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Abstract

Numerical simulation of some Rayleigh-Taylor problems is per-
formed by an energy-stable finite element scheme. The problems
are solved in the frame work of the density-dependent Navier-Stokes
equations. Mesh dependency of numerical results is discussed for the
Rayleigh-Taylor instability problem and perturbed stable problems.

1 Introduction

The Rayleigh-Taylor problem describes the movement of two fluids subject to
an initial state, where a heavy fluid is located in the upper part of a container
and a light fluid is in the lower part. It is one of two-fluid flow problems with
unknown interfaces. In this paper we simulate such problems by an energy-
stable P1/P2/P1 finite element scheme developed recently by ourselves [6],
where the density, the velocity, and the pressure are approximated by linear,
quadratic, and linear finite element, respectively.

Many numerical results have been obtained for two-fluid flow problems,
e.g. [5], [8], but, to the best of our knowledge, there are no numerical schemes

∗Email:tabata@math.kyushu-u.ac.jp

1



whose solutions are proved to converge to the exact one. Recently we have
developed a P0/P1N/P0 finite element scheme for density-dependent Navier-
Stokes equations and proved the convergence of the finite element solutions
[4]. Here P0 and P1N stand for constant and non-conforming linear ele-
ment, respectively. After reformulating the original two-fluid flow problem
by a density-dependent Navier-Stokes problem, we can apply the P0/P1N/P0
scheme to two-fluid flow problems. Some numerical results for the Rayleigh-
Taylor problem by this scheme have been reported in [7].

The P1/P2/P1 finite element scheme is applied to Rayleigh-Taylor prob-
lems also in the framework of a density-dependent Navier-Stokes problem,
where the density is treated as a field function defined in the whole do-
main. This scheme has the advantage that the stress interface condition
can be treated more easily and the approximation ability is higher than the
P0/P1N/P0 scheme. We solve some Rayleigh-Taylor problems subject to an
unstable equilibrium and perturbed non-equilibrium initial states and discuss
the effect caused by the mesh subdivision.

2 Two-fluid flow problems

We begin by describing the general two-fluid flow problem. Let Ω be a
bounded domain in Rd, d = 2, 3, with piecewise smooth boundary Γ, and T
be a positive number. At the initial time t = 0 the domain Ω is occupied by
two immiscible incompressible viscous fluids; each domain is denoted by Ω0

k,
k = 1, 2, whose interface ∂Ω0

1 ∩ ∂Ω0
2 is denoted by Γ0

12. At t ∈ (0, T ) the two
fluids occupy domains Ωk(t), k = 1, 2, and the interface ∂Ω1(t) ∩ ∂Ω2(t) is
denoted by Γ12(t). Let ρk and µk, k = 1, 2, be the densities and the viscosities
of the two fluids. Let

u : Ω× (0, T ) → Rd, p : Ω× (0, T ) → R

be the velocity and the pressure to be found. The Navier-Stokes equations
are satisfied in each domain Ωk(t), k = 1, 2, t ∈ (0, T ),

ρk

{
∂u

∂t
+ (u · ∇)u

}
−∇ (2µkD(u))−∇p = ρkf (1a)

∇ · u = 0, (1b)

2



where f : Ω × (0, T ) → Rd is a given function, D(u) is the strain tensor
defined by

Dij(u) =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)

and

[∇ (2µkD(u)) ]i =
d∑

j=1

∂

∂xj

(2µkDij(u)) .

On the boundary Γ, t ∈ (0, T ), the slip conditions

u · n = 0, σ(µ, u, p)n× n = 0 (2)

are imposed, where n is the unit outer normal to Γ and σ is the stress tensor
defined by

σ(µ, u, p) = −pI + 2µD(u).

On the interface Γ12(t), t ∈ (0, T ), the velocity and the stress vector should
be continuous,

[u] = 0, [σ(µ, u, p)n12] = 0, (3)

where [·] means the difference of the values approaching from the domain
Ω2 and the domain Ω1, n12 is the unit outer normal to Γ12(t) from Ω1(t) to
Ω2(t). The initial condition at t = 0 for the velocity

u = u0 (4)

is imposed.
We consider the case where a heavy fluid is located in the upper part and

a light fluid is in the lower part as shown in Fig. 1. Given such an initial
state, we consider the transitional movement of the fluids.

