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Abstract

In the numerical verification method of solutions for nonlinear fourth order elliptic equations,
it is important to find a constant in the constructive a priori and a posteriori error estimates for
the finite element approximation of bi-harmonic problems. We show these procedures by verified
computational techniques using the Hermite spline functions for two dimensional rectangular domain.
Several numerical examples which confirm the actual effectiveness of the method are presented.
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1 Introduction

In this paper, we consider the guaranteed error bounds of the finite element approximations for the
following equation:

Δ2u = f in Ω,
u = ∂nu = 0 on ∂Ω, (1.1)

where f ∈ L2(Ω) with a rectangular domain Ω in R2, and ∂nu denotes the outer normal derivative of u.

1.1 Notations

In the below, setting Ω := (0, 1)2 for simplicity, we denote the L2 inner product on Ω by (·, ·)L2 and the
norm by ‖ · ‖L2. We also denote the usual k-th order L2 Sobolev space on Ω by Hk(Ω) for any positive
integer k as well as the space H2

0 (Ω) by

H2
0 (Ω) :=

{
v ∈ H2(Ω) : v = ∂nv = 0 on ∂Ω

}
.

Let Sh ⊂ H2
0 (Ω) be a finite element subspace, under some rectangular mesh, which is spanned by

two dimensional Hermite spline functions {φi}1≤i≤n with homogeneous boundary conditions in H2
0 sense

[3]. Moreover, we define the space S∗
h which is spanned by the basis {φ∗i }1≤i≤n∗ , as the finite element

subspace of H2(Ω), not of H2
0 (Ω), satisfying Sh ⊂ S∗

h but Sh �= S∗
h . Namely, the set of base functions

{φ∗i }1≤i≤n∗ consists of the elements in {φi}1≤i≤n and the Hermite spline functions corresponding to the

∗This work is supported by Kyushu University 21st Century COE Program, Development of Dynamic Mathe-
matics with High Functionality, of the Ministry of Education, Culture, Sports, Science and Technology of Japan.
1mtnakao@math.kyushu-u.ac.jp, 2hashimot@amp.i.kyoto-u.ac.jp, 3nagatou@math.kyushu-u.ac.jp
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boundary nodes(cf. [4]).

Next, we define the H2
0 -projection Ph : H2

0 (Ω) → Sh of v ∈ H2
0 (Ω) by

(Δv − ΔPhv,Δφh)L2 = 0, ∀φh ∈ Sh.

Moreover, we also define the L2-projection P0 : L2(Ω) → S∗
h of v ∈ L2(Ω) by

(v − P0v, φ
∗
h)L2 = 0, ∀φ∗h ∈ S∗

h.

Let Sx
h and Sy

h denote the set of one dimensional Hermite spline functions on (0, 1) with homogeneous
H2

0 boundary conditions in x− and y− directions, respectively. Then, Sh is represented as the tensor
product Sx

h ⊗ Sy
h. Similarly, we have S∗

h = Sx∗
h × Sy∗

h , where Sx∗
h , Sy∗

h are spaces of one dimensional
spline functions without boundary functions. In what follows, a parameter h stands for the maximum
mesh size of the partition of the interval (0, 1).

In the x-direction, for w ∈ H2
0 (0, 1) and w ∈ L2(0, 1), we also define the projections P x

2 : H2
0 (0, 1) → Sx

h

and P x
0 : L2(0, 1) → Sx∗

h by

(D2
xw −D2

xP
x
2 w,D

2
xϕh)L2 = 0, ∀ϕh ∈ Sx

h ,

and
(w − P x

0 w,ϕ
∗
h)L2 = 0, ∀ϕ∗

h ∈ Sx∗
h ,

respectively. For P y
2 and P y

0 , analogously defined in the y-direction.

1.2 Motivation

Let uh ∈ Sh be an approximate solution of (1.1) satisfying

(Δuh,Δφh)L2 = (f, φh)L2 ∀φh ∈ Sh.

