A computational approach to constructive a priori and a posteriori error estimates for finite element approximations of bi-harmonic problems

Nakao, Mitsuhiro T.
Faculty of Mathematics, Kyushu University

Hashimoto, Kouji
Graduate School of Informatics, Kyoto University

Nagatou, Kaori
Faculty of Mathematics, Kyushu University

http://hdl.handle.net/2324/3373
A computational approach to constructive a priori and a posteriori error estimates for finite element approximations of bi-harmonic problems

M.T. Nakao, K. Hashimoto
K. Nagatou

MHF 2005-29
(Received September 15, 2005)
A computational approach to constructive a priori and a posteriori error estimates for finite element approximations of bi-harmonic problems

Mitsuhiro T. Nakao† Kouji Hashimoto‡ Kaori Nagatou††

†Faculty of Mathematics, Kyushu University, Fukuoka 812-8581, Japan.
‡Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan.

Abstract

In the numerical verification method of solutions for nonlinear fourth order elliptic equations, it is important to find a constant in the constructive a priori and a posteriori error estimates for the finite element approximation of bi-harmonic problems. We show these procedures by verified computational techniques using the Hermite spline functions for two dimensional rectangular domain. Several numerical examples which confirm the actual effectiveness of the method are presented.

Key words: bi-harmonic problems, constructive a priori estimate, a posteriori estimate

1 Introduction

In this paper, we consider the guaranteed error bounds of the finite element approximations for the following equation:

$$\Delta^2 u = f \quad \text{in } \Omega, \quad u = \partial_n u = 0 \quad \text{on } \partial \Omega,$$

(1.1)

where $f \in L^2(\Omega)$ with a rectangular domain Ω in \mathbb{R}^2, and $\partial_n u$ denotes the outer normal derivative of u.

1.1 Notations

In the below, setting $\Omega := (0,1)^2$ for simplicity, we denote the L^2 inner product on Ω by $(\cdot,\cdot)_{L^2}$ and the norm by $\|\cdot\|_{L^2}$. We also denote the usual k-th order L^2 Sobolev space on Ω by $H^k(\Omega)$ for any positive integer k as well as the space $H^2_0(\Omega)$ by

$$H^2_0(\Omega) := \{ v \in H^2(\Omega) : v = \partial_n v = 0 \text{ on } \partial \Omega \}.$$

Let $S_h \subset H^2_0(\Omega)$ be a finite element subspace, under some rectangular mesh, which is spanned by two dimensional Hermite spline functions $\{\phi_i\}_{1 \leq i \leq n}$ with homogeneous boundary conditions in H^2_0 sense [3]. Moreover, we define the space S^*_h which is spanned by the basis $\{\phi^*_i\}_{1 \leq i \leq n^*}$, as the finite element subspace of $H^2(\Omega)$, not of $H^2_0(\Omega)$, satisfying $S_h \subset S^*_h$ but $S_h \neq S^*_h$. Namely, the set of base functions $\{\phi^*_i\}_{1 \leq i \leq n^*}$ consists of the elements in $\{\phi_i\}_{1 \leq i \leq n}$ and the Hermite spline functions corresponding to the

*This work is supported by Kyushu University 21st Century COE Program, Development of Dynamic Mathematics with High Functionality, of the Ministry of Education, Culture, Sports, Science and Technology of Japan.

†mtnakao@math.kyushu-u.ac.jp, ‡hashimot@amp.i.kyoto-u.ac.jp, ††nagatou@math.kyushu-u.ac.jp
Next, we define the H^2_0-projection $P_h : H^2_0(\Omega) \rightarrow S_h$ of $v \in H^2_0(\Omega)$ by
\[(\Delta v - \Delta P_h v, \Delta \phi_h)_{L^2} = 0, \quad \forall \phi_h \in S_h. \]
Moreover, we also define the L^2-projection $P_0 : L^2(\Omega) \rightarrow S^*_h$ of $v \in L^2(\Omega)$ by
\[(v - P_0 v, \phi_h^*)_{L^2} = 0, \quad \forall \phi_h^* \in S^*_h. \]

Let S^x_h and S^y_h denote the set of one dimensional Hermite spline functions on $(0, 1)$ with homogeneous H^2_0 boundary conditions in $x-$ and $y-$ directions, respectively. Then, S_h is represented as the tensor product $S^x_h \otimes S^y_h$. Similarly, we have $S^*_h = S^x_h^* \times S^y_h^*$, where $S^x_h^*$, $S^y_h^*$ are spaces of one dimensional spline functions without boundary functions. In what follows, a parameter h stands for the maximum mesh size of the partition of the interval $(0, 1)$.

In the x-direction, for $w \in H^2_0(0, 1)$ and $w \in L^2(0, 1)$, we also define the projections $P^x_2 : H^2_0(0, 1) \rightarrow S^x_h$ and $P^x_0 : L^2(0, 1) \rightarrow S^x_h^*$ by
\[(D_x^2 w - D_x^2 P^x_2 w, D_x^2 \phi_h)_{L^2} = 0, \quad \forall \phi_h \in S^x_h, \]
and
\[(w - P^x_0 w, \phi_h^*)_{L^2} = 0, \quad \forall \phi_h^* \in S^x_h^*, \]
respectively. For P^y_2 and P^y_0, analogously defined in the y-direction.