3 An energy-stable finite element scheme

We have developed a class of energy-stable finite element schemes for problem
(1)–(4) in [6]. The main idea is to convert the original problem to a density-
dependent Navier-Stokes problem, where the density is treated as a field
function of x and t. The viscosity µ is also supposed to be a function of ρ.
In the case of two-fluid flow problems µ is defined by

µ(ρ) = µ1
ρ2 − ρ

ρ2 − ρ1

+ µ2
ρ− ρ1

ρ2 − ρ1

. (5)
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Figure 1: The interface Γ12(t) (left) and the barycentric domain DP (right)

Here we only describe a P1/P2/P1 scheme, that is, the density, the velocity,
and the pressure are approximated by P1-, P2-, and P1-element, respectively.
We consider the 2-dimensional case d = 2. For the extension to the 3-
dimensional case and the derivation of the scheme we refer to [6].

Let Φh, Vh, and Qh be P1-, P2-, and P1-finite element space for the
density, the velocity, and the pressure. The essential boundary condition is
imposed on Vh,

Vh = {vh; (vh · n)(P ) = 0 (node P ∈ Γ)},

but is not on Φh and Qh. Let ∆t be a time increment and NT = bT/∆tc.
We denote by (ρn

h, u
n
h, pn

h) the value at time n∆t, and by D̄∆t the backward
difference operator, e.g.,

D̄∆tu
n
h =

un
h − un−1

h

∆t
.

We find {(ρn
h, un

h, pn
h) ∈ Φh × Vh ×Qh; n = 1, · · · , NT} satisfying

(
D̄∆tρ̄

n
h, φ̄h

)
+ c1h(u

n−1
h , ρn

h, φh) = 0, ∀φh ∈ Φh (6a)(
ρn−1

h D̄∆tu
n
h +

1

2
un

hD̄∆tρ
n
h, vh

)
+ a1(ρ

n
h, un−1

h , un
h, vh) + a0(ρ

n
h, un

h, vh)

+b(vh, p
n
h) = (ρn

hΠhf
n, vh) , ∀vh ∈ Vh (6b)

b(un
h, qh) = 0, ∀qh ∈ Qh (6c)

subject to the initial conditions

ρ0
h = Πhρ

0, u0
h = Πhu

0. (7)
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Here ρ0 is a function defined by

ρ0(x) =

{
ρ1 (x ∈ Ω0

1)
ρ2 (x ∈ Ω0

2),

Πh is the interpolation operator to the corresponding finite element spaces,
(·, ·) is the inner product in L2(Ω) or L2(Ω)2, and linear forms a1, a0, and b
are defined by

a1(ρ, w, u, v) =

∫

Ω

(
1

2
(w · ∇ρ)u +

1

2
ρ(∇ · w)u + ρ(w · ∇)u

)
· v dx

a0(ρ, u, v) =

∫

Ω

µ(ρ)D(u) : D(v) dx, b(v, q) = −
∫

Ω

(∇ · v)q dx.

We now explain (6a), which is based on an upwind approximation developed
in [1]. At first we make the dual decomposition {DP} of the domain Ω, where
DP is the barycentric domain of the node P , see Fig. 1. The DP is made
by connecting the midpoints of the sides and the centroids of the triangles
around P ∈ Ω. When the node P is on Γ, some parts of the (approximate)
boundary are used. We define the lumping operator ¯ from Φh to L2(Ω) by

φh 7−→ φ̄h(x) ≡
∑

P

φh(P )χP (x),

where χP is the characteristic function of DP . We denote by ΛP the set of
nodes adjacent to P . The form c1h is defined by

c1h(uh, ρh, φh) =
∑

P

φh(P )
∑

Q∈ΛP

β−PQ(uh)(ρh(P )− ρh(Q)), (8)

where

β−PQ(uh) = max(−
∫

ΓPQ

uh · nPQ ds, 0), ΓPQ = ∂DP ∩ ∂DQ,

and nPQ is the unit outer normal to ΓPQ from DP to DQ. (8) is an upwind
approximation of the trilinear form

c1(u, ρ, φ) =

∫

Ω

(u · ∇ρ)φ dx,
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and we refer to (4.13) of [1] for the derivation of (8). Without any restriction
on ∆t it can be proved that the solution ρh of (6) satisfies the maximum
principle and that scheme (6) is energy-stable, i.e.,

∫

Ω

ρn
h|un

h|2dx

is uniformly bounded for n = 0, · · · , NT , see [1] and [6].

