A DUALITY THEORY BASED ON TRIANGULAR CYLINDERS SEPARATING THREE CONVEX SETS IN \$ R^N \$

Kawasaki, Hidefumi Faculty of Mathematics, Kyushu University

https://hdl.handle.net/2324/3381

出版情報:MHF Preprint Series. MHF 2006-5, 2006-01-31. Faculty of Mathematics, Kyushu

University バージョン: 権利関係:

MHF Preprint Series

Kyushu University
21st Century COE Program
Development of Dynamic Mathematics with
High Functionality

A duality theory based on triangular cylinders separating three convex sets in \mathbb{R}^n

H. Kawasaki

MHF 2006-5

(Received January 31, 2006)

Faculty of Mathematics Kyushu University Fukuoka, JAPAN

A DUALITY THEORY BASED ON TRIANGULAR CYLINDERS SEPARATING THREE CONVEX SETS IN \mathbb{R}^N *

H. KAWASAKI†

Abstract. Separation theorems play the central role in the duality theory. Recently, we proposed a duality theorem for a three-phase partition problem in [7]. It is based on triangles separating three convex sets in \mathbb{R}^2 . The aim of this paper is to extend the duality theorem to \mathbb{R}^n .

Key words. duality theorem, triangular cylinder, partition problem, separation theorem

AMS subject classifications. 49K10, 90C30, 26B99

1. Introduction. The three-phase partition problem is to divide a given domain $\Omega \subset \mathbb{R}^2$ into three subdomains with a triple junction having least interfacial area (Fig.1.1).

 ${\bf Fig.~1.1.~\it Three-phase~partition~problem}$

Sternberg and Zeimer [10] and Ikota and Yanagida [4] formulated this problem as variational problems and discussed stability of stationary solutions. However, since the shortest curve joining two points X_0 and X_i is the line segment X_0X_i , they can be formulated as extremal problems in a Euclidean space. From this point of view, we discussed stability and studied its game-theoretic aspect in [5][6]. Further, we gave a duality theorem for an extremal problem (P_0) below induced from the three-phase partition problem in [7].

Fig. 1.2. Primal problem (P_0)

^{*}This research is partially supported by Kyushu University 21st Century COE Program (Development of Dynamic Mathematics with High Functionality) and the Grant-in Aid for General Scientific Research from the Japan Society for the Promotion of Science 14340037.

[†](kawasaki@math.kyushu-u.ac.jp), Faculty of Mathematics, Kyushu University 33, Fukuoka 812-8581, Japan.

$$(P_0) \qquad \qquad \text{Minimize} \qquad f(X_0,\dots,X_3) := \sum_{i=1}^3 ||X_i-X_0||$$
 subject to
$$X_0 \in \Omega, \ X_i \in C_i \ (i=1,2,3),$$

where $||\cdot||$ denotes the Euclidean norm and C_i (i=1,2,3) are closed convex sets with non-empty interior in \mathbb{R}^2 such that $\Omega := \operatorname{cl}(\cap_{i=1}^3 C_i^c)$ is not empty (Fig. 1.2). The main aim of this paper is to extend the duality theorem (Theorem 2.3 below) to \mathbb{R}^n .

This paper is organized as follows. In Section 2, we briefly review the first-order optimality condition for the primal problem (P_0) and the duality theorem given in [7]. In Section 3, we give a first-order optimality condition for the primal problem in \mathbb{R}^n . In Section 4, we introduce the notion of separating three convex sets by a triangular cylinder in \mathbb{R}^n to define the dual problem, and show the strong duality.

We close this section with our notations. For any closed convex sets C_1 and C_2 , we define $d(C_1, C_2) := \inf\{||X_1 - X_2|| \mid X_i \in C_i \ (i = 1, 2)\}$. We denote by $N(X_i; C_i)$ the normal cone of C_i at X_i , that is, $N(X_i; C_i) := \{Y \in \mathbb{R}^n \mid Y^T(X - X_i) \leq 0 \ \forall X \in C_i\}$.

