A DUALITY THEORY BASED ON TRIANGULAR CYLINDERS SEPARATING THREE CONVEX SETS IN \＄R＾N \＄

Kawasaki，Hidefumi
Faculty of Mathematics，Kyushu University

https：／／hdl．handle．net／2324／3381

出版情報 ：MHF Preprint Series．MHF 2006－5，2006－01－31．Faculty of Mathematics，Kyushu University
バージョン：
権利関係：

MHF Preprint Series

Kyushu University
21st Century COE Program
Development of Dynamic Mathematics with High Functionality

A duality theory based on triangular cylinders separating three convex sets in R^{n}

H. Kawasaki

MHF 2006-5
(Received January 31, 2006)

Faculty of Mathematics
Kyushu University
Fukuoka, JAPAN

A DUALITY THEORY BASED ON TRIANGULAR CYLINDERS SEPARATING THREE CONVEX SETS IN $R^{N *}$

H. KAWASAKI ${ }^{\dagger}$

Abstract

Separation theorems play the central role in the duality theory. Recently, we proposed a duality theorem for a three-phase partition problem in [7]. It is based on triangles separating three convex sets in R^{2}. The aim of this paper is to extend the duality theorem to R^{n}.

Key words. duality theorem, triangular cylinder, partition problem, separation theorem

AMS subject classifications. $49 \mathrm{~K} 10,90 \mathrm{C} 30,26 \mathrm{~B} 99$

1. Introduction. The three-phase partition problem is to divide a given domain $\Omega \subset R^{2}$ into three subdomains with a triple junction having least interfacial area (Fig.1.1).

Fig. 1.1. Three-phase partition problem

Sternberg and Zeimer [10] and Ikota and Yanagida [4] formulated this problem as variational problems and discussed stability of stationary solutions. However, since the shortest curve joining two points X_{0} and X_{i} is the line segment $X_{0} X_{i}$, they can be formulated as extremal problems in a Euclidean space. From this point of view, we discussed stability and studied its game-theoretic aspect in [5][6]. Further, we gave a duality theorem for an extremal problem $\left(P_{0}\right)$ below induced from the three-phase partition problem in [7].

Fig. 1.2. Primal problem (P_{0})

[^0]$\left(P_{0}\right)$
\[

$$
\begin{array}{ll}
\text { Minimize } & f\left(X_{0}, \ldots, X_{3}\right):=\sum_{i=1}^{3}\left\|X_{i}-X_{0}\right\| \\
\text { subject to } & X_{0} \in \Omega, X_{i} \in C_{i}(i=1,2,3),
\end{array}
$$
\]

where $\|\cdot\|$ denotes the Euclidean norm and $C_{i}(i=1,2,3)$ are closed convex sets with non-empty interior in R^{2} such that $\Omega:=\operatorname{cl}\left(\cap_{i=1}^{3} C_{i}^{c}\right)$ is not empty (Fig. 1.2). The main aim of this paper is to extend the duality theorem (Theorem 2.3 below) to R^{n}.

This paper is organized as follows. In Section 2, we briefly review the first-order optimality condition for the primal problem $\left(P_{0}\right)$ and the duality theorem given in [7]. In Section 3, we give a first-order optimality condition for the primal problem in R^{n}. In Section 4, we introduce the notion of separating three convex sets by a triangular cylinder in R^{n} to define the dual problem, and show the strong duality.

We close this section with our notations. For any closed convex sets C_{1} and C_{2}, we define $d\left(C_{1}, C_{2}\right):=\inf \left\{\left\|X_{1}-X_{2}\right\| \mid X_{i} \in C_{i}(i=1,2)\right\}$. We denote by $N\left(X_{i} ; C_{i}\right)$ the normal cone of C_{i} at X_{i}, that is, $N\left(X_{i} ; C_{i}\right):=\left\{Y \in R^{n} \mid Y^{T}\left(X-X_{i}\right) \leq 0 \forall X \in C_{i}\right\}$.
2. Preliminaries. As is easily seen from Fig. $1.2, \Omega$ is not always a convex set. So the primal problem $\left(P_{0}\right)$ is not a convex programming problem. We modify it so that it becomes a convex programming problem.

$$
\begin{array}{ll}
\text { Minimize } & \sum_{i=1}^{3}\left\|X_{i}-X_{0}\right\| \tag{P}\\
\text { subject to } & X_{0} \in R^{2}, X_{i} \in C_{i}(i=1,2,3)
\end{array}
$$

The only difference is that Ω is replaced by the whole space R^{2}. We say a feasible solution $\left(X_{0}, \ldots, X_{3}\right)$ for $\left(P_{0}\right)$ (or $\left.(P)\right)$ non-degenerate if $X_{i} \neq X_{j}$ for any $i \neq j$. The following is a straightforward consequence of Torricelli's Theorem and the projection theorem on the convex set C_{i}.

