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1. Introduction

Two-fluids flow problems describe many interesting phenomena such as Rayleigh-Taylor instability
and sloshing of fluid, and various computations have been done by many authors, e.g., [5], [4]. The
problems include unknown interfaces, that is, the domains where the problems are solved are also un-
known. To the best of our knowledge there are no numerical schemes whose solutions are proved to
converge to the exact one. Recently we have developed a finite element scheme for density-dependent
Navier-Stokes equations and proved the convergence of the finite element solutions [3]. In this paper we
consider two-fluids flow problems in the framework of density-dependent Navier-Stokes problems. We
present a weak formulation suitable for free-interface problems. In this formulation a wide class of finite
element methods is stable with respect to the velocity under the non-negativity assumption on the den-
sity. The assumption is satisfied by a mass-conservative upwind finite element approximation developed
by Baba-Tabata [1]. The finite element scheme is proved unconditionally stable for all variables. The
study to show the convergence of the finite element solutions is ongoing.

2. Two-layers flow problems

Let Ω be a bounded domain in Rd, d = 2, 3, with piecewise smooth boundary Γ, and T be a positive
number. At the initial time t = 0 the domain Ω is occupied by two immiscible incompressible viscous
fluids; each domain is denoted by Ω0

k, k = 1, 2, whose interface ∂Ω0
1∩∂Ω0

2 is denoted by Γ0
12. At t ∈ (0, T )

the two fluids occupy domains Ωk(t), k = 1, 2, and the interface ∂Ω1(t) ∩ ∂Ω2(t) is denoted by Γ12(t).
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Let ρk and µk, k = 1, 2, be the densities and the viscosities of the two fluids. Let

u : Ω × (0, T ) → Rd, p : Ω × (0, T ) → R

be the velocity and the pressure to be found. The Navier-Stokes equations are satisfied in each domain
Ωk(t), k = 1, 2, t ∈ (0, T ),

ρk

{
∂u

∂t
+ (u · ∇)u

}
−∇ (2µkD(u)) + ∇p = ρkf (1a)

∇ · u = 0 (1b)

where f : Ω × (0, T ) → Rd is a given function, D(u) is the strain tensor defined by

Dij(u) =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)

and

[∇ (2µkD(u)) ]i =
d∑

j=1

∂

∂xj
(2µkDij(u)) .

On the boundary Γ, t ∈ (0, T ), the non-slip conditions

u = 0 (2)

are imposed. On the inteface Γ12(t), t ∈ (0, T ), the velocity and the stress vector should be continuous,

[u] = 0 (3a)

[σ(µ, u, p)n12] = 0 (3b)

where [·] means the difference of the values approaching from the domain Ω2 and the domain Ω1, n12 is
the unit outer normal to Γ12(t) from Ω1(t) to Ω2(t), and σ is the stress tensor defined by

σ(µ, u, p) = −pI + 2µD(u).

Figure 1. Domains Ωk(t),k = 1, 2, and the interface Γ12(t)

Let ρ(x, t) be the solution of the convection equation

∂ρ

∂t
+ u · ∇ρ = 0, (x, t) ∈ Ω × (0, T ) (4a)
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ρ(x, 0) = ρ0(x), x ∈ Ω (4b)

where u is the unknown velocity and

ρ0(x) =

{
ρ1 (x ∈ Ω0

1)
ρ2 (x ∈ Ω0

2)
(5)

Note that no boundary condition is required as the velocity u vanishes on the boundary. Then, Ωk(t)
can be written as

Ωk(t) = {x ∈ Ω; ρ(x, t) = ρk} , k = 1, 2.