Then, note that we have uh = Phu by the definition and that the solution u of (1.1) belongs to H2
0 (Ω)∩

H4(Ω)([1]). Therefore, in what follows, we will discuss on the error estimates for the projection operator
Ph.
We now assume the following a priori error estimates.

Assumption 1 For an arbitrary v ∈ H2
0 (Ω) ∩H4(Ω), there exists a constant C0 such that

‖Δv − ΔPhv‖L2 ≤ C0h
2‖Δ2v‖L2 .

Our main purpose of this paper is to find an a priori constant C0 in the assumption 1 by using guaranteed
numerical computations on computer. And as a bi-product of the arguments, we also show a method
to get an a posteriori error bound for the approximate solution of the equation (1.1). In the numerical
verification method of solutions for two dimensional Navier-Stokes problems(e.g., [2]), we need to enclose
a solution of bi-harmonic equations with guaranteed error bounds. In such a situation, the above constant
and a posteriori error estimates for the finite element approximation play an essential and important role.
The basic techniques used in the below are extension of the method in [4] to the bi-harmonic problem.

1.3 Preliminary results

We first introduce the following known results.
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Lemma 1 [3] For an arbitrary ψ ∈ H2
0 (Ω) ∩H4(Ω), it follows that

‖D2
xψ −D2

xP
x
2 ψ‖L2 ≤ Ch2‖D4

xψ‖L2, (1.2)

where the constant C can be taken as C = 1/π2. Moreover, the estimate (1.2) is equivalent to the following
inequality:

‖ψ − P x
2 ψ‖L2 ≤ Ch2‖D2

xψ −D2
xP

x
2 ψ‖L2 .

We now show the following inverse inequality for later use.

Lemma 2 For ψh ∈ Sh, it follows that

‖D2
xψh‖L2 ≤ κ

h2
‖ψh‖L2 ,

where κ = 20
√

21 < 91.6516.

Proof : Note that it is sufficient to prove the concerning inequality only for one dimensional
polynomial of degree 3 on the interval [0, h]. In [3], base functions for x-direction on [0, h] are given by

ϕ1(x) = (x− h)2(2x+ h)/h3, ϕ2(x) = x2(3h− 2x)/h3,
ϕ3(x) = x(x− h)2/h2, ϕ4(x) = x2(x− h)/h2,

for x ∈ [0, h]. Hence, setting ϕh := a1ϕ1(x) + a2ϕ2(x) + a3ϕ3(x) + a4ϕ4(x) and using some guaranteed
computations of eigenvalue bounds of a matrix, we obtain

‖D2
xϕh‖2

L2(0,h)

‖ϕh‖2
L2(0,h)

=
840
h4

⎡
⎢⎢⎣�aT

⎛
⎜⎜⎝

6 −6 3 3
−6 6 −3 −3

3 −3 2 1
3 −3 1 2

⎞
⎟⎟⎠�a

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣�aT

⎛
⎜⎜⎝

156 54 22 −13
54 156 13 −22
22 13 4 −3

−13 −22 −3 4

⎞
⎟⎟⎠�a

⎤
⎥⎥⎦
−1

≤ 8400
h4

,

where �a = (a1, a2, a3h, a4h)T .
Here, in order to get the above bound, we used a direct calculation of the matrix eigenvalue. That
is, denoting the first and the second matrices in the above by A and B, respectively, let B = DTD a
Cholesky decomposition of B. Then, it is readily seen that the maximum eigenvalue of the symmetric
matrix D−TAD−1 presents a desired bound. By using a computer algebra system, we confirmed that it
is equal to 10. Thus, we can take κ as κ =

√
8400 = 20

√
21.

2 Main Results

In this section, we show the constructive a priori and a posteriori error estimations for approximate
solutions of the equation (1.1), which are equivalent to the same error estimates for H2

0 -projection of the
exact solution.

Let define

vh := Phv ≡
n∑

i=1

viφi ∈ Sh and Δvh := P0Δvh ≡
n∗∑
i=1

aiφ
∗
i ∈ S∗

h,
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for an arbitrary v ∈ H2
0 (Ω) ∩H4(Ω).