ThEOREM 2.1. Let $\left(X_{0}, \ldots, X_{3}\right)$ be a non-degenerate minimal solution for $\left(P_{0}\right)$ (or (P)). Then it satisfies

$$
\begin{equation*}
\angle X_{i} X_{0} X_{j}=2 \pi / 3 \text { for any } i \neq j \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{0}-X_{i} \in N\left(X_{i} ; C_{i}\right) \quad(i=1,2,3) \tag{2.2}
\end{equation*}
$$

Fig. 2.1. First-order optimality conditions

Lemma 2.2. ([7]) When Ω is a triangle in R^{2}, it holds that

$$
\min (P)=\min \left(P_{0}\right)=\text { the smallest height of } \Omega .
$$

We say that a triangle $\Delta \subset \Omega$ separates $\left\{C_{i}\right\}_{i=1}^{3}$ if there are three closed half spaces $\left\{H_{i}^{-}\right\}_{i=1}^{3}$ such that $C_{i} \subset H_{i}^{-}$for every i and $\Delta=\cap_{i=1}^{3} H_{i}^{+}$, where H_{i}^{+}denotes the closed half space opposite to H_{i}^{-}(Fig. 2.2).

Fig. 2.2. Δ_{1} separates $\left\{C_{i}\right\}_{i=1}^{3}$, and Δ_{2} does not separate $\left\{C_{i}\right\}_{i=1}^{3}$.
Then the dual problem is defined as follows.
(D) Maximize the smallest height of a triangle that separates $\left\{C_{i}\right\}_{i=1}^{3}$.

THEOREM 2.3. ([y]) If $\left(P_{0}\right)$ (or (P)) has a non-degenerate minimal solution, then

$$
\begin{equation*}
\max (D)=\min (P)=\min \left(P_{0}\right) \tag{2.3}
\end{equation*}
$$

3. The primal problem in R^{n}. In this section, we extend Theorem 2.1 to R^{n}. Let $C_{i}(i=1,2,3)$ be closed convex sets with non-empty interior in R^{n} such that $\Omega=\operatorname{cl}\left(\cap_{i=1}^{3} C_{i}^{c}\right)$ is not empty. Then $\left(P_{0}\right)$ and (P) are defined as well as in Sections 1 and 2 , respectively, where the base space is R^{n}.

FIG. 3.1. The primal problem (P) in R^{3}.
Theorem 3.1. Let $\left(X_{0}, \ldots, X_{3}\right)$ be a non-degenerate minimal solution for $\left(P_{0}\right)$. Then X_{i} 's are on a two-dimensional affine set and $\left(X_{0}, \ldots, X_{3}\right)$ satisfies (2.1) and (2.2). Further, it is a minimum solution for (P).

Proof. According to Kuhn-Tucker's theorem, see e.g. Rockafellar (Ref. 6, Section 28), there exist multipliers $\lambda_{i} \geq 0(i=1,2,3)$ such that $0 \in R^{4 n}$ belongs to the subdifferential of the Lagrange function $L\left(X_{0}, \ldots, X_{3}\right):=\sum_{i=1}^{3}\left\|X_{i}-X_{0}\right\|+$ $\sum_{i=1}^{3} \lambda_{i} \delta\left(X_{i} \mid C_{i}\right)$, where $\delta\left(X_{i} \mid C_{i}\right)$ denotes the characteristic function of C_{i}. Picking up X_{0}-component of the subdifferential ∂L, we have

$$
\begin{equation*}
n_{1}+n_{2}+n_{3}=0 \in R^{n} \tag{3.1}
\end{equation*}
$$

where $n_{i}:=\left(X_{0}-X_{i}\right) /\left\|X_{i}-X_{0}\right\|$, which implies the first assertion. From (3.1), $\left\|n_{k}\right\|^{2}=\left\|n_{i}\right\|^{2}+\left\|n_{j}\right\|^{2}+2 n_{i}^{T} n_{j}$ for any $\{i, j, k\}=\{1,2,3\}$. Thus $n_{i}^{T} n_{j}=-1 / 2$, which implies (2.1). Picking up X_{i}-component $(i=1,2,3)$ of ∂L, we have $0 \in-n_{i}+$ $\lambda_{i} N\left(X_{i} ; C_{i}\right)$, which implies (2.2). Next, there exists an open convex neighborhood C_{0} of X_{0} such that $\left(X_{0}, \ldots, X_{3}\right)$ is a minimum point of f on $C:=C_{0} \times C_{1} \times C_{2} \times C_{3}$. Since f and C are convex, $\left(X_{0}, \ldots, X_{3}\right)$ is a minimum point of f on $R^{n} \times C_{1} \times C_{2} \times C_{3}$. Hence it is a minimum solution for (P).
4. Duality theorem. In this section, we first introduce the notion of separation of three convex sets by a triangular cylinder. Next, we define the dual problem and show strong duality.

