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Abstract

We consider high dimensional integration in a broad class of functions where all
elements have maximum effective dimension. We show that there exists an exact
cubature with only two points. Therefore, not only the convergence but also the
worst case error of quasi-Monte Carlo need not depend on the effective dimension
at all.
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1 Introduction

About ten years ago the effective dimension was proposed in [1] as an indicator
of the difficulty of high dimensional integration. The purpose was to explain
the remarkable success of quasi-Monte Carlo (QMC) in approximating very
high dimensional integrals in finance [10,15]. The authors of [1] argued that
the integrands are of low effective dimension and that is why QMC is much
faster than Monte Carlo (MC).

Defining a notion such as the effective dimension is an attempt to model re-
ality [5]. A function, of d variables, that is equal to the sum of d functions of
a single variable is one dimensional in a sense. It turns out that the effective
dimension of this function is equal to 1 and, generally, QMC is quite success-
ful in approximating the integrals of functions of a single variable. On the
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other hand, it is known that QMC fails for certain functions that have high
effective dimension. Owen [7] has pointed out that low effective dimension is
not a sufficient condition for QMC integration to beat MC and additional as-
sumptions are required, such as smoothness. So, is low effective dimension a
necessary condition for QMC to beat MC or for high dimensional integration
to be tractable? 1 Is it necessary for the worst case error of QMC to depend
on the effective dimension?

The first question was only recently settled [16], as we will explain below.
Some earlier papers, e.g., [4,9,11,12], showed that multivariate integration is
tractable and that QMC converges fast for a number of classes of high dimen-
sional integrands. Nevertheless, the impact of the arguments in [1] was great,
a number of papers dealt with the relationship between the error of QMC and
the effective dimension, e.g. [3,18], and a number of researchers believed the
answer to the questions above was positive. For instance, the authors of [2,
p. 595] state they accept the assertion in [1] and, in their opinion also, the rea-
son for the success of QMC is the low effective dimension (in the superposition
sense) of the integrands. Recently, Tezuka [16] showed a class of functions of
d variables, all having maximum effective dimension equal to d, for which the
QMC convergence rate is n−1, where n is the number of function evaluations.
Hence, QMC can beat MC and high dimensional integration is tractable for
functions of high effective dimension.

In this companion paper we show that it is not only the convergence of QMC
that need not depend on the effective dimension but also its worst case error,
which can be zero for functions of maximum effective dimension. For any
d ≥ 1, we construct a broad class of functions (of d variables,) all having
maximum effective dimension equal to d, for which the integration problem
is solved exactly by a cubature with two points only. Hence, we have a QMC
algorithm, in the sense that it is the average of two function evaluations at
deterministic points, that has zero worst case error.

2 Background

We begin with the ANOVA (analysis of variance) decomposition of a function
of d variables. Consider a square integrable function f : [0, 1]d → R. Let
u ⊆ {1, 2, ..., d} be a subset of the coordinates of [0, 1]d, let ū = {1, 2, ..., d}−u
be its complement, and denote by |u| the cardinality of u. For X = {x1, ..., xd}
let Xu = {xj ; j ∈ u}. The ANOVA decomposition of f (see, e.g. [6]) is defined

1 See [11] for the definition of tractability.
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by

f(x1, ..., xd) =
∑

u⊆{1,2,...,d}
αu(x1, ..., xd),

where the sum is over all 2d subsets of coordinates of [0, 1]d. The terms
αu(x1, ..., xd) are defined recursively starting with

α∅(x1, ..., xd) := I(f) ≡
∫
[0,1]d

f(z1, ..., zd)dz1...dzd,

and for 0 < |u| < d

αu(x1, ..., xd) :=
∫

Zu=Xu,Z ū∈[0,1]ū
(f(z1, ..., zd) −

∑
v⊂u

αv(z1, ..., zd))
∏
j∈ū

dzj,

where the sum is over proper subsets v �= u. When u = {1, ..., d},

α{1,...,d}(x1, ..., xd) = f(x1, ..., xd) −
∑

v⊂{1,...,d}
αv(x1, ..., xd).

Each of the αu(x1, ..., xd) is the effect of the subset Xu on f(x1, ..., xd) minus
the effects of its proper subsets Xv with v ⊂ u. The functions αu(x1, ..., xd)
have the following properties:

• Let i ∈ u. If we fix all the xj , j �= i, then

∫ 1

0
αu(x1, ..., xd)dxi = 0.

Thus, when ∅ �= u ⊂ {1, ..., d},
∫
[0,1]d

αu(x1, ..., xd)dx1...dxd = 0.