Then, Δvh satisfies

(Δvh, φ
∗
h)L2 = (Δvh, φ

∗
h)L2 ,

= −(∇vh,∇φ∗h)L2 , ∀φ∗h ∈ S∗
h. (2.1)

And, for g ≡ Δ2v ∈ L2(Ω), we set

gh ≡
n∑

i=1

giφi ∈ Sh,

so that

(gh, φh)L2 = (g, φh)L2 , ∀φh ∈ Sh. (2.2)

Moreover, setting n = dim(Sh) and n∗ = dim(S∗
h), we denote some matrices and vectors as

A∗ = (A∗
ij) = (Δφ∗j ,Δφ

∗
i )L2 ∈ Rn∗×n∗

, A = (Aij) = (Δφj ,Δφi)L2 ∈ Rn×n,

L∗ = (L∗
ij) = (φ∗j , φ

∗
i )L2 ∈ Rn∗×n∗

, L = (Lij) = (φj , φi)L2 ∈ Rn×n,

M = (Mij) = (∇φj ,∇φ∗i )L2 ∈ Rn∗×n, N = (Nij) = (∇φ∗j ,∇φi)L2 ∈ Rn×n∗
.

and
�a = (a1, · · · an∗)T ∈ Rn∗

, �v = (v1, · · · vn)T , �g = (g1, · · · gn)T ∈ Rn.

Notice that ‖g‖2
L2 = ‖gh‖2

L2 + ‖g − gh‖2
L2. And, when we define the matrix Q ∈ Rn×n such that

L = QQT , it follows that‖QT�g‖E = ‖gh‖L2, where ‖ · ‖E means the Euclidean norm in Rn. Under the
above notations, the functions vh and Δvh are determined by solving the following matrix equations:

A�v = L�g,

and
L∗�a = −M�v,

respectively. Then, we have the following estimates.

Lemma 3 It follows that

‖Δvh − Δvh‖L2 ≤ X‖gh‖L2,

‖gh − ΔΔvh‖L2 ≤ Y‖gh‖L2 ,

where X ≡ ‖Q−1XQ−T‖1/2
E , Y ≡ ‖Q−1Y Q−T ‖1/2

E . Here, setting Z ≡ L−1
∗ MA−1L,

X ≡ LA−1L− ZTL∗Z,
Y ≡ L−NZ − ZTNT + ZTA∗Z.

Proof : First, for the estimate ‖Δvh − Δvh‖L2, we have

‖Δvh − Δvh‖2
L2 = ‖Δvh‖2

L2 − ‖Δvh‖2
L2

= �vTA�v − �aTL∗�a
= �vTA�v − �vTMTL−1

∗ M�v

= �gT (LA−1L− LA−1MTL−1
∗ MA−1L)�g.
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Next, for the estimate ‖gh − ΔΔvh‖L2, it follows that

‖gh − ΔΔvh‖2
L2 = (gh, gh)L2 − (gh,ΔΔvh)L2 − (ΔΔvh, gh)L2 + (ΔΔvh,ΔΔvh)L2

= (gh, gh)L2 + (∇gh,∇Δvh)L2 + (∇Δvh,∇gh)L2 + (ΔΔvh,ΔΔvh)L2

= �gTL�g + �gTN�a+ �aTNT�g + �aTA∗�a
= �gTL�g − �gTNL−1

∗ M�v − �vTMTL−1
∗ NT�g + �aTMTL−1

∗ A∗L−1
∗ M�v

= �gT (L−NL−1
∗ MA−1L− LA−1MTL−1

∗ NT + LA−1MTL−1
∗ A∗L−1

∗ MA−1L)�g.

Thus by the above definitions of matrices X, Y and Z, we have

‖Δvh − Δvh‖2
L2 = �gTX�g,

‖gh − ΔΔvh‖2
L2 = �gTY �g,

which prove the lemma taking account that ‖QT�g‖E = ‖gh‖L2 .