1.2 Motivation
Let $u_h \in S_h$ be an approximate solution of (1.1) satisfying
\[(\Delta u_h, \Delta \phi_h)_{L^2} = (f, \phi_h)_{L^2}, \quad \forall \phi_h \in S_h. \]
Then, note that we have $u_h = P_h u$ by the definition and that the solution u of (1.1) belongs to $H^2_0(\Omega) \cap H^4(\Omega)([1])$. Therefore, in what follows, we will discuss on the error estimates for the projection operator P_h.

We now assume the following a priori error estimates.

Assumption 1 For an arbitrary $v \in H^2_0(\Omega) \cap H^4(\Omega)$, there exists a constant C_0 such that
\[\| \Delta v - \Delta P_h v \|_{L^2} \leq C_0 h^2 \| \Delta^2 v \|_{L^2}. \]

Our main purpose of this paper is to find an a priori constant C_0 in the assumption 1 by using guaranteed numerical computations on computer. And as a bi-product of the arguments, we also show a method to get an a posteriori error bound for the approximate solution of the equation (1.1). In the numerical verification method of solutions for two dimensional Navier-Stokes problems(e.g., [2]), we need to enclose a solution of bi-harmonic equations with guaranteed error bounds. In such a situation, the above constant and a posteriori error estimates for the finite element approximation play an essential and important role. The basic techniques used in the below are extension of the method in [4] to the bi-harmonic problem.

1.3 Preliminary results
We first introduce the following known results.
Lemma 1 [3] For an arbitrary \(\psi \in H^2_0(\Omega) \cap H^4(\Omega) \), it follows that
\[
\|D_x^2 \psi - D_x^2 P_2^2 \psi\|_{L^2} \leq C h^2 \|D_x^2 \psi\|_{L^2},
\]
where the constant \(C \) can be taken as \(C = 1/\pi^2 \). Moreover, the estimate (1.2) is equivalent to the following inequality:
\[
\|\psi - P_2^2 \psi\|_{L^2} \leq C h^2 \|D_x^2 \psi - D_x^2 P_2^2 \psi\|_{L^2}.
\]
We now show the following inverse inequality for later use.

Lemma 2 For \(\psi_h \in S_h \), it follows that
\[
\|D_x^2 \psi_h\|_{L^2} \leq \frac{\kappa}{h^2} \|\psi_h\|_{L^2},
\]
where \(\kappa = 20\sqrt{21} < 91.6516 \).

Proof: Note that it is sufficient to prove the concerning inequality only for one dimensional polynomial of degree 3 on the interval \([0, h]\). In [3], base functions for \(x \)-direction on \([0, h]\) are given by
\[
\varphi_1(x) = (x - h)^2(2x + h)/h^3, \quad \varphi_2(x) = x^2(3h - 2x)/h^3, \\
\varphi_3(x) = x(x - h)^2/h^2, \quad \varphi_4(x) = x^2(x - h)/h^2,
\]
for \(x \in [0, h] \). Hence, setting \(\varphi_h := a_1 \varphi_1(x) + a_2 \varphi_2(x) + a_3 \varphi_3(x) + a_4 \varphi_4(x) \) and using some guaranteed computations of eigenvalue bounds of a matrix, we obtain
\[
\frac{\|D_x^2 \varphi_h\|_{L^2(0,h)}}{\|\varphi_h\|_{L^2(0,h)}} = \frac{840}{h^4} \left[\begin{array}{cccc}
6 & 6 & 3 & 3 \\
6 & 6 & -3 & -3 \\
-3 & -3 & 2 & 1 \\
3 & -3 & 1 & 2
\end{array} \right] \left[\begin{array}{cccc}
156 & 54 & 22 & -13 \\
54 & 156 & 13 & -22 \\
22 & 13 & 4 & -3 \\
-13 & -22 & -3 & 4
\end{array} \right]^{-1} \leq \frac{8400}{h^4},
\]
where \(\bar{a} = (a_1, a_2, a_3, a_4) \). Here, in order to get the above bound, we used a direct calculation of the matrix eigenvalue. That is, denoting the first and the second matrices in the above by \(A \) and \(B \), respectively, let \(B = D_2^T D \) a Cholesky decomposition of \(B \). Then, it is readily seen that the maximum eigenvalue of the symmetric matrix \(D^{-T} A D^{-1} \) presents a desired bound. By using a computer algebra system, we confirmed that it is equal to 10. Thus, we can take \(\kappa \) as \(\kappa = \sqrt{8400} = 20\sqrt{21} \).

2 Main Results

In this section, we show the constructive a priori and a posteriori error estimations for approximate solutions of the equation (1.1), which are equivalent to the same error estimates for \(H^2_0 \)-projection of the exact solution.

