On the Jacobi field approach to stochastic oscillatory integrals with quadratic phase function

Taniguchi, Setsuo
Faculty of Mathematics, Kyushu University

https://hdl.handle.net/2324/3380

出版情報：Kyushu Journal of Mathematics. 61 (1), pp.191-208, 2007-03. Faculty of Mathematics, Kyushu University
バージョン：
権利関係：(c) 2007 Faculty of Mathematics, Kyushu University
On the Jacobi field approach to stochastic oscillatory integrals with quadratic phase function

S. Taniguchi

MHF 2006-3

(Received January 18, 2006)
ON THE JACOBI FIELD APPROACH TO
STOCHASTIC OSCILLATORY INTEGRALS WITH
QUADRATIC PHASE FUNCTION

Setsuo Taniguchi

Abstract. The approach taking advantage of Jacobi fields to represent explicitly
stochastic oscillatory integrals with quadratic phase function, which approach was
introduced by N. Ikeda, S. Kusuoka, and S. Manabe, is completed in the general
scheme and is testified in several examples.

2000 Mathematics Subject Classification: Primary 60H30, 60H07
Keywords and Phrases: quadratic Wiener functional; stochastic oscillatory
integral; Jacobi fields; Volterra operator
Running Head: Stochastic Oscillatory Integrals

1 Introduction and Statement of results

Let $d \in \mathbb{N}, T > 0, W$ be the space of all continuous functions $w : [0, T] \to \mathbb{R}^d$ with
$w(0) = 0$, and μ the Wiener measure on W. Denote by H the Cameron-Martin
subspace of W, the space of all $h \in W$ which is absolutely continuous on $[0, T]$ and
has the derivative h' square integrable with respect to the Lebesgue measure.
A Wiener functional q, which is smooth in the sense of the Malliavin calculus, is
said to be quadratic if it is of the form $q = Q_A = (\nabla^* A)$, where $A : H \to H$
is a symmetric Hilbert-Schmidt operator and ∇^* is the adjoint operator of the
Malliavin gradient ∇. Such q and A are in one to one correspondence; $A = \nabla^2 q/2$.
For Q_A's, there are lots of investigations to give explicit expression of stochastic
oscillatory integral

$$I(Q_A; \zeta) = \int_W e^{\zeta Q_A/2} \delta_x(\eta) d\mu,$$

where $\zeta \in \mathbb{C}$ and $\delta_x(\eta)$ denotes Watanabe’s pull back of the Dirac measure δ_x on \mathbb{R}^N concentrated at x through the non-degenerate and smooth Wiener functional $\eta : W \to \mathbb{R}^N$. In [3, 4], N. Ikeda, S. Kusuoka, and S. Manabe introduced
the Jacobi field for Q_A and used it to evaluate $I(Q_A; \zeta)$ in two cases; one is
when Q_A is the quadratic Wiener functional related to harmonic oscillator in
uniform magnetic field, and the other is when Q_A is the generalized stochastic
area for Gaussian process. In this paper, we extend their formula to more general
quadratic Wiener functionals and η’s to complete the Jacobi field approach
to stochastic oscillatory integrals. Moreover, all exact expressions of stochastic

*Research supported in part by Grant-in-Aid for Scientific Research (A) 14204010
oscillatory integrals under various $\delta_x(\eta) d\mu$’s will be unified in terms of Grassmannians.

We shall state our result precisely. Let $A : H \to H$ be a symmetric Hilbert-Schmidt operator. Throughout the paper, we assume that

(A1) there exist a Volterra operator $A_V : H \to H$, a bounded operator $A_F : H \to H$, and linearly independent $\eta_1, \ldots, \eta_M \in H$ such that

(i) $A = A_V + A_F$, and
(ii) the subspace of H spanned by η_1, \ldots, η_M, say \mathcal{R}, includes the range $\mathcal{R}(A_F)$ of A_F.

Let $\zeta \in \mathbb{C}$ and $p = (p_1, \ldots, p_M)^\dagger \in \mathbb{C}^M$, where we have thought of elements of \mathbb{C}^n, $n \in \mathbb{N}$, as column vectors, and $(p_1, \ldots, p_M)^\dagger$ is the transposed vector of the row vector (p_1, \ldots, p_M). Define $J_{\zeta}(\cdot; p) \in H \otimes \mathbb{C}$ (≡ the standard complexification of H) by

$$
\tilde{J}_{\zeta}(\cdot; p) = (I - \zeta A_V)^{-1} \left(\sum_{j=1}^M p_j \eta_j \right),
$$

where $I - \zeta A_V$ is extended to a complex operator on $H \otimes \mathbb{C}$ in the usual manner. Let $0 \leq N \leq M$ and L be the subspace of \mathcal{R} spanned by η_1, \ldots, η_N, where $L = \{0\}$ if $N = 0$. Denote by $\pi_L : H \to H$ the orthogonal projection onto L, and set $A_L = (I - \pi_L)A$ and $A^\# = (I - \pi_R)A$. Define the linear mapping $\tilde{J}_{\zeta,N} : \mathbb{C}^M \to \mathbb{C}^M$ by

$$
\tilde{J}_{\zeta,N} \mu = \left(\langle \tilde{J}_{\zeta}(\cdot; p), (I - \zeta (A^2 - A^\#)^*) \eta_j \rangle_H \right)_{1 \leq j \leq M}^\dagger;
$$

where $(A^2 - A^\#)^*$ is the adjoint operator of $A^2 - A^\#$. Denote by $\eta^{(N)}$ the \mathbb{R}^N-valued Wiener functional $(\nabla^* \eta_1, \ldots, \nabla^* \eta_N)^\dagger$. Note that $\eta^{(N)}$ is smooth and non-degenerate in the sense of the Malliavin calculus.

We are ready to state our results.

Theorem 1. There exists $\varepsilon > 0$ such that for every $\zeta \in \mathbb{C}$ with $|\zeta| < \varepsilon$, $\det \tilde{J}_{\zeta,N} \neq 0$ and it holds that

$$
\int_{\mathcal{W}} e^{\xi Q A_{1/2}} \delta_0(\eta^{(N)}) d\mu = \left\{ \frac{\det C(\eta^{(M)})}{(2\pi)^N \det C(\eta^{(N)}) \det \tilde{J}_{\zeta,N}} \right\}^{1/2} e^{-\langle \xi/2 \rangle_{A_F}} \mu_{A_F},
$$

where $C(\eta^{(k)}) = \langle \eta_k, \eta_j \rangle_H$ for $1 \leq i, j \leq k$, and $\delta_0(\eta^{(0)}) d\mu = d\mu$ and $C(\eta^{(0)}) = 1$.

Once the identity (1) has been obtained, it is routine to extend it holomorphically to much wider domain in \mathbb{C}. Moreover, we have the following assertion with $\delta_x(\eta^{(N)})$ instead of $\delta_0(\eta^{(N)})$.

Theorem 2. Let $N \geq 1$ and $x = (x_1, \ldots, x_N)^\dagger \in \mathbb{R}^N$.

(i) Suppose that there exists $h \in H \otimes \mathbb{C}$ such that $\langle h, \eta_i \rangle_H = x_i$, $1 \leq i \leq N$, and
\((I - \zeta A)h, k\) \(H = 0\) for any \(k \in L^\perp \) (\(\equiv\) the orthogonal complement of \(L\) in \(H\)). Then it holds that

\[
\int_W e^{iQA/2} \delta_x(\eta^{(N)})d\mu = e^{-((I - \zeta A)h, h)/2} \int_W e^{iQA/2} \delta_0(\eta^{(N)})d\mu. \tag{2}
\]

(ii) If there exists \(y = (y_1, \ldots, y_{M-N})^\dagger \in \mathbb{C}^{M-N}\) such that

\[
\langle (I - \zeta A)\tilde{J}_\zeta(\cdot; \tilde{J}^{-1}_{\zeta,M}p_{x,y}), k \rangle_H = 0 \quad \text{for every} \quad k \in L^\perp,
\]

where \(p_{x,y} = (x_1, \ldots, x_N, y_1, \ldots, y_{M-N})^\dagger\), then \(h = \tilde{J}_\zeta(\cdot; \tilde{J}^{-1}_{\zeta,M}p_{x,y})\) satisfies the condition in (i).