Using ρ(x, t), we can express the viscosity µ(x, t) as the function of ρ,

µ(ρ) = µ1
ρ2 − ρ

ρ2 − ρ1
+ µ2

ρ − ρ1

ρ2 − ρ1
. (6)

3. A weak formulation

The function ρ0 is discontinuous and does not belong to H1(Ω). We, however, assume that ρ(·, t) ∈
H1(Ω), t ∈ (0, T ), for the time being. Deriving a weak formulation under the assumption, we devise a
finite element scheme for the original problem. Apart from (5) and (6) we set a more general setting on
µ(ρ),

µ : R → [µ1, µ2] (7)

where µi, i = 1, 2, are positive constants and µ is continuously differentiable.
Let X = H1(Ω), Y = Xd, and V and Q be function spaces defined by

V = H1
0 (Ω)d, Q = {q ∈ L2(Ω);

∫
Ω

q dx = 0}.

We consider the varitational problem to find the functions

ρ : (0, T ) → X, u : (0, T ) → V, p : (0, T ) → Q (8)

satisfying (
∂ρ

∂t
, φ

)
+ c1(u, ρ, φ) = 0, ∀φ ∈ X (9a)(

ρ
∂u

∂t
+

1
2
u

∂ρ

∂t
, v

)
+ a1(ρ, u, u, v) + a0(ρ, u, v)

+b(v, p) = (ρf, v) , ∀v ∈ V (9b)

b(u, q) = 0, ∀q ∈ Q (9c)

subject to the initial conditions

ρ(0) = ρ0, u(0) = u0 (10)

where

ρ0 : Ω → R, u0 : Ω → Rd
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are given functions, (·, ·) shows the inner product in L2(Ω) or L2(Ω)d, and

c1(u, ρ, φ) =
∫
Ω

(∇ · (uρ))φ dx

a1(ρ,w, u, v) =
∫
Ω

(
1
2
(w · ∇ρ)u +

1
2
ρ(∇ · w)u + ρ(w · ∇)u

)
· v dx

a0(ρ, u, v) =
∫
Ω

2µ(ρ)D(u) : D(v) dx

b(v, q) =−
∫
Ω
(∇ · v)q dx.

The Sobolev theorem implies the following.

Proposition 1. (i) c1 is a continuous tri-linear form on Y × X × X.

(ii) a1 is a continuous tetra-linear form on X × Y × Y × Y .

(iii) a0 is a continuous tri-linear form on L∞(Ω) × Y × Y .

(iv) b is a continuous bi-linear form on Y × X.

We now assume that the space-time domain Q(T ) ≡ Ω × (0, T ) is divided into two domains Q1(T )
and Q2(T ) such that the common surface Σ ≡ Q̄1(T ) ∩ Q̄2(T ) is a smooth surface in Rd+1, and that
Σ ∩ {(x, t); x ∈ Ω, t = s} is not empty for all s ∈ [0, T ].

Theorem 2. Suppose that (ρ, u, p) is smooth in Q1(T ) and Q2(T ), and continuous in Q(T ). If (ρ, u, p)
is the solution of the variational problem (8)-(10), then (ρ, u, p) satisfies the equation

ρ

{
∂u

∂t
+ (u · ∇)u

}
−∇ (2µ(ρ)D(u)) −∇p = ρf

and (1b) in each domain Qk(T ), k = 1, 2, and the interface conditions (3) on Σ.

We omit the proof.

Remark 3. In Theorem 2 we assumed that ρ is continuous in Q(T ). In (9a), however, the required
differentiability of ρ is concerned only with the material differential

D

Dt
≡ ∂

∂t
+ u · ∇.

Hence, the continuity to the direction (u, 1) in Rd+1 is required, but the continuity to the transverse
direction is not necessary. If the normal to Σ is orthogonal to (u, 1), ρ can be discontinuous at Σ. It is
the case of the two-fluids flow problems.

