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A DUALITY THEORY BASED ON TRIANGULAR CYLINDERS
SEPARATING THREE CONVEX SETS IN RV *

H. KAWASAKIT

Abstract. Separation theorems play the central role in the duality theory. Recently, we proposed
a duality theorem for a three-phase partition problem in [7]. It is based on triangles separating three
convex sets in R2. The aim of this paper is to extend the duality theorem to R™.
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1. Introduction. The three-phase partition problem is to divide a given domain

Q) C R? into three subdomains with a triple junction having least interfacial area
(Fig.1.1).

Fi1G. 1.1. Three-phase partition problem

Sternberg and Zeimer [10] and Ikota and Yanagida [4] formulated this problem as
variational problems and discussed stability of stationary solutions. However, since
the shortest curve joining two points Xy and X; is the line segment Xy.X;, they can
be formulated as extremal problems in a Euclidean space. From this point of view, we
discussed stability and studied its game-theoretic aspect in [5][6]. Further, we gave
a duality theorem for an extremal problem (Pp) below induced from the three-phase
partition problem in [7].

Fic. 1.2. Primal problem (Po)
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2 H. KAWASAKI

3
(P) Minimize  f(Xo,...,X3) = ;H)Q — Xol|
subject to X €Q, X;€C; (i =1,2,3),
where ||-|| denotes the Euclidean norm and C; (i = 1,2, 3) are closed convex sets with

non-empty interior in R? such that Q := cl(N3_;C¢) is not empty (Fig. 1.2). The
main aim of this paper is to extend the duality theorem (Theorem 2.3 below) to R™.

This paper is organized as follows. In Section 2, we briefly review the first-order
optimality condition for the primal problem (Py) and the duality theorem given in [7].
In Section 3, we give a first-order optimality condition for the primal problem in R™.
In Section 4, we introduce the notion of separating three convex sets by a triangular
cylinder in R™ to define the dual problem, and show the strong duality.

We close this section with our notations. For any closed convex sets C'; and Cy, we
define d(Cy, Cs) := inf{|| X1 — X3|| | X; € C; (i = 1,2)}. We denote by N(X;;C;) the
normal cone of C; at X;, that is, N(X;;C;) :={Y € R*|YT(X - X;) <0VX € C;}.

2. Preliminaries. As is easily seen from Fig. 1.2, € is not always a convex set.
So the primal problem (Fp) is not a convex programming problem. We modify it so
that it becomes a convex programming problem.

3
(P) Minimize Z [|X; — Xol|

i=1
subject to  Xo € R?, X; € C; (i=1,2,3).

The only difference is that € is replaced by the whole space R%. We say a feasible
solution (Xo, ..., X3) for (Py) (or (P)) non-degenerate if X; # X; for any ¢ # j. The
following is a straightforward consequence of Torricelli’s Theorem and the projection
theorem on the convex set C;.

THEOREM 2.1. Let (Xo,...,X3) be a non-degenerate minimal solution for (Pp)
(or (P)). Then it satisfies

(2.1) LX;XoX; =2m/3 for any i #j
and

FiG. 2.1. First-order optimality conditions



Duality Theorem 3
LEMMA 2.2. ([7]) When Q is a triangle in R?, it holds that

min(P) = min(FPy) = the smallest height of .

We say that a triangle A C Q separates {C;}3_; if there are three closed half
spaces {H; }3_; such that C; C H; for every i and A = N?_, H;', where H;" denotes
the closed half space opposite to H; (Fig. 2.2).

Cs Ce ™

\~ Ao, Q

Cs E ( Cs @

Fic. 2.2. Ay separates {C;}3_,, and Ay does not separate {C;}3_,.

Then the dual problem is defined as follows.
(D) Maximize the smallest height of a triangle that separates {C;}3_;.

THEOREM 2.3. ([7]) If (Py) (or (P)) has a non-degenerate minimal solution,
then

(2.3) max (D) = min(P) = min(F).

3. The primal problem in R". In this section, we extend Theorem 2.1 to R™.
Let C; (i = 1,2,3) be closed convex sets with non-empty interior in R™ such that
Q = cl(N3_,C¢) is not empty. Then (P) and (P) are defined as well as in Sections 1
and 2, respectively, where the base space is R".

4 L0

Q
C1

F1G. 3.1. The primal problem (P) in R3.