(iii) If \(N = M\), then \(h = \tilde{J}_\zeta(\cdot; \tilde{J}^{-1}_{\zeta,M}x)\) fulfills the condition in (i).

Under suitable assumptions, \(\tilde{J}_\zeta(\cdot; p)\) can be characterized only by \(A\) and \(\eta_j\)'s;

Theorem 3. Suppose that

(A2) there exists \(m \in \mathbb{N}\) with \(md \geq M\) such that

(a) \(A_V h(t)\) is differentiable around \(t = 0\) for any \(h \in H\),
(b) \(A_V k(t)\) is \((i + 1)\)-times differentiable around \(t = 0\) if \(1 \leq i < m\) and \(k \in H\) is \(i\)-times differentiable around \(t = 0\),
(c) the \(j\)-th derivative \((A_V g)^{(j)}(0)\) of \(A_V g\) at \(t = 0\) vanishes for every \(1 \leq j \leq m\) provided that \(g \in H\) is \(m\)-times differentiable around \(t = 0\), and
(d) each \(\eta_j\) is \(m\)-times differentiable around \(t = 0\) and the matrix

\[
D = \begin{pmatrix}
\eta^{(1)}_1(0) & \cdots & \eta^{(1)}_M(0) \\
\vdots & \ddots & \vdots \\
\eta^{(m)}_1(0) & \cdots & \eta^{(m)}_M(0)
\end{pmatrix} \in \mathbb{R}^{md \times M}
\]

has the rank \(M\).

Then, for each \(p \in \mathbb{C}^M\), \(\tilde{J}_\zeta(\cdot; t)\) is the unique element \(J \in H \otimes \mathbb{C}\) which is differentiable around \(t = 0\) and satisfies that

\[
\langle (I - \zeta A)J, h \rangle_H = 0 \quad \text{for any} \quad h \in \mathcal{R}^\perp, \quad \text{and} \quad \begin{pmatrix}
J^{(1)}(0) \\
\vdots \\
J^{(m)}(0)
\end{pmatrix} = Dp. \tag{3}
\]

It should be mentioned that the assumption (b) guarantees the \(m\)-times differentiability of \(A_V g\) around \(t = 0\) in (c).

In [4], the case where \(N = M\) was observed for the special two types of quadratic Wiener functionals as mentioned above. Remembering that the equation (3) was called the Jacobi equation associated with \(Q_A\) in [3, 4], we call Theorems 1, 2, and 3 the Jacobi field approach to stochastic oscillatory integrals.
From Theorems 1 and 2, we see that \(\tilde{J}(\cdot; p) \) governs the all stochastic oscillatory integrals \(I(Q_A; \zeta) \). In terms of Grassmannians, we can give another unified interpretation for this phenomenon. Namely, let

\[
\Phi_\zeta = \left(\begin{array}{c} \Phi_\zeta^{(1)} \\ \vdots \\ \Phi_\zeta^{(M+N+1)} \\ \Phi_\zeta^{(2M)} \end{array} \right) \in \mathbb{C}^{2M \times M}.
\]

Since \(\det \tilde{J}_{\zeta,N} \neq 0 \) for any \(0 \leq N \leq M \), \(\Phi_\zeta \) determines an \(M \)-frame in a \(2M \)-dimensional vector space \(V(2M) \) over \(\mathbb{C} \), and hence a point, say \(W_\zeta \), in the Grassmannian \(GM(M, V(2M)) \), the set of all \(M \)-dimensional vector subspaces of \(V(2M) \). Without loss of generality, we may and will assume that \(\langle \eta_i, \eta_j \rangle_H = 0 \) if \(i \neq j \). Then, denoting by \(\Phi_\zeta^{(i)} \) the \(i \)-th row vector of \(\Phi_\zeta \), by the very definition of \(\tilde{J}_{\zeta,N} \), we have that

\[
\tilde{J}_{\zeta,N} = \left(\begin{array}{c} \Phi_\zeta^{(1)} \\ \vdots \\ \Phi_\zeta^{(N)} \\ \Phi_\zeta^{(M+N+1)} \\ \vdots \\ \Phi_\zeta^{(2M)} \end{array} \right).
\]

Hence \(\det \tilde{J}_{\zeta,N} \) is the \((1, \ldots, N, M+N+1, \ldots, 2M)\)-th Plücker coordinate of \(W_\zeta \). In this manner, through the Plücker coordinates, the point \(W_\zeta \) governs the all stochastic oscillatory integrals \(I(Q_A; \zeta) \). This kind of representation using the Plücker coordinates was first investigated by K. Hara and N. Ikeda [1] for the classical and generalized stochastic areas.

In Section 2, the proofs of the theorems will be given. Some examples, to which the theorems are applicable, will be discussed in Section 3.

2 Proofs of Theorems 1, 2 and 3

In this section, we always assume that the assumption (A1) is satisfied.

We shall start this section by recalling the general expression of stochastic oscillatory integral in terms of \(A_V \) and \(A_F \), which was found out in [2]. Let \(A_F^\dagger = -\pi_L A_V + (I - \pi_L) A_F \).

Proposition 1. If \(|\Re \zeta| < 1/\|A\|_{\text{op}} \), where \(\|A\|_{\text{op}} \) is the operator norm of \(A \), then the following two identities hold.

\[
\int_W e^{\zeta Q_A/2} d\mu = \{\det(I - \zeta A_F(I - \zeta A_V)^{-1})\}^{-1/2} e^{-(\zeta/2)^{tr} A_F}, \tag{4}
\]

\[
\int_W e^{\zeta Q_A/2} \delta_0(\eta^{(N)}) d\mu = \frac{1}{\sqrt{(2\pi)^N \det C(\eta^{(N)})}} \{\det(I - \zeta A_F^\dagger(I - \zeta A_V)^{-1})\}^{-1/2} e^{-(\zeta/2)^{tr} A_F}. \tag{5}
\]
Note that (5) includes (4). Namely, if \(N = 0 \), then \(A_F^2 = A_F \). Hence what to do is just replacing \(\delta_L(\eta) d\mu \) by \(d\mu \) and substituting \(C(\eta^{(0)}) = 1 \), as was stated in Theorem 1.

Proof. While the original proof can be found in [2], for the sake of completeness and preciseness, we give the proof.

If \(S : H \to H \) is of trace class and \(T : H \to H \) is a Hilbert-Schmidt operator, then we have that

\[
\det_2(I + S)(I + T) = \det(I + S) \det_2(I + T) e^{-\operatorname{tr} S(T + T)}.
\]

If \(|\Re \zeta| < 1/\|A\|_{\text{op}} \), then we have that

\[
\int_W e^{iQ_\lambda/2} dP = \{ \det_2(I - \zeta A) \}^{-1/2},
\]

\[
\int_W e^{iQ_\lambda/2} \delta_0(\eta^{(N)}) d\mu = \frac{1}{\sqrt{(2\pi)^N \det C(\eta^{(N)})}} \{ \det_2(I - \zeta A_0) \}^{-1/2} e^{-((\zeta/2) \operatorname{tr} A_1)},
\]

where \(A_0 = (I - \pi_L)A(I - \pi_L) \) and \(A_1 = \pi_L A \pi_L \). For example, see [5, 7]. Substituting (6) with \(S = -\zeta A_F(I - \zeta A_V)^{-1} \) and \(T = -\zeta A_V \) into (7), we obtain (4). Since \(\operatorname{tr} A_F^2 + \operatorname{tr} A_1 = \operatorname{tr} A_F \) and \(\det_2(I - \zeta(I - \pi_L)A) = \det_2(I - \zeta A_0) \), plugging (6) with \(S = -\zeta A_F^2(I - \zeta A_V)^{-1} \) and \(T = -\zeta A_V \) into (8), we obtain (5).

