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Abstract

We study 1-dimensional continuum fields of Ginzburg-Landau type under the
presence of an external and a long-range pair interaction potentials. The cor-
responding Gibbs states are formulated as Gibbs measures relative to Brownian
motion [17]. In this context we prove the existence of Gibbs measures for a wide
class of potentials including a singular external potential as hard-wall ones, as
well as a non-convex interaction. Our basic methods are: (i) to derive moment
estimates via integration by parts; and (ii) in its finite-volume construction, to rep-
resent the hard-wall Gibbs measure on C(R; R+) in terms of a certain rotationally
invariant Gibbs measure on C(R; R3).

1 Introduction

This paper studies R
d-valued continuum fields X = {X(s), s ∈ R} over R with interac-

tions prescribed by a (formal) Hamiltonian given by

H(X) =
1

2

∫
|∇X(s)|2 ds +

∫
ϕ(X(s)) ds +

1

2

∫∫
ψ(s − t,X(s), X(t)) dsdt, (1.1)

where ∇X = ∂X/∂s. This is a continuous counterpart to Ginzburg-Landau random

fields over the lattice Z (see [23]) with an external potential ϕ and a long-range pair

interaction potential ψ; analogously to those lattice cases, the Gibbs state associated

with (1.1) would formally be given by

dµ(X) = exp{−H(X)} dX/normalization, (1.2)

where the reference measure dX ≡ ∏
s∈�dX(s) is “Feynman’s measure”. By incorpo-

rating the first term in (1.1) into the reference measure, the measure like (1.2) can be
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interpreted as a local perturbation from Wiener measure; that is, we consider Brown-

ian motion under the presence of potentials ϕ and ψ. The corresponding measure on

the path space C(R; Rd) is formulated as a Gibbs measure relative to Brownian motion

[17], and defined through the so-called DLR equation (see Definition 2.1). Similarly

to the lattice field case, such a measure appears as equilibrium states of random time-

evolutions of the fields described by Ginzburg-Landau equations (see [8, 9, 7]); [11] also

studies the dynamics by using the Dirichlet form theory.

In the case ψ = 0, the corresponding Gibbs measure can be realized as a P (φ)1-

stationary Markov process and it has been fairly understood (see, e.g., [20, 22]). On the

other hand, in the non-Markovian case ψ �= 0, the first mathematical treatment was done

by [17]; their motivation was originated from quantum field theory, particularly from

the Euclidean quantization of a certain Hamiltonian operator called Nelson’s scalar field

model [16]: its physical context is a quantum particle in R
d governed by the Schrödinger

operatorH0 = −(1/2)∆+ϕ and coupled to a free Bose field. It has been known [16] that,

when the coupling is restricted to the time interval [−T, T ], the Euclidean quantization

involves the following types of measures:

Z−1
T exp

{∫
|s|,|t|≤T

dsdt

∫
�d

dk
f̃ (k)

f(k)
e−f(k)|s−t| cos(k · (X(s)−X(t)))

}
dPϕ(X), (1.3)

where Pϕ denotes the law on C(R; Rd) of the P (φ)1-process associated with H0, f and

f̃ are some non-negative functions, and ZT is the normalization. It is discussed in [15]

that the limit measure as T → ∞ (if it exists) plays an important role in the analysis

of spectral structure of the operator. For details, see the references cited above.

Now we raise the question whether the family of measures as (1.3) has a limit as T →
∞; that is, we discuss the existence of an infinite-volume Gibbs measure for prescribed

potentials ϕ and ψ. There are several possible ways to show the existence: Ruelle’s

superstability estimates [21, 13] on lattice fields; monotonicity method developed in

[17]; cluster expansions applied in [14]. Superstability estimate relies on the product

structure of a reference measure and there are a number of difficulties in adapting this to

the continuum case. Monotonicity uses log-concave inequalities, hence requires certain

convexity on ψ, which excludes interactions as in (1.3). Cluster expansion is applicable

to such an interaction when the coupling is sufficiently weak; in [14], the growth order in

spatial variables was also restricted to at most quadratic. Recently, [1] has proved the

existence under a mild assumption on ϕ; his condition is almost as weak as assuming

H0 to have an L2-ground state, and the existence is shown in the case of bounded

interactions satisfying a certain pathwise condition.