Lemma 4 For an arbitrary ψ ∈ H2
0 (Ω), it follows that

‖Δψ − ΔP x
0 P

y
0 ψ‖L2 ≤ K‖Δψ‖L2,

where K =
(
2 + 2 (Cκ+ 1)2

)1/2

, the constants C and κ are the same as in Lemma 1 and 2, respectively.

Proof : From the lemma 1 and 2, it follows that

‖D2
x(ψ − P x

2 ψ) −D2
x(P x

0 ψ − P x
0 P

x
2 ψ)‖L2 ≤ ‖D2

x(ψ − P x
2 ψ)‖L2 + ‖D2

x( P x
0 (ψ − P x

0 P
x
2 ψ) )‖L2

≤ ‖D2
xψ‖L2 +

κ

h2
‖P x

0 (ψ − P x
2 ψ)‖L2

≤ ‖D2
xψ‖L2 +

κ

h2
‖ψ − P x

2 ψ‖L2

≤ ‖D2
xψ‖L2 + Ch2 κ

h2
‖D2

xψ‖L2

≤ (Cκ+ 1) ‖D2
xψ‖L2 .

Thus, we have

‖D2
x(ψ − P x

0 P
y
0 ψ)‖2

L2 = ‖D2
x(ψ − P y

0 ψ) +D2
x(P y

0 ψ − P y
0 P

x
0 ψ)‖2

L2

= ‖D2
x(ψ − P y

0 ψ)‖2
L2 + ‖D2

x( P y
0 (ψ − P x

0 ψ) )‖2
L2

≤ ‖D2
xψ‖2

L2 + ‖D2
x(ψ − P x

0 ψ)‖2
L2

≤ ‖D2
xψ‖2

L2 + ‖D2
x(ψ − P x

2 ψ) −D2
x(P x

0 ψ − P x
0 P

x
2 ψ)‖2

L2

≤
(
1 + (Cκ+ 1)2

)
‖D2

xψ‖2
L2 ,

where we have used the result just above to obtain the last right-hand side. Similarly, it follows that

‖D2
yψ −D2

yP
x
0 P

y
0 ψ‖L2 ≤

(
1 + (Cκ+ 1)2

)1/2

‖D2
yψ‖L2 .

Hence, we have the following estimation:

‖Δψ − ΔP x
0 P

y
0 ψ‖L2 ≤ ‖D2

x(ψ − P x
0 P

y
0 ψ)‖L2 + ‖D2

y(ψ − P x
0 P

y
0 ψ)‖L2

≤
(
1 +

(
C2κ+ 1

)2
)1/2

(‖D2
xψ‖L2 + ‖D2

yψ‖L2)

≤
(
2 + 2 (Cκ+ 1)2

)1/2 (‖D2
xψ‖2

L2 + ‖D2
yψ‖2

L2

)1/2

≤
(
2 + 2 (Cκ+ 1)2

)1/2

‖Δψ‖L2 ,
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where, in order to derive the last inequality, we have used the well known equality ‖Δψ‖2
L2 = ||D2

xψ||2L2 +
||D2

yψ||2L2 + 2||Dxyψ||2L2 for any ψ ∈ H2
0 (Ω) on an arbitrary domain Ω.

Therefore, we obtain the constant K as in the lemma.

Lemma 5 For an arbitrary ψ ∈ H2
0 (Ω), it follows that

‖ψ − P x
0 P

y
0 ψ‖L2 ≤ Ch2‖Δψ‖L2,

where the constant C is the same as in Lemma 1.

Proof : From the lemma 1, it follows that

‖ψ − P x
0 P

y
0 ψ‖2

L2 = ‖ψ − P x
0 ψ + P x

0 ψ − P x
0 P

y
0 ψ‖2

L2

= ‖ψ − P x
0 ψ‖2

L2 + ‖P x
0 (ψ − P y

0 ψ)‖2
L2

≤ ‖ψ − P x
0 ψ‖2

L2 + ‖ψ − P y
0 ψ‖2

L2

≤ ‖ψ − P x
2 ψ‖2

L2 + ‖ψ − P y
2 ψ‖2

L2

≤ C2h4‖D2
xψ‖2

L2 + C2h4‖D2
yψ‖2

L2

≤ C2h4‖Δψ‖2
L2,

which completes the proof.