2. Preliminaries. As is easily seen from Fig. 1.2, Ω is not always a convex set. So the primal problem (P_0) is not a convex programming problem. We modify it so that it becomes a convex programming problem.

(P)
$$\begin{aligned} & \text{Minimize} & & \sum_{i=1}^3 ||X_i - X_0|| \\ & \text{subject to} & & X_0 \in R^2, \ X_i \in C_i \ (i=1,2,3). \end{aligned}$$

The only difference is that Ω is replaced by the whole space R^2 . We say a feasible solution (X_0, \ldots, X_3) for (P_0) (or (P)) non-degenerate if $X_i \neq X_j$ for any $i \neq j$. The following is a straightforward consequence of Torricelli's Theorem and the projection theorem on the convex set C_i .

THEOREM 2.1. Let (X_0, \ldots, X_3) be a non-degenerate minimal solution for (P_0) (or (P)). Then it satisfies

and

$$(2.2) X_0 - X_i \in N(X_i; C_i) (i = 1, 2, 3).$$

Fig. 2.1. First-order optimality conditions

LEMMA 2.2. ([7]) When Ω is a triangle in \mathbb{R}^2 , it holds that $\min(P) = \min(P_0) = \text{the smallest height of } \Omega$.

We say that a triangle $\Delta \subset \Omega$ separates $\{C_i\}_{i=1}^3$ if there are three closed half spaces $\{H_i^-\}_{i=1}^3$ such that $C_i \subset H_i^-$ for every i and $\Delta = \bigcap_{i=1}^3 H_i^+$, where H_i^+ denotes the closed half space opposite to H_i^- (Fig. 2.2).

Fig. 2.2. Δ_1 separates $\{C_i\}_{i=1}^3$, and Δ_2 does not separate $\{C_i\}_{i=1}^3$.

Then the dual problem is defined as follows.

(D) Maximize the smallest height of a triangle that separates $\{C_i\}_{i=1}^3$.

THEOREM 2.3. ([7]) If (P_0) (or (P)) has a non-degenerate minimal solution, then

$$\max(D) = \min(P) = \min(P_0).$$

3. The primal problem in \mathbb{R}^n . In this section, we extend Theorem 2.1 to \mathbb{R}^n . Let C_i (i=1,2,3) be closed convex sets with non-empty interior in \mathbb{R}^n such that $\Omega = \operatorname{cl}(\cap_{i=1}^3 C_i^c)$ is not empty. Then (P_0) and (P) are defined as well as in Sections 1 and 2, respectively, where the base space is \mathbb{R}^n .

Fig. 3.1. The primal problem (P) in \mathbb{R}^3 .

THEOREM 3.1. Let (X_0, \ldots, X_3) be a non-degenerate minimal solution for (P_0) . Then X_i 's are on a two-dimensional affine set and (X_0, \ldots, X_3) satisfies (2.1) and (2.2). Further, it is a minimum solution for (P).

Proof. According to Kuhn-Tucker's theorem, see e.g. Rockafellar (Ref. 6, Section 28), there exist multipliers $\lambda_i \geq 0$ (i=1,2,3) such that $0 \in R^{4n}$ belongs to the subdifferential of the Lagrange function $L(X_0,\ldots,X_3):=\sum_{i=1}^3||X_i-X_0||+\sum_{i=1}^3\lambda_i\delta(X_i|C_i)$, where $\delta(X_i|C_i)$ denotes the characteristic function of C_i . Picking up X_0 -component of the subdifferential ∂L , we have

$$(3.1) n_1 + n_2 + n_3 = 0 \in \mathbb{R}^n,$$

where $n_i := (X_0 - X_i)/||X_i - X_0||$, which implies the first assertion. From (3.1), $||n_k||^2 = ||n_i||^2 + ||n_j||^2 + 2n_i^T n_j$ for any $\{i, j, k\} = \{1, 2, 3\}$. Thus $n_i^T n_j = -1/2$, which implies (2.1). Picking up X_i -component (i = 1, 2, 3) of ∂L , we have $0 \in -n_i + \lambda_i N(X_i; C_i)$, which implies (2.2). Next, there exists an open convex neighborhood C_0 of X_0 such that (X_0, \ldots, X_3) is a minimum point of f on $C := C_0 \times C_1 \times C_2 \times C_3$. Since f and C are convex, (X_0, \ldots, X_3) is a minimum point of f on $R^n \times C_1 \times C_2 \times C_3$. Hence it is a minimum solution for (P). \square

4. Duality theorem. In this section, we first introduce the notion of separation of three convex sets by a triangular cylinder. Next, we define the dual problem and show strong duality.