4 Numerical results

Let Ω ≡ (0, 1) × (0, 1) be a unit square in R2. Letting η : [0, 1] → R be a
given continuous function, we define

Ω0
2 ≡ {x ∈ Ω; x2 ≥ η(x1)}, Ω0

1 ≡ {x ∈ Ω; x2 < η(x1)}.

We take the following values,

(ρ1, µ1) = (10, 1), (ρ2, µ2) = (100, 2)

and the initial velocity and the outer force,

u0 = (0, 0)T , f = (0,−1)T .

We divide the domain Ω into a union of triangles. We consider three kinds
of meshes, Union-Jack type (UJ), Friedricks-Keller type (FK), and FreeFEM
type (Free) shown in Fig. 2. The last mesh is made by FreeFEM [2]. Each
side of the square is divided into 32 equal segments. We take ∆t = 1

2
. The

function η is chosen to satisfy

∫ 1

0

η(x1)dx1 =
1

2
.

In the following figures we show computed interface curves approximating
Γ12(t). They are determined so that the areas of the two fluids are equal to
each other. Driven by the outer force f , the heavy fluid goes down. After
a period of time elapses, the heavy fluid finally occupies the lower half part.
We observe the transient movement for the period [0, 10].
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Figure 2: Meshes of type UJ, FK, and Free

4.1 The Rayleigh-Taylor instability problem

The function η is defined by

η(x1) =
1

2
. (9)

The initial state is in equilibrium but unstable as the solution of partial
differential equations. Figs. 3, 4, and 5 show the interface curves at t =
0, 2, 4, 6, 8, 10 in meshes UJ, FK, and Free, respectively. Mesh Free is not
uniform. Mesh FK is not symmetric with respect to x1 = 1/2, which induces
the movement but it differs from the one in mesh Free. The heavy fluid goes
down from left. In mesh UJ the interface almost keeps the original position
in this period, though a very small change can be observed. Later it devel-
ops and finally the heavy fluid goes down. Three movements are completely
different from one another and are heavily dependent on the meshes. Such
numerical solutions are often called ”ghost solutions” because they never ap-
pear in the partial differential equation but only in discrete approximations.
Applying numerical methods to unstable problems, we may have ghost solu-
tions. In the next subsection, however, our scheme is shown to work well for
well-posed problems.

4.2 A perturbed Rayleigh-Taylor problem

The function η is defined by

η(x1) =
1

2
− a cos 2πx1, a = 0.01. (10)
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Figure 3: Interfaces at t = 0, 2, 4, 6, 8, 10. η:(9), mesh UJ

The initial state is a little perturbed, that is, the heavy fluid intrudes a
little from both sides near the boundary. Figs. 6, 7, and 8 show the interface
curves in meshes UJ, FK, and Free, respectively. These three figures are much
similar to one another, and the mesh dependency is small. The differences
decrease when the mesh size tends to zero.

4.3 The other problems

In mesh UJ we solve problems with other initial states.
Fig. 9 shows the case where the function η is defined by

η(x1) =
1

2
− a cos 2πx1, a = −0.01. (11)

The initial state is a little perturbed, that is, the heavy fluid intrudes a little
from the center. The small intrusion ignites the fall of the heavy fluid from
the center.

Fig. 10 shows the case where the function η is defined by

η(x1) =
1

2
− a cos 4πx1, a = 0.01. (12)
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Figure 4: Interfaces at t = 0, 2, 4, 6, 8, 10. η:(9), mesh FK

The small intrusion of the heavy fluid from both sides and the center ignites
the fall of the fluid from these parts.

5 Concluding remarks

We have simulated numerically Rayleigh-Taylor problems by an energy-stable
P1/P2/P1 finite element scheme. For Rayleigh-Taylor problems subject to
non-equilibrium states numerical interface curves are almost mesh-independent.
For the Rayleigh-Taylor instability problem subject to an unstable equilib-
rium state ghost solutions are obtained. Such phenomenon is often observed
in solving numerically unstable problems.

Acknowledgments

This work was supported by the Japan Society for the Promotion of Science
under Grant-in-Aid for Scientific Research (S), No.16104001 and by the Min-
istry of Education, Culture, Sports, Science and Technology of Japan under
Kyushu University 21st Century COE Program, Development of Dynamic

9



Figure 5: Interfacesat t = 0, 2, 4, 6, 8, 10. η:(9), mesh Free
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