Now, we show the following two main results of this paper.

Theorem 1 (constructive a priori error estimates) The constant C0 in Assumption 1 can be taken as

C0 = C ·
[(
KX/(Ch2) + Y

)2
+ 1

]1/2

,

where the constants X, Y, C and K are defined in the previous lemmas 1, 3 and 4.

Theorem 2 (a posteriori error estimates) For any v ∈ H2
0 (Ω) ∩H4(Ω), let vh := Phv ∈ Sh and Δvh :=

P0Δvh ∈ S∗
h. Then, it follows that

‖Δv − Δvh‖L2 ≤ K‖Δvh − Δvh‖L2 + Ch2‖Δ2v − ΔΔvh‖L2 ,

where C and K are defined in the lemmas 1 and 4.

Proof : (proof of Theorem 1 and 2)
First, for an arbitrary ψ ∈ H2

0 (Ω) and ψ̃0 ∈ Sh, we have

(Δv − Δvh,Δψ)L2 = (Δv − Δvh,Δψ − Δψ̃0)L2

= (Δv − Δvh,Δψ − Δψ̃0)L2 + (Δvh,Δψ − Δψ̃0)L2 − (ΔΔvh, ψ − ψ̃0)L2

= (Δvh − Δvh,Δψ − Δψ̃0)L2 + (Δ2v − ΔΔvh, ψ − ψ̃0)L2

≤ ‖Δvh − Δvh‖L2‖Δψ − Δψ̃0‖L2 + ‖Δ2v − ΔΔvh‖L2‖ψ − ψ̃0‖L2.

Thus, setting ψ := v − vh ∈ H2
0 (Ω) and ψ̃0 ≡ P x

0 P
y
0 ψ ∈ Sh, from the lemmas 4 and 5, we obtain the

desired estimates in Theorem 2.
Next, using Theorem 2, Lemma 3 and the property of the L2-projection, it follows that

‖Δv − Δvh‖L2 ≤ K‖Δvh − Δvh‖L2 + Ch2‖g − ΔΔvh‖L2

≤ K‖Δvh − Δvh‖L2 + Ch2
(‖gh − ΔΔvh‖L2 + ‖g − gh‖L2

)
≤ (

KX + Ch2Y
) ‖gh‖L2 + Ch2‖g − gh‖L2

≤
[(
KX + Ch2Y

)2
+ C2h4

]1/2

‖g‖L2

=
[(
KX/h2 + CY

)2
+ C2

]1/2

h2‖g‖L2,
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which immediately completes the proof of Theorem 1.

3 Numerical examples

In this section, we present some numerical examples of a priori and a posteriori error estimates for the
approximation of the bi-harmonic problem (1.1). Since the finite element solution uh ∈ Sh of (1.1) is
defined by

(Δuh,Δφh)L2 = (f, φh)L2 ∀φh ∈ Sh,

we have uh = Phu, and thus the above arguments can be applied to the error estimates for this approxi-
mate solution uh. That is, using the procedure in the previous section to define Δuh ≡ P0Δuh ∈ S∗

h, we
obtain the a priori and a posteriori error estimates of the form

‖Δu− Δuh‖L2 ≤ C0h
2‖f‖L2, (3.1)

and

‖Δu− Δuh‖L2 ≤ K‖Δuh − Δuh‖L2 + Ch2‖f − ΔΔuh‖L2 , (3.2)

respectively. Here, constants C0, K and C are same as in theorems in Section 2.
We first show several computational results for the constructive a priori constants in Theorem 1 by Table
1.