Let define
\[
v_h := P_h v = \sum_{i=1}^n v_i \phi_i \in S_h \quad \text{and} \quad \Delta v_h := P_0 \Delta v_h = \sum_{i=1}^n a_i \phi_i^\ast \in S_h^*.
\]
for an arbitrary \(v \in H^0_0(\Omega) \cap H^4(\Omega) \).
Then, \(\Delta v_h \) satisfies
\[
(\Delta v_h, \phi^*_h)_{L^2} = (\Delta v_h, \phi^*_h)_{L^2},
\]
\[
= - (\nabla v_h, \nabla \phi^*_h)_{L^2}, \quad \forall \phi^*_h \in S^*_h,
\]
(2.1)
And, for \(g \equiv \Delta^2 v \in L^2(\Omega) \), we set
\[
g_h = \sum_{i=1}^n g_i \phi_i \in S_h,
\]
so that
\[
(g_h, \phi_h)_{L^2} = (g, \phi_h)_{L^2}, \quad \forall \phi_h \in S_h.
\]
(2.2)
Moreover, setting \(n = \dim(S_h) \) and \(n^* = \dim(S^*_h) \), we denote some matrices and vectors as
\[
A_* = (A^*_i) = (\Delta \phi^*_j, \Delta \phi^*_i)_{L^2} \in R^{n \times n^*}, \quad A = (A_{ij}) = (\Delta \phi_j, \Delta \phi_i)_{L^2} \in R^{n \times n},
\]
\[
L_* = (L^*_i) = (\phi^*_j, \phi^*_i)_{L^2} \in R^{n \times n^*}, \quad L = (L_{ij}) = (\phi_j, \phi_i)_{L^2} \in R^{n \times n},
\]
\[
M = (M_{ij}) = (\nabla \phi_j, \nabla \phi_i)_{L^2} \in R^{n \times n}, \quad N = (N_{ij}) = (\nabla \phi^*_j, \nabla \phi^*_i)_{L^2} \in R^{n \times n^*}.
\]
and
\[
\vec{a} = (a_1, \ldots, a_n)^T \in R^n, \quad \vec{v} = (v_1, \ldots, v_n)^T, \quad \vec{g} = (g_1, \ldots, g_n)^T \in R^n.
\]
Notice that \(\|g\|_{L^2}^2 = \|g_h\|_{L^2}^2 + \|g - g_h\|_{L^2}^2 \). And, when we define the matrix \(Q \in R^{n \times n} \) such that \(L = QQ^T \), it follows that \(\|Q^T \vec{g}\|_E = \|g_h\|_{L^2} \), where \(\| \cdot \|_E \) means the Euclidean norm in \(R^n \). Under the above notations, the functions \(v_h \) and \(\Delta v_h \) are determined by solving the following matrix equations:
\[
A \vec{v} = L \vec{g},
\]
and
\[
L_* \vec{a} = - M \vec{v},
\]
respectively. Then, we have the following estimates.

Lemma 3 It follows that
\[
\|\Delta v_h - \Delta v_h\|_{L^2} \leq X \|g_h\|_{L^2},
\]
\[
\|g_h - \Delta v_h\|_{L^2} \leq Y \|g_h\|_{L^2},
\]
where \(X \equiv \|Q^{-1}XQ^{-T}\|_{E}^{1/2} \), \(Y \equiv \|Q^{-1}YQ^{-T}\|_{E}^{1/2} \). Here, setting \(Z \equiv L_*^{-1}MA^{-1}L \),
\[
X = LA^{-1}L - Z^T L_* Z,
\]
\[
Y = L - NZ - Z^T N^T + Z^T A_* Z.
\]
Proof: First, for the estimate \(\|\Delta v_h - \Delta v_h\|_{L^2} \), we have
\[
\|\Delta v_h - \Delta v_h\|_{L^2} = \|\Delta v_h\|_{L^2} - \|\Delta v_h\|_{L^2}
\]
\[
= \vec{v}^T A \vec{v} - \vec{a}^T L_* \vec{a}
\]
\[
= \vec{v}^T A \vec{v} - \vec{v}^T M^T L_*^{-1} M \vec{v}
\]
\[
= \vec{g}^T (LA^{-1}L - LA^{-1}M^T L_*^{-1} M A^{-1} L) \vec{g}.
\]
Next, for the estimate $\|g_h - \Delta \Delta v_h\|_2^2$, it follows that
\[
\|g_h - \Delta \Delta v_h\|_2^2 = (g_h, g_h)_L^2 - (g_h, \Delta \Delta v_h)_L^2 - (\Delta \Delta v_h, g_h)_L^2 + (\Delta \Delta v_h, \Delta \Delta v_h)_L^2
\]
\[
= (g_h, g_h)_L^2 + (\nabla g_h, \nabla \Delta \Delta v_h)_L^2 + (\Delta \Delta v_h, \nabla g_h)_L^2 + (\Delta \Delta v_h, \Delta \Delta v_h)_L^2
\]
\[
= \bar{g}^T L \bar{g} + \bar{g}^T N \bar{a} + \bar{a}^T N^T \bar{g} + \bar{a}^T A_0 \bar{a}
\]
\[
= \bar{g}^T (L - N L_{s}^{-1} M_0^{-1} M \bar{u}) - \bar{a}^T M^T L_{s}^{-1} N^T \bar{g} + \bar{a}^T M^T L_{s}^{-1} A_0 L_{s}^{-1} M \bar{u}
\]
\[
= \bar{g}^T (L - N L_{s}^{-1} M A_0^{-1} L - L A_0^{-1} M^T L_{s}^{-1} N^T + L A_0^{-1} M^T L_{s}^{-1} A_0 L_{s}^{-1} M A_0^{-1} L) \bar{g}.
\]
Thus by the above definitions of matrices X, Y and Z, we have
\[
\|\Delta v_h - \Delta v_h\|_2^2 = \bar{g}^T X \bar{g},
\]
\[
\|g_h - \Delta \Delta v_h\|_2^2 = \bar{g}^T Y \bar{g},
\]
which prove the lemma taking account that $\|Q^T \bar{g}\|_E = \|g_h\|_L^2$.