DEFINITION 4.1. Let n_i (i = 1, 2, 3) be nonzero (unit) vectors in \mathbb{R}^n satisfying (3.1), and α_i (i = 1, 2, 3) negative real numbers. Define

(4.1)
$$H_i^+ := \{ \xi \in \mathbb{R}^n \, | \, n_i^T \xi \ge \alpha_i \},$$

 $H_i^- := \{\xi \in R^n \mid n_i^T \xi \leq \alpha_i\}, \ and \ H_i := H_i^+ \cap H_i^- \ for \ any \ i=1,2,3.$ Then we call a shifted figure of $H_1^+ \cap H_2^+ \cap H_3^+$ a (regular) triangular cylinder, see Fig. 4.1. (Here we remark that the origin of R^n belongs to $H_1^+ \cap H_2^+ \cap H_3^+$.) Further, we say a triangular cylinder $H_1^+ \cap H_2^+ \cap H_3^+ + X$ separates three convex sets $\{C_i\}_{i=1}^3$ if $C_i \subset H_i^- + X$ for any i=1,2,3. Let $M:=\bigcap_{i=1}^3 \{\xi \in R^n \mid n_i^T \xi = 0\}$ and

$$(4.2) N := M^{\top} = \{ X \in \mathbb{R}^n \, | \, \xi^T X = 0 \quad \forall \xi \in M \}.$$

Then, by (3.1), N is a 2-dimensional subspace, and

$$\Delta := N \cap (H_1^+ \cap H_2^+ \cap H_3^+)$$

is a (regular) triangle. We call the smallest height of Δ the width of the triangular cylinder $H_1^+ \cap H_2^+ \cap H_3^+ + X$.

Fig. 4.1. Regular triangular cylinder in \mathbb{R}^3

Our dual problem is defined as follows.

(D) Maximize the width of a triangular cylinder that separates $\{C_i\}_{i=1}^3$.

Theorem 4.2. (Weak duality)

$$(4.4) sup(D) \le \inf(P) \le \inf(P_0).$$

Proof. Second inequality is trivial. Let (Y_0, \ldots, Y_3) be a feasible solution for (P), and $H_1^+ \cap H_2^+ \cap H_3^+ + X$ a feasible solution for (D). Then $Y_i \in C_i \subset H_i^- + X$ for any i = 1, 2, 3. Hence

$$||Y_0 - Y_i|| \ge d(Y_0, H_i^- + X) = d(Y_0 - X, H_i^-) = d(P_N(Y_0 - X), H_i^-),$$

where P_N denotes the projection to N defined by (4.2). Hence

$$\sum_{i=1}^{3} ||Y_0 - Y_i|| \ge \sum_{i=1}^{3} d(P_N(Y_0 - X), H_i^-)$$

$$= \min \left\{ \sum_{i=1}^{3} ||P_N(Y_0 - X) - X_i|| \middle| X_i \in H_i^- \ (i = 1, 2, 3) \right\}$$

$$\ge \min \left\{ \sum_{i=1}^{3} ||X_0 - X_i|| \middle| X_i \in H_i^- \ (i = 1, 2, 3), \ X_0 \in N \right\}$$

$$\ge \text{the smallest height of the triangle } \Delta \text{ defined by } (4.3)$$

$$= \text{the width of } H_1^+ \cap H_2^+ \cap H_3^+ + X,$$

where the last inequality follows from Lemma 2.2. Hence we get $\sup(D) \leq \inf(P)$. \square THEOREM 4.3. (Strong duality) If (P_0) (or (P)) has a non-degenerate minimal solution, then it holds that

