九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A duality theorem based on triangles separating three convex sets
Kawasaki，Hidefumi
Faculty of Mathematics，Kyushu University

https：／／hdl．handle．net／2324／3376

出版情報：MHF Preprint Series．2005－32，2005－09－29．九州大学大学院数理学研究院 バージョン：
権利関係：

MHF Preprint Series

Kyushu University
21st Century COE Program
Development of Dynamic Mathematics with High Functionality

A duality theorem based on triangles separating three convex sets

H. Kawasaki

MHF 2005-32
(Received September 29, 2005)

Faculty of Mathematics
Kyushu University
Fukuoka, JAPAN

A duality theorem based on triangles separating three convex sets. ${ }^{1}$

Hidefumi Kawasaki ${ }^{2}$

Abstract

Separation theorems play the central role in duality theory. Recently, the author proposed a duality theorem for a three-phase partition problem in [4]. It is based on triangles separating three convex sets. However, the dual problem in [4] includes a variable of the primal problem. The aim of this paper is to remove the variable from the dual problem.

Key words. Duality theorem, Separation theorem, Convex set, Partition problem, Triangle

1. Introduction

The three-phase partition problem is to divide a given domain $\Omega \subset \mathbb{R}^{2}$ into three subdomains with a triple junction having least interfacial area (Fig.1). Sternberg and Zeimer [6] established the existence of local minimizers to the problem. Ikota and Yanagida [1] investigated not only stability but also instability for stationary curves in terms of the curvature of the boundary $\partial \Omega$.

Figure 1. Three-phase partition problem
They formulated the problem as a variational problem. However, since the shortest curve joining two points is the line segment, it can be formulated as an extremal problems in \mathbb{R}^{n}. From this point of view, the author discussed stability and instability of the three-phase partition problem and studied its game-theoretic aspect in [2][3]. Further, he gave a duality theorem for the following problem in [4].

$$
\begin{array}{ll}
\text { Minimize } & f\left(X_{0}, \ldots, X_{3}\right):=\sum_{i=1}^{3}\left\|X_{i}-X_{0}\right\| \tag{0}\\
\text { subject to } & X_{0} \in \Omega, X_{i} \in C_{i}(i=1,2,3),
\end{array}
$$

where $\|\cdot\|$ denotes the Euclidean norm and $C_{i}(i=1,2,3)$ are closed convex sets with non-empty interior in \mathbb{R}^{2} such that $\Omega:=\operatorname{cl}\left(\cap_{i=1}^{3} C_{i}^{c}\right)$ is non-empty (Fig. 2).

[^0]

Figure 2. Primal problem (P_{0})
Let $\left(X_{0}, \ldots, X_{3}\right)$ be a non-degenerate minimum solution for $\left(P_{0}\right)$, that is, X_{0} does not coincide with any $X_{i}(i=1,2,3)$. Assume that Ω is bounded. Then, for the following dual problem $\left(D_{0}^{*}\right)$, we have $\min \left(P_{0}\right)=\max \left(D_{0}^{*}\right)([4])$.

$$
\begin{array}{ll}
\text { Maximize } & \text { the smallest height of a triangle } \Delta \\
\text { subject to } & X_{0} \in \Delta \subset \Omega \tag{0}
\end{array}
$$

The main aim of this paper is to remove X_{0} from the dual problem (D_{0}^{*}). For this aim, we slightly change the primal problem as follows.

$$
\begin{array}{ll}
\text { Minimize } & \sum_{i=1}^{3}\left\|X_{i}-X_{0}\right\| \tag{P}\\
\text { subject to } & X_{0} \in \mathbb{R}^{2}, X_{i} \in C_{i}(i=1,2,3) .
\end{array}
$$

The only difference between (P) and $\left(P_{0}\right)$ is the domain of X_{0}. When we emphasize the domain Ω, we denote (P) by $\left(P_{\Omega}\right)$.

This paper is organized as follows. In Section 2, we briefly review classical duality theorems and introduce the concept of separation of three convex sets by a triangle. In Section 3, we characterize minimum solutions for (P). In Section 4, we define the dual problem (D) and show duality.