Proof of Theorem 1. Let \(|\zeta| < 1/\|A\|_{\text{op}} \). Define \(Q_L(\zeta) : H \otimes \mathbb{C} \to H \otimes \mathbb{C} \) and the matrix \(q_L(\zeta) = (q^{ij}_L(\zeta))_{1 \leq i,j \leq M} \in \mathbb{C}^{M \times M} \) by

\[
Q_L(\zeta) = \pi_R(I - \zeta A_F^2(I - \zeta A_V)^{-1}) \pi_R, \quad Q_L(\zeta) \eta_i = \sum_{j=1}^M q^{ij}_L(\zeta) \eta_j, \quad 1 \leq i \leq M.
\]

Then

\[
\det q_L(\zeta) = \det(I - \zeta A_F^2(I - \zeta A_V)^{-1}),
\]

which, in conjunction with Proposition 1, implies that

\[
\det q_L(\zeta) \neq 0.
\]

Since \(\|A^2\|_{\text{op}} \leq \|A\|_{\text{op}} \), for \(p = (p_1, \ldots, p_M)^\dagger \in \mathbb{C}^M \), one can define

\[
J_L(\cdot; p) = (I - \zeta A_F^2)^{-1} \left(\sum_{j=1}^M p_j \eta_j \right).
\]

Since \(\eta_i \in \mathcal{R} \) and \(\mathcal{R}(A_F^2) \subset \mathcal{R} \), observe that

\[
(I - \zeta A_F^2(I - \zeta A_V)^{-1}) \eta_i = Q_L(\zeta) \eta_i, \quad i = 1, \ldots, M.
\]

Noting that \(A^3 = A_V + A_F^3 \), we have that

\[
I - \zeta A_F^2(I - \zeta A_V)^{-1} = (I - \zeta A^2)(I - \zeta A_V)^{-1}.
\]
Hence it holds that
\[(I - \zeta A_V)^{-1} \eta_h = (I - \zeta A_V)^{-1} Q_L(\zeta) \eta_h = (I - \zeta A_V)^{-1} \left(\sum_{j=1}^{M} q_{L}^{j}(\zeta) \eta_j \right),\]
which implies that
\[\tilde{J}_\zeta(\cdot; p) = J_L(\cdot; q_L(\zeta)^\dagger p).\]

By the very definition of \(A^\#\), for every \(p' = (p'_1, \ldots, p'_M)^\dagger \in \mathbb{C}^M\), it holds that
\[
\langle J_L(\cdot; p'), \eta_j \rangle_H = \langle (I - \zeta A^\#) J_L(\cdot; p'), \eta_j \rangle_H
\]
\[= \langle (I - \zeta A^\#) J_L(\cdot; p'), \eta_j \rangle_H + \zeta \langle (A^\# - A^\#) J_L(\cdot; p'), \eta_j \rangle_H
\]
\[= \sum_{i=1}^{M} p'_i \langle \eta_h, \eta_j \rangle_H + \zeta \langle (A^\# - A^\#) J_L(\cdot; p'), \eta_j \rangle_H, \quad j = 1, \ldots, M.\]
Hence we have that
\[
\left(\langle J_L(\cdot; p'), \eta_j - \zeta (A^\# - A^\#)^* \eta_j \rangle_H \right)_{1 \leq j \leq M} = C(\eta^{(M)}) p'.
\]
By (10), we obtain that
\[\tilde{J}_{\zeta,N} = C(\eta^{(M)}) q_L(\zeta)^\dagger,\]
which yields that
\[q_L(\zeta)^\dagger = C(\eta^{(M)})^{-1} \tilde{J}_{\zeta,N}.
\]
From this, Proposition 1, and (9), the assertion of Theorem 1 follows immediately.

Proof of Theorem 2. Let \(h\) be as described in (i). It is easily seen that
\[Q_A(\cdot + h) = Q_A + 2\nabla^*(Ah) + \langle Ah, h \rangle_H, \quad \eta^{(N)}(\cdot - h) = \eta^{(N)} - x.\]
Due to the Cameron-Martin theorem, we have that
\[
\int_{\mathbb{W}} e^{-\zeta Q_A/2} \delta_\zeta(\eta^{(N)}) d\mu = \int_{\mathbb{W}} e^{-\zeta Q_A/2} \delta_0(\eta^{(N)} - x) d\mu
\]
\[= \int_{\mathbb{W}} e^{(\zeta/2) Q_A(\cdot + h)} e^{-\nabla^*[\|h\|_2^2/2]} \delta_0(\eta^{(N)}) d\mu
\]
\[= e^{-(I - \zeta A) h} \int_{\mathbb{W}} e^{(\zeta Q_A/2) - \nabla*[\|h\|_2]} \delta_0(\eta^{(N)}) d\mu.
\]
Since \((I - \zeta A)h = \sum_{j=1}^{N} c_j \eta_j\) for some \(c_1, \ldots, c_N \in \mathbb{C}, \nabla^*[\|h\|_2] = 0\)
\[
\delta_0(\eta^{(N)}) d\mu-a.e.\] Thus we obtain (2).
If \(N = M\), then \(A^2 = A^\#\) and hence
\[\tilde{J}_{\zeta,Mp} = ((\tilde{J}_\zeta(\cdot; p), \eta_j \rangle_H)^\dagger_{1 \leq j \leq M}.\]
This implies the second and the third assertions.
Proof of Theorem 3. For any $h \in \mathbb{R}^+$, we have that

$$\langle (I - \zeta A) \tilde{J}_\zeta(\cdot, p), h \rangle_H = \langle (I - \zeta A^V) \tilde{J}_\zeta(\cdot, p), h \rangle_H = \sum_{j=1}^{M} p_j \langle \eta_j, h \rangle_H = 0.$$

By virtue of the assumption (A2) and the expression that

$$\tilde{J}_\zeta(\cdot, p) = \zeta A^V \tilde{J}_\zeta(\cdot, p) + \sum_{j=1}^{M} p_j \eta_j,$$

$\tilde{J}_\zeta(\cdot, p)$ is m-times differentiable around $t = 0$ and satisfies that

$$[\tilde{J}_\zeta(\cdot, p)]^{(i)}(0) = \sum_{j=1}^{M} p_j \eta_j^{(i)}(0) = ((Dp)(k))_{d_{i+1} \leq k \leq d_{i+m}}, \quad 1 \leq i \leq m.$$

Thus $\tilde{J}_\zeta(\cdot, p)$ solves (3).

If both $J_1, J_2 \in H \otimes C$ are m-times differentiable around $t = 0$ and satisfy (3), then, for any $h \in \mathbb{R}^+$,

$$\langle (I - \zeta A^V)(J_1 - J_2), h \rangle_H = \langle (I - \zeta A)(J_1 - J_2), h \rangle_H = 0.$$

Hence there exists $q = (q_1, \ldots, q_M) \in C^M$ so that

$$(I - \zeta A^V)(J_1 - J_2) = \sum_{j=1}^{M} q_j \eta_j \text{ and hence } J_1 - J_2 = \zeta A^V(J_1 - J_2) + \sum_{j=1}^{M} q_j \eta_j.$$

Since $J_1^{(i)}(0) = J_2^{(i)}(0), 1 \leq i \leq m$, this implies that $Dq = 0$. By the assumption (d), this implies that $q = 0$, and hence $(I - \zeta A^V)(J_1 - J_2) = 0$. We then see that $J_1 - J_2 = 0$. \hfill \square

3 Examples

In this section, we shall give several examples to which Theorems 1, 2, and 3 are applicable.