$$\max(D) = \min(P) = \min(P_0).$$

Proof. Second equality follows from Theorem 3.1. Let (X_0,\ldots,X_3) be a non-degenerate minimal solution for (P_0) . Then, the regular triangular cylinder $H_1^+ \cap H_2^+ \cap H_3^+ + X_0$ determined by $n_i := (X_0 - X_i)/||X_i - X_0||$ and $\alpha_i := -||X_i - X_0||$ separates $\{C_i\}_{i=1}^3$. Indeed, it follows from (2.2) that $n_i^T X \leq n_i^T X_i$ for any $X \in C_i$, so that

$$n_i^T(X - X_0) \le n_i^T(X_i - X_0) = -||X_i - X_0|| = \alpha_i.$$

Namely, $C_i - X_0$ is contained in H_i^- . Moreover, since X_i (i = 0, 1, 2, 3) belong to the regular triangle $\Delta + X_0$, it follows from Lemma 2.2 that $\sum_{i=1}^3 ||X_0 - X_i||$ is equal to the width of the regular triangular cylinder $H_1^+ \cap H_2^+ \cap H_3^+ + X_0$. Therefore we get (4.5). \square

Remark 4.1. We can replace triangular cylinders by regular triangular cylinders in the dual problem (D), because the maximum value is attained by a regular triangular cylinder. However, it is clear that regular triangular cylinders are not enough when Ω is a non-regular triangular cylinder. That's why we defined the dual problem with (general) triangular cylinders.

5. Extension to the weighted objective function. In [4], the objective function was weighted. It is not hard to extend the present results to the weighted objective function

$$\sum_{i=1}^{3} \sigma_i ||X_i - X_0||,$$

where $\sigma_i > 0$ (i = 1, 2, 3) can be interpreted as interface tension, see Fig. 5.1. We impose an assumption that $\sigma_i < \sigma_j + \sigma_k$ for any $\{i, j, k\} = \{1, 2, 3\}$. If this assumption is violated, the primal problem does not have any non-degenerate minimal solution, see (5.2) below. We denote (P_0) and (P) with weighted objective function by (P_0^{σ}) and (P^{σ}) , respectively.

Fig. 5.1. $\sigma_i > 0$ (i = 1, 2, 3) can be regarded as interface tensions.

THEOREM 5.1. Let (X_0, \ldots, X_3) be a non-degenerate minimal solution for (P_0^{σ}) . Then it is a minimum solution for (P^{σ}) , and satisfies (2.2) and

(5.1)
$$\frac{\sin \theta_1}{\sigma_1} = \frac{\sin \theta_2}{\sigma_2} = \frac{\sin \theta_3}{\sigma_3},$$

where θ_i (i = 1, 2, 3) are defined as in Fig. 5.1.

Proof. The first assertion and (2.2) are proved in the same way with Theorem 3.1. As well as (3.1), we get $\sigma_1 n_1 + \sigma_2 n_2 + \sigma_3 n_3 = 0 \in \mathbb{R}^n$. Hence we have

(5.2)
$$\frac{\sigma_k^2 - \sigma_i^2 - \sigma_j^2}{2\sigma_i \sigma_j} = n_i^T n_j = \cos \theta_k$$

for any $\{i, j, k\} = \{1, 2, 3\}$. So we get

$$\frac{\sin^2 \theta_k}{\sigma_k^2} = \frac{2(\sigma_1^2 \sigma_2^2 + \sigma_2^2 \sigma_3^2 + \sigma_3^2 \sigma_1^2) - \sigma_1^4 - \sigma_2^4 - \sigma_3^4}{4\sigma_1^2 \sigma_2^2 \sigma_3^2}.$$

Since the right-hand side does not depend on k, we get (5.1). \square LEMMA 5.2. When Ω is a triangle in \mathbb{R}^2 , it holds that

$$\min(P^{\sigma}) = \min(P_0^{\sigma}) = \min_{i=1,2,3} \sigma_i h_i,$$

where h_i is the height of the triangle with base length a_i .

Proof. It's enough to consider KKT condition for the following extremal problem.

