν∆v +∇q, u− uh)0
= ν(∇v,∇(u− uh))0 − (q,div (u− uh))0
= ν(∇(v − vh),∇(u− uh))0 + (p− ph, div vh)0 − (q − qh,div (u− uh))0
≤ ν‖v − vh‖H1

0
‖u− uh‖H1

0
+ ‖p− ph‖L2‖div vh‖L2 + ‖q − qh‖L2‖div uh‖L2 .

5



Therefore, using the a priori error estimation and the assumption of this theorem, this proof is
completed from Theorem 3 and the fact that ‖div uh‖L2 = ‖div (u− uh)‖L2 ≤ ‖u− uh‖H1

0
.

If S(u, p) does not belong to L2 space, then we have the following estimates, which is readily
seen by the similar arguments in the above theorem.

Corollary 5 Let (u, p) ∈ V0 × Y and let (uh, ph) ∈ Xh × Yh be Qh-projection of (u, p). We
assume that S(u, p) ∈ X ′ and there exist constants η̂ and σ̂ satisfying

‖∇ph‖L2 ≤ η̂‖S(u, p)‖H−1 ,
‖div uh‖L2 ≤ σ̂‖S(u, p)‖H−1 .

Then, we have the following estimations.

‖u− uh‖H1
0
≤ ν−1eu‖S(u, p)‖H−1 ,

‖p− ph‖L2 ≤ ep‖S(u, p)‖H−1 ,

where eu =
[(

1 + C(h)η̂
)2

+ (νβσ̂)2
]1/2

and ep =
(
1 + C(h)η̂

)
β + νβ2σ̂. But, we define the

H−1-norm by

‖S(u, p)‖H−1 ≡ sup
φ∈X

< S(u, p), φ >

‖φ‖H1
0

.

Notice that by some simple calculations, in Corollary 5, it is always taken as eu = 2, because of
‖u‖H1

0
≤ ν−1‖S(u, p)‖H−1 and ‖uh‖H1

0
≤ ν−1‖S(u, p)‖H−1 if (u, p) ∈ V0 × Y .

3 Computable verification method for the inverse of the lin-
earized operator

In this section, we describe a numerical method to prove the invertibility of the following linear
operator and estimate the norm of the inverse.

The linearized Navier-Stokes equation with homogeneous Dirichlet boundary conditions can
be written as

Find (u, p) ∈ X × Y such that L(u, p) ≡ B(u, p) + Ψ(u, p) = (f, 0) in Ω, (3.1)

where Ψ is a linear operator in u such that Ψ(u, p) := (Φu, 0) with Φu := (c · ∇)u + (u · ∇)c and
(f, 0) ∈ X ′ × L2(Ω). Here, we assume that c ∈ (

W 1∞(Ω)
)2.

3.1 The invertibility condition of the operator L
First, note that the invertibility of a linear operator L defined in (3.1) is equivalent to the unique
solvability of the fixed point equation:

z = Az (3.2)
≡ B−1Ψz,

where z = (u, p) and A a compact operator on X × Y .
Now, according to the verification principle presented in [4], we numerically formulate a

sufficient invertibility condition in numerically. As the preliminary, we define the several matrices
as follows:
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Namely, N ×N matrices F = (Fi,j), A = (Ai,j), M ×N matrix B = (Bi,j) and M ×M matrix
C = (Ci,j) are defined by

Fi,j = ν(∇φj ,∇φi)0 + (Φφj , φi)0 for 1 ≤ i, j ≤ N,
Ai,j = (∇φj ,∇φi)0 for 1 ≤ i, j ≤ N,
Bi,j = −(div φj , ψi)0 for 1 ≤ i ≤ M, 1 ≤ j ≤ N,
Ci,j = (ψj , ψi)0 for 1 ≤ i, j ≤ M,

where {φk}N
k=1 and {ψk}M

k=1 are basis of Xh and Yh, respectively.
Next, we define the N + M square matrix G by:

G =
[

F BT

B 0

]
,

Notice that if G is nonsingular then it implies that F and S := BF−1BT are also nonsingular
and we can write an inverse matrix by

[
F BT

B 0

]−1

=
[

F−1 − F−1BTS−1BF−1 F−1BTS−1

S−1BF−1 −S−1

]
=:

[
G1 G3

G2 G4

]
.

