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A DUALITY THEORY BASED ON TRIANGULAR CYLINDERS

SEPARATING THREE CONVEX SETS IN RN ∗

H. KAWASAKI†

Abstract. Separation theorems play the central role in the duality theory. Recently, we proposed
a duality theorem for a three-phase partition problem in [7]. It is based on triangles separating three
convex sets in R2. The aim of this paper is to extend the duality theorem to Rn.
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1. Introduction. The three-phase partition problem is to divide a given domain
Ω ⊂ R2 into three subdomains with a triple junction having least interfacial area
(Fig.1.1).
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Fig. 1.1. Three-phase partition problem

Sternberg and Zeimer [10] and Ikota and Yanagida [4] formulated this problem as
variational problems and discussed stability of stationary solutions. However, since
the shortest curve joining two points X0 and Xi is the line segment X0Xi, they can
be formulated as extremal problems in a Euclidean space. From this point of view, we
discussed stability and studied its game-theoretic aspect in [5][6]. Further, we gave
a duality theorem for an extremal problem (P0) below induced from the three-phase
partition problem in [7].
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Fig. 1.2. Primal problem (P0)
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(P0)
Minimize f(X0, . . . , X3) :=

3
∑

i=1

||Xi − X0||

subject to X0 ∈ Ω, Xi ∈ Ci (i = 1, 2, 3),

where || · || denotes the Euclidean norm and Ci (i = 1, 2, 3) are closed convex sets with
non-empty interior in R2 such that Ω := cl(∩3

i=1C
c
i ) is not empty (Fig. 1.2). The

main aim of this paper is to extend the duality theorem (Theorem 2.3 below) to Rn.
This paper is organized as follows. In Section 2, we briefly review the first-order

optimality condition for the primal problem (P0) and the duality theorem given in [7].
In Section 3, we give a first-order optimality condition for the primal problem in Rn.
In Section 4, we introduce the notion of separating three convex sets by a triangular
cylinder in Rn to define the dual problem, and show the strong duality.

We close this section with our notations. For any closed convex sets C1 and C2, we
define d(C1, C2) := inf{||X1 −X2|| | Xi ∈ Ci (i = 1, 2)}. We denote by N(Xi; Ci) the
normal cone of Ci at Xi, that is, N(Xi; Ci) := {Y ∈ Rn |Y T (X −Xi) ≤ 0 ∀X ∈ Ci}.

2. Preliminaries. As is easily seen from Fig. 1.2, Ω is not always a convex set.
So the primal problem (P0) is not a convex programming problem. We modify it so
that it becomes a convex programming problem.

(P )
Minimize

3
∑

i=1

||Xi − X0||

subject to X0 ∈ R2, Xi ∈ Ci (i = 1, 2, 3).

The only difference is that Ω is replaced by the whole space R2. We say a feasible
solution (X0, . . . , X3) for (P0) (or (P )) non-degenerate if Xi 6= Xj for any i 6= j. The
following is a straightforward consequence of Torricelli’s Theorem and the projection
theorem on the convex set Ci.

Theorem 2.1. Let (X0, . . . , X3) be a non-degenerate minimal solution for (P0)
(or (P )). Then it satisfies

6 XiX0Xj = 2π/3 for any i 6= j(2.1)

and

X0 − Xi ∈ N(Xi; Ci) (i = 1, 2, 3).(2.2)
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Fig. 2.1. First-order optimality conditions
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Lemma 2.2. ([7]) When Ω is a triangle in R2, it holds that

min(P ) = min(P0) = the smallest height of Ω.

We say that a triangle ∆ ⊂ Ω separates {Ci}
3
i=1 if there are three closed half

spaces {H−
i }3

i=1 such that Ci ⊂ H−
i for every i and ∆ = ∩3

i=1H
+

i , where H+

i denotes
the closed half space opposite to H−

i (Fig. 2.2).
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Fig. 2.2. ∆1 separates {Ci}3

i=1
, and ∆2 does not separate {Ci}3

i=1
.

Then the dual problem is defined as follows.

(D) Maximize the smallest height of a triangle that separates {Ci}
3
i=1.

Theorem 2.3. ([7]) If (P0) (or (P )) has a non-degenerate minimal solution,
then

max(D) = min(P ) = min(P0).(2.3)

3. The primal problem in Rn. In this section, we extend Theorem 2.1 to Rn.
Let Ci (i = 1, 2, 3) be closed convex sets with non-empty interior in Rn such that
Ω = cl(∩3

i=1C
c
i ) is not empty. Then (P0) and (P ) are defined as well as in Sections 1

and 2, respectively, where the base space is Rn.
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Fig. 3.1. The primal problem (P ) in R3.

Theorem 3.1. Let (X0, . . . , X3) be a non-degenerate minimal solution for (P0).
Then Xi’s are on a two-dimensional affine set and (X0, . . . , X3) satisfies (2.1) and
(2.2). Further, it is a minimum solution for (P ).