Minimize
$$\sigma_1 l_1 + \sigma_2 l_2 + \sigma_3 l_3$$

subject to $a_1 l_1 + a_2 l_2 + a_3 l_3 = 2S$
 $l_i \ge 0 \quad (i = 1, 2, 3).$

П

For a triangular cylinder, let Δ be a triangle defined by (4.3) and σ_i (i = 1, 2, 3) positive real numbers. We call the smallest weighted height of Δ the weighted width of the triangular cylinder. Then the dual problem (D^{σ}) is defined as follows.

Maximize the weighted width of a triangular cylinder that separates $\{C_i\}_{i=1}^3$.

7

Theorem 5.3. If (P_0^{σ}) (or (P^{σ})) has a non-degenerate minimal solution, then it holds that

(5.3)
$$\min(P_0^{\sigma}) = \min(P^{\sigma}) = \max(D^{\sigma}).$$

Proof. Since the proof of this theorem is the same as that of Theorem 4.3 except obvious modifications, we omit it. \square

6. Concluding remark. Gale and Klee [3] gave separation theorems for an infinite number of convex sets with empty intersection in R^n . For example, if a family of open convex proper subsets $\{C_{\nu}\}$ of R^n has empty intersection, then there are open halfspaces $\{H_{\nu}^-\}$ with empty intersection such that $C_{\nu} \subset H_{\nu}^-$ for any ν , see also a survey paper Klee [8] and Bair [1]. Since their separation theorems are not quantitative but qualitative, they do not seem to derive us to our duality theorems.

Further, a generalization of Duboviskiĭ and Miljutin's theorem [2] asserts that if a finite number of convex sets $\{C_i\}_{i=1}^k$ in \mathbb{R}^n has empty intersection, then there exist non-trivial vectors $\xi_i \in \mathbb{R}^n$ $(i=1,\ldots,k)$ such that

$$\xi_1 + \dots + \xi_k = 0$$

and

(6.2)
$$\delta^*(\xi_1|C_1) + \dots + \delta^*(\xi_k|C_k) \le 0,$$

where $\delta^*(\xi_i|C_i)$ denotes the support function $\sup\{\xi_i^T X_i \mid X_i \in C_i\}$. If we directly apply this separation theorem to the linear case $C_i = \{X_i \mid \xi_i^T X_i \leq \alpha_i\}$, (6.1) and (6.2) reduce to $\sum_{i=1}^3 \lambda_i \xi_i = 0$ and $\sum_{i=1}^3 \lambda_i \alpha_i \leq 0$ for some non-trivial $\lambda_i \geq 0$ (i = 1, 2, 3), respectively. They do not seem enough to derive our duality theorems, either.

REFERENCES

- [1] J. Bair, Sur la Séparation de familles finites d'ensembles covexes, Bulletin de la Société Royale des Sciences de Liège, 41 (1972), pp. 281–291.
- [2] A. Ja. Duboviskiĭ and A. A. Miljutin, Extremal problems with constraints, Soviet Math. Dokl. 4 (1963), pp. 452–255.
- [3] D. Gale and V. Klee, Continuous convex sets, Mathematics Scandinavica, 7 (1959), pp. 379–391.
- [4] R. Ikota and E. Yanagida, A stability criterion for stationary curves to the curvature-driven motion with a triple junction, Differential and Integral Equations, 16 (2003), pp. 707–726.
- [5] H. Kawasaki, A game-theoretic aspect of conjugate sets for a nonlinear programming problem, in Proceedings of the third International Conference on Nonlinear Analysis and Convex Analysis, Yokohama Publishers, (2004), pp. 159–168.
- [6] H. Kawasaki, Conjugate-set game for a nonlinear programming problem, in Game theory and applications 10, eds. L.A. Petrosjan and V.V. Mazalov, Nova Science Publishers, New York, USA, (2005), pp. 87–95.
- [7] H. Kawasaki, A duality theorem for a three-phase partition problem, submitted.
- [8] V. Klee, Separation and support properties of convex sets-A survey, in Control Theory and the Calculus of Variations, ed. A. V. Balakrishnan, Academic Press, New York, (1969), pp. 235–303.
- [9] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, New Jersey, (1970).
- [10] P. Sternberg and W. P. Zeimer, Local minimizers of a three-phase partition problem with triple junctions, Proc. Royal Soc. Edin., 124A (1994), pp. 1059–1073.