Definition 4.1. Let $n_{i}(i=1,2,3)$ be nonzero (unit) vectors in R^{n} satisfying (3.1), and $\alpha_{i}(i=1,2,3)$ negative real numbers. Define

$$
\begin{equation*}
H_{i}^{+}:=\left\{\xi \in R^{n} \mid n_{i}^{T} \xi \geq \alpha_{i}\right\} \tag{4.1}
\end{equation*}
$$

$H_{i}^{-}:=\left\{\xi \in R^{n} \mid n_{i}^{T} \xi \leq \alpha_{i}\right\}$, and $H_{i}:=H_{i}^{+} \cap H_{i}^{-}$for any $i=1,2,3$. Then we call a shifted figure of $H_{1}^{+} \cap H_{2}^{+} \cap H_{3}^{+}$a (regular) triangular cylinder, see Fig. 4.1. (Here we remark that the origin of R^{n} belongs to $H_{1}^{+} \cap H_{2}^{+} \cap H_{3}^{+}$.) Further, we say a triangular cylinder $H_{1}^{+} \cap H_{2}^{+} \cap H_{3}^{+}+X$ separates three convex sets $\left\{C_{i}\right\}_{i=1}^{3}$ if $C_{i} \subset H_{i}^{-}+X$ for any $i=1,2,3$. Let $M:=\cap_{i=1}^{3}\left\{\xi \in R^{n} \mid n_{i}^{T} \xi=0\right\}$ and

$$
\begin{equation*}
N:=M^{\top}=\left\{X \in R^{n} \mid \xi^{T} X=0 \quad \forall \xi \in M\right\} \tag{4.2}
\end{equation*}
$$

Then, by (3.1), N is a 2-dimensional subspace, and

$$
\begin{equation*}
\Delta:=N \cap\left(H_{1}^{+} \cap H_{2}^{+} \cap H_{3}^{+}\right) \tag{4.3}
\end{equation*}
$$

is a (regular) triangle. We call the smallest height of Δ the width of the triangular cylinder $H_{1}^{+} \cap H_{2}^{+} \cap H_{3}^{+}+X$.

Fig. 4.1. Regular triangular cylinder in R^{3}
Our dual problem is defined as follows.
$(D) \quad$ Maximize the width of a triangular cylinder that separates $\left\{C_{i}\right\}_{i=1}^{3}$.
Theorem 4.2. (Weak duality)

$$
\begin{equation*}
\sup (D) \leq \inf (P) \leq \inf \left(P_{0}\right) \tag{4.4}
\end{equation*}
$$

Proof. Second inequality is trivial. Let $\left(Y_{0}, \ldots, Y_{3}\right)$ be a feasible solution for (P), and $H_{1}^{+} \cap H_{2}^{+} \cap H_{3}^{+}+X$ a feasible solution for (D). Then $Y_{i} \in C_{i} \subset H_{i}^{-}+X$ for any $i=1,2,3$. Hence

$$
\left\|Y_{0}-Y_{i}\right\| \geq d\left(Y_{0}, H_{i}^{-}+X\right)=d\left(Y_{0}-X, H_{i}^{-}\right)=d\left(P_{N}\left(Y_{0}-X\right), H_{i}^{-}\right)
$$

where P_{N} denotes the projection to N defined by (4.2). Hence

$$
\begin{aligned}
\sum_{i=1}^{3}\left\|Y_{0}-Y_{i}\right\| & \geq \sum_{i=1}^{3} d\left(P_{N}\left(Y_{0}-X\right), H_{i}^{-}\right) \\
& =\min \left\{\sum_{i=1}^{3}\left\|P_{N}\left(Y_{0}-X\right)-X_{i}\right\| \mid X_{i} \in H_{i}^{-} \quad(i=1,2,3)\right\} \\
& \geq \min \left\{\sum_{i=1}^{3}\left\|X_{0}-X_{i}\right\| \mid X_{i} \in H_{i}^{-}(i=1,2,3), X_{0} \in N\right\} \\
& \geq \text { the smallest height of the triangle } \Delta \text { defined by }(4.3) \\
& =\text { the width of } H_{1}^{+} \cap H_{2}^{+} \cap H_{3}^{+}+X
\end{aligned}
$$