THEOREM 3.1. Let (Xy,...,X3) be a non-degenerate minimal solution for (Pp).
Then X;’s are on a two-dimensional affine set and (Xo, ..., Xs3) satisfies (2.1) and
(2.2). Further, it is a minimum solution for (P).

Proof. According to Kuhn-Tucker’s theorem, see e.g. Rockafellar (Ref. 6, Sec-
tion 28), there exist multipliers \; > 0 (i = 1,2,3) such that 0 € R*" belongs to
the subdifferential of the Lagrange function L(Xo, ..., X3) == S0 ||X; — Xo|| +
Zle Xid0(X;|C;), where §(X;|C;) denotes the characteristic function of C;. Picking
up Xo-component of the subdifferential L, we have

(3.1) ny+ng+n3=0¢eR",
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where n; = (Xo — X;)/||X: — Xol||, which implies the first assertion. From (3.1),
lInk|1? = [|nil]? + ||ng||? + 2nfn; for any {i,4,k} = {1,2,3}. Thus nin; = —1/2,
which implies (2.1). Picking up X;-component (i = 1,2,3) of 0L, we have 0 € —n; +
AN (X;; C;), which implies (2.2). Next, there exists an open convex neighborhood Cy
of Xy such that (Xo,...,X3) is a minimum point of f on C := Cy x C1 x Cy x Cs.
Since f and C are convex, (X, ..., X3) is a minimum point of f on R"™ x C; X Cy x Cs.
Hence it is a minimum solution for (P). O

4. Duality theorem. In this section, we first introduce the notion of separation
of three convex sets by a triangular cylinder. Next, we define the dual problem and
show strong duality.

DEFINITION 4.1. Let n; (1 = 1,2,3) be nonzero (unit) vectors in R™ satisfying
(3.1), and «; (i = 1,2,3) negative real numbers. Define

(4.1) H == {¢ € R"|nl¢ > oy},

H; ={¢e€ R"|nT¢ <}, and H; := H;" N H; for any i =1,2,3. Then we call a
shifted figure of H NHy NH3 a (regular) triangular cylinder, see Fig. 4.1. (Here we
remark that the origin of R™ belongs to H;" N H ﬂH;} Further, we say a triangular
cylinder Hi" N HY N H + X separates three convex sets {C;}2_, if C; C H; + X for
anyi=1,2,3. Let M :=nN3_{£ € R"|nF¢ =0} and

(4.2) N:=M"={XecR"|TX =0 V¢c M}.

Then, by (3.1), N is a 2-dimensional subspace, and

(4.3) A:=Nn(H{ NHS NH)

is a (reqular) triangle. We call the smallest height of A the width of the triangular
cylinder H N HY N Hf + X.

F1G. 4.1. Regular triangular cylinder in R3

Our dual problem is defined as follows.
(D) Maximize the width of a triangular cylinder that separates {C;}i_;.
THEOREM 4.2. (Weak duality)

(4.4) sup(D) < inf(P) < inf(Fp).
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Proof. Second inequality is trivial. Let (Yp,...,Y3) be a feasible solution for (P),
and H;" N Hy N H + X a feasible solution for (D). Then Y; € C; C H; + X for any
i =1,2,3. Hence
Yo = Yi|[ = d(Yo, H; + X) =d(Yo — X, H;) = d(Pn (Yo — X), H;),

where Py denotes the projection to N defined by (4.2). Hence

3 3
S IYo—Yil| =) d(Py (Yo - X), Hy)
=1 i=1

i=1

3
> min {Z ||X0 —Xl”

3
:mm{znpN(YO—X)—Xin

X; EHi_ (i: 1,2,3)}

i=1
> the smallest height of the triangle A defined by (4.3)
= the width of H;" N Hy N Hy + X,

XZ‘EH; (7;:1,273), X()EN}

where the last inequality follows from Lemma 2.2. Hence we get sup(D) < inf(P). O
THEOREM 4.3. (Strong duality) If (Py) (or (P)) has a non-degenerate minimal
solution, then it holds that

(4.5) max(D) = min(P) = min(Py).

Proof. Second equality follows from Theorem 3.1. Let (Xp,...,X3) be a non-
degenerate minimal solution for (Py). Then, the regular triangular cylinder H;' N
H N Hf + X, determined by n; := (Xo — X;)/||X; — Xo|| and «; := —||X; — Xo||
separates {C;}3_; . Indeed, it follows from (2.2) that n] X < n!' X, for any X € C;,
so that

n;‘F(X — XQ) S n;‘F(XZ — XQ) = —||Xl — X0|| = Q.