List of MHF Preprint Series, Kyushu University

21st Century COE Program

Development of Dynamic Mathematics with High Functionality

MHF2003-1	Mitsuhiro T. NAKAO, Kouji HASHIMOTO & Yoshitaka WATANABE
	A numerical method to verify the invertibility of linear elliptic operators with
	applications to nonlinear problems

- MHF2003-2 Masahisa TABATA & Daisuke TAGAMI

 Error estimates of finite element methods for nonstationary thermal convection problems with temperature-dependent coefficients
- MHF2003-3 Tomohiro ANDO, Sadanori KONISHI & Seiya IMOTO Adaptive learning machines for nonlinear classification and Bayesian information criteria
- MHF2003-4 Kazuhiro YOKOYAMA
 On systems of algebraic equations with parametric exponents
- MHF2003-5 Masao ISHIKAWA & Masato WAKAYAMA
 Applications of Minor Summation Formulas III, Plücker relations, Lattice paths and Pfaffian identities
- MHF2003-6 Atsushi SUZUKI & Masahisa TABATA

 Finite element matrices in congruent subdomains and their effective use for large-scale computations
- MHF2003-7 Setsuo TANIGUCHI Stochastic oscillatory integrals - asymptotic and exact expressions for quadratic phase functions -
- MHF2003-8 Shoki MIYAMOTO & Atsushi YOSHIKAWA Computable sequences in the Sobolev spaces
- MHF2003-9 Toru FUJII & Takashi YANAGAWA

 Wavelet based estimate for non-linear and non-stationary auto-regressive model
- MHF2003-10 Atsushi YOSHIKAWA

 Maple and wave-front tracking an experiment
- MHF2003-11 Masanobu KANEKO
 On the local factor of the zeta function of quadratic orders
- MHF2003-12 Hidefumi KAWASAKI Conjugate-set game for a nonlinear programming problem

- MHF2004-1 Koji YONEMOTO & Takashi YANAGAWA Estimating the Lyapunov exponent from chaotic time series with dynamic noise
- MHF2004-2 Rui YAMAGUCHI, Eiko TSUCHIYA & Tomoyuki HIGUCHI State space modeling approach to decompose daily sales of a restaurant into time-dependent multi-factors
- MHF2004-3 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA & Yasuhiko YAMADA
 Cubic pencils and Painlevé Hamiltonians
- MHF2004-4 Atsushi KAWAGUCHI, Koji YONEMOTO & Takashi YANAGAWA Estimating the correlation dimension from a chaotic system with dynamic noise
- MHF2004-5 Atsushi KAWAGUCHI, Kentarou KITAMURA, Koji YONEMOTO, Takashi YANAGAWA & Kiyofumi YUMOTO

 Detection of auroral breakups using the correlation dimension
- MHF2004-6 Ryo IKOTA, Masayasu MIMURA & Tatsuyuki NAKAKI A methodology for numerical simulations to a singular limit
- MHF2004-7 Ryo IKOTA & Eiji YANAGIDA Stability of stationary interfaces of binary-tree type
- MHF2004-8 Yuko ARAKI, Sadanori KONISHI & Seiya IMOTO Functional discriminant analysis for gene expression data via radial basis expansion
- MHF2004-9 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA & Yasuhiko YAMADA Hypergeometric solutions to the q Painlevé equations
- MHF2004-10 Raimundas VIDŪNAS

 Expressions for values of the gamma function
- MHF2004-11 Raimundas VIDŪNAS

 Transformations of Gauss hypergeometric functions
- MHF2004-12 Koji NAKAGAWA & Masakazu SUZUKI Mathematical knowledge browser
- MHF2004-13 Ken-ichi MARUNO, Wen-Xiu MA & Masayuki OIKAWA Generalized Casorati determinant and Positon-Negaton-Type solutions of the Toda lattice equation
- MHF2004-14 Nalini JOSHI, Kenji KAJIWARA & Marta MAZZOCCO Generating function associated with the determinant formula for the solutions of the Painlevé II equation