One of the main purposes of this paper is to establish the existence for a wide class

of interactions. We deal with interactions of growth order q0 + 1 (q0 ≥ 0) in spatial
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variables. We choose external potentials to grow polynomially of order 2p0 (p0 ≥ 1) at

infinity. Roughly speaking, our result reads:

if p0 ≥ q0, then the associated Gibbs measure exists.

The key is to show the localization in its finite-volume construction (see Theorem 3.1).

Our method to derive this is different from those quoted above. Its advantages are: (i)

it requires no convexity on interactions; (ii) it is applicable to an arbitrary strength of

interactions in the case p0 > q0. Our technique to be developed here involves (determin-

istic) integration by parts. So we require weak differentiability on potentials, however,

many examples including Nelson’s model can be treated in our framework.

Another purpose of this paper is to construct hard-wall Gibbs measures with inter-

actions on C(R; R+). We deal with an external potential such as

ϕ(x) = ∞, x < 0.

Under the effect of ϕ, the path is restricted to stay positive over the real line (the hard

wall). Similarly to lattice fields [12, 3], a “repelling” phenomenon is also observed in

the present continuum case; indeed, the paths, renormalized by the hard-wall effect,

behave as 3-dimensional Bessel process, not as reflecting Brownian motion. This obser-

vation reduces the problem to the localization of certain finite-volume Gibbs measures

on C(R; R3), to which our method applies.

This paper is organized as follows: in Section 2, we state the main result; in Section 3,

we prepare a key theorem, which we prove in Section 4; in Section 5, we discuss the

existence of hard-wall Gibbs measures with interactions.

Throughout this paper we use the notation (x, y) instead of x·y for the inner product

on R
d. We write |x| = (x, x)1/2 and ‖x‖ = (1 + |x|2)1/2 for x ∈ R

d. R
+ denotes the set

of the non-negative real numbers. We denote by 〈·〉 the expectation with subscript of a

reference measure. Other notation will be introduced as needed.

2 Main result

For given functions ϕ : R
d → R∪{∞} and ψ : R×R

d×R
d → R, we define (ϕ,ψ)-Gibbs

measures following [17]: Let C = C(R; Rd) endowed with the compact uniform topology.

For a finite interval Λ = [T1, T2] ⊂ R, let CΛ = C(Λ; Rd) and C∗
Λ = C(Λc; Rd). For a

given ξ ∈ C, we define the local Hamiltonian HΛ,ξ ≡ Hϕ,ψ
Λ,ξ by

HΛ,ξ(X) =

∫
Λ

ϕ(X(s)) ds+
1

2

∫
Λ2

ψ(s− t,X(s), X(t)) dsdt

+

∫
Λ×Λc

ψ(s− t,X(s), ξ(t)) dsdt, X ∈ CΛ.
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The functions ϕ and ψ are called the external potential and interaction potential, re-

spectively. We assume ψ is symmetric in the sense that, for all s ∈ R and x, y ∈ R
d,

ψ(s, x, y) = ψ(|s|, x, y), ψ(s, x, y) = ψ(s, y, x). (2.1)

Let πΛ : C → CΛ and π∗
Λ : C → C∗

Λ be canonical projections. For a probability

measure µ on C, define µΛ,ξ(·) = µ(πΛ ∈ · |π∗
Λ)(ξ). Here µ(·|π∗

Λ) is the regular conditional

probability with respect to the σ-field σ(π∗
Λ).

Definition 2.1. A probability measure µ on C is called a (ϕ,ψ)-Gibbs measure if its

regular conditional probabilities satisfy the DLR equation:

dµΛ,ξ(X) = (ZΛ,ξ)
−1e−HΛ,ξ(X) dWΛ,ξ(X) µ-a.e. ξ ∈ C.

Here WΛ,ξ denotes the law of Brownian bridge on CΛ with boundary conditions X(T1) =

ξ(T1) and X(T2) = ξ(T2), and ZΛ,ξ = 〈e−HΛ,ξ(X)〉WΛ,ξ
.

