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1 Introduction

The sixth Painlevé equation is, of course,

d2y
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) (
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dt
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+
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t2(t− 1)2

(
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t

y2
+ γ

t− 1
(y − 1)2

+ δ
t(t− 1)
(y − t)2

)
, (1.1)

where α, β, γ, δ ∈ C are parameters. As well-known [7], its solutions define isomonodromy
deformations (with respect to t) of the 2 × 2 matrix Fuchsian equation with 4 singular
points (λ = 0, 1, t, and ∞):

d

dλ
Ψ =

(
A0

λ
+

A1

λ− 1
+

At

λ− t

)
Ψ,

d

dλ
Ak = 0, k = 0, 1, t. (1.2)

Following Jimbo-Miwa correspondence [7], we assume that the Fuchsian equation is nor-
malized so that the eigenvalues of A0, A1, At are, respectively, ±θ0/2, ±θ1/2, ±θt/2, and
that the matrix A∞ := −A1−A2−A3 is diagonal with the diagonal entries ±θ∞/2. Then
the corresponding Painleve equation has the parameters

α =
(θ∞ − 1)2

2
, β = −θ

2
0

2
, γ =

θ2
1

2
, δ =

1− θ2
t

2
. (1.3)

We refer to the numbers θ0, θ1, θt and θ∞ as local monodromy differences.
For any numbers ν1, ν2, νt, ν∞, let us denote by PV I(ν0, ν1, νt, ν∞; t) the Painleve VI

equation for the local monodromy differences θi = νi for i ∈ {0, 1, t,∞}, via (1.3). Note
that changing the sign of ν0, ν1, νt or 1 − ν∞ does not change the Painleve equation.
There are fractional-linear transformations for Painleve VI equations, which permute the
4 singular points and the numbers ν0, ν1, νt, 1− ν∞.

The main subject of this paper is quadratic transformations for the sixth Painleve
equation. Their existence was discovered in [8], [9]. In particular [9], a quadratic trans-
formations was found between isomonodromy Fucshian systems (1.2) with the local mon-
odromy differences (θ0, θ1, θt, θ∞) related as follows:

(b, a, b, a) 7→
(

1
2 , a, b,

1
2

)
. (1.4)

The corresponding transformation between Painleve VI solutions was implied as a com-
plicated composition of lengthy formulas. The main result of this paper is a compact
expression for quadratic transformation (1.4).

Simpler quadratic transformations for Painleve VI equations are obtained in [10] and
[12]. Up to fractional-linear transformations, the local monodromy differences are trans-
formed by these quadratic transformations as follows:

(0, A,B, 1) 7→
(

A
2 ,

B
2 ,

B
2 ,

A
2 + 1

)
. (1.5)

This quadratic transformation is formulated in the following lemma. It cannot be realized
as a quadratic transformation of the Fucshian equation (1.2) via the Jimbo-Miwa corre-
spondence. In [13] quadratic transformations of the Painleve VI equation are referred to
as folding transformations.
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Lemma 1.1 Suppose that y0 is a solution of PV I(0, A,B, 1 ; t0). Let us denote

T0 =
(1−

√
t0)2

(1 +
√
t0)2

. (1.6)

Then √
t0 − 1√
t0 + 1

√
y0 − 1

√
y0 + 1

(1.7)

is a solution of PV I

(
A
2 ,

B
2 ,

B
2 ,

A
2 + 1; T0

)
.

Proof. See [12]. Alternatively, in [10] this transformation is found as the Landen trans-
formation for the elliptic form of Painleve VI. 2

Quadratic transformations (1.4) and (1.5) are related by Okamoto transformations.
Recall that Okamoto transformations relate local monodromy differences of Painleve VI
equations as follows:

(a, b, c, d) 7→ (a− S, b− S, c− S, d− S) , where S = a+b+c+d
2 . (1.8)

In particular, Okamoto transformations directly relate

(−a, b, b, a) 7→ (a+ b, 0, 0, a− b) , (1.9)

and (
−1

2 ,−a, b,
1
2

)
7→

(
a−b−1

2 , a+b
2 , a+b

2 , a−b+1
2

)
, (1.10)

while a fractional-linear version of quadratic transformation (1.5) relates

(a+ b, 0, 0, a− b) 7→
(

a−b−1
2 , a+b

2 , a+b
2 , a−b+1

2

)
. (1.11)

As shown in [11], Okamoto transformations generate a group isomorphic to the affine
Weyl group of type D4. If we take all fractional-linear transformations into account, the
symmetry group is the affine Weyl group of type F4.

Okamoto transformations imply non-differential (but non-linear in general) relations
between any three Painleve VI functions in the same Okamoto orbit. These relations are
known as Backlund transformations. They are analogous to contiguous relations for Gauss
hypergeometric functions. In particular, Backlund transformations relate PV I(a, b, c, d; t)
to PV I(a+ 1, b, c, d− 1; t), PV I(a, b+ 1, c, d+ 1; t), etc.