Let L and M be a lower triangular matrices satisfying the Cholesky decomposition: A = LLT

and C = MMT , respectively. And, we denote the matrix norm induced from the Euclidean
2-norm by ‖ · ‖E . Also, we define the following constants:

Kc := ‖ |c|E ‖L∞ , Kdiv c := ‖div c‖L∞ , K∇c := ‖ |∇c|E ‖L∞ , K∂c :=
(‖∂ic · ∂jc‖2

L2

)1/4

F
,

where ‖ |∇c|E ‖L∞ and matrix ‖∂ic · ∂jc‖L2 mean that ‖ (Σi|∇ci|2E)1/2 ‖L∞ and ‖∂c/∂xi ·
∂c/∂xj‖L2 , respectively. Here, ‖ · ‖L∞ and (·)F denote the L∞-norm on Ω and the matrix
Frobenius norm, respectively.
By some simple calculations, we have the following lemma.

Lemma 6 For u, v, w ∈ X, it implies that

‖(u · ∇)v‖L2 ≤ ‖ |u|E ‖L∞‖v‖H1
0

if u ∈ Xh,

‖(u · ∇)v‖L2 ≤ ‖u‖L2‖ |∇v|E ‖L∞ if v ∈ Xh,

‖(u · ∇)v‖L2 ≤ CL4‖u‖H1
0

(‖∂iv · ∂jv‖2
L2

)1/4

F
if v ∈ Xh.

Moreover, we have

((u · ∇)v, w)0 ≤
(
‖ |u|E ‖L∞‖w‖H1

0
+ ‖div u‖L∞‖w‖L2

)
‖v‖L2 if u ∈ Xh,

((u · ∇)v, w)0 ≤
(
‖u‖H1

0
‖w‖L2 + ‖u‖L2‖w‖H1

0

)
‖ |v|E ‖L∞ if v ∈ Xh,

< (u · ∇)v, w > ≤ C2
L4‖u‖H1

0
‖v‖H1

0
‖w‖H1

0
,

where CL4 is a constant such that ‖φ‖L4 ≤ CL4‖φ‖H1
0

for all φ ∈ H1
0 (Ω).

We now have the following main result of this paper.

Theorem 7 For the constants defined above, if G is nonsingular and

κ ≡ 1
ν

Eu(h)
(
MuC1C2 + C2

)
< 1

holds then the operator L defined in (3.1) is invertible. Here, Mu ≡ ‖LTG1L‖E and Eu(h) is
the a priori constant in Theorem 4. And, the constants C1 and C2 are given by

C1 = 3CPoinKc, C2 = Kc + CL4K∂c,

where CPoin is a Poincaré constant such that ‖φ‖L2 ≤ CPoin‖φ‖H1
0

for all φ ∈ H1
0 (Ω).
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Proof : First, we usually decompose the equation u = Au as

Qhz = QhAz

(I −Qh)z = (I −Qh)Az

where I implies the identity map on X × Y .
Next, according to the same formulation to that in [4], we define two operators by

Nhz ≡ Qhz − [I −A]−1
h Qh(I −A)z

and
T z ≡ Nhz + (I −Qh)Az,

respectively, where [I −A]−1
h means the inverse of Qh(I −A)|Xh×Yh

: Xh × Yh −→ Xh × Yh.
Now, for positive vectors α = (αu, αp) and γ = (γu, γp), we define the candidate set Z =
Zh ⊕ Z∗ ⊂ X × Y which possibly encloses the solution of (3.2). Here, Zh and Z∗ are taken as

Zh := {zh ∈ Xh × Yh ; [‖zh‖] ≤ γ} ,

Z∗ :=
{

z∗ ∈ (Xh × Yh)⊥ ; [‖z∗‖] ≤ α
}

,

where ( )⊥ means the orthogonal complement in the sense of Qh-projection, that is z∗ ∈ Z∗ ⇒
Qhz∗ = 0. Also denote [‖z‖] ≡ (‖u‖H1

0
, ‖p‖L2) for z = (u, p) ∈ X × Y and the inequality stands

for elementwise.
Then, by the fact that z = Az is equivalent to z = T z. In order to prove the unique existence

of a solution to (3.2) in the set Z, it suffices to show |||T ||| < 1 for any kind of norm ||| · ||| in
X × Y . This fact follows by Banach’s fixed point theorem from the linearity of the equation.