We proceed to the setup for the main result. We assume (A.1)–(A.3):

(A.1) Assumptions on ϕ. ϕ is bounded from below. There exist ϕ0 and ϕ1 such that

ϕ = ϕ0 + ϕ1, satisfying (A.1a) and (A.1b), respectively:

(A.1a) ϕ0 is a continuous function such that the associated Schrödinger operator H0 =

−(1/2)∆+ϕ0 acting on L2(Rd; dx) has a strictly positive ground state f0 of class C2(Rd)

satisfying the following conditions:

(i) (strict log-concavity) there exists an α > 0 such that

(ζ,Hessu0
(x)ζ) ≥ α|ζ |2 for all ζ, x ∈ R

d, (2.2)

where u0 = − log f0 and Hessu0
= (∂2u0/∂xi∂xj)1≤i,j≤d is the Hessian of u0;

(ii) there exists a p0 ≥ 1 such that

0 < lim inf
r→∞

1

r2p0
inf
|x|=r

U(x), lim sup
r→∞

1

rp0
sup
|x|=r

|V (x)| <∞, (2.3)

where U = (f0)
−2div(f0∇f0) and V = (f0)

−1∇f0. Here div denotes the divergence.

(A.1b) ϕ1 ∈ W 1,1
loc (Rd) and there exist b ≥ 0 and 0 ≤ p1 < p0 such that

|∇ϕ1(x)| ≤ b‖x‖p1 for a.e. x ∈ R
d.

Here W 1,1
loc (Rd) is the set of functions f ∈ L1

loc(R
d) whose distributional derivatives

∂f/∂xi, 1 ≤ i ≤ d, belong to L1
loc(R

d).

(A.2) Assumptions on ψ. For each fixed s ∈ R and y ∈ R
d, ψ(s, ·, y) ∈ W 1,1

loc (Rd).

There exists a non-negative, integrable function ψ0 on R satisfying (i) and (ii):

(i) there exists a q0 ≥ 0 such that, for a.e. s ∈ R and x, y ∈ R
d,

|∇xψ(s, x, y)| ≤ ψ0(s)(‖x‖q0 + ‖y‖q0) (∇x = (∂/∂x1, . . . , ∂/∂xd));
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(ii) for a.e. s ∈ R and x, y ∈ R
d, ψ(s, x, y) ≥ −ψ0(s).

(A.3) p0 is strictly larger than q0.

Remark 2.1. From (2.2), we see in particular that |V (x)| −α|x| is bounded from below.

We assumed p0 ≥ 1 in (2.3) to make our assumption consistent.

Now we state one of our main results, the existence of (ϕ,ψ)-Gibbs measures:

Theorem 2.1. Assume (A.1)–(A.3). Then there exists a translation invariant (ϕ,ψ)-

Gibbs measure µ satisfying

〈|X(0)|2p0〉µ <∞.

Remark 2.2. In the case p0 = q0, the existence also holds if
∫
�
ψ0(s) ds is sufficiently

small. See Remark 4.2.

We give examples of potentials satisfying the above assumptions.

Example 2.1. We can construct examples of ϕ from f0. Note that we may assume

without loss of generality that −(1/2)∆f0 + ϕ0f0 = 0, by adding a constant to ϕ0 if

necessary. ϕ0 is then expressed as ϕ0 = (1/2)∆f0/f0.

(i) Ornstein-Uhlenbeck processes:

ϕou(x) =
1

2

d∑
i=1

a2
ix

2
i , x ∈ R

d, ai > 0,

with f0(x) = exp{−(1/2)
∑d

i=1 aix
2
i }.

(ii) Double-well potentials:

ϕdw(x) =
1

2
a2x4 − 1

2
b2x2, x ∈ R, a, b > 0.

This is obtained by taking

ϕ0(x) =
1

2
a2(x4 + x2) + R(x), ϕ1(x) = −1

2
(a2 + b2)x2 −R(x)

with R(x) = −a‖x‖ + (a/2)‖x‖−1. In this case we take f0(x) = exp{−(a/3)‖x‖3}.
Examples of ψ are:

Example 2.2. (i) Nelson’s scalar field model: Typically, it is given by

ψnel(s, x, y) = − 1

s2 + 1 + |x− y|2 .

We refer to [1]. This example corresponds to the case q0 = 0.

(ii) Non-convex interactions:

ψnc(s, x, y) = ψ0(s)υ(x− y),

where υ(x) = |x|q0+1 +Q(|x|) with Q a polynomial whose degree is less than q0 +1, and

ψ0 is as in (A.2). Note that υ need not be convex.
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By Theorem 2.1 we have established the existence for a large class of interactions in-

cluding Example 2.2; indeed, applying the theorem to the above examples, we conclude:

(i) there always exists a Gibbs measure for (ϕou, ψnel) and for (ϕdw, ψnel); (ii) there exists

a Gibbs measure for (ϕou, ψnc) (resp. for (ϕdw, ψnc)) if q0 < 1 (resp. q0 < 2).