We compute quadratic transformation (1.4) by composing transformations (1.9)–
(1.11). We strive to use Backlund transformations rather than direct definition of Okamoto
transformations, so to avoid differentiation.

Our original motivation was to compute examples of algebraic Painleve VI functions
of “icosahedral” type as in [2]. In the sixth version of Boalch’s paper, 10 out of 52
icosahedral types were not exemplified yet. Eight out of the 10 missing examples can be
obtained from the known cases by quadratic transformations. Very recently [4] Boalch
computed those 8 examples by applying quadratic transformations in a similar manner.
Compared with Boalch’s results, we concentrate on direct quadratic transformation (1.4).
Accordingly, we give representative examples for the 8 icosahedral cases with the nicest
local monodromy differences (1/2, 1/2, . . .) within corresponding Okamoto orbits.
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To have a convenient notation for Okamoto transformations conveniently, we introduce
the following operator on functions. For any ν0, ν1, νt, ν∞ ∈ C, let

K(ν0,ν1,νt,ν∞; t) y(t) := y(t) +
ν0 + ν1 + νt + ν∞

Z(t)
, (1.12)

where

Z(t) =
(t− 1) dy(t)

dt − ν0

y(t)
−
t dy(t)

dt + ν1

y(t)− 1
+

dy(t)
dt − 1− νt

y(t)− t
.

Okamoto’s result in [11] can be formulated as follows.

Lemma 1.2 Suppose that y(t) is a solution of PV I(a, b, c, d; t), and that

ν0 ∈ {a,−a}, ν1 = {b,−b}, νt = {c,−c}, ν∞ ∈ {d, 2− d}.

Let Θ = (ν0 + ν1 + νt + ν∞)/2. Then the function K(ν0,ν1,νt,ν∞; t) y(t) is a solution of
PV I(ν0 −Θ, ν1 −Θ, νt −Θ, ν∞ −Θ). Besides,

K(ν0−Θ, ν1−Θ, νt−Θ, ν∞−Θ; t)K(ν0, ν1, νt, ν∞; t) y(t) = y(t).

Proof. Straightforward from [11]. The latter claim is equivalent to the Painleve VI
equation. 2

The main result of this paper is the following Theorem. This is probably the most
compact explicit expression for (a fractional-linear version of) quadratic transformation
(1.4).

Theorem 1.3 Suppose that y0 is a solution of PV I(a, a, b, b ; t1). Let us denote

y1 = K(−a,−a,−b, b ; t1) y0 (1.13)

and

T1 =
1
2

+
t1 − 1

2

2
√
t21 − t1

. (1.14)

Then the function

Y0 =
1
2

+
t1 − y1 +

√
y2
1 − y1

2
√
t21 − t1

+
(a− b+ 1)(y0 − y1)

(
Y0 −

√
y2
1 − y1

)
2

(
a
√
y2
1 − y1 − (b− 1)(y0 − y1)

) √
t21 − t1

(1.15)

is a solution of PV I

(
1
2 ,

1
2 , a, b ; T1

)
.

We prove this Theorem in Section 3. Essentially, we express solution (1.15) in terms
of y0 and Y0. An alternative is to express Y0 in terms of y0 and dy0/dt1, by explicitly
spelling out (1.13). But as with Backlund transformations, explicit formulas are much
simpler when differentiation is not involved.

In applications to algebraic Painleve VI functions, it is convenient to write t1, y0, y1

of Theorem 1.3 in the form

t1 =
1
2

+
1
2
θ, y0 =

1
2

+
1
2
ϕ, y1 =

1
2

+
1
2
ψ. (1.16)
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Then formulas (1.14)–(1.15) can be rewritten as follows:

T1 =
1
2

+
θ

2
√
θ2 − 1

, (1.17)

Y0 =
1
2

+
θ − ψ +

√
ψ2 − 1

2
√
θ2 − 1

+
(a− b+ 1)(ϕ− ψ)

(
ψ −

√
ψ2 − 1

)
2

(
a
√
ψ2 − 1− (b− 1)(ϕ− ψ)

)√
θ2 − 1

. (1.18)

Similar expression form for Painleve VI functions is used in [4]. It is useful when the local
monodromy differences θ0, θ1 are equal. We present more expressions for the functions
involved in quadratic transformations in Section 5.