We close this section with our notations. For any closed convex sets C_{1} and C_{2}, we define $d\left(C_{1}, C_{2}\right):=\min \left\{| | X_{1}-X_{2} \| \mid X_{i} \in C_{i}(i=1,2)\right\}$. We denote by $N\left(X_{i} ; C_{i}\right)$ the normal cone of C_{i} at X_{i}. When $X_{i} \neq X_{0}$, we denote by e_{i} the unit vector $\left(X_{i}-X_{0}\right) /\left\|X_{i}-X_{0}\right\|$.

2. Separation by a triangle

In this section, we first review classical duality theorems in brief. Next, we introduce separation of three convex sets by a triangle.

One of the simplest duality theorems is the following. Let C_{1} be a non-empty convex set in \mathbb{R}^{2} and $A \notin C_{1}$ a point. Then the primal problem is

$$
\begin{array}{ll}
\text { Minimize } & \left\|X_{1}-A\right\| \tag{1}\\
\text { subject to } & X_{1} \in C_{1}
\end{array}
$$

Its dual problem $\left(D_{1}\right)$ is to maximize the distance from A to a hyperplane H that separates A and C_{1}. We can rephrase it as maximizing the width of a strip that separates A and C_{1} (Fig. 3), where a strip stands for the area sandwiched between two parallel lines.

Figure 3. Dual problem $\left(D_{1}\right)$
If we replace A with a convex set C_{2} such that $C_{1} \cap C_{2}=\phi$, then the primal problem is as follows.

$$
\begin{array}{ll}
\text { Minimize } & \left\|X_{1}-X_{2}\right\| \\
\text { subject to } & X_{i} \in C_{i}(i=1,2) \tag{2}
\end{array}
$$

Its dual problem $\left(D_{2}\right)$ is to minimize the width of a strip that separates C_{1} and C_{2} (Fig. 4).

Figure 4. Dual problem $\left(D_{2}\right)$
If we take the epigraph of a convex function f and the hypograph of a concave function g as C_{1} and C_{2}, respectively, and measure the width of the strip in the vertical direction, duality between $\left(P_{2}\right)$ and $\left(D_{2}\right)$ reduces to Fenchel's duality, see e.g. [5, Theorem 31.1].

Therefore, classical dual problems can be described in terms of strips or hyperplanes separating two convex sets. In this paper, we need a concept of triangles separating three convex sets in order to deal with (P).
Definition 2.1. ([4]) Let $C_{i}(i=1,2,3)$ be convex sets in \mathbb{R}^{2} such that $\Omega=$ $\operatorname{cl}\left(\cap_{i=1}^{3} C_{i}^{c}\right)$ is not empty, and let $\Delta \subset \Omega$ a triangle. Then, we say that Δ separates $\left\{C_{i}\right\}_{i=1}^{3}$ if there are three closed half spaces $\left\{H_{i}^{-}\right\}_{i=1}^{3}$ such that $C_{i} \subset H_{i}^{-}$for every i and $\Delta=\cap_{i=1}^{3} H_{i}^{+}$, where H_{i}^{+}denotes the closed half space opposite to H_{i}^{-}(Fig. 5).

The following lemma is useful in this paper.
Lemma 2.1. Let $\left(X_{0}, \ldots, X_{3}\right)$ be a feasible solution for (P) and let a triangle Δ separate $\left\{C_{i}\right\}_{i=1}^{3}$. Then $\min \left(P_{\Delta}\right) \leq \sum_{i=1}^{3}\left\|X_{i}-X_{0}\right\|$.
Proof. Since $X_{i} \in C_{i} \subset H_{i}^{-}$, we have $\sum_{i=1}^{3}\left\|X_{i}-X_{0}\right\| \geq \sum_{i=1}^{3} d\left(X_{0}, H_{i}^{-}\right) \geq$ $\min \left(P_{\Delta}\right)$.

Figure 5. Δ_{1} separates C_{i} 's and Δ_{2} does not separate C_{i} 's.

3. Characterization of minimum solutions

In this section, we first give a characterization theorem of minimum solutions for (P). Next, we consider the special case that C_{i} 's are closed half spaces.

Although $\left(P_{0}\right)$ is not a convex program, the present primal problem (P) is a convex program. So optimal solutions are characterized by the first-order optimality condition below. Since the proof is almost same with [4, Theorem 3.1], we omit the proof.