3 Key theorem: Localization

To show Theorem 2.1, we prepare a key theorem, namely, the localization of finite-

volume Gibbs measures. As was already suggested in (1.3), we will incorporate the

effect of the external potential into the reference measure; this means we take a P (φ)1-

process as a reference process, instead of a Brownian motion itself.

For the Schrödinger operator H0 = −(1/2)∆ + ϕ0, recall that the associated P (φ)1-

process is determined by the stochastic differential equation (SDE)

dX(t) = dW (t) −∇u0(X(t)) dt (3.1)

with W a d-dimensional Brownian motion. Here u0 = − log f0 as in (i) of (A.1a). The

process X is stationary under the measure f0(x)
2dx, which we denote by m0(dx). Here

we assume that f0 is normalized so that m0(dx) is a probability measure. We denote by

Pϕ0 the law of this process on C. For the precise definition of P (φ)1-processes and related

notion, see [20, 22] and references therein; see also [2] for more detailed descriptions.

We take Pϕ0 as a reference measure, and perturb it by ϕ1 and ψ: For a finite

interval Λ ⊂ R, let Pϕ0

Λ denote the restriction of Pϕ0 to the σ-field σ(πΛ). Define the

finite-volume Gibbs measure µϕ,ψΛ by

dµϕ,ψΛ (X) = (Zϕ,ψΛ )−1 exp{−Hϕ1,ψ
Λ (X)} dPϕ0

Λ (X), (3.2)

where

Hϕ1,ψ
Λ (X) =

∫
Λ

ϕ1(X(s)) ds+
1

2

∫
Λ2

ψ(s− t,X(s), X(t)) dsdt

and Zϕ,ψΛ = 〈exp{−Hϕ1,ψ
Λ (X)}〉Pϕ0 . Note that Zϕ,ψΛ < ∞ by assumption. µϕ,ψΛ is a

probability measure on CΛ with free boundary condition. If we take a symmetric interval

Λ = [−T, T ], each corresponding subscript Λ is replaced by T ; e.g., Hϕ1,ψ
Λ = Hϕ1,ψ

T ,

µϕ,ψΛ = µϕ,ψT and so on.

Note that by (i) of (A.2), the growth order of ψ in spatial variables x and y is

less than or equal to q0 + 1. Suppose we had proved that {µϕ,ψΛ }Λ⊂� has the following

localization property:

sup
Λ⊂�

max
t∈Λ

〈|X(t)|q1〉µϕ,ψΛ
<∞ (∗)
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for some q1 ≥ q0 + 1. Then, from the same argument as in [17, Sect. 4], the existence of

a (ϕ,ψ)-Gibbs measure follows. The next theorem shows that (∗) is really the case:

Theorem 3.1. Under (A.1a), (A.1b), (A.2) and (A.3), the localization (∗) holds.

Remark 3.1. As we will see in the proof, the localization (∗) holds with q1 = 2p0. Note

that 2p0 ≥ q0 + 1 since we assume p0 ≥ 1 and p0 > q0.

4 Proof of Theorem 3.1

As was mentioned, once Theorem 3.1 is shown, then the existence result Theorem 2.1

can be obtained as a corollary, in the same way as [17]. We thus concentrate on proving

Theorem 3.1. The essence of our proof is simple; we only have to use integration by

parts once, which is formulated as:∫
�d

div(f0∇zf0)e
−Hϕ1,ψ

Λ (Xz) dz = −
∫
�d

(f0∇zf0,∇ze
−Hϕ1,ψ

Λ (Xz)) dz,

where Xz denotes a path given X(0) = z. See (4.8) below.

We begin with the following lemma:

Lemma 4.1. Assume (ii) of (A.1a). Then there exist constants ai > 0, i = 1, 2, 3, such

that, for all x ∈ R
d,

U(x) ≥ a1‖x‖2p0 − a2, |V (x)| ≤ a3‖x‖p0 . (4.1)

Proof. By (2.3), there exist c, c′ > 0 and r > 0 such that U(x) ≥ c|x|2p0 and |V (x)| ≤
c′|x|p0 for all |x| ≥ r. By the continuity, U is bounded from below and |V | from above

on {|x| ≤ r}. Combining these ends the proof.

Remark 4.1. By definition,
∫
�d
U(x)m0(dx) = 0, which implies that U has a negative

part. So the constant a2 above cannot be taken negative; indeed, it must satisfy a2 ≥
a1

∫
�d

‖x‖2p0 m0(dx).