At first glance, the function Y0 is defined over the field C(θ, ϕ,
√
θ2 − 1,

√
ψ2 − 1), or

equivalently, over C(t1, y0,
√
t21 − t1,

√
y2
1 − y1). It appears that quadratic transformation

(1.4) increases algebraic degree by the factor 4. However, the definition field C(T1, Y0) for
the transformed function is not an immediate extension of C(t1, y0); see the remark with
formula (2.4) below. Particularly, formula (1.18) can be written in the following form:

Y0 =
1
2

+ Ã
θ√

θ2 − 1
+ B̃

√
ψ2 − 1√
θ2 − 1

, (1.19)

where

Ã =
a2(ψ2 − 1) (ϕ/θ − 1) + a(b− 1) (ψϕ− 1) (ψ/θ − ϕ/θ) + (b− 1)2(ψ − ϕ)2

2 (a2(ψ2 − 1)− (b− 1)2(φ− ψ)2)

B̃ =
a

2
· a(ψϕ− 1) + (b− 1)(ψ − ϕ)ϕ
a2(ψ2 − 1)− (b− 1)2(ϕ− ψ)2

.

After dividing the numerator and denominator of each Ã, B̃ by θ2, one can observe that
the definition field for Y0 is C

(
θ2, ϕ/θ, ψ/θ, θ

/√
θ2 − 1,

√
ψ2 − 1

/√
θ2 − 1

)
. Typically,

this is a subfield of index 2 in C(θ, ϕ,
√
θ2 − 1,

√
ψ2 − 1).

2 Preliminaries

For convenience, in Appendix Section 5 we give a list of fractional-linear transformations
for Painleve VI equations or functions; see Table 5 there. It is useful to note that Okamoto
and fractional-linear transformations commute.

Lemma 2.1 Let (A,B,C,D) be a permutation of (0, 1, t,∞), and let L : (y, t) 7→ (Y, T )
with T ∈ {t, 1 − t, t/(t − 1), 1/t, 1/(1 − t), (t − 1)/t} denote the corresponding fractional
linear transformation from Table 5. Then for any numbers ν0, ν1, νt, ν∞ ∈ C we have

LK(ν0,ν1,νt,1+ν∞; t) = K(νA,νB ,νC ,1+νD; T ) L.

Proof. It is enough to check the statement explicitly for a generating set of the permuta-
tions. One can take, for example, the three transpositions corresponding to the 5th, 8th
and 9th rows of Table 5. 2

In the same Appendix, we give various expressions for different Painleve VI functions
related to the quadratic transformations. Here are useful fractional-linear variations of
quadratic transformations of Lemma 1.1. Formulas (2.1)–(2.2) are reminiscent to Corol-
lary 3 in [4].

5



Lemma 2.2 Suppose that y1 is a solution of PV I(0, 0, B, C; t1). Let us denote

T1 =
1
2

+
t1 − 1

2

2
√
t21 − t1

. (2.1)

Then the function
1
2

+

√
y2
1 − y1 −

√
t21 − t1

2 (y1 − t1)
(2.2)

is a solution of PV I

(
C−1

2 , C−1
2 , B

2 ,
B
2 + 1; T1

)
, and the function

1
2

+
t1 − y1 +

√
y2
1 − y1

2
√
t21 − t1

(2.3)

is a solution of PV I

(
B
2 ,

B
2 ,

C−1
2 , C+1

2 ; T1

)
.

Proof. Set T0 = T1/(T1 − 1). The function y2 := y1/(y1 − 1) is a solution of PV I(0, C −
1, B, 1; t1/(t1 − 1)) by fractional-linear transformations. We can apply Lemma 1.1 to y2

and get a solution Y2 of PV I(C−1
2 , B

2 ,
B
2 ,

C+1
2 ;T0). The functions in (2.2) and (2.3) are the

fractional-linear transformations Y/(Y − 1) and (Y − T0)/(1− T0) of Y2. 2

Let Y1 denote the function (2.3). One can observe the following inclusions of fields:

C(t1, y1) ⊂ C (t1, T1, y1) ⊂ C (t1, T1, Y1)
∪ ∪

C (T1, y1) ⊂ C (T1, Y1)
(2.4)

All immediate extensions have degree 2. As we see, the definition field C(T1, Y1) for
Y1 is not an immediate extension of C(t1, y0), but a subfield of index 2 of the degree 4
extension C (t1, T1, Y1) ⊃ C(t1, y0). Since fractional-linear and Okamoto transformations
do not change function fields, we can replace y1, Y1 in (2.4) with y0, Y0 of Theorem 1.3.

In encountered examples of algebraic Painleve VI functions with the local monodromy
differences θ0, θ1 equal, the algebraic remain invariant under the fractional-linear trans-
formation (y, t) 7→ (1 − y, 1 − t). Then the subfields C (T1, y0) ⊂ C (t1, T1, y0) and
C (T1, Y ) ⊂ C (t1, T1, Y ) are defined by this symmetry. In terms of (1.16), the sym-
metry flips the sign of θ, φ, etc. In the examples, y0 is defined on a (hyper)elliptic curve,
and the symmetry (y, t) 7→ (1− y, 1− t) is easily realized by interchanging the 2 branches
of a (hyper)elliptic covering of P1.