Example 1. In this example, we consider the quadratic Wiener functional related with harmonic oscillator; let $d = 1$ and set

$$b_T(w) = \int_{0}^{T} w(t)^2 dt, \quad w \in \mathcal{W}.$$

If we define the symmetric Hilbert-Schmidt operator $A : H \rightarrow H$ by

$$Ah(t) = \int_{0}^{t} \int_{s}^{T} h(u)duds, \quad t \in [0, T], h \in H,$$
then $h_T = Q_A + (T^2/2)$. See [6]. Put
\[(A_V h)(t) = -\int_0^t \int_0^s h(u) duds, \quad (A_F h)(t) = \left(\int_0^T h(s) ds \right) t, \]
and $\eta_1(t) = t$ for $t \in [0, T]$. Then A_V is a Volterra operator, $A = A_V + A_F$, $R(A_F) = \{ c\eta_1 \mid c \in \mathbb{R} \}$, and $D = 1$. Thus the assumptions (A1) and (A2) are fulfilled with $m = M = 1$ and this η_1.

The condition that $\langle (I - \zeta A)h, g \rangle_H = 0$ for any $g \in \mathcal{R}$ can be rewritten as
\[h(t) - \zeta \int_0^t \int_s^T h(u) duds = B(h) \times t, \quad t \in [0, T], \quad (11) \]
where $B(h) \in \mathbb{C}$ is a constant depending on only h. This is equivalent to that
\[h'' + \zeta h = 0, \quad h(0) = 0. \]
Solving this with the additional initial condition that $h'(0) = p$, we obtain
\[\tilde{J}_{\zeta}(t; p) = \frac{\sin(\sqrt{\zeta} t)}{\sqrt{\zeta}} p. \]
Setting $b(p) = B(\tilde{J}_{\zeta}(\cdot; p))$, we conclude from this and (11) that
\[b(p) = [(I - \zeta A)\tilde{J}_{\zeta}(\cdot; p)]'(T) = \cos(\sqrt{\zeta} T)p. \]
Furthermore we have that
\[\tilde{J}_{\zeta,1} = \frac{\sin(\sqrt{\zeta} T)}{\sqrt{\zeta}}. \]

First let $N = 1$, i.e. $L = \mathcal{R}$. For $x \in \mathbb{R}$, set $p_x = (\sqrt{\zeta}/\sin(\sqrt{\zeta} T)) x$ and $h_x = \tilde{J}_{\zeta}(\cdot; p_x)$. From (11) it follows that
\[\langle (I - \zeta A)h_x, h_x \rangle_H = \langle b(p_x)\eta_1, h_x \rangle_H = \frac{\sqrt{\zeta}}{\tan(\sqrt{\zeta} T)} x^2. \]
Since $C(\eta^{(1)}) = T$ and $\text{tr} A_F = T^2/2$, by Theorems 1 and 2,
\[\int_{\mathbb{W}} e^{i\theta r/2} \delta_x(w(T)) d\mu = \frac{1}{\sqrt{2\pi T}} \sqrt{\frac{\sqrt{\zeta} T}{\sin(\sqrt{\zeta} T)}} \exp \left(-\frac{1}{2} \frac{\sqrt{\zeta}}{\tan(\sqrt{\zeta} T)} x^2 \right). \]
Next let $N = 0$, i.e., $L = \{0\}$. Then $A^2 = A$ and $\langle A^# h, \eta_1 \rangle_H = 0$ for any $h \in H$. Due to (11), we obtain that
\[\langle \tilde{J}_{\zeta}(\cdot; p), \eta_1 - \zeta (A^2 - A^#)\eta_1 \rangle_H = \langle (I - \zeta A)\tilde{J}_{\zeta}(\cdot; p), \eta_1 \rangle_H \]
\[= [(I - \zeta A)\tilde{J}_{\zeta}(\cdot; p)](T) = b(p)T = T \cos(\sqrt{\zeta} T)p. \]
Hence
\[\tilde{J}_{\zeta,0} = T \cos(\sqrt{\zeta} T). \]
By Theorem 1, it holds that
\[\int_{\mathbb{W}} e^{i\theta r/2} d\mu = \sqrt{\frac{1}{\cos(\sqrt{\zeta} T)}}. \]
Example 2. In this example, we deal with the quadratic Wiener functional corresponding to the classical stochastic area; let \(d = 2 \) and put
\[
\mathfrak{s}_T(w) = \frac{1}{2} \int_0^T \left\{ w^1(t)dw^2(t) - w^2(t)dw^1(t) \right\},
\]
where \(w(t) = (w^1(t), w^2(t)) \) denotes the position of \(w \) at time \(t \) and \(dw^i(t) \) stands for the Itô integral with respect to \(w^i(t), i = 1, 2 \). If we define the symmetric Hilbert-Schmidt operator \(A : H \to H \) by
\[
Ah(t) = \int_0^t J \left(h(s) - \frac{1}{2} h(T) \right) ds, \quad t \in [0, T], \; h \in H,
\]
where \(J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \), then \(\mathfrak{s}_T = Q_A/2 \). See [6]. Set
\[
(A_Vh)(t) = \int_0^t Jh(s)ds, \quad (A_Fh)(t) = -\frac{t}{2} Jh(T), \quad t \in [0, T].
\]
Define \(\eta_i \in H \) by \(\eta_i(t) = te_i, \; i = 1, 2 \), where \(e_1 = (1, 0)^\dagger, e_2 = (0, 1)^\dagger \in \mathbb{R}^2 \). Then \(A_V \) is a Volterra operator, \(A = A_V + A_F, \; \mathcal{R}(A_F) = \{c_1\eta_1 + c_2\eta_2 \mid c_1, c_2 \in \mathbb{R}\} \), and \(D \) is the \(2 \times 2 \) unit matrix. Thus the assumptions (A1) and (A2) are satisfied with \(m = 1, M = 2, \) and these \(\eta_1 \) and \(\eta_2 \). Moreover, we see that
\[
\text{tr } A_F = \frac{1}{T} \sum_{i=1}^2 \langle \eta_i, A_F\eta_i \rangle_H = -\frac{1}{2} \sum_{i=1}^2 \langle e_i, Je_i \rangle_{\mathbb{R}^2} = 0.
\]
The condition that \(\langle (I - \zeta A)h, g \rangle = 0 \) for any \(g \in R^1 \) can be rewritten as
\[
h(t) - \zeta \left(\int_0^t Jh(s)ds - \frac{1}{2} Jh(T)t \right) = t B(h), \quad t \in [0, T],
\]
where \(B(h) \in \mathbb{C}^2 \) is a constant vector depending only on \(h \). This is equivalent to that
\[
h'' - \zeta Jh' = 0, \quad h(0) = 0.
\]
Solving this with the additional condition that \(h'(0) = p \), we obtain that
\[
\tilde{J}_\zeta(t;p) = \frac{\sin(\zeta t/2)}{\zeta/2} \begin{pmatrix} \cos(\zeta t/2) & -\sin(\zeta t/2) \\ \sin(\zeta t/2) & \cos(\zeta t/2) \end{pmatrix} p.
\]
If we set \(b(p) = B(\tilde{J}_\zeta(\cdot;p)) \), then it follows from this expression and (13) that
\[
b(p) = [(I - \zeta A)\tilde{J}_\zeta(\cdot;p)]'(0) = \left\{ p + \frac{\zeta}{2} J \tilde{J}_\zeta(T;p) \right\}
= \cos(\zeta T/2) \begin{pmatrix} \cos(\zeta T/2) & -\sin(\zeta T/2) \\ \sin(\zeta T/2) & \cos(\zeta T/2) \end{pmatrix} p.
\]
Furthermore we have that
\[
\tilde{J}_{\zeta, 2} = \frac{\sin(\zeta T/2)}{\zeta/2} \begin{pmatrix} \cos(\zeta T/2) & -\sin(\zeta T/2) \\ \sin(\zeta T/2) & \cos(\zeta T/2) \end{pmatrix}.
\]