• When u �= v,

∫
[0,1]d

αu(x1, ..., xd)αv(x1, ..., xd)dx1...dxd = 0.

Hence, the variance of f(x1, ..., xd) is given by

σ2 =
∫
[0,1]d

(f(x1, ..., xd) − α∅(x1, ..., xd))
2dx1...dxd =

∑
|u|>0

σ2
u,

where

σ2
u := σ2(αu) =

⎧⎨
⎩0 if u = ∅,∫

[0,1]d αu(x1, ..., xd)
2dx1...dxd otherwise .
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The definition of the effective dimension was introduced in two ways in [1]:

Truncation sense:

Dtrunc := min{i : 1 ≤ i ≤ d such that
∑

u⊆{1,2,...,i}
σ2

u ≥ (1 − ε)σ2}.

Superposition sense:

Dsuper := min{i : 1 ≤ i ≤ d such that
∑
|u|≤i

σ2
u ≥ (1 − ε)σ2}.

In practice the value of ε is often chosen to be 0.01. Nevertheless, ε can be set
to any value in [0, 1) (the case ε = 1 is not interesting.) As pointed out in [3],
(1 − ε) reflects a proportion of the variance and one can choose to study how
different proportions of the variance are affected by different values of Dtrunc

or Dsuper, and vice versa.

3 Functions with the maximum effective dimension

Let us first introduce the following functions of d variables:

Definition 1 Let φ : [0, 1]d → R be such that

φ(x1, ..., xd) =
d∏

i=1

ri(xi),

where ri : [0, 1] → R, 1 ≤ i ≤ d, are continuous functions such that

∫ 1

0
ri(xi)dxi = 0.

In addition, r1(x) is antisymmetric about 1/2, i.e, for 0 ≤ x < 1/2, r1(1−x) =
−r1(x).

For instance, r1 can be the one of the functions sin(2jπx), j = 1, 2, . . . , and
the ri, i > 1, can be periodic trigonometric functions with integral zero; such
functions are frequently encountered in physics.

We now define the class Fd of functions in d dimensions.

Definition 2 Let φk : [0, 1]d → R, k = 1, 2, . . . , be functions that satisfy
Definition 1. Assume that the φk, k = 1, 2, . . . , along with the identity function
are linearly independent. Let Fd be the class of all functions f : [0, 1]d → R
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such that

f = c0 +
∞∑

k=1

ckφk,

with ck ∈ R, k = 0, 1, . . . , and

‖f‖ =

{∫
[0,1]d

f 2(x) dx

}1/2

≤ 1.

Let’s consider the ANOVA decomposition of f ∈ Fd. We have

α∅(x1, ..., xd) =
∫
[0,1]d

f(x1, ..., xd)dx1...dxd = c0.

By Definition 2, for ∅ �= u ⊂ {1, ..., d} we have

αu(x1, ..., xd) ≡
∫

Zu=Xu,Z ū∈[0,1]ū
(f(z1, ..., zd) −

∑
v⊂u

αv(z1, ..., zd))
∏
j∈ū

dzj

=
∫

Zu=Xu,Z ū∈[0,1]ū
(f(z1, ..., zd) − c0)

∏
j∈ū

dzj

=
∫

Zu=Xu,Z ū∈[0,1]ū

∞∑
k=1

ckφk(z1, ..., zd)
∏
j∈ū

dzj

=
∞∑

k=1

ck

∫
Zu=Xu,Z ū∈[0,1]ū

φk(z1, ..., zd)
∏
j∈ū

dzj = 0

and
α{1,...,d}(x1, ..., xd) = f(x1, ..., xd) − c0.

Thus, we have σ(f) = σ{1,...,d}.

Theorem 1 For any function f ∈ Fd, its effective dimension, whether in the
truncation or in the superposition sense, is equal to d.

Note that the above theorem holds for every ε ∈ [0, 1) in the definition of ef-
fective dimension, i.e., the effective dimension is d regardless of the proportion
of the variance that one may choose to consider.

3.1 Exact cubature with two points

We are now ready to show that although the effective dimension of all functions
in the class Fd is d, they can be integrated exactly by a cubature with two
points.

Theorem 2 There exists an exact cubature with two points for the integration
of any function f ∈ Fd.
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Proof. By definition any function f ∈ Fd is given by

f(x1, ..., xd) = c0 +
∞∑

k=1

ck

d∏
i=1

r
(k)
i (xi).