where the last inequality follows from Lemma 2.2 . Hence we get $\sup (D) \leq \inf (P)$.
Theorem 4.3. (Strong duality) If $\left(P_{0}\right)($ or $(P))$ has a non-degenerate minimal solution, then it holds that

$$
\begin{equation*}
\max (D)=\min (P)=\min \left(P_{0}\right) \tag{4.5}
\end{equation*}
$$

Proof. Second equality follows from Theorem 3.1. Let $\left(X_{0}, \ldots, X_{3}\right)$ be a nondegenerate minimal solution for $\left(P_{0}\right)$. Then, the regular triangular cylinder $H_{1}^{+} \cap$ $H_{2}^{+} \cap H_{3}^{+}+X_{0}$ determined by $n_{i}:=\left(X_{0}-X_{i}\right) /\left\|X_{i}-X_{0}\right\|$ and $\alpha_{i}:=-\left\|X_{i}-X_{0}\right\|$ separates $\left\{C_{i}\right\}_{i=1}^{3}$. Indeed, it follows from (2.2) that $n_{i}^{T} X \leq n_{i}^{T} X_{i}$ for any $X \in C_{i}$, so that

$$
n_{i}^{T}\left(X-X_{0}\right) \leq n_{i}^{T}\left(X_{i}-X_{0}\right)=-\left\|X_{i}-X_{0}\right\|=\alpha_{i}
$$

Namely, $C_{i}-X_{0}$ is contained in H_{i}^{-}. Moreover, since $X_{i}(i=0,1,2,3)$ belong to the regular triangle $\Delta+X_{0}$, it follows from Lemma 2.2 that $\sum_{i=1}^{3}\left\|X_{0}-X_{i}\right\|$ is equal to the width of the regular triangular cylinder $H_{1}^{+} \cap H_{2}^{+} \cap H_{3}^{+}+X_{0}$. Therefore we get (4.5).

REmaRk 4.1. We can replace triangular cylinders by regular triangular cylinders in the dual problem (D), because the maximum value is attained by a regular triangular cylinder. However, it is clear that regular triangular cylinders are not enough when Ω is a non-regular triangular cylinder. That's why we defined the dual problem with (general) triangular cylinders.
5. Extension to the weighted objective function. In [4], the objective function was weighted. It is not hard to extend the present results to the weighted objective function

$$
\sum_{i=1}^{3} \sigma_{i}\left\|X_{i}-X_{0}\right\|
$$

where $\sigma_{i}>0(i=1,2,3)$ can be interpreted as interface tension, see Fig. 5.1. We impose an assumption that $\sigma_{i}<\sigma_{j}+\sigma_{k}$ for any $\{i, j, k\}=\{1,2,3\}$. If this assumption is violated, the primal problem does not have any non-degenerate minimal solution, see (5.2) below. We denote $\left(P_{0}\right)$ and (P) with weighted objective function by $\left(P_{0}^{\sigma}\right)$ and $\left(P^{\sigma}\right)$, respectively.

FIG. 5.1. $\sigma_{i}>0(i=1,2,3)$ can be regarded as interface tensions.
THEOREM 5.1. Let $\left(X_{0}, \ldots, X_{3}\right)$ be a non-degenerate minimal solution for $\left(P_{0}^{\sigma}\right)$. Then it is a minimum solution for $\left(P^{\sigma}\right)$, and satisfies (2.2) and

$$
\begin{equation*}
\frac{\sin \theta_{1}}{\sigma_{1}}=\frac{\sin \theta_{2}}{\sigma_{2}}=\frac{\sin \theta_{3}}{\sigma_{3}} \tag{5.1}
\end{equation*}
$$

where $\theta_{i}(i=1,2,3)$ are defined as in Fig. 5.1.
Proof. The first assertion and (2.2) are proved in the same way with Theorem 3.1. As well as (3.1), we get $\sigma_{1} n_{1}+\sigma_{2} n_{2}+\sigma_{3} n_{3}=0 \in R^{n}$. Hence we have

$$
\begin{equation*}
\frac{\sigma_{k}^{2}-\sigma_{i}^{2}-\sigma_{j}^{2}}{2 \sigma_{i} \sigma_{j}}=n_{i}^{T} n_{j}=\cos \theta_{k} \tag{5.2}
\end{equation*}
$$

for any $\{i, j, k\}=\{1,2,3\}$. So we get

$$
\frac{\sin ^{2} \theta_{k}}{\sigma_{k}^{2}}=\frac{2\left(\sigma_{1}^{2} \sigma_{2}^{2}+\sigma_{2}^{2} \sigma_{3}^{2}+\sigma_{3}^{2} \sigma_{1}^{2}\right)-\sigma_{1}^{4}-\sigma_{2}^{4}-\sigma_{3}^{4}}{4 \sigma_{1}^{2} \sigma_{2}^{2} \sigma_{3}^{2}}
$$