The following Lemma shows some ”commutativity” of quadratic and Okamoto trans-
formations under proper conditions.

Lemma 2.3 Suppose that y1 is a solution of PV I(0, 0, B, C; t1), and that y2 is a solution
of PV I(0, 0, C,B; t1). Suppose that

K(0,0,−B,C;t1) y1 = K(0,0,−C,B;t1) y2. (2.5)

Let y0 denote the evaluation of any side of this equality. Let S1 denote a branch of√
y2
1 − y1. We set

S2 =
y2(y0 − 1)
(1− y1)y0

S1. (2.6)
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Then S2 is a branch of
√
y2
2 − y2. Further, define T1 as in (2.1), and let

Y1 =
1
2

+
t1 − y1 + S1

2
√
t21 − t1

, Y2 =
1
2

+
t1 − y2 + S2

2
√
t21 − t1

. (2.7)

Then Y1 and Y2 are solutions of, respectively,

PV I

(
B
2 ,

B
2 ,

C−1
2 , C+1

2 ; T1

)
and PV I

(
C
2 ,

C
2 ,

B−1
2 , B+1

2 ; T1

)
, (2.8)

and
Y2 = K(−B

2
,−B

2
, C−1

2
, C+1

2
;T1)Y1. (2.9)

Proof. The Backlund relation between y1, y2 and y0 can be written as follows:

(y1 − 1)(y2 − 1)
y1 y2

=
(y0 − 1)2

y2
0

. (2.10)

It can be derived by expressing y1, y2 as Okamoto transformations of y0, and eliminating
the derivative of y0 from two identities. If we square both sides of (2.6) and identify
S2

1 = y2
1 − y1, S2

2 = y2
2 − y2, we get an equivalent equality to (2.10). This implies that S2

is a branch of
√
y2
2 − y2. The functions Y1 and Y2 satisfy indicated Painleve equations by

Lemma 2.2. Relation (2.9) can be checked explicitly. 2

Recall that a Painleve curve is the normalization of an algebraic curve defined by the
minimal equation for an algebraic Painleve VI solution y(t). The minimal equation is a
polynomial in y and t. The indeterminant t defines an algebraic map from the Painleve
curve to P1, and in [6] it is mentioned that this map is a Belyi map. The reason is that
the corresponding field extension C(y, t) ⊃ C(t) ramifies only above t = 0, 1,∞ due to the
Painleve property (i.e., solutions of Painleve equations do not have “moving” essential
singularities). Accordingly, in [3] an algebraic Painleve VI solution is defined as a triple
(Π, y, t), where Π is a compact curve, y and t are rational functions on Π such that t is a
Belyi function and y(t) is a Painleve VI solution. However, this definition does not look
precise, because it apparently allows non-minimal Painleve curves (since Belyi maps can
be appropriately composed).

In Section 4, we will follow change of t-Belyi maps under quadratic transformations.
For icosahedral Painleve VI solutions, branching patterns for t-Belyi maps are given b the
”Partition” column of Table 1 in [2], since these partitions characterize conjugacy classes
for local monodromies around t = 0, 1,∞.

3 Proof of Theorem 1.3

The function y1 is a solution of PV I(0, 0, b− a, a+ b; t1). Let us introduce

y2 = K(a,a,−b,b; t1) y0. (3.1)

This is a solution of PV I (0, 0, a+ b, b− a; t1). The Backlund relation between y0, y1 and
y2 is the same as in (2.10); we rewrite it as

y2 =
y2
0(1− y1)

y2
0 − 2y1y0 + y1

. (3.2)
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We choose a branch of
√
y2
1 − y1, and identify

√
y2
2 − y2 as follows:√

y2
2 − y2 =

(y2
0 − y0)

√
y2
1 − y1

y2
0 − 2y1y0 + y1

. (3.3)

Let us define

T1 =
1
2

+
2t1 − 1

4
√
t21 − t1

, (3.4)

Y1 =
1
2

+
t1 − y1 +

√
y2
1 − y1

2
√
t21 − t1

, (3.5)

Y2 =
1
2

+
t1 − y2 +

√
y2
2 − y2

2
√
t21 − t1

. (3.6)

By Lemma 2.3, the functions Y1, Y2 are solutions of, respectively,

PV I

(
b−a
2 , b−a

2 , a+b−1
2 , a+b+1

2 ;T1

)
and PV I

(
a+b
2 , a+b

2 , b−a−1
2 , b−a+1

2 ;T1

)
, (3.7)

and
Y2 = K(a−b

2
, a−b

2
, a+b−1

2
, a+b+1

2
; T1) Y1. (3.8)

By combining (3.2), (3.3) and (3.6), we obtain the expression

Y2 =
1
2

+
t1 − y1 +

√
y2
1 − y1

2
√
t21 − t1

+
(y0 − y1)