Take a point (s1, ..., sd) ∈ [0, 1]d with s1 < 1/2. Consider the following cubature
with two points

Q2(f) ≡ 1

2
(f(s1, s2, ..., sd) + f(1 − s1, s2, ..., sd))

= c0 +
∞∑

k=1

ck

⎛
⎝r

(k)
1 (s1) + r

(k)
1 (1 − s1)

2

d∏
i=2

r
(k)
i (si)

⎞
⎠ ,

then we have ∫
[0,1]d

f(x1, ..., xd)dx1...dxd = c0 = Q2(f),

because r
(k)
1 (x), k = 1, . . . , are antisymmetric from Definition 1. This com-

pletes the proof. �

We see that functions of high effective dimension can be very easy to integrate
in the worst case. Moreover, we can expand our class of functions by slightly
modifying the two definitions so as to include piecewise continuous square
integrable functions that may have singularities on subsets of [0, 1]d which
have Lebesgue measure zero. For instance, this would allow us to include
functions that depend on the inverse of the standard normal distribution in
some of the dimensions; such functions are common in finance. Unless the
singularities are known we cannot consider deterministic algorithms that use
function evaluations for the integration problem, but randomized algorithms
can be used instead. We can choose the sample points at random with uniform
distribution and then apply the cubature of Theorem 2. Thus we obtain a
Monte Carlo algorithm with variance reduction that solves the integration
problem exactly. But even if one considers randomized algorithms only, why
should the effective dimension, a quantity defined through the variance of a
function, be the indicator of the difficulty of high dimensional integration when
the error need not depend on the variance at all?

4 Discussion

Global sensitivity based on ANOVA was proposed by Sobol’ in 1990 [13,14] to
consider the global importance of variables, of a multivariate function, on the
function itself. The notion of effective dimension [1,8] is essentially the same as
global sensitivity, but it is more quantitative aiming to measure how important
is each subset of variables on the function. As mentioned in Introduction, the
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notion of effective dimensions was developed for the purpose of explaining
why QMC beats MC by a wide margin for some high dimensional integration
problems in finance.

We have shown that it is possible to have functions of maximum effective di-
mension for which the integration problem can be solved exactly. This totally
contradicts what we want to imply by the effective dimension since, presum-
ably, a high effective dimension should imply that a problem is hard to solve.
Clearly a different definition of the effective dimension is needed.

Some useful insight into factors that characterize the nature of the functions is
provided by considering the approximation problem. Suppose we are interested
in the L2 approximation of a function f ∈ Fd. Then the zero algorithm is
optimal and its worst case error is 1, which suggests that the class of functions
is too broad and needs to be restricted.

For this we follow the approach in [17, p. 121]. For simplicity let us as-
sume that the φk, k = 1, 2, . . . , is an orthonormal family of functions, i.e.,∫
[0,1]d φk(x)φi(x) dx = δk,i. Definitions 1 and 2 ensure that by including the

identity function in this family the functions remain orthonormal.

The restriction of the class of functions can be obtained through an opera-
tor of the form Tf = β0c0 +

∑∞
k=1 βkckφk, where the βk ∈ R, |βk| ≤ |βk+1|,

k = 0, 1, . . . , and where the L2 norm of Tf satisfies ‖Tf‖ ≤ 1. Observe
that c0 =

∫
[0,1]d f(x) dx and the ck =

∫
[0,1]d f(x)φk(x) dx, are continuous linear

functionals, k = 1, 2, . . . . Among all algorithms that use information about f
composed of n evaluations of continuous linear functionals the optimal algo-
rithm that uses optimal information is f̂ = c0 +

∑n−1
k=1 ckφk and its worst case

error is |βn|−1. The convergence of |βn|−1 as n → ∞ and its dependence on
d are important for the worst case error. To be able to solve the problem for
any desired accuracy we need |βn| → ∞ as n → ∞.

On the other hand, if we use function evaluations to approximate f and even
if we can approximate the integrals ck, k = 0, . . . , n, exactly the worst case
error will be at least |βn|−1. (Observe that in our case c0 is the integral of
f and we can approximate it exactly using two function evaluations.) Hence,
the choice of the restriction operator T determines the worst case error of the
optimal algorithm and thereby the problem difficulty.

Depending on the choice of the φk, k = 1, 2, . . . , an option is to use smoothness
to restrict the class of functions. One can define the βk, k = 1, 2, . . . , in a
way analogous to requiring that the L2 norm of a certain derivative of f
be bounded, say, by 1 (β0 can be set to any convenient value since c0 can be
computed exactly.) If the βk are supposed to control a certain rate of growth of
f then they can depend on some interaction of l ≤ d dimensions. In this sense,
l can be considered as the effective dimension. However, it is not necessary to
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restrict the class of functions using smoothness to define the βk’s. Moreover,
the βk can be totally independent of d while we still have |βn| → ∞ as n → ∞.