First let \(N = 2\), i.e., \(L = \mathcal{R}\). For \(x = (x_1, x_2)^\dagger \in \mathbb{R}^2\), set
\[
p_x = \frac{\zeta/2}{\sin(\zeta T/2)} \begin{pmatrix} \cos(\zeta T/2) & \sin(\zeta T/2) \\ -\sin(\zeta T/2) & \cos(\zeta T/2) \end{pmatrix} x
\]
and \(h_x = \tilde{J}_{\zeta}(\cdot; p_x)\). By virtue of (13), we see that
\[
\langle (I - \zeta A) h_x, h_x \rangle_H = \langle b(p_x), h_x(T) \rangle_{\mathbb{R}^2} = \frac{\zeta/2}{\tan(\zeta T/2)} |x|^2.
\]

Since \(\det C(\eta^{(2)}) = T^2\), by Theorems 1 and 2,
\[
\int_{\mathcal{W}} e^{\zeta r} \delta_x(w(T))d\mu = \frac{1}{2\pi T \sin(\zeta T/2)} \exp\left(-\frac{1}{2\tan(\zeta T/2)} |x|^2\right).
\]

Next let \(N = 0\), i.e., \(L = \{0\}\). Since \(A^2 = A\) and \(\langle A^\# h, \eta_i \rangle_H = 0\) for any \(h \in H\), we have that
\[
\langle \tilde{J}_{\zeta}(\cdot; p), \eta_j \rangle_H = \langle (I - \zeta A) \tilde{J}_{\zeta}(\cdot; p), \eta_j \rangle_H
\]
and
\[
\langle (I - \zeta A) \tilde{J}_{\zeta}(\cdot; p)(T), e_j \rangle_{\mathbb{R}^2} = T \langle b(p), e_j \rangle_{\mathbb{R}^2}.
\]

Hence
\[
\tilde{J}_{\zeta, 0} = T \cos(\sqrt{\zeta}) \begin{pmatrix} \cos(\sqrt{\zeta}) & -\sin(\sqrt{\zeta}) \\ \sin(\sqrt{\zeta}) & \cos(\sqrt{\zeta}) \end{pmatrix}.
\]
This implies that
\[
\int_{\mathcal{W}} e^{\zeta r} d\mu = \frac{1}{\cos(\zeta T/2)}.
\]

Finally let \(N = 1\) and \(L = \{c\eta_1 \mid c \in \mathbb{R}\}\). Since \(\langle \eta_1, \eta_2 \rangle_H = 0\), due to the observation made in Section 1, we have that
\[
\tilde{J}_{\zeta, 1} = \begin{pmatrix} \sin(\zeta T/2) \cos(\zeta T/2)/\zeta/2 & -\sin^2(\zeta T/2)/\zeta/2 \\ T \sin(\zeta T/2) \cos(\zeta T/2) & T \cos^2(\zeta T/2) \end{pmatrix}.
\]
If we set \(h_a = \tilde{J}_{\zeta}(\cdot; p(a,0)^\dagger)\) for \(a \in \mathbb{R}\), then by (13), it holds that
\[
(I - \zeta A) h_a = \frac{a\zeta/2}{\tan(\zeta T/2)} \eta_1, \quad \langle (I - \zeta A) h_a, h_a \rangle_H = \frac{\zeta/2}{\tan(\zeta T/2)} a^2.
\]
Thus
\[
\int_{\mathcal{W}} e^{\zeta r} \delta_a(w^1(T))d\mu = \frac{1}{\sqrt{2\pi T}} \sqrt{\zeta T \sin(\zeta T)} \exp\left(-\frac{1}{2\tan(\zeta T/2)} a^2\right).
\]
Example 3. As a combination of Examples 1 and 2, we can apply our results to the quadratic Wiener functional associated with harmonic oscillator in uniform magnetic field; let $d = 2$, $\alpha, \beta_1, \beta_2 \in \mathbb{R}$, $\neq 0$, and put
\[
q(w) = \alpha s T(w) + \frac{1}{2} \int_0^T (Bw(t), w(t))_{\mathbb{R}^2} dt,
\]
where $B = \begin{pmatrix} \beta_1 & 0 \\ 0 & \beta_2 \end{pmatrix}$. Define $A, A_V, A_F : H \to H$ by
\[
A_V h(t) = \int_0^t \left\{ \alpha J h(s) - \int_0^s Bh(u) du \right\} ds,
\]
\[
A_F h(t) = \left\{ -\frac{\alpha}{2} J h(T) + \int_0^T Bh(u) du \right\} t, \quad t \in [0, T],
\]
\[
A = A_V + A_F.
\]
Due to the observations in Examples 1 and 2, we have that
\[
q = \frac{1}{2} Q_A + \frac{(\beta_1 + \beta_2) T^2}{4}.
\]
Moreover, A_V is a Volterra operator, $\mathcal{R}(A_F) = \{ c_1 \eta_1 + c_2 \eta_2 \mid c_1, c_2 \in \mathbb{R} \}$, and D is the 2×2 unit matrix, where $\eta_1, \eta_2 \in H$ are defined as in Example 2. Thus the assumptions (A1) and (A2) are fulfilled with $m = 1$, $M = 2$, and these η_1 and η_2. Moreover, $\text{tr} A_F = \{ \beta_1 + \beta_2 \} T^2 / 4$.

The equation (3) to determine $\mathcal{J}_c(t; p)$ now reads as
\[
h'' - \alpha \zeta Jh' + \zeta Bh = 0, \quad h(0) = 0, \quad h'(0) = p,
\]
which is nothing but the Jacobi equation associated with the Lagrange function for harmonic oscillator in uniform magnetic field. The Jacobi equation leads us to the expression of $\mathcal{J}_c(t; p)$ as follows. Let $\pm \lambda_1, \pm \lambda_2$ be the roots of the equation
\[
(\lambda^2 + \zeta \beta_1)(\lambda^2 + \zeta \beta_2) + \zeta^2 \alpha^2 \lambda^2 = 0.
\]
In the sequel, we assume that ζ satisfies that $\zeta \{ \alpha^4 \zeta^2 + 2 \alpha^2 (\beta_1 + \beta_2) \zeta + (\beta_1 - \beta_2)^2 \} \neq 0$, which implies that $\pm \lambda_j$’s are different from each other. Put
\[
a_{\zeta}^{11}(t) = \frac{\lambda_1 (\lambda_2^2 + \zeta \beta_1)}{(\lambda_1^2 - \lambda_2^2) \zeta \beta_1} \sinh(\lambda_1 t) - \frac{\lambda_2 (\lambda_1^2 + \zeta \beta_1)}{(\lambda_1^2 - \lambda_2^2) \zeta \beta_1} \sinh(\lambda_2 t),
\]
\[
a_{\zeta}^{12}(t) = -a_{\zeta}^{21}(t) = -\frac{\alpha \zeta}{\lambda_1^2 - \lambda_2^2} \cosh(\lambda_1 t) + \frac{\alpha \zeta}{\lambda_1^2 - \lambda_2^2} \cosh(\lambda_2 t),
\]
\[
a_{\zeta}^{22}(t) = \frac{\lambda_2^2 + \zeta \beta_1}{\lambda_1 (\lambda_2^2 - \lambda_1^2)} \sinh(\lambda_1 t) - \frac{\lambda_1^2 + \zeta \beta_1}{\lambda_2 (\lambda_2^2 - \lambda_1^2)} \sinh(\lambda_2 t),
\]
and define
\[
A_{\zeta}(t) = \begin{pmatrix} a_{\zeta}^{11}(t) & a_{\zeta}^{12}(t) \\ a_{\zeta}^{21}(t) & a_{\zeta}^{22}(t) \end{pmatrix}.
\]
Then we have that
\[\tilde{J}_\zeta(t; p) = A_\zeta(t)p. \] (14)
It should be noticed that \(a^{ij}_\zeta(t) \)'s are all symmetric functions of \(\lambda_1^2 \) and \(\lambda_2^2 \), and hence neither the choice of the sign of \(\lambda_i \)'s nor the ordering of \(\lambda_1 \) and \(\lambda_2 \) matters.