Further notice that a sufficient condition can be written as

[‖NhZ‖] ≡ sup
z∈Z

[‖Nhz‖] < γ (3.3)

and

[‖(I −Qh)AZ‖] ≡ sup
z∈Z

[‖(I −Qh)Au‖] < α. (3.4)

Therefore, by using constants defined above, we try to estimate norms [‖Nhz‖] and [‖(I −
Qh)Az‖] in (3.3) and (3.4), respectively.

First, for an arbitrary z = zh + z∗ ∈ Zh + Z∗, we have

Nhz = zh − [I −A]−1
h Qh(I −A)(zh + z∗)

= [I −A]−1
h QhAz∗. (3.5)

We now set (wu
h, wp

h) := Nhz, which means

ν(∇wu
h,∇vh)0 + (Φwu

h, vh)0 − (wp
h, div vh)0 = (−Φu∗, vh)0,

−(div wu
h, qh)0 = 0,

(3.6)

for all vh ∈ Xh, qh ∈ Yh. Here, we choose w := ∆−1Φu∗ ∈ X. Since the right-hand side of (3.6)
satisfies

(−Φu∗, vh)0 = (∇w,∇vh)0 = (∇Phw,∇vh)0,

we can obtain the following matrix linear equation:
[

F BT

B 0

] [
wu

h

wp
h

]
=

[
A 0
0 0

] [
wh

0

]
,
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where wu
h = (wu

1 , wu
2 , · · · , wu

N )T , wp
h = (wp

1, w
p
2, · · · , wp

M )T and wh = (w1, w2, · · · , wN )T are
coefficient vectors of wu

h, wp
h and wh ≡ Phw, respectively, which are set as

wu
h :=

N∑

i=1

wu
i φi, wp

h :=
M∑

i=1

wp
i ψi, wh :=

N∑

i=1

wiφi.

Therefore, it implies that

[ ‖wu
h‖H1

0

‖wp
h‖L2

]
=

[ ‖LT wu
h‖E

‖MT wp
h‖E

]
=

[ ‖(LT G1L)(LT wh)‖E

‖(MTG2L)(LT wh)‖E

]

≤
[ ‖LT G1L‖E‖LT wh‖E

‖MTG2L‖E‖LT wh‖E

]
=

[
‖LT G1L‖E‖wh‖H1

0

‖MTG2L‖E‖wh‖H1
0

]
.

So, we can obtain the following estimations.

‖wu
h‖H1

0
≤ Mu‖wh‖H1

0
, ‖wp

h‖L2 ≤ Mp‖wh‖H1
0
, (3.7)

where Mu = ‖LTG1L‖E and Mp = ‖MTG2L‖E .
From the property of the H1

0 -projection, we have

‖wh‖H1
0
≡ ‖Phw‖H1

0
≤ ‖w‖H1

0
= ‖∆−1Φu∗‖H1

0

≤ ‖∆−1(c · ∇)u∗‖H1
0

+ ‖∆−1(u∗ · ∇)c‖H1
0
.

Hence, we now estimate the H1
0 -norm of w1 := ∆−1(c · ∇)u∗ and w2 := ∆−1(u∗ · ∇)c.

For the estimation of ‖w1‖H1
0
, some simple calculations yields from Lemma 6 that

‖w1‖2
H1

0
= (∇w1,∇w1)0 = (−∆w1, w1)0

= (−(c · ∇)u∗, w1)0
≤ CPoin‖ |c|E ‖L∞‖u∗‖H1

0
‖w1‖H1

0
.

(3.8)

Furthermore, for the estimation of ‖w2‖H1
0
, by applying the similar argument to the above and

using Lemma 6, we have

‖w2‖H1
0
≤ 2CPoin‖ |c|E ‖L∞‖u∗‖H1

0
. (3.9)

Thus, by (3.7) – (3.9), we obtain the following estimate for the finite dimensional part

[‖NhZ‖] ≤
[

Mu

Mp

]
C1αu, (3.10)

where C1 ≡ 3CPoinKc.

For z ∈ Z, from Theorem 4 and Lemma 6, it implies that

[‖(I −Qh)Az‖] ≤
[

ν−1Eu(h)
Ep(h)

]
C2(γu + αu),

where C2 ≡ Kc + CL4K∂c.
Therefore, the invertibility condition follows:

MuC1αu < γu,

MpC1αu < γp,

ν−1Eu(h)C2(γu + αu) < αu,

Ep(h)C2(γu + αu) < αp.
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Here, the second and fourth conditions of the above can always be valid provided that γp and
αp are suitable chosen. Therefore, we only consider the condition:

MuC1αu < γu,

ν−1Eu(h)C2(γu + αu) < αu.