Lemma 4 For an arbitrary $\psi \in H_0^2(\Omega)$, it follows that
\[
\|\Delta \psi - \Delta P_0^x P_0^y \psi\|_L^2 \leq K \|\Delta \psi\|_L^2,
\]
where $K = \left(2 + 2(C \kappa + 1)^2\right)^{1/2}$, the constants C and κ are the same as in Lemma 1 and 2, respectively.

Proof: From the lemma 1 and 2, it follows that
\[
\|D_2^x(\psi - P_0^x P_0^y \psi) - D_2^x(P_0^x \psi - P_0^x P_0^y \psi)\|_L^2 \leq \|D_2^x(\psi - P_2^x \psi)\|_L^2 + \|D_2^x(P_0^x(\psi - P_0^x P_0^y \psi))\|_L^2
\]
\[
\leq \|D_2^x \psi\|_L^2 + \frac{\kappa}{h^2} \|P_0^x(\psi - P_2^x \psi)\|_L^2
\]
\[
\leq \|D_2^x \psi\|_L^2 + \frac{\kappa}{h^2} \|\psi - P_2^x \psi\|_L^2
\]
\[
\leq \|D_2^x \psi\|_L^2 + \|D_2^x(P_0^x(\psi - P_0^x P_0^y \psi))\|_L^2
\]
\[
\leq \left(1 + (C \kappa + 1)^2\right) \|D_2^x \psi\|_L^2.
\]
Thus, we have
\[
\|D_2^x(\psi - P_0^x P_0^y \psi)\|_L^2 \leq \|D_2^x(\psi - P_0^x P_0^y \psi) + D_2^x(P_0^x(\psi - P_0^x P_0^y \psi))\|_L^2
\]
\[
= \|D_2^x(\psi - P_0^x \psi)\|_L^2 + \|D_2^x(P_0^x(\psi - P_0^x P_0^y \psi))\|_L^2
\]
\[
\leq \|D_2^x \psi\|_L^2 + \|D_2^x(\psi - P_0^x \psi)\|_L^2
\]
\[
\leq \|D_2^x(\psi - P_2^x \psi) - D_2^x(P_0^x(\psi - P_0^x P_0^y \psi))\|_L^2
\]
\[
\leq \left(1 + (C \kappa + 1)^2\right) \|D_2^x \psi\|_L^2.
\]
where we have used the result just above to obtain the last right-hand side. Similarly, it follows that
\[
\|D_2^x \psi - D_2^y P_0^x P_0^y \psi\|_L^2 \leq \left(1 + (C \kappa + 1)^2\right)^{1/2} \|D_2^y \psi\|_L^2.
\]
Hence, we have the following estimation:
\[
\|\Delta \psi - \Delta P_0^x P_0^y \psi\|_L^2 \leq \|D_2^x(\psi - P_0^x P_0^y \psi)\|_L^2 + \|D_2^y(\psi - P_0^x P_0^y \psi)\|_L^2
\]
\[
\leq \left(1 + (C^2 \kappa + 1)^2\right)^{1/2} \left(\|D_2^x \psi\|_L^2 + \|D_2^y \psi\|_L^2\right)
\]
\[
\leq \left(2 + 2(C \kappa + 1)^2\right)^{1/2} \left(\|D_2^x \psi\|_L^2 + \|D_2^y \psi\|_L^2\right)^{1/2}
\]
\[
\leq \left(2 + 2(C \kappa + 1)^2\right)^{1/2} \|\Delta \psi\|_L^2.
\]
where, in order to derive the last inequality, we have used the well known equality $\| \Delta \psi \|_{L^2}^2 = \| D_x^2 \psi \|_{L^2}^2 + \| D_y^2 \psi \|_{L^2}^2 + 2 \| D_{xy} \psi \|_{L^2}^2$ for any $\psi \in H^2_0(\Omega)$ on an arbitrary domain Ω.

Therefore, we obtain the constant K as in the lemma.

Lemma 5 For an arbitrary $\psi \in H^2_0(\Omega)$, it follows that

$$\| \psi - P^x_0 P^y_0 \psi \|_{L^2} \leq C \Delta \| \Delta \psi \|_{L^2},$$

where the constant C is the same as in Lemma 1.