From (14), we can conclude that
\[
\tilde{J}_{\zeta, 0} = \left(I - \frac{\zeta \alpha T}{2} J \right) A_\zeta(T) - \zeta \alpha J \int_0^T A_\zeta(s) ds - \zeta B \int_0^T s A_\zeta(s) ds.
\]
In particular, we obtain that
\[
\det \tilde{J}_{\zeta, 2} = \frac{2 \zeta^2 \alpha^2}{(\lambda_1^2 - \lambda_2^2)^2} \left\{ 1 - \cosh(\lambda_1 T) \cosh(\lambda_2 T) \right\}
+ \frac{\zeta^2 \alpha^2 (\zeta \beta_1 + \zeta \beta_2) + (\zeta \beta_1 - \zeta \beta_2)^2}{\lambda_1 \lambda_2 (\lambda_1^2 - \lambda_2^2)} \sinh(\lambda_1 T) \sinh(\lambda_2 T),
\]
which brings us the expression that
\[
\int_\mathcal{W} e^{\xi \eta_0(w(T))} d\mu = (2\pi)^{-1} (\det \tilde{J}_{\zeta, 2})^{-1/2}.
\]

In the remaining of this section, we shall give two examples where the number \(m \) corresponding to the differentiability in the assumptions (A2) is greater than 1.

Example 4. In this example, we consider the quadratic Wiener function obtained as the norm of the Malliavin derivative of \(h_T \); let \(d = 1 \) and set
\[
g_T(w) = \int_0^T \left(\int_t^T w(s) ds \right)^2 dt, \quad w \in \mathcal{W}.
\]
It is then easily checked that
\[
g_T(w) = \frac{1}{4} \| \nabla h_T(w) \|^2_H.
\]

Set
\[
A h(t) = \int_0^t ds \int_0^T du \int_0^u dv \int_v^T dah(a),
A_V h(t) = \int_0^t ds \int_0^u dv \int_0^v dah(a), \quad t \in [0, T],
A_F = A - A_V.
\]

Define \(\eta_1, \eta_2 \in H \) by \(\eta_1(t) = t \) and \(\eta_2(t) = t^3 - T^2 t, \quad t \in [0, T] \). Then \(q = Q_A + (T^4/6), \quad \text{tr} A_F = T^4/6, \) and \(\mathcal{R}(A_F) = \{ c_1 \eta_1 + c_2 \eta_2 \mid c_1, c_2 \in \mathbb{R} \} \). See [8]. Moreover, it holds that
\[
D = \begin{pmatrix}
1 & -T^2 \\
0 & 0 \\
0 & 6
\end{pmatrix}.
\]
Thus the assumptions (A1) and (A2) are fulfilled with \(m = 3, M = 2, \) and these \(\eta_1 \) and \(\eta_2. \)

The equation (3) is equivalent to the ordinary differential equation

\[
h^{(4)} - \zeta h = 0, \quad \begin{pmatrix} h(0) \\ h(1)(0) \\ h(2)(0) \\ h(3)(0) \end{pmatrix} = \begin{pmatrix} 0 \\ p_1 - T^2p_2 \\ 0 \\ 6p_2 \end{pmatrix},
\]

where \(p = (p_1, p_2)^\top \) and \(h^{(j)} \) denotes the \(j \)th derivative of \(h. \) Solving this, we obtain that

\[
\widetilde{J}_\zeta(t; p) = \langle x_\zeta(t), p \rangle_{\mathbb{R}^2},
\]

where

\[
x_\zeta(t) = \frac{1}{2\zeta^{1/4}} \left(\frac{\sinh(\zeta^{1/4}t) + \sin(\zeta^{1/4}t)}{-(T^2 - 6\zeta^{-1/2})\sinh(\zeta^{1/4}t) - (T^2 + 6\zeta^{-1/2})\sin(\zeta^{1/4}t)} \right).
\]

We first consider the case where \(N = 0. \) Setting \(\alpha_\zeta = \cosh(\zeta^{1/4}/T), \beta_\zeta = \cos(\zeta^{1/4}/T), \) and defining \(a_\zeta, b_\zeta \in \mathbb{R}^2 \) by

\[
b_\zeta = \frac{\zeta^{1/2}}{12} \left(-(T^2 - 6\zeta^{-1/2})\alpha_\zeta + (T^2 + 6\zeta^{-1/2})\beta_\zeta \right), \quad a_\zeta = x_\zeta^{(1)}(T) - 2T^2b_\zeta,
\]

we observe that

\[
x_\zeta^{(1)}(T) = a_\zeta + 2T^2b_\zeta, \quad x_\zeta^{(3)}(T) = 6b_\zeta,
\]

and hence that

\[
(I - \zeta A)\widetilde{J}_\zeta(\cdot; p) = \langle a_\zeta, p \rangle_{\mathbb{R}^2} \eta_1 + \langle b_\zeta, p \rangle_{\mathbb{R}^2} \eta_2.
\]

Since \(\langle \eta_1, \eta_2 \rangle_H = 0, \) we then have that

\[
\widetilde{J}_{\zeta, 0} = \begin{pmatrix} \| \eta_1 \|_H^2 a_\zeta^2 \\ \| \eta_2 \|_H^2 b_\zeta^2 \end{pmatrix}.
\]

This implies that

\[
\det \widetilde{J}_{\zeta, 0} = \det C(\eta^{(2)}) \alpha_\zeta \beta_\zeta.
\]

Thus we obtain that

\[
\int_{\mathcal{W}} e^{\zeta \sigma T}/2d\mu = \left\{ \cosh(\zeta^{1/4}T) \cos(\zeta^{1/4}T) \right\}^{-1/2}.
\]

We next consider the case where \(N = 1. \) If we set \(\gamma_\zeta = \sinh(\zeta^{1/4}T) \) and \(\delta_\zeta = \sin(\zeta^{1/4}T) \) and define \(c_\zeta \in \mathbb{R}^2 \) by

\[
c_\zeta = \frac{1}{2\zeta^{1/4}} \left(-(T^2 - 6\zeta^{-1/2})\gamma_\zeta + (T^2 + 6\zeta^{-1/2})\delta_\zeta \right),
\]

then it holds that

\[
\langle \widetilde{J}_\zeta(\cdot; p), \eta_1 \rangle_H = \langle c_\zeta, p \rangle_{\mathbb{R}^2}.
\]
Since \(\eta_1 \) and \(\eta_2 \) are perpendicular to each other, due to the observation made in Section 1, we have that

\[
\tilde{J}_{\zeta,1} = \left(\frac{c^\dagger_\zeta}{\|\eta_2\|^2 H b^\dagger_\zeta} \right) \quad \text{and} \quad \det \tilde{J}_{\zeta,1} = \frac{\|\eta_2\|^2}{\zeta^{1/4}} \{ \alpha_\zeta \delta_\zeta + \beta_\zeta \gamma_\zeta \}.
\]

Thus we obtain that

\[
\int_W e^{\xi T/2} \delta_0(w(T)) d\mu = \frac{\zeta^{1/8}}{\sqrt{\pi} \{ \cosh(1/4T) \sinh(1/4T) - \cos(1/4T) \}}
\]