MHF2004-15 Kouji HASHIMOTO, Ryohei ABE, Mitsuhiro T. NAKAO & Yoshitaka WATANABE

Numerical verification methods of solutions for nonlinear singularly perturbed problem

MHF2004-16 Ken-ichi MARUNO & Gino BIONDINI

Resonance and web structure in discrete soliton systems: the two-dimensional Toda lattice and its fully discrete and ultra-discrete versions

MHF2004-17 Ryuei NISHII & Shinto EGUCHI

Supervised image classification in Markov random field models with Jeffreys divergence

MHF2004-18 Kouji HASHIMOTO, Kenta KOBAYASHI & Mitsuhiro T. NAKAO Numerical verification methods of solutions for the free boundary problem

MHF2004-19 Hiroki MASUDA

Ergodicity and exponential β -mixing bounds for a strong solution of Lévy-driven stochastic differential equations

MHF2004-20 Setsuo TANIGUCHI

The Brownian sheet and the reflectionless potentials

MHF2004-21 Ryuei NISHII & Shinto EGUCHI

Supervised image classification based on AdaBoost with contextual weak classifiers

MHF2004-22 Hideki KOSAKI

On intersections of domains of unbounded positive operators

MHF2004-23 Masahisa TABATA & Shoichi FUJIMA

Robustness of a characteristic finite element scheme of second order in time increment

MHF2004-24 Ken-ichi MARUNO, Adrian ANKIEWICZ & Nail AKHMEDIEV

Dissipative solitons of the discrete complex cubic-quintic Ginzburg-Landau equation

MHF2004-25 Raimundas VIDŪNAS

Degenerate Gauss hypergeometric functions

MHF2004-26 Ryo IKOTA

The boundedness of propagation speeds of disturbances for reaction-diffusion systems

MHF2004-27 Ryusuke KON

Convex dominates concave: an exclusion principle in discrete-time Kolmogorov systems

- MHF2004-28 Ryusuke KON

 Multiple attractors in host-parasitoid interactions: coexistence and extinction
- MHF2004-29 Kentaro IHARA, Masanobu KANEKO & Don ZAGIER Derivation and double shuffle relations for multiple zeta values
- MHF2004-30 Shuichi INOKUCHI & Yoshihiro MIZOGUCHI Generalized partitioned quantum cellular automata and quantization of classical CA
- MHF2005-1 Hideki KOSAKI

 Matrix trace inequalities related to uncertainty principle
- MHF2005-2 Masahisa TABATA

 Discrepancy between theory and real computation on the stability of some finite element schemes
- MHF2005-3 Yuko ARAKI & Sadanori KONISHI
 Functional regression modeling via regularized basis expansions and model selection
- MHF2005-4 Yuko ARAKI & Sadanori KONISHI Functional discriminant analysis via regularized basis expansions
- MHF2005-5 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA & Yasuhiko YAMADA
 Point configurations, Cremona transformations and the elliptic difference Painlevé equations
- MHF2005-6 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA & Yasuhiko YAMADA

 Construction of hypergeometric solutions to the q Painlevé equations
- MHF2005-7 Hiroki MASUDA Simple estimators for non-linear Markovian trend from sampled data: I. ergodic cases
- MHF2005-8 Hiroki MASUDA & Nakahiro YOSHIDA Edgeworth expansion for a class of Ornstein-Uhlenbeck-based models
- MHF2005-9 Masayuki UCHIDA Approximate martingale estimating functions under small perturbations of dynamical systems
- MHF2005-10 Ryo MATSUZAKI & Masayuki UCHIDA One-step estimators for diffusion processes with small dispersion parameters from discrete observations
- MHF2005-11 Junichi MATSUKUBO, Ryo MATSUZAKI & Masayuki UCHIDA Estimation for a discretely observed small diffusion process with a linear drift