Table 1: Numerical results for the a priori constant

1/h C0 X Y C0h
2 C0/C

10 0.7225 3.6718e-4 1.7641 7.2256e-3 7.1314
20 0.7377 9.3350e-5 1.8257 1.8443e-3 7.2812
30 0.7611 4.3440e-5 1.8057 8.4573e-4 7.5123
40 0.7811 2.5416e-5 1.7780 4.8819e-4 7.7093
50 0.7967 1.6764e-5 1.7536 3.1868e-4 7.8633
60 0.8091 1.1918e-5 1.7341 2.2477e-4 7.9862
70 0.8193 8.9195e-6 1.7195 1.6720e-4 8.0864
80 0.8278 6.9315e-6 1.7095 1.2934e-4 8.1703
90 0.8356 5.5486e-6 1.7036 1.0317e-4 8.2478
100 0.8418 4.5390e-6 1.7006 8.4185e-5 8.3087

10 20 30 40 50 60 70 80 90 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1/h

C
0

C
0
*h 0.06

C
0
*h 0.08

C
0
*h 0.10

The constant C in the table is taken as C = 1/π2.

Next, we present some examples of the a posteriori error for the following bi-harmonic problem.

Δ2u = f in Ω,
u = ∂nu = 0 on ∂Ω, (3.3)

where Ω = (0, 1)2 and

f ≡ f(x, y) = 8
(
3x2(1 − x)2 + xy(x− 1)(y − 1)(2x− 1)(2y − 1) + 3y2(1 − y)2

)
,

‖f‖L2 =
4
5

√
62
7
< 2.3809.
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The exact solution of (3.3) is given by u ≡ u(x, y) = x2y2(1 − x)2(1 − y)2.
Table 2 shows numerical results for the a priori and a posteriori error estimates in (3.1) and (3.2),

respectively.

Table 2: Numerical results for the a priori and a posteriori estimates in (3.1) and (3.2)

1/h (3.1) (3.2) ‖Δu− Δuh‖L2 ‖Δuh − Δuh‖L2 ‖f − ΔΔuh‖L2

10 1.7201e-2 7.8301e-3 5.0527e-4 4.4700e-4 1.2798
20 4.3909e-3 1.9680e-3 1.2595e-4 1.1897e-4 0.9047
30 2.0134e-3 8.7011e-4 5.5883e-5 5.3843e-5 0.7385
40 1.1623e-3 4.8659e-4 3.1376e-5 3.0521e-5 0.6394
50 7.5873e-4 3.0962e-4 2.0034e-5 1.9598e-5 0.5716
60 5.3510e-4 2.1363e-4 1.3863e-5 1.3611e-5 0.5215
70 3.9809e-4 1.5609e-4 1.0154e-5 9.9966e-6 0.4826
80 3.0795e-4 1.1870e-4 7.7390e-6 7.6331e-6 0.4511
90 2.4561e-4 9.3310e-5 6.0946e-6 6.0203e-6 0.4250
100 2.0042e-4 7.5133e-5 4.9152e-6 4.8611e-6 0.4029

(3.1)/h2 (3.2)/h2 ‖Δu − Δuh‖L2/h2

10 20 30 40 50 60 70 80 90 100
1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

1/h
10 20 30 40 50 60 70 80 90 100

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1/h
10 20 30 40 50 60 70 80 90 100

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

1/h

All computations in tables are carried out on the Dell Precision 650 Workstation Intel Xeon Dual
CPU 3.20GHz by MATLAB.
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equations

MHF2005-6 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA &
Yasuhiko YAMADA
Construction of hypergeometric solutions to the q‐Painlevé equations
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MHF2005-26 Toru FUJII & Sadanori KONISHI
Nonlinear regression modeling via regularized wavelets and smoothing
parameter selection



MHF2005-27 Shuichi INOKUCHI, Kazumasa HONDA, Hyen Yeal LEE, Tatsuro SATO,
Yoshihiro MIZOGUCHI & Yasuo KAWAHARA
On reversible cellular automata with finite cell array

MHF2005-28 Toru KOMATSU
Cyclic cubic field with explicit Artin symbols

MHF2005-29 Mitsuhiro T. NAKAO, Kouji HASHIMOTO & Kaori NAGATOU
A computational approach to constructive a priori and a posteriori error
estimates for finite element approximations of bi-harmonic problems