Therefore, the nature of the functions under consideration is characterized
by Definitions 1 and 2, and by the restriction operator T (in terms of the
choice of the βk, k = 0, 1, . . . .) This is missed by the definition of the effective
dimension, which is equal to d for an easy integration problem and regardless
of the difficulty of the approximation problem.
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Complexity, 20, 5, (2004), 593-623.

[3] F. J. Hickernell, Lattice rules: how well do they measure up?, in P. Hellekalek
and G. Larcher (Eds.), Random and Quasi-Random Point Sets, Springer, (1998),
109-166.

[4] F. J. Hickernell and X. Wang, The error bounds and tractability of quasi-Monte
Carlo algorithms in infinite dimensions, Math. Comp., 71, 240, (2001), 1641-1661.

[5] F. Y. Kuo and I. H. Sloan, Lifting the curse of dimensionality, University of New
South Whales, preprint, (2005).

[6] A. B. Owen, Monte Carlo Variance of scrambled net quadrature, SIAM Journal
on Numerical Analysis, 34 (1997), 1884-1910.

[7] A. B. Owen, Necessity of low effective dimension, manuscript, 2002.

[8] A. B. Owen, The dimension distribution, and quadrature test functions, Statistica
Sinica, 13 (2003), 1-17.

[9] A. Papageorgiou, Sufficient conditions for fast quasi-Monte Carlo convergence,
J. Complexity, 19, 3, (2003), 332-351.

[10] S. H. Paskov, New methodologies for valuing derivatives, In M. A. H. Dempster
and S. Pliska (eds.), Mathematics of Derivative Securities, Cambridge University
Press (1997), 545-582.
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MHF2004-4 Atsushi KAWAGUCHI, Koji YONEMOTO & Takashi YANAGAWA
Estimating the correlation dimension from a chaotic system with dynamic
noise

MHF2004-5 Atsushi KAWAGUCHI, Kentarou KITAMURA, Koji YONEMOTO, Takashi
YANAGAWA & Kiyofumi YUMOTO
Detection of auroral breakups using the correlation dimension

MHF2004-6 Ryo IKOTA, Masayasu MIMURA & Tatsuyuki NAKAKI
A methodology for numerical simulations to a singular limit

MHF2004-7 Ryo IKOTA & Eiji YANAGIDA
Stability of stationary interfaces of binary-tree type

MHF2004-8 Yuko ARAKI, Sadanori KONISHI & Seiya IMOTO
Functional discriminant analysis for gene expression data via radial basis ex-
pansion

MHF2004-9 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA &
Yasuhiko YAMADA
Hypergeometric solutions to the q‐Painlevé equations
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Degenerate Gauss hypergeometric functions

MHF2004-26 Ryo IKOTA
The boundedness of propagation speeds of disturbances for reaction-diffusion
systems

MHF2004-27 Ryusuke KON
Convex dominates concave: an exclusion principle in discrete-time Kolmogorov
systems



MHF2004-28 Ryusuke KON
Multiple attractors in host-parasitoid interactions: coexistence and extinction

MHF2004-29 Kentaro IHARA, Masanobu KANEKO & Don ZAGIER
Derivation and double shuffle relations for multiple zeta values

MHF2004-30 Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Generalized partitioned quantum cellular automata and quantization of clas-
sical CA

MHF2005-1 Hideki KOSAKI
Matrix trace inequalities related to uncertainty principle

MHF2005-2 Masahisa TABATA
Discrepancy between theory and real computation on the stability of some
finite element schemes

MHF2005-3 Yuko ARAKI & Sadanori KONISHI
Functional regression modeling via regularized basis expansions and model
selection

MHF2005-4 Yuko ARAKI & Sadanori KONISHI
Functional discriminant analysis via regularized basis expansions

MHF2005-5 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA &
Yasuhiko YAMADA
Point configurations, Cremona transformations and the elliptic difference Painlevé
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equation

MHF2005-14 Masato KIMURA & Shin-ichi NAGATA
Precise asymptotic behaviour of the first eigenvalue of Sturm-Liouville prob-
lems with large drift

MHF2005-15 Daisuke TAGAMI & Masahisa TABATA
Numerical computations of a melting glass convection in the furnace

MHF2005-16 Raimundas VIDŪNAS
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