We finally consider the case where \(N = 2 \). Define \(d_\zeta = (d^1_\zeta, d^2_\zeta) \in \mathbb{R}^2 \) by

\[
d^1_\zeta = \frac{3}{2\zeta^{1/4}} \left\{ -2\zeta^{-1/4} \alpha_\zeta + 2\zeta^{-1/4} \beta_\zeta + (T^2 + 2\zeta^{-1/2}) \gamma_\zeta + (T^2 - 2\zeta^{-1/2}) \delta_\zeta \right\}
\]

\[
d^2_\zeta = \frac{3}{2\zeta^{1/4}} \left\{ 2\zeta^{-1/4} T(T^2 - 6\zeta^{-1/2}) \alpha_\zeta - 2\zeta^{-1/4} T(6\zeta^{-1/2}) \beta_\zeta - (T^2 + 2\zeta^{-1/2})(T^2 - 6\zeta^{-1/2}) \gamma_\zeta - (T^2 - 2\zeta^{-1/2})(T^2 + 6\zeta^{-1/2}) \delta_\zeta \right\}.
\]

Then we have that

\[
\langle \tilde{J}_{\zeta}(\cdot; p), \eta_2 \rangle_H = \langle d_\zeta - T^2 c_\zeta, p \rangle_{\mathbb{R}^2}.
\]

This implies that

\[
\tilde{J}_{\zeta,2} = \left(d_\zeta - T^2 c_\zeta \right)^\dagger \quad \text{and} \quad \det \tilde{J}_{\zeta,2} = 18\zeta^{-5/4} \{ 2\zeta^{-1/4} \gamma_\zeta \delta_\zeta - T(\alpha_\zeta \delta_\zeta + \beta_\zeta \gamma_\zeta) \}.
\]

Thus we obtain that

\[
\int_W e^{\xi T/2} \delta_0(\eta^{(2)}) d\mu = \frac{\zeta^{5/8}}{\sqrt{72\pi^2} \{ 2\zeta^{-1/4} \gamma_\zeta \delta_\zeta - T(\alpha_\zeta \delta_\zeta + \beta_\zeta \gamma_\zeta) \}}.
\]

Example 5. In this example, we consider the generalized stochastic area investigated by K. Hara, N. Ikeda, S. Kusuoka and S. Manabe [1, 2, 3, 4]. For this purpose, let \(d = 2 \) and \(n \in \mathbb{N} \). Define \(\mathcal{I} : \mathcal{W} \ni w \mapsto \mathcal{I}w \in \mathcal{W} \) by

\[
\mathcal{I}w(t) = \int_0^t w(s) ds, \quad t \in [0, T].
\]

Put

\[
\alpha(w) = \frac{1}{2} \int_0^T \langle J \mathcal{I}^n w(t), \mathcal{I}^{n-1} w(t) \rangle dt,
\]

where \(J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in \mathbb{R}^{2 \times 2} \) as in Example 2, and \(\langle \cdot, \cdot \rangle \) denotes the inner product.
in \(\mathbb{R}^2 \). If we set

\[
A_V h = (-1)^n T^{2n+1} J h,
\]

\[
(A_F h)(t) = \frac{1}{2} \sum_{j=0}^{n-1} (-1)^j \left\{ T^{n+j+1} J h(T) \frac{(T - t)^{n-j-1}}{(n-j-1)!} - T^{n+j} J h(T) \frac{(T - t)^{n-j}}{(n-j)!} \right\}
\]

\[- \frac{(-1)^n}{2} T^{2n} J h(T),
\]

\[
A = A_V + A_F,
\]

then \(A_V \) is a Volterra operator and \(q = Q_A/2 \). Putting

\[
\eta_{2j-1} (t) = \frac{t^j}{j} \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \eta_{2j} (t) = \frac{t^j}{j} \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad 1 \leq j \leq n + 1,
\]

we see that \(\mathcal{R}(A_F) \subset \{ \sum_{j=1}^{2n+2} c_j \eta_j \mid c_1, \ldots, c_{2n+2} \in \mathbb{R} \} \) and

\[
D = \begin{pmatrix}
I & 0 & \cdots & \cdots & 0 \\
0 & I & \ddots & \ddots & \vdots \\
\vdots & \ddots & 2I & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & \cdots & 0 & n! I \\
0 & \cdots & \cdots & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & \cdots & 0
\end{pmatrix} \in \mathbb{R}^{2(2n+1) \times (2n+2)},
\]

where \(I \) denotes the \(2 \times 2 \) unit matrix. Hence the assumptions (A1) and (A2) are satisfied with \(m = 2n + 1, M = 2n + 2, \) and these \(\eta_j \)'s. Thus our results are applicable to the generalized stochastic area \(a \) studied in [1, 2, 3, 4].

References

Setsuo Taniguchi
Faculty of Mathematics
Kyushu University
Fukuoka 812-8581, Japan
(E-mail: taniguch@math.kyushu-u.ac.jp)
MHF2003-1 Mitsuhiro T. NAKAO, Kouji HASHIMOTO & Yoshitaka WATANABE
A numerical method to verify the invertibility of linear elliptic operators with applications to nonlinear problems

MHF2003-2 Masahisa TABATA & Daisuke TAGAMI
Error estimates of finite element methods for nonstationary thermal convection problems with temperature-dependent coefficients

MHF2003-3 Tomohiro ANDO, Sadanori KONISHI & Seiya IMOTO
Adaptive learning machines for nonlinear classification and Bayesian information criteria

MHF2003-4 Kazuhiro YOKOYAMA
On systems of algebraic equations with parametric exponents

MHF2003-5 Masao ISHIKAWA & Masato WAKAYAMA
Applications of Minor Summation Formulas III, Plücker relations, Lattice paths and Pfaffian identities

MHF2003-6 Atsushi SUZUKI & Masahisa TABATA
Finite element matrices in congruent subdomains and their effective use for large-scale computations

MHF2003-7 Setsuo TANIGUCHI
Stochastic oscillatory integrals - asymptotic and exact expressions for quadratic phase functions -

MHF2003-8 Shoki MIYAMOTO & Atsushi YOSHIKAWA
Computable sequences in the Sobolev spaces

MHF2003-9 Toru FUJII & Takashi YANAGAWA
Wavelet based estimate for non-linear and non-stationary auto-regressive model

MHF2003-10 Atsushi YOSHIKAWA
Maple and wave-front tracking — an experiment

MHF2003-11 Masanobu KANEKO
On the local factor of the zeta function of quadratic orders

MHF2003-12 Hidefumi KAWASAKI
Conjugate-set game for a nonlinear programming problem
MHF2004-1 Koji YONEMOTO & Takashi YANAGAWA
Estimating the Lyapunov exponent from chaotic time series with dynamic noise

MHF2004-2 Rui YAMAGUCHI, Eiko TSUCHIYA & Tomoyuki HIGUCHI
State space modeling approach to decompose daily sales of a restaurant into time-dependent multi-factors

MHF2004-3 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA & Yasuhiko YAMADA
Cubic pencils and Painlevé Hamiltonians

MHF2004-4 Atsushi KAWAGUCHI, Koji YONEMOTO & Takashi YANAGAWA
Estimating the correlation dimension from a chaotic system with dynamic noise

MHF2004-5 Atsushi KAWAGUCHI, Kentarou KITAMURA, Koji YONEMOTO, Takashi YANAGAWA & Kiyofumi YUMOTO
Detection of auroral breakups using the correlation dimension

MHF2004-6 Ryo IKOTA, Masayasu MIMURA & Tatsuyuki NAKAKI
A methodology for numerical simulations to a singular limit

MHF2004-7 Ryo IKOTA & Eiji YANAGIDA
Stability of stationary interfaces of binary-tree type

MHF2004-8 Yuko ARAKI, Sadanori KONISHI & Seiya IMOTO
Functional discriminant analysis for gene expression data via radial basis expansion

MHF2004-9 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA & Yasuhiko YAMADA
Hypergeometric solutions to the q-Painlevé equations