And, it is readily seen that this inequality is equivalent to

1
ν

Eu(h)C2

(
MuC1C2 + C2

)
< 1.

Thus, the proof is completed.

3.2 The norm estimation

In this subsection, we show the a priori estimates for the solution of the linear equation (3.1).

Theorem 8 Under the same assumptions in Theorem 7, provided that κ < 1 and let z =
(u, p) ∈ X × Y be a unique solution for the linear equation (3.1), that is, Lz = (f, 0) for
(f, 0) ∈ X ′ × L2(Ω). Then, we have the following estimations:

‖u‖H1
0
≤ M∗

u‖f‖H−1 ,

‖p‖L2 ≤ M∗
p‖f‖H−1 ,

where M∗
u ≡ τ∗1 + τ∗2 , M∗

p ≡ τ∗3 + τ∗4 and the constants τ∗i (1 ≤ i ≤ 4) are given by

τ∗1 =
1
ν

(
MuEu(h)C2 + eu

)
/(1− κ), τ∗2 = Mu(C1τ

∗
1 + 1),

τ∗3 = Mp(C1τ
∗
1 + 1), τ∗4 = Ep(h)C2(τ∗1 + τ∗2 ) + ep.

Moreover, if f ∈ (
L2(Ω)

)2, then

‖u‖H1
0
≤ Mu‖f‖L2 ,

‖p‖L2 ≤ Mp‖f‖L2 ,

where Mu ≡ τ1 + τ2, Mp ≡ τ3 + τ4 and the constants τi (1 ≤ i ≤ 4) are given by

τ1 =
1
ν

Eu(h)
(
MuC2CPoin + 1

)
/(1− κ), τ2 = Mu(C1τ1 + CPoin),

τ3 = Mp(C1τ1 + CPoin), τ4 = Ep(h)
(
C2(τ1 + τ2) + 1

)
.

Proof : For any f ∈ X ′, define (ϕu, ϕp) ≡ B−1(f, 0) ∈ X × Y . Then, by the Fredholm
alternative theorem, the invertibility of (I − A) implies that there exists a unique element
z ∈ X × Y satisfying (I −A)z = (ϕu, ϕp). When we set

Nhz := Qhz − [I −A]−1
h Qh((I −A)z − (ϕu, ϕp)),

T z := Nhz + (I −Qh)(Az + (ϕu, ϕp)),

notice that (I − A)z = (ϕu, ϕp) is equivalent to T z = z. Using the decomposition z = zh + z∗
with zh ≡ Qhz and z∗ ≡ z −Qhz, by some simple calculations, we have

zh = [I −A]−1
h (QhAz∗ +Qh(ϕu, ϕp)),

z∗ = (I −Qh)A(zh + z∗) + (I −Qh)(ϕu, ϕp).
(3.11)
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Hence, taking the estimates in the proof of Theorem 7 and letting ϕ = ∆−1f , we have by (3.11)
[ ‖uh‖H1

0

‖ph‖L2

]
≤

[
Mu

Mp

]
(C1‖u∗‖H1

0
+ ‖Phϕ‖H1

0
)

≤
[

Mu

Mp

]
(C1‖u∗‖H1

0
+ ‖f‖H−1), (3.12)

and
[ ‖u∗‖H1

0

‖p∗‖L2

]
≤

[
ν−1Eu(h)

Ep(h)

]
C2(‖uh‖H1

0
+ ‖u∗‖H1

0
) + [‖(I −Qh)B−1(f, 0)‖]

≤
[

ν−1Eu(h)
Ep(h)

]
C2(‖uh‖H1

0
+ ‖u∗‖H1

0
) +

[
ν−1eu

ep

]
‖f‖H−1 . (3.13)

Substituting the estimate of ‖uh‖H1
0

in (3.12) into the last right-hand side of (3.13) and solving
it with respect to ‖u∗‖H1

0
, we get

‖u∗‖H1
0

=
1
ν

(
MuEu(h)C2 + eu

)
‖f‖H−1/(1− κ)

= τ∗1 ‖f‖H−1 . (3.14)

Thus, we also have by (3.12)
[ ‖uh‖H1

0

‖ph‖L2

]
≤

[
Mu

Mp

]
(C1τ

∗
1 + 1)‖f‖H−1 =

[
τ∗2
τ∗3

]
‖f‖H−1 . (3.15)

Hence, it implies that

‖p∗‖L2 =
(
Ep(h)C2(τ∗1 + τ∗2 ) + ep

)
‖f‖H−1

= τ∗4 ‖f‖H−1 . (3.16)

Therefore, from (3.14) – (3.16) and ‖u‖H1
0
≤ ‖uh‖H1

0
+ ‖u∗‖H1

0
, ‖p‖L2 ≤ ‖ph‖L2 + ‖p∗‖L2 , this

proof is completed.