Theorem 3.1. Let $\left(X_{0}, \ldots, X_{3}\right)$ be a non-degenerate feasible solution for (P). Then it is a minimum solution if and only if it satisfies Young's law

$$
\begin{equation*}
\angle X_{i} X_{0} X_{j}=120^{\circ} \text { for any } i \neq j \tag{3.1}
\end{equation*}
$$

and the transversality condition

$$
\begin{equation*}
X_{0}-X_{i} \in N\left(X_{i} ; C_{i}\right) \quad(i=1,2,3) . \tag{3.2}
\end{equation*}
$$

Figure 6. Young's law and the transversality condition
Next, we consider the special case that Ω is a triangle determined by closed half spaces $C_{i}(i=1,2,3)$. Then it is clear that the minimum is attained by $\left(X_{0}, \ldots, X_{3}\right)$ satisfying $X_{0} \in \Omega$. So, (P) reduces to $\left(P_{0}\right)$. Hence, Corollary 1 in [4] is available to (P).
Proposition 3.1. When Ω is a triangle, $\min (P)$ equals to the smallest height of Ω.

4. Duality theorem

The dual problem (D) is defined as follows.
(D) subject to there exists a triangle Δ^{\prime} such that $\Delta \subset \Delta^{\prime} \subset \Omega$, Δ^{\prime} separates $\left\{C_{i}\right\}_{i=1}^{3}$.

When Ω is bounded, it has a simplified form (D^{*}) defined in Theorem 4.2 below.
Theorem 4.1. Let $\left(X_{0}, X_{1}, X_{2}, X_{3}\right)$ and Δ be feasible solutions for (P) and (D), respectively, then it holds that $\min \left(P_{\Delta}\right) \leq \sum_{i=1}^{3}\left\|X_{i}-X_{0}\right\|$, so that

$$
\begin{equation*}
\sup (D) \leq \inf (P) \tag{4.1}
\end{equation*}
$$

Furthermore, if (P) has a non-degenerate minimum, then

$$
\begin{equation*}
\min \left(P_{0}\right)=\min (P)=\max (D) . \tag{4.2}
\end{equation*}
$$

Proof. Let Δ be a feasible solution for (D). Then there exists a triangle Δ^{\prime} such that $\Delta \subset \Delta^{\prime} \subset \Omega$ and Δ^{\prime} separates $\left\{C_{i}\right\}_{i=1}^{3}$. Let $\left(X_{0}, X_{1}, X_{2}, X_{3}\right)$ be a feasible solution for (P). Then, combining Lemma 2.1 and Proposition 3.1, we have

$$
\begin{equation*}
\min \left(P_{\Delta}\right) \leq \min \left(P_{\Delta^{\prime}}\right) \leq \sum_{i=1}^{3}\left\|X_{i}-X_{0}\right\| \tag{4.3}
\end{equation*}
$$

which implies the weak duality (4.1). By Theorem 3.1, the non-degenerate minimum solution forms a regular triangle Δ^{*} such that

$$
\begin{equation*}
\min \left(P_{\Omega}\right)=\text { the height of } \Delta^{*}=\min \left(P_{\Delta^{*}}\right) . \tag{4.4}
\end{equation*}
$$

It follows from definition of the normal cone that Δ^{*} itself separates $\left\{C_{i}\right\}_{i=1}^{3}$. Therefore, Δ^{*} attains the maximum of (D). So we get the strong duality $\min (P)=$ $\max (D)$. On the other hand, since X_{0} is in the interior of Ω, there exists a convex neighborhood C_{0} of X_{0} such that $C_{0} \subset \Omega$. Since the primal problem (P_{0}) restricted on C_{0} is a convex program, $\left(X_{0}, X_{1}, X_{2}, X_{3}\right)$ is a minimum solution for (P).

Theorem 4.2. When Ω is bounded, the dual problem (D) is simplified as follows.
$\left(D^{*}\right) \quad$ Maximize the smallest height of a triangle $\Delta \subset \Omega$.
Proof. Assume that $\Delta \subset \Omega$. Then, by separation theorem, there are closed half spaces $H_{i}^{-}(i=1,2,3)$ such that $C_{i} \subset H_{i}^{-}$and $\Delta \subset \cap_{i=1}^{3}\left(H_{i}^{+}\right)^{c}=: \Delta^{\prime}$. Since Ω is bounded and since $\Delta^{\prime} \subset \cap_{i=1}^{3} C_{i}^{c}=\Omega, \Delta^{\prime}$ is a triangle separating $\left\{C_{i}\right\}_{i=1}^{3}$.