Proof. According to Kuhn-Tucker’s theorem, see e.g. Rockafellar (Ref. 6, Sec-
tion 28), there exist multipliers λi ≥ 0 (i = 1, 2, 3) such that 0 ∈ R4n belongs to

the subdifferential of the Lagrange function L(X0, . . . , X3) :=
∑3

i=1
||Xi − X0|| +

∑3

i=1
λiδ(Xi|Ci), where δ(Xi|Ci) denotes the characteristic function of Ci. Picking

up X0-component of the subdifferential ∂L, we have

n1 + n2 + n3 = 0 ∈ Rn,(3.1)
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where ni := (X0 − Xi)/||Xi − X0||, which implies the first assertion. From (3.1),
||nk||

2 = ||ni||
2 + ||nj ||

2 + 2nT
i nj for any {i, j, k} = {1, 2, 3}. Thus nT

i nj = −1/2,
which implies (2.1). Picking up Xi-component (i = 1, 2, 3) of ∂L, we have 0 ∈ −ni +
λiN(Xi; Ci), which implies (2.2). Next, there exists an open convex neighborhood C0

of X0 such that (X0, . . . , X3) is a minimum point of f on C := C0 × C1 × C2 × C3.
Since f and C are convex, (X0, . . . , X3) is a minimum point of f on Rn×C1×C2×C3.
Hence it is a minimum solution for (P ).

4. Duality theorem. In this section, we first introduce the notion of separation
of three convex sets by a triangular cylinder. Next, we define the dual problem and
show strong duality.

Definition 4.1. Let ni (i = 1, 2, 3) be nonzero (unit) vectors in Rn satisfying
(3.1), and αi (i = 1, 2, 3) negative real numbers. Define

H+

i := {ξ ∈ Rn |nT
i ξ ≥ αi},(4.1)

H−
i := {ξ ∈ Rn |nT

i ξ ≤ αi}, and Hi := H+

i ∩ H−
i for any i = 1, 2, 3. Then we call a

shifted figure of H+
1 ∩H+

2 ∩H+
3 a (regular) triangular cylinder, see Fig. 4.1. (Here we

remark that the origin of Rn belongs to H+

1 ∩H+

2 ∩H+

3 .) Further, we say a triangular
cylinder H+

1 ∩H+

2 ∩H+

3 + X separates three convex sets {Ci}
3
i=1 if Ci ⊂ H−

i + X for
any i = 1, 2, 3. Let M := ∩3

i=1{ξ ∈ Rn |nT
i ξ = 0} and

N := M> = {X ∈ Rn | ξT X = 0 ∀ξ ∈ M}.(4.2)

Then, by (3.1), N is a 2-dimensional subspace, and

∆ := N ∩ (H+

1 ∩ H+

2 ∩ H+

3 )(4.3)

is a (regular) triangle. We call the smallest height of ∆ the width of the triangular
cylinder H+

1 ∩ H+

2 ∩ H+

3 + X.
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Fig. 4.1. Regular triangular cylinder in R3

Our dual problem is defined as follows.

(D) Maximize the width of a triangular cylinder that separates {Ci}
3
i=1.

Theorem 4.2. (Weak duality)

sup(D) ≤ inf(P ) ≤ inf(P0).(4.4)
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Proof. Second inequality is trivial. Let (Y0, . . . , Y3) be a feasible solution for (P ),
and H+

1 ∩H+

2 ∩H+

3 + X a feasible solution for (D). Then Yi ∈ Ci ⊂ H−
i + X for any

i = 1, 2, 3. Hence

||Y0 − Yi|| ≥ d(Y0, H
−
i + X) = d(Y0 − X, H−

i ) = d(PN (Y0 − X), H−
i ),

where PN denotes the projection to N defined by (4.2). Hence

3
∑

i=1

||Y0 − Yi|| ≥

3
∑

i=1

d(PN (Y0 − X), H−
i )

= min

{

3
∑

i=1

||PN (Y0 − X) − Xi|| Xi ∈ H−
i (i = 1, 2, 3)

}

≥ min

{

3
∑

i=1

||X0 − Xi|| Xi ∈ H−
i (i = 1, 2, 3), X0 ∈ N

}

≥ the smallest height of the triangle ∆ defined by (4.3)

= the width of H+
1 ∩ H+

2 ∩ H+
3 + X,

where the last inequality follows from Lemma 2.2. Hence we get sup(D) ≤ inf(P ).
Theorem 4.3. (Strong duality) If (P0) (or (P )) has a non-degenerate minimal

solution, then it holds that

max(D) = min(P ) = min(P0).(4.5)

Proof. Second equality follows from Theorem 3.1. Let (X0, . . . , X3) be a non-
degenerate minimal solution for (P0). Then, the regular triangular cylinder H+

1 ∩
H+

2 ∩ H+
3 + X0 determined by ni := (X0 − Xi)/||Xi − X0|| and αi := −||Xi − X0||

separates {Ci}
3
i=1 . Indeed, it follows from (2.2) that nT

i X ≤ nT
i Xi for any X ∈ Ci,

so that

nT
i (X − X0) ≤ nT

i (Xi − X0) = −||Xi − X0|| = αi.