Since the right-hand side does not depend on k, we get (5.1).
Lemma 5.2. When Ω is a triangle in R^{2}, it holds that

$$
\min \left(P^{\sigma}\right)=\min \left(P_{0}^{\sigma}\right)=\min _{i=1,2,3} \sigma_{i} h_{i}
$$

where h_{i} is the height of the triangle with base length a_{i}.
Proof. It's enough to consider KKT condition for the following extremal problem.

$$
\begin{array}{ll}
\text { Minimize } & \sigma_{1} l_{1}+\sigma_{2} l_{2}+\sigma_{3} l_{3} \\
\text { subject to } & a_{1} l_{1}+a_{2} l_{2}+a_{3} l_{3}=2 S \\
& l_{i} \geq 0 \quad(i=1,2,3)
\end{array}
$$

\square
For a triangular cylinder, let Δ be a triangle defined by (4.3) and $\sigma_{i}(i=1,2,3)$ positive real numbers. We call the smallest weighted height of Δ the weighted width of the triangular cylinder. Then the dual problem $\left(D^{\sigma}\right)$ is defined as follows.

Maximize the weighted width of a triangular cylinder that separates $\left\{C_{i}\right\}_{i=1}^{3}$.

Theorem 5.3. If $\left(P_{0}^{\sigma}\right)\left(\right.$ or $\left.\left(P^{\sigma}\right)\right)$ has a non-degenerate minimal solution, then it holds that

$$
\begin{equation*}
\min \left(P_{0}^{\sigma}\right)=\min \left(P^{\sigma}\right)=\max \left(D^{\sigma}\right) \tag{5.3}
\end{equation*}
$$

Proof. Since the proof of this theorem is the same as that of Theorem 4.3 except obvious modifications, we omit it.
6. Concluding remark. Gale and Klee [3] gave separation theorems for an infinite number of convex sets with empty intersection in R^{n}. For example, if a family of open convex proper subsets $\left\{C_{\nu}\right\}$ of R^{n} has empty intersection, then there are open halfspaces $\left\{H_{\nu}^{-}\right\}$with empty intersection such that $C_{\nu} \subset H_{\nu}^{-}$for any ν, see also a survey paper Klee [8] and Bair [1]. Since their separation theorems are not quantitative but qualitative, they do not seem to derive us to our duality theorems.

Further, a generalization of Duboviskiĭ and Miljutin's theorem [2] asserts that if a finite number of convex sets $\left\{C_{i}\right\}_{i=1}^{k}$ in R^{n} has empty intersection, then there exist non-trivial vectors $\xi_{i} \in R^{n}(i=1, \ldots, k)$ such that

$$
\begin{equation*}
\xi_{1}+\cdots+\xi_{k}=0 \tag{6.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta^{*}\left(\xi_{1} \mid C_{1}\right)+\cdots+\delta^{*}\left(\xi_{k} \mid C_{k}\right) \leq 0 \tag{6.2}
\end{equation*}
$$

where $\delta^{*}\left(\xi_{i} \mid C_{i}\right)$ denotes the support function $\sup \left\{\xi_{i}^{T} X_{i} \mid X_{i} \in C_{i}\right\}$. If we directly apply this separation theorem to the linear case $C_{i}=\left\{X_{i} \mid \xi_{i}^{T} X_{i} \leq \alpha_{i}\right\}$, (6.1) and (6.2) reduce to $\sum_{i=1}^{3} \lambda_{i} \xi_{i}=0$ and $\sum_{i=1}^{3} \lambda_{i} \alpha_{i} \leq 0$ for some non-trivial $\lambda_{i} \geq 0(i=1,2,3)$, respectively. They do not seem enough to derive our duality theorems, either.