MHF2004-10 Raimundas VIDUNAS
Expressions for values of the gamma function

MHF2004-11 Raimundas VIDUNAS
Transformations of Gauss hypergeometric functions

MHF2004-12 Koji NAKAGAWA & Masakazu SUZUKI
Mathematical knowledge browser

MHF2004-13 Ken-ichi MARUNO, Wen-Xiu MA & Masayuki OIKAWA
Generalized Casorati determinant and Positon-Negaton-Type solutions of the Toda lattice equation

MHF2004-14 Nalini JOSHI, Kenji KAJIWARA & Marta MAZZOCCHIO
Generating function associated with the determinant formula for the solutions of the Painlevé II equation
MHF2004-15 Kouji HASHIMOTO, Ryohei ABE, Mitsuhiro T. NAKAO & Yoshitaka WATANABE
Numerical verification methods of solutions for nonlinear singularly perturbed problem

MHF2004-16 Ken-ichi MARUNO & Gino BIONDINI
Resonance and web structure in discrete soliton systems: the two-dimensional Toda lattice and its fully discrete and ultra-discrete versions

MHF2004-17 Ryuei NISHII & Shinto EGUCHI
Supervised image classification in Markov random field models with Jeffreys divergence

MHF2004-18 Kouji HASHIMOTO, Kenta KOBAYASHI & Mitsuhiro T. NAKAO
Numerical verification methods of solutions for the free boundary problem

MHF2004-19 Hiroki MASUDA
Ergodicity and exponential β-mixing bounds for a strong solution of Lévy-driven stochastic differential equations

MHF2004-20 Setsuo TANIGUCHI
The Brownian sheet and the reflectionless potentials

MHF2004-21 Ryuei NISHII & Shinto EGUCHI
Supervised image classification based on AdaBoost with contextual weak classifiers

MHF2004-22 Hideki KOSAKI
On intersections of domains of unbounded positive operators

MHF2004-23 Masahisa TABATA & Shoichi FUJIMA
Robustness of a characteristic finite element scheme of second order in time increment

MHF2004-24 Ken-ichi MARUNO, Adrian ANKIEWICZ & Nail AKHMEDIEV
Dissipative solitons of the discrete complex cubic-quintic Ginzburg-Landau equation

MHF2004-25 Raimundas VIDŪNAS
Degenerate Gauss hypergeometric functions

MHF2004-26 Ryo IKOTA
The boundedness of propagation speeds of disturbances for reaction-diffusion systems

MHF2004-27 Ryusuke KON
Convex dominates concave: an exclusion principle in discrete-time Kolmogorov systems
MHF2004-28 Ryusuke KON
Multiple attractors in host-parasitoid interactions: coexistence and extinction

MHF2004-29 Kentaro IHARA, Masanobu KANEKO & Don ZAGIER
Derivation and double shuffle relations for multiple zeta values

MHF2004-30 Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Generalized partitioned quantum cellular automata and quantization of classical CA

MHF2005-1 Hideki KOSAKI
Matrix trace inequalities related to uncertainty principle

MHF2005-2 Masahisa TABATA
Discrepancy between theory and real computation on the stability of some finite element schemes

MHF2005-3 Yuko ARAKI & Sadanori KONISHI
Functional regression modeling via regularized basis expansions and model selection

MHF2005-4 Yuko ARAKI & Sadanori KONISHI
Functional discriminant analysis via regularized basis expansions

MHF2005-5 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA & Yasuhiko YAMADA
Point configurations, Cremona transformations and the elliptic difference Painlevé equations

MHF2005-6 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA & Yasuhiko YAMADA
Construction of hypergeometric solutions to the q-Painlevé equations

MHF2005-7 Hiroki MASUDA
Simple estimators for non-linear Markovian trend from sampled data: I. ergodic cases

MHF2005-8 Hiroki MASUDA & Nakahiro YOSHIDA
Edgeworth expansion for a class of Ornstein-Uhlenbeck-based models

MHF2005-9 Masayuki UCHIDA
Approximate martingale estimating functions under small perturbations of dynamical systems

MHF2005-10 Ryo MATSUZAKI & Masayuki UCHIDA
One-step estimators for diffusion processes with small dispersion parameters from discrete observations

MHF2005-11 Junichi MATSUKUBO, Ryo MATSUZAKI & Masayuki UCHIDA
Estimation for a discretely observed small diffusion process with a linear drift
MHF2005-12 Masayuki UCHIDA & Nakahiro YOSHIDA
AIC for ergodic diffusion processes from discrete observations

MHF2005-13 Hiromichi GOTO & Kenji KAJIWARA
Generating function related to the Okamoto polynomials for the Painlevé IV equation

MHF2005-14 Masato KIMURA & Shin-ichi NAGATA
Precise asymptotic behaviour of the first eigenvalue of Sturm-Liouville problems with large drift

MHF2005-15 Daisuke TAGAMI & Masahisa TABATA
Numerical computations of a melting glass convection in the furnace

MHF2005-16 Raimundas VIDŪNAS
Normalized Leonard pairs and Askey-Wilson relations

MHF2005-17 Raimundas VIDŪNAS
Askey-Wilson relations and Leonard pairs

MHF2005-18 Kenji KAJIWARA & Atsushi MUKAIHIRA
Soliton solutions for the non-autonomous discrete-time Toda lattice equation

MHF2005-19 Yuu HARIYA
Construction of Gibbs measures for 1-dimensional continuum fields

MHF2005-20 Yuu HARIYA
Integration by parts formulae for the Wiener measure restricted to subsets in \(\mathbb{R}^d\)

MHF2005-21 Yuu HARIYA
A time-change approach to Kotani’s extension of Yor’s formula

MHF2005-22 Tadahisa FUNAKI, Yuu HARIYA & Mark YOR
Wiener integrals for centered powers of Bessel processes, I

MHF2005-23 Masahisa TABATA & Satoshi KAIZU
Finite element schemes for two-fluids flow problems

MHF2005-24 Ken-ichi MARUNO & Yasuhiro OHTA
Determinant form of dark soliton solutions of the discrete nonlinear Schrödinger equation

MHF2005-25 Alexander V. KITAEV & Raimundas VIDŪNAS
Quadratic transformations of the sixth Painlevé equation

MHF2005-26 Toru FUJII & Sadanori KONISHI
Nonlinear regression modeling via regularized wavelets and smoothing parameter selection
MHF2005-27 Shuichi INOKUCHI, Kazumasa HONDA, Hyen Yeal LEE, Tatsuro SATO, Yoshihiro MIZOGUCHI & Yasuo KAWAHARA
On reversible cellular automata with finite cell array

MHF2005-28 Toru KOMATSU
Cyclic cubic field with explicit Artin symbols

MHF2005-29 Mitsuhiro T. NAKAO, Kouji HASHIMOTO & Kaori NAGATOU
A computational approach to constructive a priori and a posteriori error estimates for finite element approximations of bi-harmonic problems

MHF2005-30 Kaori NAGATOU, Kouji HASHIMOTO & Mitsuhiro T. NAKAO
Numerical verification of stationary solutions for Navier-Stokes problems

MHF2005-31 Hidefumi KAWASAKI
A duality theorem for a three-phase partition problem

MHF2005-32 Hidefumi KAWASAKI
A duality theorem based on triangles separating three convex sets

MHF2005-33 Takeaki FUCHIKAMI & Hidefumi KAWASAKI
An explicit formula of the Shapley value for a cooperative game induced from the conjugate point

MHF2005-34 Hideki MURAKAWA
A regularization of a reaction-diffusion system approximation to the two-phase Stefan problem

MHF2006-1 Masahisa TABATA
Numerical simulation of Rayleigh-Taylor problems by an energy-stable finite element scheme

MHF2006-2 Ken-ichi MARUNO & G R W QUISPEL
Construction of integrals of higher-order mappings

MHF2006-3 Setsuo TANIGUCHI
On the Jacobi field approach to stochastic oscillatory integrals with quadratic phase function