4. Finite element schemes

Now we consider the finite element approximation to the variational problem (8)-(10). Let Φh ⊂ X,
Vh ⊂ V , and Qh ⊂ Q be finite element spaces for the density, the velocity, and the pressure. These
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spaces are equipped with the norms L2(Ω), H1(Ω)d, and L2(Ω), respectively. L2-norm and H1-norm are
denoted simply by || · ||0 and || · ||1. We assume the inf-sup condition on Vh and Qh

inf
qh∈Qh

sup
vh∈Vh

b(vh, qh)
||qh||0||vh||1 ≥ β (11)

where β is a positive constant independent of h, the representative mesh size. As the problem (8)-(10)
includes the Navier-Stokes equations, the inf-sup condition is necessary when we discuss the convergence
of the finite element solutions, though we do not do it in this paper. Let ∆t be a time increment and
NT = 	T/∆t
. We denote by (ρn

h, un
h, pn

h) the value at time n∆t, and by D̄∆t the backward difference
operator, e.g.,

D̄∆tu
n
h =

un
h − un−1

h

∆t
.

We find {(ρn
h, un

h, pn
h) ∈ Φh × Vh × Qh; n = 1, · · · , NT } satisfying(
D̄∆tρ

n
h, φh

)
+ c1(un−1

h , ρn
h, φh) = 0, ∀φh ∈ Φh (12a)(

ρn−1
h D̄∆tu

n
h +

1
2
un

hD̄∆tρ
n
h, vh

)
+ a1(ρn

h, un−1
h , un

h, vh) + a0(ρn
h, un

h, vh)

+b(vh, pn
h) = (ρn

hΠhfn, vh) , ∀vh ∈ Vh (12b)

b(un
h, qh) = 0, ∀qh ∈ Qh (12c)

subject to the initial conditions

ρ0
h = Πhρ0, u0

h = Πhu0 (13)

where Πh is the interpolation operator to the corresponding finite element spaces.
For a series of functions φh = {φn

h}NT
n=0 in a Banach space W we prepare the norms defined by

||φh||�∞(W ) ≡max{||φn
h||W ; 0 ≤ n ≤ NT },

||φh||�2(W ) ≡
⎧⎨
⎩∆t

NT∑
n=0

||φn
h||2W

⎫⎬
⎭

1/2

.

Lemma 4. Suppose that (ρn
h, un

h, pn
h) ∈ Φh × Vh × Qh, n = 0, · · · , NT , satisfy (12b) and (12c) and that

ρh ≥ 0. Then we have

||√ρhuh||�∞(L2), ||√µ1uh||�2(H1) ≤ c{||
√

ρ0
hu0

h||0 + ||√ρh Πhf ||�2(L2)} (14)

where c is a positive constant independent of h and ∆t.

Proof. We substitute vh = un
h in (12b). The first term is equal to(
ρn−1

h D̄∆tu
n
h +

1
2
un

hD̄∆tρ
n
h, un

h

)

= D̄∆t

(
1
2
||
√

ρn
hun

h||20
)

+
1
2
||
√

∆t
√

ρn−1
h D̄∆tu

n
h||20

By using the Gauss-Green theorem and the boundary condition, the second term becomes

a1(ρn
h, un−1

h , un
h, un

h) =
∫
Γ

ρn
h(un−1

h · n)|un
h|2 ds = 0.
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The third term is estimated as

a0(ρn
h, un

h, un
h) ≥ ||√2µ1D(un

h)||20 ≥ c0||
√

2µ1u
n
h||21

where c0 is a positive constant in the Korn inequality. The fourth term vanishes from (11c). The
right-hand side is evaluated as

| (ρn
hΠhfn, un

h) | ≤ ε||
√

ρn
hun

h||20 +
1
4ε

||
√

ρn
hΠhfn||20

where ε is any positive constant. Combining these estimates and applying the discrete Gronwall inequal-
ity, we get (14).

Remark 5. If we replace the tri-linear form c1(u, ρ, φ) by a skew symmetric form

ĉ1(u, ρ, φ) =
1
2

∫
Ω

((u · ∇ρ)φ − (u · ∇φ)ρ) dx,

we can easily get the estimate

||ρh||�∞(L2) ≤ ||ρ0
h||0

by substituting φh = ρn
h in (12a). When ρ is continuous, ĉ1(u, ρ, φ) = c1(u, ρ, φ). If not so, ĉ1 includes

another condition [ρu · n12] = 0 on the interface.