Figure 7. Separating hyperplanes form an unbounded polygon Δ^{\prime}

5. Concluding remarks

When Ω is not bounded, separating hyperplanes do not necessarily form a triangle, see Fig. 7. So duality relationship $\min (P)=\max \left(D^{*}\right)$ does not always hold. Indeed, since we can enlarge Δ rightward within the dark gray area as we like, $\sup \left(D^{*}\right)$ equals $+\infty$.

We can replace a triangle by a regular triangle in our dual problems (D) and $\left(D^{*}\right)$, because the maximum is attained by a regular triangle. However, it is clear that regular triangles are not enough when Ω is a (general) triangle. That's why we defined the dual problem with (general) triangles.

References

[1] R. Ikota and E. Yanagida, "A stability criterion for stationary curves to the curvature-driven motion with a triple junction", Differential and Integral Equations, 16, 707-726 (2003).
[2] H. Kawasaki, "A game-theoretic aspect of conjugate sets for a nonlinear programming problem", in Proceedings of the third International Conference on Nonlinear Analysis and Convex Analysis, Yokohama Publishers, 159-168 (2004).
[3] H. Kawasaki, "Conjugate-set game for a nonlinear programming problem", in Game theory and applications 10, eds. L.A. Petrosjan and V.V. Mazalov, Nova Science Publishers, New York, USA, 87-95 (2005).
[4] H. Kawasaki, "A duality theorem for a three-phase partition problem", submitted.
[5] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, New Jersey, (1970).
[6] P. Sternberg and W. P. Zeimer, "Local minimizers of a three-phase partition problem with triple junctions", Proc. Royal Soc. Edin., 124A, 1059-1073 (1994).

List of MHF Preprint Series, Kyushu University
 21st Century COE Program
 Development of Dynamic Mathematics with High Functionality

MHF2003-1 Mitsuhiro T. NAKAO, Kouji HASHIMOTO \& Yoshitaka WATANABE
A numerical method to verify the invertibility of linear elliptic operators with applications to nonlinear problems

MHF2003-2 Masahisa TABATA \& Daisuke TAGAMI
Error estimates of finite element methods for nonstationary thermal convection problems with temperature-dependent coefficients

MHF2003-3 Tomohiro ANDO, Sadanori KONISHI \& Seiya IMOTO
Adaptive learning machines for nonlinear classification and Bayesian information criteria

MHF2003-4 Kazuhiro YOKOYAMA
On systems of algebraic equations with parametric exponents
MHF2003-5 Masao ISHIKAWA \& Masato WAKAYAMA
Applications of Minor Summation Formulas III, Plücker relations, Lattice paths and Pfaffian identities

MHF2003-6 Atsushi SUZUKI \& Masahisa TABATA
Finite element matrices in congruent subdomains and their effective use for large-scale computations

MHF2003-7 Setsuo TANIGUCHI
Stochastic oscillatory integrals - asymptotic and exact expressions for quadratic phase functions -

MHF2003-8 Shoki MIYAMOTO \& Atsushi YOSHIKAWA
Computable sequences in the Sobolev spaces
MHF2003-9 Toru FUJII \& Takashi YANAGAWA
Wavelet based estimate for non-linear and non-stationary auto-regressive model
MHF2003-10 Atsushi YOSHIKAWA
Maple and wave-front tracking - an experiment
MHF2003-11 Masanobu KANEKO
On the local factor of the zeta function of quadratic orders
MHF2003-12 Hidefumi KAWASAKI
Conjugate-set game for a nonlinear programming problem

MHF2004-1 Koji YONEMOTO \& Takashi YANAGAWA
Estimating the Lyapunov exponent from chaotic time series with dynamic noise

MHF2004-2 Rui YAMAGUCHI, Eiko TSUCHIYA \& Tomoyuki HIGUCHI
State space modeling approach to decompose daily sales of a restaurant into time-dependent multi-factors

MHF2004-3 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA \& Yasuhiko YAMADA
Cubic pencils and Painlevé Hamiltonians
MHF2004-4 Atsushi KAWAGUCHI, Koji YONEMOTO \& Takashi YANAGAWA
Estimating the correlation dimension from a chaotic system with dynamic noise