Namely, Ci −X0 is contained in H−
i . Moreover, since Xi (i = 0, 1, 2, 3) belong to the

regular triangle ∆ + X0, it follows from Lemma 2.2 that
∑3

i=1
||X0 −Xi|| is equal to

the width of the regular triangular cylinder H+
1 ∩ H+

2 ∩ H+
3 + X0. Therefore we get

(4.5).
Remark 4.1. We can replace triangular cylinders by regular triangular cylinders

in the dual problem (D), because the maximum value is attained by a regular triangular
cylinder. However, it is clear that regular triangular cylinders are not enough when
Ω is a non-regular triangular cylinder. That’s why we defined the dual problem with
(general) triangular cylinders.

5. Extension to the weighted objective function. In [4], the objective func-
tion was weighted. It is not hard to extend the present results to the weighted objective
function

3
∑

i=1

σi||Xi − X0||,
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where σi > 0 (i = 1, 2, 3) can be interpreted as interface tension, see Fig. 5.1. We
impose an assumption that σi < σj +σk for any {i, j, k} = {1, 2, 3}. If this assumption
is violated, the primal problem does not have any non-degenerate minimal solution,
see (5.2) below. We denote (P0) and (P ) with weighted objective function by (P σ

0 )
and (P σ), respectively.

X1

σ1σ3

σ2

X3

X2

θ1
θ2

θ3

Weight

Ω

Fig. 5.1. σi > 0 (i = 1, 2, 3) can be regarded as interface tensions.

Theorem 5.1. Let (X0, . . . , X3) be a non-degenerate minimal solution for (P σ
0 ).

Then it is a minimum solution for (P σ), and satisfies (2.2) and

sin θ1

σ1

=
sin θ2

σ2

=
sin θ3

σ3

,(5.1)

where θi (i = 1, 2, 3) are defined as in Fig. 5.1.
Proof. The first assertion and (2.2) are proved in the same way with Theorem

3.1. As well as (3.1), we get σ1n1 + σ2n2 + σ3n3 = 0 ∈ Rn. Hence we have

σ2
k − σ2

i − σ2
j

2σiσj

= nT
i nj = cos θk(5.2)

for any {i, j, k} = {1, 2, 3}. So we get

sin2 θk

σ2
k

=
2(σ2

1σ2
2 + σ2

2σ2
3 + σ2

3σ2
1) − σ4

1 − σ4
2 − σ4

3

4σ2
1σ2

2σ
2
3

.

Since the right-hand side does not depend on k, we get (5.1).
Lemma 5.2. When Ω is a triangle in R2, it holds that

min(P σ) = min(P σ
0 ) = min

i=1,2,3
σihi,

where hi is the height of the triangle with base length ai.
Proof. It’s enough to consider KKT condition for the following extremal problem.

Minimize σ1l1 + σ2l2 + σ3l3
subject to a1l1 + a2l2 + a3l3 = 2S

li ≥ 0 (i = 1, 2, 3).

For a triangular cylinder, let ∆ be a triangle defined by (4.3) and σi (i = 1, 2, 3)
positive real numbers. We call the smallest weighted height of ∆ the weighted width
of the triangular cylinder. Then the dual problem (Dσ) is defined as follows.

Maximize the weighted width of a triangular cylinder that separates {Ci}
3
i=1.
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Theorem 5.3. If (P σ
0 ) (or (P σ)) has a non-degenerate minimal solution, then

it holds that

min(P σ
0 ) = min(P σ) = max(Dσ).(5.3)

Proof. Since the proof of this theorem is the same as that of Theorem 4.3 except
obvious modifications, we omit it.

6. Concluding remark. Gale and Klee [3] gave separation theorems for an
infinite number of convex sets with empty intersection in Rn. For example, if a family
of open convex proper subsets {Cν} of Rn has empty intersection, then there are
open halfspaces {H−

ν } with empty intersection such that Cν ⊂ H−
ν for any ν, see

also a survey paper Klee [8] and Bair [1]. Since their separation theorems are not
quantitative but qualitative, they do not seem to derive us to our duality theorems.

Further, a generalization of Duboviskĭı and Miljutin’s theorem [2] asserts that if
a finite number of convex sets {Ci}

k
i=1 in Rn has empty intersection, then there exist

non-trivial vectors ξi ∈ Rn (i = 1, . . . , k) such that

ξ1 + · · · + ξk = 0(6.1)

and

δ∗(ξ1|C1) + · · · + δ∗(ξk |Ck) ≤ 0,(6.2)

where δ∗(ξi|Ci) denotes the support function sup{ξT
i Xi |Xi ∈ Ci}. If we directly apply

this separation theorem to the linear case Ci = {Xi | ξT
i Xi ≤ αi}, (6.1) and (6.2)

reduce to
∑3

i=1
λiξi = 0 and

∑3

i=1
λiαi ≤ 0 for some non-trivial λi ≥ 0 (i = 1, 2, 3),

respectively. They do not seem enough to derive our duality theorems, either.

REFERENCES
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