(
y1 − 1

2 −
√
y2
1 − y1

)
(
y0 − y1 +

√
y2
1 − y1

) √
t21 − t1

. (3.9)

We define now
Y0 = K(a−b

2
, a−b

2
, 1−a−b

2
, a+b+1

2
; T1) Y1. (3.10)

This is a solution of PV I

(
1
2 ,

1
2 , a, b

)
. The Backlund relation between Y0, Y1, Y2 can be

computed can be deduced by writing down (3.8) and (3.10) explicitly and eliminating the
derivative of Y1. We obtain

Y0 =
2aY1Y2 − (a+ b− 1)T1Y1 − (a− b− 1)T1Y2

(a− b+ 1)Y1 + (a+ b− 1)Y2 − 2aT1
. (3.11)

After substitution of (3.4), (3.5) and (3.9), we obtain expression (1.15). Q.E.D.

4 Algebraic Painleve VI functions

Here we apply our compact formulas to compute algebraic Painleve VI functions. In [4]
eight icosahedral Painleve VI solutions are computed; these explicit results complement
the examples in [2] so that all 52 icosahedral classes are eventually exemplified. The eight
solutions are precisely the cases which can be obtained from earlier know examples by
quadratic transformations. Here is the transformation scheme, where numbers indicate
the classes in Boalch’s [2] classification:

31, 32 ⇒ 44, 45 ⇒ 50, 51; 39, 40 ⇒ 47, 48; 41 ⇒ 49 ⇒ 52. (4.1)
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(There is also quadratic transformation 21 ⇒ 28, but Case 28 is not hard.) Possibility of
using these quadratic transformations in computation of algebraic Painleve VI functions
was mentioned in correspondence between the first author and Boalch a few months ago.
Boalch was first to express the transformed solutions in a concise form.

Nevertheless, the eight representative examples in [4] do not have the most attractive
local monodromy differences (1/2, 1/2, . . .). Here we use Theorem 1.3 to find algebraic
Painleve VI solutions within the same Boalch classes with the attractive local monodromy
differences. (In this version, we present only the transformation 39, 40 ⇒ 47, 48.)

First we compute an example for Case 47 in [2]. We start with type-39 Boalch’s
example (reparametrized by the substitution s 7→ s− 2):

t39 =
1
2
− (2s7 − 18s6 + 48s5 − 50s4 + 105s3 + 3s2 − 7s− 3)u

18(s2 − 4s− 1)(4s2 − s+ 1)2
, (4.2)

y39 =
1
2

+
14s5 − 79s4 + 6s3 + 80s2 + 116s− 9

6(s− 1)(s2 − 4s− 1)u
, (4.3)

where u =
√

3(s+ 3)(4s2 − s+ 1), so the function y39 is defined on a genus 1 curve. It a
solution for PV I

(
1
3 ,

1
3 ,

4
5 ,

4
5 ; t39

)
. Following Theorem 1.3, we compute

ỹ39 = K(− 1
3
,− 1

3
,− 4

5
, 4
5

; t39) y39 =
1
2
− (s2 − 5s− 1)u

6 (s− 1) (4s2 − s− 1)
. (4.4)

This is a solution of PV I

(
0, 0, 7

15 ,
13
15 ; t39

)
. We compute:√

t 2
39 − t39 =

s (s+ 1)2(s− 2)2(s− 5)
√
s (s+ 1)(s− 2)(s+ 3)

3 (s2 − 4s− 1)(4s2 − s+ 1)u
, (4.5)√

ỹ 2
39 − ỹ39 =

(s+ 1)
√
s (s− 2)(s+ 3)(s− 5)

(s− 1)u
. (4.6)

We keep the factor u in these expressions because we expect it will disappear after sim-
plifications. Eventually, the new square roots define the field extension C(T, Y ) in (2.4).
The Painleve curve is the fiber product of the elliptic curves

v2 = s (s+ 1)(s− 2)(s+ 3) and w2 = s (s− 2)(s+ 3)(s− 5). (4.7)

The Painleve curve is hyperelliptic of genus 2. Its Weierstrass form can be obtained by
introducing the parameter q =

√
(s− 5)/(s+ 1), so that s = (q2 + 5)/(1− q2). Then the

hyperelliptic curve can be represented as

V 2 = −(q2 + 1)(q2 + 5)(q2 − 4), (4.8)

and we can identify v = 6V/(q2−1)2, w = qv. The connection with Boalch’s hyperelliptic
form in [4] is q = (j − 3)/(j + 3). The field inclusions in (2.4) are the following:

C(s, u) ⊂ C (s, u, v) ⊂ C (s, u, v, w)
∪ ∪

C (s, v) ⊂ C (s, v, w) = C (q, V )
(4.9)
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1 1 1:1 1:1 5 5 5