MHF2004-5 Atsushi KAWAGUCHI, Kentarou KITAMURA, Koji YONEMOTO, Takashi YANAGAWA \& Kiyofumi YUMOTO
Detection of auroral breakups using the correlation dimension
MHF2004-6 Ryo IKOTA, Masayasu MIMURA \& Tatsuyuki NAKAKI
A methodology for numerical simulations to a singular limit
MHF2004-7 Ryo IKOTA \& Eiji YANAGIDA
Stability of stationary interfaces of binary-tree type
MHF2004-8 Yuko ARAKI, Sadanori KONISHI \& Seiya IMOTO
Functional discriminant analysis for gene expression data via radial basis expansion

MHF2004-9 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA \& Yasuhiko YAMADA
Hypergeometric solutions to the q - Painlevé equations
MHF2004-10 Raimundas VIDŪNAS
Expressions for values of the gamma function
MHF2004-11 Raimundas VIDŪNAS
Transformations of Gauss hypergeometric functions
MHF2004-12 Koji NAKAGAWA \& Masakazu SUZUKI
Mathematical knowledge browser
MHF2004-13 Ken-ichi MARUNO, Wen-Xiu MA \& Masayuki OIKAWA
Generalized Casorati determinant and Positon-Negaton-Type solutions of the Toda lattice equation

MHF2004-14 Nalini JOSHI, Kenji KAJIWARA \& Marta MAZZOCCO
Generating function associated with the determinant formula for the solutions of the Painlevé II equation

MHF2004-15 Kouji HASHIMOTO, Ryohei ABE, Mitsuhiro T. NAKAO \& Yoshitaka WATANABE
Numerical verification methods of solutions for nonlinear singularly perturbed problem

MHF2004-16 Ken-ichi MARUNO \& Gino BIONDINI
Resonance and web structure in discrete soliton systems: the two-dimensional Toda lattice and its fully discrete and ultra-discrete versions

MHF2004-17 Ryuei NISHII \& Shinto EGUCHI
Supervised image classification in Markov random field models with Jeffreys divergence

MHF2004-18 Kouji HASHIMOTO, Kenta KOBAYASHI \& Mitsuhiro T. NAKAO
Numerical verification methods of solutions for the free boundary problem
MHF2004-19 Hiroki MASUDA
Ergodicity and exponential β-mixing bounds for a strong solution of Lévydriven stochastic differential equations

MHF2004-20 Setsuo TANIGUCHI
The Brownian sheet and the reflectionless potentials
MHF2004-21 Ryuei NISHII \& Shinto EGUCHI
Supervised image classification based on AdaBoost with contextual weak classifiers

MHF2004-22 Hideki KOSAKI
On intersections of domains of unbounded positive operators
MHF2004-23 Masahisa TABATA \& Shoichi FUJIMA
Robustness of a characteristic finite element scheme of second order in time increment

MHF2004-24 Ken-ichi MARUNO, Adrian ANKIEWICZ \& Nail AKHMEDIEV
Dissipative solitons of the discrete complex cubic-quintic Ginzburg-Landau equation

MHF2004-25 Raimundas VIDŪNAS
Degenerate Gauss hypergeometric functions
MHF2004-26 Ryo IKOTA
The boundedness of propagation speeds of disturbances for reaction-diffusion systems

MHF2004-27 Ryusuke KON
Convex dominates concave: an exclusion principle in discrete-time Kolmogorov systems

Multiple attractors in host-parasitoid interactions: coexistence and extinction
MHF2004-29 Kentaro IHARA, Masanobu KANEKO \& Don ZAGIER
Derivation and double shuffle relations for multiple zeta values
MHF2004-30 Shuichi INOKUCHI \& Yoshihiro MIZOGUCHI
Generalized partitioned quantum cellular automata and quantization of classical CA

MHF2005-1 Hideki KOSAKI
Matrix trace inequalities related to uncertainty principle
MHF2005-2 Masahisa TABATA
Discrepancy between theory and real computation on the stability of some finite element schemes

MHF2005-3 Yuko ARAKI \& Sadanori KONISHI
Functional regression modeling via regularized basis expansions and model selection

MHF2005-4 Yuko ARAKI \& Sadanori KONISHI
Functional discriminant analysis via regularized basis expansions
MHF2005-5 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA \& Yasuhiko YAMADA
Point configurations, Cremona transformations and the elliptic difference Painlevé equations