Proof: From the lemma 1, it follows that

$$\| \psi - P^x_0 P^y_0 \psi \|_{L^2}^2 = \| \psi - P^x_0 \psi + P^x_0 \psi - P^y_0 P^y_0 \psi \|_{L^2}^2$$

$$= \| \psi - P^x_0 \psi \|_{L^2}^2 + \| P^x_0 (\psi - P^y_0 \psi) \|_{L^2}^2$$

$$\leq \| \psi - P^x_0 \psi \|_{L^2}^2 + \| \psi - P^y_0 \psi \|_{L^2}^2$$

$$\leq C^2 h^4 \| D_x^2 \psi \|_{L^2}^2 + C^2 h^4 \| D_y^2 \psi \|_{L^2}^2$$

$$\leq C^2 h^4 \| \Delta \psi \|_{L^2}^2,$$

which completes the proof.

Now, we show the following two main results of this paper.

Theorem 1 (constructive a priori error estimates) The constant C_0 in Assumption 1 can be taken as

$$C_0 = C \cdot \left[(KX/(Ch^2) + Y)^2 + 1 \right]^{1/2},$$

where the constants X, Y, C and K are defined in the previous lemmas 1, 3 and 4.

Theorem 2 (a posteriori error estimates) For any $v \in H^2_0(\Omega) \cap H^4(\Omega)$, let $v_h := P_h v \in S_h$ and $\Delta v_h := P_0 \Delta v_h \in S_h^*$. Then, it follows that

$$\| \Delta v - \Delta v_h \|_{L^2} \leq K \| \Delta v_h - \Delta v_h \|_{L^2} + C h^2 \| \Delta^2 v - \Delta \Delta v_h \|_{L^2},$$

where C and K are defined in the lemmas 1 and 4.

Proof: (proof of Theorem 1 and 2)

First, for an arbitrary $\psi \in H^2_0(\Omega)$ and $\tilde{\psi}_0 \in S_h$, we have

$$(\Delta v - \Delta v_h, \Delta \psi - \Delta \tilde{\psi}_0)_{L^2} = (\Delta v - \Delta v_h, \Delta \psi - \Delta \tilde{\psi}_0)_{L^2}$$

$$= \langle \tilde{\psi}_0 \rangle \langle \Delta v - \Delta v_h, \Delta \psi - \Delta \tilde{\psi}_0 \rangle_{L^2} + \langle \Delta v_h, \Delta \psi - \Delta \tilde{\psi}_0 \rangle_{L^2}$$

$$\leq \| \Delta v_h - \Delta v_h \|_{L^2} \| \Delta \psi - \Delta \tilde{\psi}_0 \|_{L^2} + \| \Delta^2 v - \Delta \Delta v_h \|_{L^2} \| \psi - \tilde{\psi}_0 \|_{L^2}.$$

Thus, setting $\psi := v - v_h \in H^2_0(\Omega)$ and $\tilde{\psi}_0 \equiv P_0^x P_0^y \psi \in S_h$, from the lemmas 4 and 5, we obtain the desired estimates in Theorem 2.

Next, using Theorem 2, Lemma 3 and the property of the L^2-projection, it follows that

$$\| \Delta v - \Delta v_h \|_{L^2} \leq K \| \Delta v_h - \Delta v_h \|_{L^2} + C h^2 \| g - \Delta \Delta v_h \|_{L^2}$$

$$\leq K \| \Delta v_h - \Delta v_h \|_{L^2} + C h^2 \left(\| g_h - \Delta \Delta v_h \|_{L^2} + \| g - g_h \|_{L^2} \right)$$

$$\leq (KX + Ch^2 Y) \| g_h \|_{L^2} + Ch^2 \| g - g_h \|_{L^2}$$

$$\leq \left[(KX + Ch^2 Y)^2 + C^2 h^4 \right]^{1/2} \| g \|_{L^2}$$

$$= \left[(KX/h^2 + CY)^2 + C^2 \right]^{1/2} \| g \|_{L^2}.$$
which immediately completes the proof of Theorem 1.

3 Numerical examples

In this section, we present some numerical examples of a priori and a posteriori error estimates for the approximation of the bi-harmonic problem (1.1). Since the finite element solution $u_h \in S_h$ of (1.1) is defined by

$$(\Delta u_h, \Delta \phi_h)_{L^2} = (f, \phi_h)_{L^2}, \quad \forall \phi_h \in S_h,$$

we have $u_h = P_h u$, and thus the above arguments can be applied to the error estimates for this approximate solution u_h. That is, using the procedure in the previous section to define $\Delta u_h = P_0 \Delta u_h \in S^*_h$, we obtain the a priori and a posteriori error estimates of the form

$$\|\Delta u - \Delta u_h\|_{L^2} \leq C_0 h^2 \|f\|_{L^2}, \quad (3.1)$$

and

$$\|\Delta u - \Delta u_h\|_{L^2} \leq K \|\Delta u_h - \Delta \overline{u_h}\|_{L^2} + Ch^2 \|f - \Delta \overline{u_h}\|_{L^2}, \quad (3.2)$$

respectively. Here, constants C_0, K and C are same as in theorems in Section 2.

We first show several computational results for the constructive a priori constants in Theorem 1 by Table 1.