REFERENCES

[1] J. Bair, Sur la Séparation de familles finites d'ensembles covexes, Bulletin de la Société Royale des Sciences de Liège, 41 (1972), pp. 281-291.
[2] A. Ja. Duboviskiĭ and A. A. Miljutin, Extremal problems with constraints, Soviet Math. Dokl. 4 (1963), pp. 452-255.
[3] D. Gale and V. Klee, Continuous convex sets, Mathematics Scandinavica, 7 (1959), pp. 379391.
[4] R. Ikota and E. Yanagida, A stability criterion for stationary curves to the curvature-driven motion with a triple junction, Differential and Integral Equations, 16 (2003), pp. 707-726.
[5] H. Kawasaki, A game-theoretic aspect of conjugate sets for a nonlinear programming problem, in Proceedings of the third International Conference on Nonlinear Analysis and Convex Analysis, Yokohama Publishers, (2004), pp. 159-168.
[6] H. Kawasaki, Conjugate-set game for a nonlinear programming problem, in Game theory and applications 10, eds. L.A. Petrosjan and V.V. Mazalov, Nova Science Publishers, New York, USA, (2005), pp. 87-95.
[7] H. Kawasaki, A duality theorem for a three-phase partition problem, submitted.
[8] V. Klee, Separation and support properties of convex sets-A survey, in Control Theory and the Calculus of Variations, ed. A. V. Balakrishnan, Academic Press, New York, (1969), pp. 235-303.
[9] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, New Jersey, (1970).
[10] P. Sternberg and W. P. Zeimer, Local minimizers of a three-phase partition problem with triple junctions, Proc. Royal Soc. Edin., 124A (1994), pp. 1059-1073.

List of MHF Preprint Series, Kyushu University
 21st Century COE Program
 Development of Dynamic Mathematics with High Functionality

MHF2003-1 Mitsuhiro T. NAKAO, Kouji HASHIMOTO \& Yoshitaka WATANABE
A numerical method to verify the invertibility of linear elliptic operators with applications to nonlinear problems

MHF2003-2 Masahisa TABATA \& Daisuke TAGAMI
Error estimates of finite element methods for nonstationary thermal convection problems with temperature-dependent coefficients

MHF2003-3 Tomohiro ANDO, Sadanori KONISHI \& Seiya IMOTO
Adaptive learning machines for nonlinear classification and Bayesian information criteria

MHF2003-4 Kazuhiro YOKOYAMA
On systems of algebraic equations with parametric exponents
MHF2003-5 Masao ISHIKAWA \& Masato WAKAYAMA
Applications of Minor Summation Formulas III, Plücker relations, Lattice paths and Pfaffian identities

MHF2003-6 Atsushi SUZUKI \& Masahisa TABATA
Finite element matrices in congruent subdomains and their effective use for large-scale computations

MHF2003-7 Setsuo TANIGUCHI
Stochastic oscillatory integrals - asymptotic and exact expressions for quadratic phase functions -

MHF2003-8 Shoki MIYAMOTO \& Atsushi YOSHIKAWA
Computable sequences in the Sobolev spaces
MHF2003-9 Toru FUJII \& Takashi YANAGAWA
Wavelet based estimate for non-linear and non-stationary auto-regressive model
MHF2003-10 Atsushi YOSHIKAWA
Maple and wave-front tracking - an experiment
MHF2003-11 Masanobu KANEKO
On the local factor of the zeta function of quadratic orders
MHF2003-12 Hidefumi KAWASAKI
Conjugate-set game for a nonlinear programming problem

MHF2004-1 Koji YONEMOTO \& Takashi YANAGAWA
Estimating the Lyapunov exponent from chaotic time series with dynamic noise

MHF2004-2 Rui YAMAGUCHI, Eiko TSUCHIYA \& Tomoyuki HIGUCHI
State space modeling approach to decompose daily sales of a restaurant into time-dependent multi-factors

MHF2004-3 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA \& Yasuhiko YAMADA
Cubic pencils and Painlevé Hamiltonians
MHF2004-4 Atsushi KAWAGUCHI, Koji YONEMOTO \& Takashi YANAGAWA
Estimating the correlation dimension from a chaotic system with dynamic noise

MHF2004-5 Atsushi KAWAGUCHI, Kentarou KITAMURA, Koji YONEMOTO, Takashi YANAGAWA \& Kiyofumi YUMOTO
Detection of auroral breakups using the correlation dimension
MHF2004-6 Ryo IKOTA, Masayasu MIMURA \& Tatsuyuki NAKAKI
A methodology for numerical simulations to a singular limit
MHF2004-7 Ryo IKOTA \& Eiji YANAGIDA
Stability of stationary interfaces of binary-tree type
MHF2004-8 Yuko ARAKI, Sadanori KONISHI \& Seiya IMOTO
Functional discriminant analysis for gene expression data via radial basis expansion