5 3 3
3 3 3

1∗ 2 2
1∗ 2 2

Figure 1: Quadratic transformations for the 47th Boalch solution

We may use formulas (1.14)–(1.15), or equivalently, we may express t39, y39, ỹ39 like
in (1.16) and use formulas (1.17)–(1.18). Either way, we obtain the following solution of
PV I

(
1
2 ,

1
2 ,

1
3 ,

4
5 ; t47

)
:

t47 =
1
2
− (2s7 − 18s6 + 48s5 − 50s4 + 105s3 + 3s2 − 7s− 3)v

4s2(s+ 1)3(s− 2)3(s− 5)
, (4.10)

y47 =
1
2
− (3s7 − 27s6 + 107s5 − 205s4 + 105s3 − 37s2 − 7s− 3)v

2s(s+ 1)(s− 2)2(s− 1)(3s4 − 12s3 − 14s2 − 12s+ 3)
(4.11)

+
(4s2 − s+ 1)(s2 − 4s− 1)(7s4 − 52s3 + 34s2 − 36s+ 15)

2s(s+ 1)(s− 2)2(s− 1)(3s4 − 12s3 − 14s2 − 12s+ 3)
√

(s+ 1)(s− 5)
.

Of course, we can parametrize everything in terms of q and V . The expressions are then
somewhat longer, but they may be more convenient for manipulation with a computer
algebra package.

As mentioned in Section 2, the variables t39 and t47 define Belyi maps. Figure 1 depicts
change of branching of these Belyi maps. The map t39 is from C39 to P1

39. The map t47
is from C∗47 to P1

47. Non-vertical arrows represent degree 2 coverings. The function fields
of C47, Cτ , P1

τ are, respectively, C(T, y39) = C(s, v), C(t, T, y39) = C(s, u, v) and C(t, T ).
In boxes we represent the branching patterns of the morphisms. Each column gives
branching orders of one fiber. In the middle box, the first two columns represent points
with s ∈ {−1, 2, 0, 5}; the last two columns represent the points with s = ∞, 4s2 = s+ 1
or s2 = 4s + 1. The bold numbers represent points where the upper degree 2 coverings
above parallelograms ramify. The star represents ramification points of the upper-right
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degree 2 covering. Each parallelogram is a commutative fiber product diagram. The
genus of Cτ is 4. The two composite coverings have the following ramification pattern,
respectively:

10 10 5:5
10 10 3:3
6 6 3:3
2 2 1:1:1:1
2 2 1:1:1:1

and

5:5 10 10
5:5 6 6
3:3 6 6
1:1 2:2 2:2
1:1 2:2 2:2

.

The quadratic covering P1
τ → P1

39 ramifies above the two points represented by the first
two columns of the first box. The covering P1

τ → P1
47 ramifies above the two points

represented by the last two columns of the third box.
Similarly, we can compute a type-48 example. With the same elliptic curve and t39

as for y39, we have the following type-40 icosahedral function (obtained by Okamoto
transformations from the corresponding example in [2]):

y40 =
1
2

+
2s6 − 14s5 + 17s4 + 16s3 − 112s2 − 2s− 3

6u (3s− 1)(s2 − 4s− 1)
(4.12)

This is a solution of PV I

(
2
5 ,

2
5 ,

2
3 ,

2
3 ; t39

)
. Similar application of Theorem 1.3 gives the

following solution of PV I

(
1
2 ,

1
2 ,

2
5 ,

2
3 ; t47

)
.

y48 =
1
2
− (19s6 + 138s5 − 195s4 + 380s3 − 195s2 − 138s− 89) v

2(s+ 1)2(s− 2)(19s5 − 155s4 + 390s3 − 590s2 − 5s− 3)
(4.13)

+
9(4s2 − s+ 1)(s2 − 4s− 1)(s5 − 7s4 + 13s3 − 115s2 − 2s− 10)

2 (s+ 1)2(19s5 − 155s4 + 390s3 − 590s2 − 5s− 3)
√
s(s− 2)3(s+ 3)(s− 5)

.

We note also that some (perhaps “half”) algebraic solutions of PV I(1/2, 1/2, 1/2, 1/2; t)
in the Hitchin’s series [6] can be computed by iteratively applying Theorem 1.3.

5 Appendix

For convenience, we give general fractional-linear transformations for Painleve VI func-
tions in Table 5 below. If one starts with a solution y(t) of PV I(a, b, c, d+ 1), in each row
we give a solution of a Painleve VI equation with permuted singular points in terms of
y(t) and t. We mostly use the four transformations which do not change the argument t.

Now we wish to present various forms of quadratic transformations. In the context of
Lemma 1.1, its y0 should be identified with y8 here. In the context of other results, we
keep the same notation.