4 Applications to nonlinear problems

In this section, we mention about the actual applications of the results obtained in the previous
section to the verification of solutions for the stationary Navier-Stokes equation (1.1). We assume
that a function g ∈ X(∆) satisfies g = g on ∂Ω and div g = 0 in Ω. Then, our original problem
can be written as

−ν∆u + ((u + g) · ∇)(u + g) +∇p = ν∆g in Ω,
−div u = 0 in Ω,

u = 0 on ∂Ω.
(4.1)

We transform the original stationary Navier-Stokes problem (4.1) into the so-called residual
equation by using an approximate solution (ũh, p̃h) ∈ Xh × Yh defined by

ν(∇ũh,∇vh)0 − (p̃h,div vh)0 = (ν∆g − f(ũh + g), vh)0,
(−div ũh, qh)0 = 0,

(4.2)

for all vh ∈ Xh, qh ∈ Yh, where f(u) := (u · ∇)u.
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For the effective computation of the solution for (4.2) with guaranteed accuracy, refer, for
example, [9] etc.
Next, we define (ū, p̄) ∈ X × Y by the solution of the Stokes equation:

B(ū, p̄) = (ν∆g − f(ũh + g), 0).

Further, let define residues by

u− ũh = (u− ū) + (ū− ũh), wu := u− ū, v0 := ū− ũh,
p− p̃h = (p− p̄) + (p̄− p̃h), wp := p− p̄, q0 := p̄− p̃h.

(4.3)

Note that v0 and q0 are unknown functions but its norm can be computed by an a priori and a
posteriori techniques (e.g., see [6][9][10]). Thus, concerned problem is reduced to the following
residual form

Find (wu, wp) ∈ X × Y such that
B(wu, wp) = (f(ũh + g)− f(wu + v0 + ũh + g), 0) in Ω. (4.4)

In this case, letting c := ũh + g, by using the map Φ defined in the previous section, we have

f(ũh + g)− f(wu + v0 + ũh + g) = −Φ(wu + v0)− f(wu + v0).

Hence, as in (3.1), the Newton-type residual equation for (4.4) is written as:

Find w = (wu, wp) ∈ X × Y such that
Lw ≡ Bw + Ψw = (−Φv0 − f(wu + v0), 0) in Ω. (4.5)

If L is invertible, then (4.5) is rewritten as the fixed point form

w = F (w)
(≡ L−1(−Φv0 − f(wu + v0), 0)

)
. (4.6)

The Newton-like operator F in (4.6) is compact on X × Y from the definition of f , and it is
expected to be a contraction map on some neighborhood of zero. Therefore, we consider the
candidate set Wα = Wu ×Wp for α = (αu, αp) of the form

Wu ≡ {wu ∈ X ; ‖wu‖H1
0
≤ αu},

Wp ≡ {wp ∈ Y ; ‖wp‖L2 ≤ αp}.
First, for the existential condition of solutions, based on the Schauder fixed point theorem,

we need to choose the set Wα so that:

F (Wα) ⊂ Wα. (4.7)

And next, for the proof of local uniqueness within Wα, the following contraction property is
needed:

[‖F (w1)− F (w2)‖] ≤ λ[‖w1 − w2‖], ∀w1, w2 ∈ Wα, (4.8)

for some constant 0 < λ < 1.
Taking account that f(wu + v0) ∈ X ′, by Theorem 8, a sufficient condition for (4.7) can be
written as

[‖F (Wα)‖] ≡ sup
w∈Wα

[‖F (w)‖]

≤
[ Mu

Mp

]
sup

wu∈Wu

‖Φv0‖L2 +
[ M∗

u

M∗
p

]
sup

wu∈Wu

‖f(wu + v0)‖H−1

≤ α, (4.9)
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where (Mu,Mu) and (M∗
u,M∗

u) are the constants defined in Theorem 8.