Namely, C; — X, is contained in H; . Moreover, since X; (i =0, 1,2, 3) belong to the
regular triangle A + X, it follows from Lemma 2.2 that Zle [| X0 — X;l|| is equal to
the width of the regular triangular cylinder H 1+ N H2+ N ng + Xo. Therefore we get
(4.5). O

REMARK 4.1. We can replace triangular cylinders by regular triangular cylinders
in the dual problem (D), because the mazimum value is attained by a regular triangular
cylinder. Howewver, it is clear that regular triangular cylinders are not enough when
Q is a non-regular triangular cylinder. That’s why we defined the dual problem with
(general) triangular cylinders.

5. Extension to the weighted objective function. In [4], the objective func-
tion was weighted. It is not hard to extend the present results to the weighted objective
function

3
> il X — Xol|,
=1
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where o; > 0 (i = 1,2,3) can be interpreted as interface tension, see Fig. 5.1. We
impose an assumption that o; < o;+0y for any {4, j, k} = {1, 2,3}. If this assumption
is violated, the primal problem does not have any non-degenerate minimal solution,
see (5.2) below. We denote (Fp) and (P) with weighted objective function by (P§)
and (P7), respectively.

Fic. 5.1. 0; > 0 (i =1,2,3) can be regarded as interface tensions.

THEOREM 5.1. Let (Xo,...,X3) be a non-degenerate minimal solution for (Pg).
Then it is a minimum solution for (P?), and satisfies (2.2) and
sinf; sinf;  sinfs

5.1 = - 7
( ) g1 09 g3

where 8; (i =1,2,3) are defined as in Fig. 5.1.
Proof. The first assertion and (2.2) are proved in the same way with Theorem
3.1. As well as (3.1), we get o1n1 + gang + o3ng = 0 € R™. Hence we have

2 2 2
(o2 o; g
k
(5.2) — 7 = nln; = cosby,

2Ui0'j

for any {i,7,k} = {1,2,3}. So we get

sin?@),  2(0}03 + 0302 +030}) —of — 0§ — 04
2 = 2,22 :
o 4doi050%

Since the right-hand side does not depend on k, we get (5.1). O
LEMMA 5.2. When Q is a triangle in R?, it holds that

min(P?) = min(P§) = lning oihi,
where h; is the height of the triangle with base length a;.
Proof. Tt’s enough to consider KKT condition for the following extremal problem.

Minimize o1l + o3ls + o3l3
subject to  aily + asly + asls =28
;>0 (Z = 1,2,3).

O

For a triangular cylinder, let A be a triangle defined by (4.3) and o; (i = 1,2,3)
positive real numbers. We call the smallest weighted height of A the weighted width
of the triangular cylinder. Then the dual problem (D7) is defined as follows.

Maximize the weighted width of a triangular cylinder that separates {C;}5_;.



Duality Theorem 7

THEOREM 5.3. If (FY) (or (P?)) has a non-degenerate minimal solution, then
it holds that

(5.3) min(FPy) = min(P?) = max(D7).

Proof. Since the proof of this theorem is the same as that of Theorem 4.3 except
obvious modifications, we omit it. O

6. Concluding remark. Gale and Klee [3] gave separation theorems for an
infinite number of convex sets with empty intersection in R™. For example, if a family
of open convex proper subsets {C,} of R™ has empty intersection, then there are
open halfspaces {H, } with empty intersection such that C, C H, for any v, see
also a survey paper Klee [8] and Bair [1]. Since their separation theorems are not
quantitative but qualitative, they do not seem to derive us to our duality theorems.

Further, a generalization of Duboviskil and Miljutin’s theorem [2] asserts that if
a finite number of convex sets {C;}¥_; in R™ has empty intersection, then there exist

non-trivial vectors §; € R™ (i = 1,...,k) such that

(6.1) 14+ +& =0

and

(6.2) 07 (&1]C1) + -+ + 07(&k|Ck) <0,

where §*(¢;|C;) denotes the support function sup{¢7 X; | X; € C;}. If we directly apply
this separation theorem to the linear case C; = {X; | ¢/’ X; < a;}, (6.1) and (6.2)
reduce to Z?:l A& = 0 and E?:l A, < 0 for some non-trivial A; > 0 (¢ = 1,2,3),
respectively. They do not seem enough to derive our duality theorems, either.
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