- MHF2005-12 Masayuki UCHIDA & Nakahiro YOSHIDA AIC for ergodic diffusion processes from discrete observations
- MHF2005-13 Hiromichi GOTO & Kenji KAJIWARA Generating function related to the Okamoto polynomials for the Painlevé IV equation
- MHF2005-14 Masato KIMURA & Shin-ichi NAGATA Precise asymptotic behaviour of the first eigenvalue of Sturm-Liouville problems with large drift
- MHF2005-15 Daisuke TAGAMI & Masahisa TABATA

 Numerical computations of a melting glass convection in the furnace
- MHF2005-16 Raimundas VIDŪNAS Normalized Leonard pairs and Askey-Wilson relations
- MHF2005-17 Raimundas VIDŪNAS
 Askey-Wilson relations and Leonard pairs
- MHF2005-18 Kenji KAJIWARA & Atsushi MUKAIHIRA Soliton solutions for the non-autonomous discrete-time Toda lattice equation
- MHF2005-19 Yuu HARIYA Construction of Gibbs measures for 1-dimensional continuum fields
- MHF2005-20 Yuu HARIYA Integration by parts formulae for the Wiener measure restricted to subsets in \mathbb{R}^d
- MHF2005-21 Yuu HARIYA A time-change approach to Kotani's extension of Yor's formula
- MHF2005-22 Tadahisa FUNAKI, Yuu HARIYA & Mark YOR Wiener integrals for centered powers of Bessel processes, I
- MHF2005-23 Masahisa TABATA & Satoshi KAIZU Finite element schemes for two-fluids flow problems
- MHF2005-24 Ken-ichi MARUNO & Yasuhiro OHTA

 Determinant form of dark soliton solutions of the discrete nonlinear Schrödinger equation
- MHF2005-25 Alexander V. KITAEV & Raimundas VIDŪNAS Quadratic transformations of the sixth Painlevé equation
- MHF2005-26 Toru FUJII & Sadanori KONISHI Nonlinear regression modeling via regularized wavelets and smoothing parameter selection

- MHF2005-27 Shuichi INOKUCHI, Kazumasa HONDA, Hyen Yeal LEE, Tatsuro SATO, Yoshihiro MIZOGUCHI & Yasuo KAWAHARA
 On reversible cellular automata with finite cell array
- MHF2005-28 Toru KOMATSU

 Cyclic cubic field with explicit Artin symbols
- MHF2005-29 Mitsuhiro T. NAKAO, Kouji HASHIMOTO & Kaori NAGATOU A computational approach to constructive a priori and a posteriori error estimates for finite element approximations of bi-harmonic problems
- MHF2005-30 Kaori NAGATOU, Kouji HASHIMOTO & Mitsuhiro T. NAKAO Numerical verification of stationary solutions for Navier-Stokes problems
- MHF2005-31 Hidefumi KAWASAKI
 A duality theorem for a three-phase partition problem
- MHF2005-32 Hidefumi KAWASAKI
 A duality theorem based on triangles separating three convex sets
- MHF2005-33 Takeaki FUCHIKAMI & Hidefumi KAWASAKI An explicit formula of the Shapley value for a cooperative game induced from the conjugate point
- MHF2005-34 Hideki MURAKAWA
 A regularization of a reaction-diffusion system approximation to the two-phase Stefan problem
- MHF2006-1 Masahisa TABATA

 Numerical simulation of Rayleigh-Taylor problems by an energy-stable finite element scheme
- MHF2006-2 Ken-ichi MARUNO & G R W QUISPEL Construction of integrals of higher-order mappings
- MHF2006-3 Setsuo TANIGUCHI On the Jacobi field approach to stochastic oscillatory integrals with quadratic phase function
- MHF2006-4 Kouji HASHIMOTO, Kaori NAGATOU & Mitsuhiro T. NAKAO A computational approach to constructive a priori error estimate for finite element approximations of bi-harmonic problems in nonconvex polygonal domains
- MHF2006-5 Hidefumi KAWASAKI A duality theory based on triangular cylinders separating three convex sets in \mathbb{R}^n