Accordingly, as the starting point we assume that y8 is a solution of PV I(0, A,B, 1; t1).
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λ (θ0, θ1, θt, 1−θ∞) y t

λ (a, b, c, d) y t

tλ/(λ+ t− 1) (a, b, d, c) (1− t)y/(y − t) 1− t

tλ (a, c, b, d) y/t 1/t
tλ/(tλ+ 1− t) (a, c, d, b) (t− 1)y/t(y − 1) (t− 1)/t
tλ/(λ− 1) (a, d, b, c) y/(y − t) 1/(1− t)
λ/(λ− 1) (a, d, c, b) y/(y − 1) t/(t− 1)

1− λ (b, a, c, d) 1− y 1− t

t(λ− 1)/(λ− t) (b, a, d, c) t(y − 1)/(y − t) t

tλ− λ+ 1 (b, c, a, d) (y − 1)/(t− 1) 1/(1− t)
t/(λ− tλ+ t) (b, c, d, a) t(y − 1)/(t− 1)y t/(t− 1)

(tλ− 1)/(λ− 1) (b, d, a, c) (y − 1)/(y − t) 1/t
1/(1− λ) (b, d, c, a) (y − 1)/y (t− 1)/t
t(1− λ) (c, a, b, d) (t− y)/t (t− 1)/t

t(λ− 1)/(tλ− 1) (c, a, d, b) (y − t)/t(y − 1) 1/t
λ− tλ+ t (c, b, a, d) (y − t)/(1− t) t/(t− 1)

t/(tλ− λ+ 1) (c, b, d, a) (y − 1)/(1− t)y 1/(1− t)
(λ− t)/(λ− 1) (c, d, a, b) (y − t)/(y − 1) t

t/(1− λ) (c, d, b, a) (y − t)/y 1− t

t(λ− 1)/λ (d, a, b, c) t/(t− y) t/(t− 1)
(λ− 1)/λ (d, a, c, b) 1/(1− y) 1/(1− t)

(tλ− t+ 1)/λ (d, b, a, c) (1− t)/(y − t) (t− 1)/t
1/λ (d, b, c, a) 1/y 1/t

(λ+ t− 1)/λ (d, c, a, b) (t− 1)/(y − 1) 1− t

t/λ (d, c, b, a) t/y t

Figure 2: Fractional-linear transformations
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We set

y1 =
1

1− y8
, t1 =

1
1− t0

, ψ = 2y1 − 1, θ = 2t1 − 1, (5.1)

η =
√
y8, τ =

√
t0, T0 =

(τ − 1)2

(τ + 1)2
, Y8 =

(τ − 1)(η − 1)
(τ + 1)(η + 1)

, (5.2)

Ỹ1 =
1

1− Y8
, T1 =

1
1− t0

, Y1 =
Ỹ1

T1
, (5.3)

σ =
1
2

(
τ +

1
τ

)
, % =

1
2

(
η +

1
η

)
, ω =

1
2

(
η

τ
+
τ

η

)
. (5.4)

By fractional-linear transformations, the function y1 is a solution of (0, 0, B,A+1; t1).
By Lemma 1.1, the function Y8 is a solution of PV I

(
A
2 ,

B
2 ,

B
2 ,

A
2 +1;T0

)
.

By Lemma 2.2, the function Y1 is a solution of PV I

(
B
2 ,

B
2 ,

A
2 ,

A
2 +1;T0

)
.

Observe the following relations:

t0 =
θ − 1
θ + 1

, θ =
1 + τ2

1− τ2
, y2 =

ψ − 1
ψ + 1

, ψ =
1 + η2

1− η2
, (5.5)

T0 =
σ − 1
σ + 1

, η =
ω − % τ

σ − τ
, Y8 =

σ %− ω

(σ + 1)(%+ 1)
, (5.6)

2σ %ω = σ2 + %2 + ω2 − 1. (5.7)

We identify the following roots:√
T0 =

τ − 1
τ + 1

,
√
θ2 − 1 =

2τ
1− τ2

,
√
ψ2 − 1 =

2η
1− η2

. (5.8)

The symmetry which reduces the field extension by 2 is realized by the involutions
(y1, t1) 7→ (1 − y1, 1 − t1), or (y8, t0) 7→ (1/y8, 1/t0). The functions σ, %, ω are invariants
of this symmetry. So they express the solution (Y, T ) minimally. The invariants can be
computed directly by

σ =
1
2

√
t0 +

1
t0

+ 2, % =
1
2

√
y8 +

1
y8

+ 2, ω =
1
2

√
y8

t0
+
t0
y8

+ 2. (5.9)

These square roots are rather nice explicitly. The root signs should be chosen so that
relation (5.7) holds.

Now we list various expressions for the functions which are related to Lemaa 1.1
by fractional-linear transformations. In each case, we express t and y in some of the
defined variables. To compute a quadratic transformation, one may start with one of
the first 6 Painleve VI equations, compute (for example) τ and η from the corresponding
expressions, pick one the last three list entries and read off local monodromy differences
and an expression in terms of τ and v of other Painleve VI equation.