MHF2004-9 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA \& Yasuhiko YAMADA
Hypergeometric solutions to the q - Painlevé equations
MHF2004-10 Raimundas VIDŪNAS
Expressions for values of the gamma function
MHF2004-11 Raimundas VIDŪNAS
Transformations of Gauss hypergeometric functions
MHF2004-12 Koji NAKAGAWA \& Masakazu SUZUKI
Mathematical knowledge browser
MHF2004-13 Ken-ichi MARUNO, Wen-Xiu MA \& Masayuki OIKAWA
Generalized Casorati determinant and Positon-Negaton-Type solutions of the Toda lattice equation

MHF2004-14 Nalini JOSHI, Kenji KAJIWARA \& Marta MAZZOCCO
Generating function associated with the determinant formula for the solutions of the Painlevé II equation

MHF2004-15 Kouji HASHIMOTO, Ryohei ABE, Mitsuhiro T. NAKAO \& Yoshitaka WATANABE
Numerical verification methods of solutions for nonlinear singularly perturbed problem

MHF2004-16 Ken-ichi MARUNO \& Gino BIONDINI
Resonance and web structure in discrete soliton systems: the two-dimensional Toda lattice and its fully discrete and ultra-discrete versions

MHF2004-17 Ryuei NISHII \& Shinto EGUCHI
Supervised image classification in Markov random field models with Jeffreys divergence

MHF2004-18 Kouji HASHIMOTO, Kenta KOBAYASHI \& Mitsuhiro T. NAKAO
Numerical verification methods of solutions for the free boundary problem
MHF2004-19 Hiroki MASUDA
Ergodicity and exponential β-mixing bounds for a strong solution of Lévydriven stochastic differential equations

MHF2004-20 Setsuo TANIGUCHI
The Brownian sheet and the reflectionless potentials
MHF2004-21 Ryuei NISHII \& Shinto EGUCHI
Supervised image classification based on AdaBoost with contextual weak classifiers

MHF2004-22 Hideki KOSAKI
On intersections of domains of unbounded positive operators
MHF2004-23 Masahisa TABATA \& Shoichi FUJIMA
Robustness of a characteristic finite element scheme of second order in time increment

MHF2004-24 Ken-ichi MARUNO, Adrian ANKIEWICZ \& Nail AKHMEDIEV
Dissipative solitons of the discrete complex cubic-quintic Ginzburg-Landau equation

MHF2004-25 Raimundas VIDŪNAS
Degenerate Gauss hypergeometric functions
MHF2004-26 Ryo IKOTA
The boundedness of propagation speeds of disturbances for reaction-diffusion systems

MHF2004-27 Ryusuke KON
Convex dominates concave: an exclusion principle in discrete-time Kolmogorov systems

Multiple attractors in host-parasitoid interactions: coexistence and extinction
MHF2004-29 Kentaro IHARA, Masanobu KANEKO \& Don ZAGIER
Derivation and double shuffle relations for multiple zeta values
MHF2004-30 Shuichi INOKUCHI \& Yoshihiro MIZOGUCHI
Generalized partitioned quantum cellular automata and quantization of classical CA

MHF2005-1 Hideki KOSAKI
Matrix trace inequalities related to uncertainty principle
MHF2005-2 Masahisa TABATA
Discrepancy between theory and real computation on the stability of some finite element schemes

MHF2005-3 Yuko ARAKI \& Sadanori KONISHI
Functional regression modeling via regularized basis expansions and model selection

MHF2005-4 Yuko ARAKI \& Sadanori KONISHI
Functional discriminant analysis via regularized basis expansions
MHF2005-5 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA \& Yasuhiko YAMADA
Point configurations, Cremona transformations and the elliptic difference Painlevé equations

MHF2005-6 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA \& Yasuhiko YAMADA
Construction of hypergeometric solutions to the q - Painlevé equations
MHF2005-7 Hiroki MASUDA
Simple estimators for non-linear Markovian trend from sampled data:
I. ergodic cases

MHF2005-8 Hiroki MASUDA \& Nakahiro YOSHIDA
Edgeworth expansion for a class of Ornstein-Uhlenbeck-based models
MHF2005-9 Masayuki UCHIDA
Approximate martingale estimating functions under small perturbations of dynamical systems

MHF2005-10 Ryo MATSUZAKI \& Masayuki UCHIDA
One-step estimators for diffusion processes with small dispersion parameters from discrete observations