MHF2005-6 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA \& Yasuhiko YAMADA
Construction of hypergeometric solutions to the q - Painlevé equations
MHF2005-7 Hiroki MASUDA
Simple estimators for non-linear Markovian trend from sampled data:
I. ergodic cases

MHF2005-8 Hiroki MASUDA \& Nakahiro YOSHIDA
Edgeworth expansion for a class of Ornstein-Uhlenbeck-based models
MHF2005-9 Masayuki UCHIDA
Approximate martingale estimating functions under small perturbations of dynamical systems

MHF2005-10 Ryo MATSUZAKI \& Masayuki UCHIDA
One-step estimators for diffusion processes with small dispersion parameters from discrete observations

MHF2005-11 Junichi MATSUKUBO, Ryo MATSUZAKI \& Masayuki UCHIDA
Estimation for a discretely observed small diffusion process with a linear drift

MHF2005-12 Masayuki UCHIDA \& Nakahiro YOSHIDA
AIC for ergodic diffusion processes from discrete observations
MHF2005-13 Hiromichi GOTO \& Kenji KAJIWARA
Generating function related to the Okamoto polynomials for the Painlevé IV equation

MHF2005-14 Masato KIMURA \& Shin-ichi NAGATA
Precise asymptotic behaviour of the first eigenvalue of Sturm-Liouville problems with large drift

MHF2005-15 Daisuke TAGAMI \& Masahisa TABATA
Numerical computations of a melting glass convection in the furnace
MHF2005-16 Raimundas VIDŪNAS
Normalized Leonard pairs and Askey-Wilson relations
MHF2005-17 Raimundas VIDŪNAS
Askey-Wilson relations and Leonard pairs
MHF2005-18 Kenji KAJIWARA \& Atsushi MUKAIHIRA
Soliton solutions for the non-autonomous discrete-time Toda lattice equation
MHF2005-19 Yuu HARIYA
Construction of Gibbs measures for 1-dimensional continuum fields
MHF2005-20 Yuu HARIYA
Integration by parts formulae for the Wiener measure restricted to subsets in \mathbb{R}^{d}

MHF2005-21 Yuu HARIYA
A time-change approach to Kotani's extension of Yor's formula
MHF2005-22 Tadahisa FUNAKI, Yuu HARIYA \& Mark YOR
Wiener integrals for centered powers of Bessel processes, I
MHF2005-23 Masahisa TABATA \& Satoshi KAIZU
Finite element schemes for two-fluids flow problems
MHF2005-24 Ken-ichi MARUNO \& Yasuhiro OHTA
Determinant form of dark soliton solutions of the discrete nonlinear Schrödinger equation

MHF2005-25 Alexander V. KITAEV \& Raimundas VIDŪNAS
Quadratic transformations of the sixth Painlevé equation
MHF2005-26 Toru FUJII \& Sadanori KONISHI
Nonlinear regression modeling via regularized wavelets and smoothing parameter selection

MHF2005-27 Shuichi INOKUCHI, Kazumasa HONDA, Hyen Yeal LEE, Tatsuro SATO, Yoshihiro MIZOGUCHI \& Yasuo KAWAHARA
On reversible cellular automata with finite cell array
MHF2005-28 Toru KOMATSU
Cyclic cubic field with explicit Artin symbols
MHF2005-29 Mitsuhiro T. NAKAO, Kouji HASHIMOTO \& Kaori NAGATOU
A computational approach to constructive a priori and a posteriori error estimates for finite element approximations of bi-harmonic problems

MHF2005-30 Kaori NAGATOU, Kouji HASHIMOTO \& Mitsuhiro T. NAKAO
Numerical verification of stationary solutions for Navier-Stokes problems
MHF2005-31 Hidefumi KAWASAKI
A duality theorem for a three-phase partition problem
MHF2005-32 Hidefumi KAWASAKI
A duality theorem based on triangles separating three convex sets

[^0]: ${ }^{1} 2000$ Mathematics Subject Classification. 90C25, 90C46.
 This research is partially supported by Kyushu Univ. 21st Century COE Program (Development of Dynamic Mathematics with High Functionality) and the Grant-in Aid for General Scientific Research from the Japan Society for the Promotion of Science 14340037.
 ${ }^{2}$ Associate Professor, Faculty of Mathematics, Kyushu University, Japan