<table>
<thead>
<tr>
<th>$1/h$</th>
<th>C_0</th>
<th>X</th>
<th>Y</th>
<th>$C_0 h^2$</th>
<th>C_0/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.7225</td>
<td>3.6718e-4</td>
<td>1.7641</td>
<td>7.2256e-3</td>
<td>7.1314</td>
</tr>
<tr>
<td>20</td>
<td>0.7377</td>
<td>9.3350e-5</td>
<td>1.8257</td>
<td>1.8443e-3</td>
<td>7.2812</td>
</tr>
<tr>
<td>30</td>
<td>0.7611</td>
<td>4.3440e-5</td>
<td>1.8057</td>
<td>8.4573e-4</td>
<td>7.5123</td>
</tr>
<tr>
<td>40</td>
<td>0.7811</td>
<td>2.5416e-5</td>
<td>1.7780</td>
<td>4.8819e-4</td>
<td>7.7093</td>
</tr>
<tr>
<td>50</td>
<td>0.7967</td>
<td>1.6764e-5</td>
<td>1.7536</td>
<td>3.1868e-4</td>
<td>7.8633</td>
</tr>
<tr>
<td>60</td>
<td>0.8091</td>
<td>1.1918e-5</td>
<td>1.7341</td>
<td>2.2477e-4</td>
<td>7.9862</td>
</tr>
<tr>
<td>70</td>
<td>0.8193</td>
<td>8.9195e-6</td>
<td>1.7195</td>
<td>1.6720e-4</td>
<td>8.0864</td>
</tr>
<tr>
<td>80</td>
<td>0.8278</td>
<td>6.9315e-6</td>
<td>1.7095</td>
<td>1.2934e-4</td>
<td>8.1703</td>
</tr>
<tr>
<td>90</td>
<td>0.8356</td>
<td>5.5486e-6</td>
<td>1.7036</td>
<td>1.0317e-4</td>
<td>8.2478</td>
</tr>
<tr>
<td>100</td>
<td>0.8418</td>
<td>4.5390e-6</td>
<td>1.7006</td>
<td>8.4185e-5</td>
<td>8.3087</td>
</tr>
</tbody>
</table>

The constant C in the table is taken as $C = 1/\pi^2$.

Next, we present some examples of the a posteriori error for the following bi-harmonic problem.

$$\Delta^2 u = f \quad \text{in} \quad \Omega, \quad u = \partial_n u = 0 \quad \text{on} \quad \partial\Omega, \quad (3.3)$$

where $\Omega = (0,1)^2$ and

$$f \equiv f(x,y) = 8 (3x^2(1-x)^2 + xy(x-1)(y-1)(2x-1)(2y-1) + 3y^2(1-y)^2),$$

$$\|f\|_{L^2} = \frac{4}{5} \sqrt{\frac{62}{7}} < 2.3809.$$
The exact solution of (3.3) is given by \(u \equiv u(x,y) = x^2y^2(1-x)^2(1-y)^2 \).

Table 2 shows numerical results for the a priori and a posteriori error estimates in (3.1) and (3.2), respectively.

<table>
<thead>
<tr>
<th>(1/h)</th>
<th>(3.1)</th>
<th>(3.2)</th>
<th>(|\Delta u - \Delta u_h|_{L^2})</th>
<th>(|\Delta u_h - \Delta u_{h_k}|_{L^2})</th>
<th>(|f - \Delta u_{h_k}|_{L^2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.7201e-2</td>
<td>7.8301e-3</td>
<td>5.0527e-4</td>
<td>4.4700e-4</td>
<td>1.2798</td>
</tr>
<tr>
<td>20</td>
<td>4.3909e-3</td>
<td>1.9680e-3</td>
<td>1.2595e-4</td>
<td>1.1897e-4</td>
<td>0.9047</td>
</tr>
<tr>
<td>30</td>
<td>2.0134e-3</td>
<td>8.7011e-4</td>
<td>5.5883e-5</td>
<td>5.3843e-5</td>
<td>0.7385</td>
</tr>
<tr>
<td>40</td>
<td>1.1623e-3</td>
<td>4.8659e-4</td>
<td>3.1376e-5</td>
<td>3.0521e-5</td>
<td>0.6394</td>
</tr>
<tr>
<td>50</td>
<td>7.5873e-4</td>
<td>3.0962e-4</td>
<td>2.0034e-5</td>
<td>1.9598e-5</td>
<td>0.5716</td>
</tr>
<tr>
<td>60</td>
<td>5.3510e-4</td>
<td>2.1363e-4</td>
<td>1.3863e-5</td>
<td>1.3611e-5</td>
<td>0.5215</td>
</tr>
<tr>
<td>70</td>
<td>3.9809e-4</td>
<td>1.5609e-4</td>
<td>1.0154e-5</td>
<td>9.9666e-6</td>
<td>0.4826</td>
</tr>
<tr>
<td>80</td>
<td>3.0795e-4</td>
<td>1.1870e-4</td>
<td>7.3990e-6</td>
<td>7.6331e-6</td>
<td>0.4511</td>
</tr>
<tr>
<td>90</td>
<td>2.4561e-4</td>
<td>9.3310e-5</td>
<td>6.0946e-6</td>
<td>6.0203e-6</td>
<td>0.4250</td>
</tr>
<tr>
<td>100</td>
<td>2.0042e-4</td>
<td>7.5133e-5</td>
<td>4.9152e-6</td>
<td>4.8611e-6</td>
<td>0.4029</td>
</tr>
</tbody>
</table>

All computations in tables are carried out on the Dell Precision 650 Workstation Intel Xeon Dual CPU 3.20GHz by MATLAB.