5. A mass-conservative upwind finite element scheme

We now replace the tri-linear form c1(ρ, u, p) by a mass-conservative upwind approximation
c1h(uh, ρh, φh) [1]. Using the lumping technique, we can show the stability of ρh, uh, and ph without any
assumption. We describe the scheme only in the case d = 2. At first we make the dual decomposition

Figure 2. A node P and the barycentric domain DP

{DP }, where DP is the barycentric domain of the node P , see Fig. 2. The DP is made by connecting
the midpoints of the sides and the centroids of the triangles around P ∈ Ω. When the node P is on Γ,
some parts of the (approximate) boundary are used. Let Φh be the P1-finite element space. We define
the lumping operator ¯ from Φh to L2(Ω) by

φh −→ φ̄h(x) ≡
∑
P

φh(P )χP (x)
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where χP is the characteristic function of DP . We denote by ΛP the set of nodes adjacent to P . Let
uh ∈ Vh and ρh, φh ∈ Φh. The mass-conservative upwind approximation c1h is defined by

c1h(uh, ρh, φh) =
∑
P

φh(P )
∑

Q∈ΛP

{
β+

PQ(uh)ρh(P ) − β−
PQ(uh)ρh(Q)

}

where

βPQ(uh) =
∫
ΓPQ

uh · nPQ ds, ΓPQ = ∂DP ∩ ∂DQ,

nPQ is the unit outer normal to ΓPQ from DP to DQ,

β+ = max(β, 0), β− = max(−β, 0).

We replace (12a) by (
D̄∆tρ̄

n
h, φ̄h

)
+ c1h(un−1

h , ρn
h, φh) = 0, ∀φh ∈ Φh. (15)

Our variational problem is to find {(ρn
h, un

h, pn
h) ∈ Φh × Vh × Qh; n = 1, · · · , NT } satisfying (15), (12b),

(12c), and (13).

Theorem 6. Suppose that Φh is the P1-finite element space and Vh ⊂ V and Qh ⊂ Q satisfy the inf-sup
condition (11).

(i) For any functions ρ0 ≥ 0, u0, and f there exists the unique solution (ρh, uh, ph) of (15), (12b), (12c),
and (13).

(ii) The solution ρh is non-negative and it satisfies

||ρ̄n
h||L1(Ω) = ||ρ̄0

h||L1(Ω), ∀n = 0, · · · , NT .

(iii) The solution satisfies the estimate (14).

Remark 7. Examples of the choice of Vh and Qh are P2/P1 elements, and P1+/P1 elements [2].

6. Concluding remarks

We have shown finite element schemes for two-fluids flow problems. For a wide class of finite
element spaces we have shown the stability of the velocity under a mild assumption on the density. For
a mass-conservative upwind scheme we have shown the full stability of the density, the velocity, and the
pressure. Numerical results and the discussion on the convergence will be given in a forthcoming paper.
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Askey-Wilson relations and Leonard pairs

MHF2005-18 Kenji KAJIWARA & Atsushi MUKAIHIRA
Soliton solutions for the non-autonomous discrete-time Toda lattice equation

MHF2005-19 Yuu HARIYA
Construction of Gibbs measures for 1-dimensional continuum fields

MHF2005-20 Yuu HARIYA
Integration by parts formulae for the Wiener measure restricted to subsets
in R

d

MHF2005-21 Yuu HARIYA
A time-change approach to Kotani’s extension of Yor’s formula

MHF2005-22 Tadahisa FUNAKI, Yuu HARIYA & Mark YOR
Wiener integrals for centered powers of Bessel processes, I

MHF2005-23 Masahisa TABATA & Satoshi KAIZU
Finite element schemes for two-fluids flow problems