Further we have the following estimates

‖Φv0‖L2 = ‖(c · ∇)v0 + (v0 · ∇)c‖L2

≤ (Kc + CL4K∂c) ‖v0‖H1
0
,

‖f(wu + v0)‖H−1 = ‖(v0 · ∇)v0 + (wu · ∇)v0 + (v0 · ∇)wu + (v0 · ∇)v0‖H−1

≤ C2
L4

(
‖wu‖H1

0
+ ‖v0‖H1

0

)2

≤ C2
L4

(
αu + ‖v0‖H1

0

)2
.

Hence, we can rewrite the existential condition (4.9) as


 M∗

uC2
L4

(
αu + ‖v0‖H1

0

)2
+Mu

(
Kc + CL4K∂c

)
‖v0‖H1

0

M∗
pC

2
L4

(
αu + ‖v0‖H1

0

)2
+Mp

(
Kc + CL4K∂c

)
‖v0‖H1

0


 <

[
αu

αp

]
.

From above, we obtain the local uniqueness condition (4.8) with λ by

λ ≡ 2M∗
uC2

L4

(
αu + ‖v0‖H1

0

)
< 1.

5 Numerical examples

In this section, we present numerical examples for the stationary Navier-Stokes equation related
to a mathematical model of the step flow problem. In such a case, it should be natural to take a
domain as Ω = (0, A)×(0, B) \ [0, a]× [0, b], where the constants A, B, a and b satisfy 0 < a < A
and 0 < b < B.
The boundary vector function g = (g1, g2) is given as

g1 ≡ g1(x, y) =





(B − y)(y − b)/(B − b)3 if x = 0,
(B − y)(y − 0)/(B − 0)3 if x = A,

0 otherwise,
(5.1)

g2 ≡ g2(x, y) = 0 on ∂Ω, respectively. In particular, we choose that A = 2, B = 1 and
a = b = 0.5.

Notice that the function g1 satisfies the following relation which corresponding to the incom-
pressibility condition.

∫ B

b
g1(0, y) dy =

∫ B

0
g1(A, y) dy.

For this example, we can present a C3-class stream function ψ such that g = (ψy,−ψx) in (4.1)
for the boundary vector function g in (5.1). Namely, setting functions f5− , f5+ , f5 and f3 which
are defined by

f3 ≡ f3(y, k) = − 1
6k3

(2y − 3k)y2, f5+ ≡ f5+(x, k) = − 1
k5

(4x− 5k)x4,

f5 ≡ f5(y, k) = − 1
6k5

(4y − 5k)y4, f5− ≡ f5−(x, k) =
1
k5

(4x + k)(x− k)4,
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Figure 1: Image of ψ

the stream function ψ ≡ ψ(x, y) is given by (see Figure 1)

ψ(x, y) =





f5+(x− a,A− a)f3(y, B) +
(
1− f5+(x− a,A− a)

)
f5(y − b,B − b) in Ω1

f5+(x− a,A− a)f3(y, B) in Ω2

f5−(x, a)f3(y − b,B − b) +
(
1− f5−(x, a)

)
f5(y − b,B − b) in Ω3

where Ω1 = [a,A]× [b,B], Ω2 = [a,A]× [0, b] and Ω3 = [0, a]× [b,B].
We show several computational results for the constructive a priori constants in Theorem 4

and Corollary 5 by Table 1 in which the constant β is calculated by the method in [6].

1/h Eu(h) Ep(h) η σ C(h)
50 1.1952e-1 1.6799e-0 6.4993 6.4218e-3/ν 0.013355
100 9.2643e-2 1.2592e-0 9.0065 4.0168e-3/ν 0.008312
1/h eu(h) ep(h) η̂ σ̂ β

50 min(16.2156, 2) 224.65 526.37 1.3869/ν 10.1572
100 min(15.9978, 2) 220.09 791.63 1.3869/ν 10.1572

Table 1: Numerical results for the a priori constant

Notice that the a priori constant C(h) for the H1
0 -projection in Assumption 1 is obtained by the

procedure which is presented in [10]. Table 2 shows the verification results for the stationary
Navier-Stokes equation (1.1) with the boundary condition (5.1). Figure 2 illustrates the contour
of stream lines of approximate solution for this problem.

1/h M∗
u Mu Mu κ ‖v0‖H1

0
αu

100 0.2621 0.0615 0.1416 0.0223 6.5026e-1 1.0902e-1

Table 2: Numerical results for ν = 10

All computations in tables are carried out on the Dell Precision 650 Workstation Intel Xeon
Dual CPU 3.20GHz by MATLAB.
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