References

MHF2003-1 Mitsuhiro T. NAKAO, Kouji HASHIMOTO & Yoshitaka WATANABE
A numerical method to verify the invertibility of linear elliptic operators with applications to nonlinear problems

MHF2003-2 Masahisa TABATA & Daisuke TAGAMI
Error estimates of finite element methods for nonstationary thermal convection problems with temperature-dependent coefficients

MHF2003-3 Tomohiro ANDO, Sadanori KONISHI & Seiya IMOTO
Adaptive learning machines for nonlinear classification and Bayesian information criteria

MHF2003-4 Kazuhiro YOKOYAMA
On systems of algebraic equations with parametric exponents

MHF2003-5 Masao ISHIKAWA & Masato WAKAYAMA
Applications of Minor Summation Formulas III, Plücker relations, Lattice paths and Pfaffian identities

MHF2003-6 Atsushi SUZUKI & Masahisa TABATA
Finite element matrices in congruent subdomains and their effective use for large-scale computations

MHF2003-7 Setsuo TANIGUCHI
Stochastic oscillatory integrals - asymptotic and exact expressions for quadratic phase functions -

MHF2003-8 Shoki MIYAMOTO & Atsushi YOSHIKAWA
Computable sequences in the Sobolev spaces

MHF2003-9 Toru FUJII & Takashi YANAGAWA
Wavelet based estimate for non-linear and non-stationary auto-regressive model

MHF2003-10 Atsushi YOSHIKAWA
Maple and wave-front tracking — an experiment

MHF2003-11 Masanobu KANEKO
On the local factor of the zeta function of quadratic orders

MHF2003-12 Hidefumi KAWASAKI
Conjugate-set game for a nonlinear programming problem
MHF2004-1 Koji YONEMOTO & Takashi YANAGAWA
Estimating the Lyapunov exponent from chaotic time series with dynamic noise

MHF2004-2 Rui YAMAGUCHI, Eiko TSUCHIYA & Tomoyuki HIGUCHI
State space modeling approach to decompose daily sales of a restaurant into time-dependent multi-factors

MHF2004-3 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA & Yasuhiko YAMADA
Cubic pencils and Painlevé Hamiltonians

MHF2004-4 Atsushi KAWAGUCHI, Koji YONEMOTO & Takashi YANAGAWA
Estimating the correlation dimension from a chaotic system with dynamic noise

MHF2004-5 Atsushi KAWAGUCHI, Kentarou KITAMURA, Koji YONEMOTO, Takashi YANAGAWA & Kiyofumi YUMOTO
Detection of auroral breakups using the correlation dimension

MHF2004-6 Ryo IKOTA, Masayasu MIMURA & Tatsuyuki NAKAKI
A methodology for numerical simulations to a singular limit

MHF2004-7 Ryo IKOTA & Eiji YANAGIDA
Stability of stationary interfaces of binary-tree type

MHF2004-8 Yuko ARAKI, Sadanori KONISHI & Seiya IMOTO
Functional discriminant analysis for gene expression data via radial basis expansion

MHF2004-9 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA & Yasuhiko YAMADA
Hypergeometric solutions to the q Painlevé equations

MHF2004-10 Raimundas VIDŪNAS
Expressions for values of the gamma function

MHF2004-11 Raimundas VIDŪNAS
Transformations of Gauss hypergeometric functions

MHF2004-12 Koji NAKAGAWA & Masakazu SUZUKI
Mathematical knowledge browser

MHF2004-13 Ken-ichi MARUNO, Wen-Xiu MA & Masayuki OIKAWA
Generalized Casorati determinant and Positron-Negaton-Type solutions of the Toda lattice equation

MHF2004-14 Nalini JOSHI, Kenji KAJIWARA & Marta MAZZOCCH
Generating function associated with the determinant formula for the solutions of the Painlevé II equation
MHF2004-15 Kouji HASHIMOTO, Ryohei ABE, Mitsuhiro T. NAKAO & Yoshitaka WATANABE
Numerical verification methods of solutions for nonlinear singularly perturbed problem

MHF2004-16 Ken-ichi MARUNO & Gino BIONDINI
Resonance and web structure in discrete soliton systems: the two-dimensional Toda lattice and its fully discrete and ultra-discrete versions

MHF2004-17 Ryuei NISHII & Shinto EGUCHI
Supervised image classification in Markov random field models with Jeffreys divergence

MHF2004-18 Kouji HASHIMOTO, Kenta KOBAYASHI & Mitsuhiro T. NAKAO
Numerical verification methods of solutions for the free boundary problem

MHF2004-19 Hiroki MASUDA
Ergodicity and exponential β-mixing bounds for a strong solution of Lévy-driven stochastic differential equations

MHF2004-20 Setsuo TANIGUCHI
The Brownian sheet and the reflectionless potentials

MHF2004-21 Ryuei NISHII & Shinto EGUCHI
Supervised image classification based on AdaBoost with contextual weak classifiers