MHF2005-11 Junichi MATSUKUBO, Ryo MATSUZAKI \& Masayuki UCHIDA
Estimation for a discretely observed small diffusion process with a linear drift

MHF2005-12 Masayuki UCHIDA \& Nakahiro YOSHIDA
AIC for ergodic diffusion processes from discrete observations
MHF2005-13 Hiromichi GOTO \& Kenji KAJIWARA
Generating function related to the Okamoto polynomials for the Painlevé IV equation

MHF2005-14 Masato KIMURA \& Shin-ichi NAGATA
Precise asymptotic behaviour of the first eigenvalue of Sturm-Liouville problems with large drift

MHF2005-15 Daisuke TAGAMI \& Masahisa TABATA
Numerical computations of a melting glass convection in the furnace
MHF2005-16 Raimundas VIDŪNAS
Normalized Leonard pairs and Askey-Wilson relations
MHF2005-17 Raimundas VIDŪNAS
Askey-Wilson relations and Leonard pairs
MHF2005-18 Kenji KAJIWARA \& Atsushi MUKAIHIRA
Soliton solutions for the non-autonomous discrete-time Toda lattice equation
MHF2005-19 Yuu HARIYA
Construction of Gibbs measures for 1-dimensional continuum fields
MHF2005-20 Yuu HARIYA
Integration by parts formulae for the Wiener measure restricted to subsets in \mathbb{R}^{d}

MHF2005-21 Yuu HARIYA
A time-change approach to Kotani's extension of Yor's formula
MHF2005-22 Tadahisa FUNAKI, Yuu HARIYA \& Mark YOR
Wiener integrals for centered powers of Bessel processes, I
MHF2005-23 Masahisa TABATA \& Satoshi KAIZU
Finite element schemes for two-fluids flow problems
MHF2005-24 Ken-ichi MARUNO \& Yasuhiro OHTA
Determinant form of dark soliton solutions of the discrete nonlinear Schrödinger equation

MHF2005-25 Alexander V. KITAEV \& Raimundas VIDŪNAS
Quadratic transformations of the sixth Painlevé equation
MHF2005-26 Toru FUJII \& Sadanori KONISHI
Nonlinear regression modeling via regularized wavelets and smoothing parameter selection

MHF2005-27 Shuichi INOKUCHI, Kazumasa HONDA, Hyen Yeal LEE, Tatsuro SATO, Yoshihiro MIZOGUCHI \& Yasuo KAWAHARA
On reversible cellular automata with finite cell array
MHF2005-28 Toru KOMATSU
Cyclic cubic field with explicit Artin symbols
MHF2005-29 Mitsuhiro T. NAKAO, Kouji HASHIMOTO \& Kaori NAGATOU
A computational approach to constructive a priori and a posteriori error estimates for finite element approximations of bi-harmonic problems

MHF2005-30 Kaori NAGATOU, Kouji HASHIMOTO \& Mitsuhiro T. NAKAO
Numerical verification of stationary solutions for Navier-Stokes problems
MHF2005-31 Hidefumi KAWASAKI
A duality theorem for a three-phase partition problem
MHF2005-32 Hidefumi KAWASAKI
A duality theorem based on triangles separating three convex sets
MHF2005-33 Takeaki FUCHIKAMI \& Hidefumi KAWASAKI
An explicit formula of the Shapley value for a cooperative game induced from the conjugate point

MHF2005-34 Hideki MURAKAWA
A regularization of a reaction-diffusion system approximation to the two-phase Stefan problem

MHF2006-1 Masahisa TABATA
Numerical simulation of Rayleigh-Taylor problems by an energy-stable finite element scheme

MHF2006-2 Ken-ichi MARUNO \& G R W QUISPEL
Construction of integrals of higher-order mappings
MHF2006-3 Setsuo TANIGUCHI
On the Jacobi field approach to stochastic oscillatory integrals with quadratic phase function

MHF2006-4 Kouji HASHIMOTO, Kaori NAGATOU \& Mitsuhiro T. NAKAO
A computational approach to constructive a priori error estimate for finite element approximations of bi-harmonic problems in nonconvex polygonal domains

MHF2006-5 Hidefumi KAWASAKI
A duality theory based on triangular cylinders separating three convex sets in R^{n}

[^0]: *This research is partially supported by Kyushu University 21st Century COE Program (Development of Dynamic Mathematics with High Functionality) and the Grant-in Aid for General Scientific Research from the Japan Society for the Promotion of Science 14340037.
 \dagger (kawasaki@math.kyushu-u.ac.jp), Faculty of Mathematics, Kyushu University 33, Fukuoka 8128581, Japan.