0, A,B, 1

t0 = τ2 =
θ − 1
θ + 1

, y8 = η2 =
ψ − 1
ψ + 1

. (5.10)

A, 0, B, 1

1
t1

= 1− τ2 =
2

θ + 1
,

1
y1

= 1− η2 =
2

ψ + 1
. (5.11)
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0, 0, B,A+ 1

t1 =
1

1− τ2
=

1 + θ

2
, y1 =

1
1− η2

=
1 + ψ

2
. (5.12)

B, 0, 0, A+ 1

t1 − 1
t1

= τ2 =
θ − 1
θ + 1

,
t1 − y1

t1
=
η2 − τ2

η2 − 1
=
θ − ψ

θ + 1
. (5.13)

0, B, 0, A+ 1

1
t1

= 1− τ2 =
2

θ + 1
,

y1

t1
=
τ2 − 1
η2 − 1

=
ψ + 1
θ + 1

. (5.14)

A,B, 0, 1

t1 =
1

1− τ2
=

1 + θ

2
,

t1
y1

=
η2 − 1
τ2 − 1

=
θ + 1
ψ + 1

. (5.15)

A
2 ,

B
2 ,

B
2 ,

A
2 +1

T0 =
(τ − 1)2

(τ + 1)2
= (θ −

√
θ2 − 1)2, (5.16)

Y8 =
(τ − 1)(η − 1)
(τ + 1)(η + 1)

= (ψ −
√
ψ2 − 1)(θ −

√
θ2 − 1). (5.17)

A
2 ,

A
2 ,

B
2 ,

B
2 +1

T1 =
(τ + 1)2

4τ
=

1
2

+
θ

2
√
θ2 − 1

. (5.18)

Y1 =
(τ + 1)(η + 1)

2 (η + τ)
=

1
2

+

√
ψ2 − 1−

√
θ2 − 1

2 (ψ − θ)
. (5.19)

B
2 ,

A
2 ,

B
2 ,

A
2 +1

1− T0 =
4τ

(τ + 1)2
, 1− Y8 =

2 (η + τ)
(τ + 1)(η + 1)

. (5.20)

Note that some fractional-linear transformations act identically on Painleve VI equa-
tions; these transformations may act as τ → −τ , η → −η or simultaneous τ → 1/τ ,
η → 1/η. Interchanging A and B is equivalent to η → τ/η.

Now we wish to present some expressions for the ”long” quadratic transformation. To
comply with Theorem 1.3 and other results, we set A = a+ b− 1, B = b− a, and

y0 = K(0,0,a−b,a+b;t1) y1, ϕ = 2y0 − 1, y2 = K(a,a,−b,b;t1) y0,

Y2 = K(a−b
2

, a−b
2

, a+b−1
2

, a+b+1
2

; T1) Y1, Y0 = K(a−b
2

, a−b
2

, 1−a−b
2

, a+b+1
2

; T1) Y1.
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Then

y2 =
1
2
− ψϕ2 − 2ϕ+ ψ

2 (ϕ2 − 2ψϕ+ 1)
, (5.21)

Y2 =
1
2

+
θ − ψ +

√
ψ2 − 1

2
√
θ2 − 1

+
(ϕ− ψ)

(
ψ −

√
ψ2 − 1

)
(
ϕ− ψ +

√
ψ2 − 1

)√
θ2 − 1

. (5.22)

Finally, let y7 = y0/(y0 − 1). This is a solution of PV I(a, b− 1, b, a+ 1; t0). Then the
function

1− τ

1 + τ

a (η − τ) (τη − y7)
b τ(y7 − η2) + a(τ2 − y7)η

(5.23)

is a solution of PV I(a, 1/2, 1/2, b+ 1;T0), and the function

1− τ

1 + τ

(a+ b)(η + τy7) + (a− b)(y7 + τη)− 2a(y7 + τ)η
(a+ b)(η − τy7) + (a− b)(y7 − τη)− 2a(y7 − τ)η

(5.24)

is a solution of PV I(1/2, b, a, 1/2;T0).
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[10] Yu. I. Manin, Sixth Painlevé equation, universal elliptic curve, and mirror of P2.
Geometry of differential equations, 131–151, Amer. Math. Soc. Transl. Ser. 2, 186,
Amer. Math. Soc., Providence, RI, 1998.
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equations

MHF2005-6 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA &
Yasuhiko YAMADA
Construction of hypergeometric solutions to the q‐Painlevé equations
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equation

MHF2005-14 Masato KIMURA & Shin-ichi NAGATA
Precise asymptotic behaviour of the first eigenvalue of Sturm-Liouville prob-
lems with large drift

MHF2005-15 Daisuke TAGAMI & Masahisa TABATA
Numerical computations of a melting glass convection in the furnace

MHF2005-16 Raimundas VIDŪNAS
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