MHF2004-22 Hideki KOSAKI
On intersections of domains of unbounded positive operators

MHF2004-23 Masahisa TABATA & Shoichi FUJIMA
Robustness of a characteristic finite element scheme of second order in time increment

MHF2004-24 Ken-ichi MARUNO, Adrian ANKIEWICZ & Nail AKHMEDIEV
Dissipative solitons of the discrete complex cubic-quintic Ginzburg-Landau equation

MHF2004-25 Raimundas VIDŪNAS
Degenerate Gauss hypergeometric functions

MHF2004-26 Ryo IKOTA
The boundedness of propagation speeds of disturbances for reaction-diffusion systems

MHF2004-27 Ryusuke KON
Convex dominates concave: an exclusion principle in discrete-time Kolmogorov systems
MHF2004-28 Ryusuke KON
Multiple attractors in host-parasitoid interactions: coexistence and extinction

MHF2004-29 Kentaro IHARA, Masanobu KANEKO & Don ZAGIER
Derivation and double shuffle relations for multiple zeta values

MHF2004-30 Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Generalized partitioned quantum cellular automata and quantization of classical CA

MHF2005-1 Hideki KOSAKI
Matrix trace inequalities related to uncertainty principle

MHF2005-2 Masahisa TABATA
Discrepancy between theory and real computation on the stability of some finite element schemes

MHF2005-3 Yuko ARAKI & Sadanori KONISHI
Functional regression modeling via regularized basis expansions and model selection

MHF2005-4 Yuko ARAKI & Sadanori KONISHI
Functional discriminant analysis via regularized basis expansions

MHF2005-5 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA & Yasuhiko YAMADA
Point configurations, Cremona transformations and the elliptic difference Painlevé equations

MHF2005-6 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA & Yasuhiko YAMADA
Construction of hypergeometric solutions to the $q \bar{P}$ Painlevé equations

MHF2005-7 Hiroki MASUDA
Simple estimators for non-linear Markovian trend from sampled data: I. ergodic cases

MHF2005-8 Hiroki MASUDA & Nakahiro YOSHIDA
Edgeworth expansion for a class of Ornstein-Uhlenbeck-based models

MHF2005-9 Masayuki UCHIDA
Approximate martingale estimating functions under small perturbations of dynamical systems

MHF2005-10 Ryo MATSUZAKI & Masayuki UCHIDA
One-step estimators for diffusion processes with small dispersion parameters from discrete observations

MHF2005-11 Junichi MATSUKUBO, Ryo MATSUZAKI & Masayuki UCHIDA
Estimation for a discretely observed small diffusion process with a linear drift
MHF2005-12 Masayuki UCHIDA & Nakahiro YOSHIDA
AIC for ergodic diffusion processes from discrete observations

MHF2005-13 Hiromichi GOTO & Kenji KAJIWARA
Generating function related to the Okamoto polynomials for the Painlevé IV equation

MHF2005-14 Masato KIMURA & Shin-ichi NAGATA
Precise asymptotic behaviour of the first eigenvalue of Sturm-Liouville problems with large drift

MHF2005-15 Daisuke TAGAMI & Masahisa TABATA
Numerical computations of a melting glass convection in the furnace

MHF2005-16 Raimundas VIDUNAS
Normalized Leonard pairs and Askey-Wilson relations

MHF2005-17 Raimundas VIDUNAS
Askey-Wilson relations and Leonard pairs

MHF2005-18 Kenji KAJIWARA & Atsushi MUKAIHIRA
Soliton solutions for the non-autonomous discrete-time Toda lattice equation

MHF2005-19 Yuu HARIYA
Construction of Gibbs measures for 1-dimensional continuum fields

MHF2005-20 Yuu HARIYA
Integration by parts formulae for the Wiener measure restricted to subsets in \mathbb{R}^d

MHF2005-21 Yuu HARIYA
A time-change approach to Kotani’s extension of Yor’s formula

MHF2005-22 Tadahisa FUNAKI, Yuu HARIYA & Mark YOR
Wiener integrals for centered powers of Bessel processes, I

MHF2005-23 Masahisa TABATA & Satoshi KAIZU
Finite element schemes for two-fluids flow problems

MHF2005-24 Ken-ichi MARUNO & Yasuhiro OHTA
Determinant form of dark soliton solutions of the discrete nonlinear Schrödinger equation

MHF2005-25 Alexander V. KITAEV & Raimundas VIDUNAS
Quadratic transformations of the sixth Painlevé equation

MHF2005-26 Toru FUJII & Sadanori KONISHI
Nonlinear regression modeling via regularized wavelets and smoothing parameter selection
MHF2005-27 Shuichi INOKUCHI, Kazumasa HONDA, Hyen Yeal LEE, Tatsuro SATO, Yoshihiro MIZOGUCHI & Yasuo KAWAHARA
On reversible cellular automata with finite cell array

MHF2005-28 Toru KOMATSU
Cyclic cubic field with explicit Artin symbols

MHF2005-29 Mitsuhiro T. NAKAO, Kouji HASHIMOTO & Kaori NAGATOU
A computational approach to constructive a priori and a posteriori error estimates for finite element approximations of bi-harmonic problems