From now on we take a symmetric interval Λ = [−T, T ] for simplicity. Let

MT = max
|t|≤T

〈‖X(t)‖2p0〉
µ
ϕ,ψ
T
.

Proposition 4.2. Assume (A.1a), (A.1b), (A.2) and (A.3). Let ai, i = 1, 2, 3, be as in

Lemma 4.1. Then it holds that

a1MT − a2 ≤ Cd,α(bM
p0+p1

2p0
T + a3ψ̄0M

p0+q0
2p0

T ) (4.2)

for all T > 0. Here Cd,α = 4
√
d/α and ψ̄0 =

∫
�
ψ0(s) ds.
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Once this proposition is shown, then the proof of Theorem 3.1 is straightforward:

Proof of Theorem 3.1. Let us consider the following equation in m > 0:

a1m − a2 = Cd,α(bm
p0+p1

2p0 + a3ψ̄0m
p0+q0
2p0 ). (4.3)

If p0 > q0, this equation has a unique solution m1. By Proposition 4.2, we then obtain

max
|t|≤T

〈‖X(t)‖2p0〉µϕ,ψT ≤ m1 for all T > 0. (4.4)

This implies the theorem.

For simplicity, we prove Proposition 4.2 in the case ϕ1 ≡ 0; that is, we let b = 0 in

(4.2). We write Hψ
Λ(X) for Hϕ1,ψ

Λ (X) accordingly. In the following we suppress potentials

from the notation if there is no confusion; e.g., Zϕ,ψΛ = ZΛ, µϕ,ψT = µT and so on.

For each fixed t0 ∈ [−T, T ], let I = 〈U(X(t0))〉µT . By the estimate on U in (4.1), we

have

a1〈‖X(t0)‖2p0〉µT − a2 ≤ I. (4.5)

We also have an upper estimate on I as follows:

Proposition 4.3. It holds that

I ≤ a3ψ̄0Cd,α〈‖X(t0)‖2p0〉
1
2
µTM

q0
2p0
T .

Proposition 4.2 is an immediate consequence of these estimates:

Proof of Proposition 4.2. By (4.5) and Proposition 4.3, we have

a1〈‖X(t0)‖2p0〉µT − a2 ≤ a3ψ̄0Cd,α〈‖X(t0)‖2p0〉
1
2
µTM

q0
2p0
T .

Taking the maximum over |t0| ≤ T on both sides leads to (4.2).

It now remains to prove Proposition 4.3, which we will do in a sequence of lemmas.

First we consider the disintegration of Pϕ0 by conditioning onX(0). For this purpose,

let W+ and W−, together with a probability measure PW , be independent d-dimensional

Brownian motions starting at 0. Let Xz,±(t) ≡ Xz(t,W±) be the strong solutions of

(3.1) starting at z. We set

Xz(t) =

⎧⎨⎩Xz,+(t), t ≥ 0,

Xz,−(−t), t ≤ 0.

Let Pϕ0( · |X(0) = z) denote the regular conditional probability of Pϕ0 given X(0) = z.

From the Markov property of Pϕ0, we easily deduce:
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Lemma 4.4. The process ({Xz(t), t ∈ R}, PW ) has the same law as Pϕ0( · |X(0) = z).

Recall from Section 3 that Pϕ0(X(0) ∈ dz) = m0(dz). For a Pϕ0-integrable func-

tional F on C, we have, by Lemma 4.4 and by Fubini’s theorem,

〈F (X)〉Pϕ0 =

∫
�d

〈F (X)|X(0) = z〉Pϕ0 m0(dz)

=

〈∫
�d

F (Xz)m0(dz)

〉
PW

. (4.6)

By definition, I = Z−1
T

〈
U(X(t0))e

−Hψ
T (X)

〉
Pϕ0

. For convenience, we may shift t0 to

the origin by the stationarity of Pϕ0; moreover, disintegrating Pϕ0 as (4.6), we have

I = Z−1
Λ

〈∫
�d

U(z)e−Hψ
Λ(Xz)m0(dz)

〉
PW

, (4.7)

where Λ = [T1, T2] with T1 = −(T + t0) and T2 = T − t0. Recall m0(dz) = f0(z)
2 dz. By

integration by parts formula, and by the estimate on |V | in (4.1),∫
�d

U(z)e−Hψ
Λ(Xz)m0(dz) =

∫
�d

(V (z),∇zHψ
Λ(Xz))e−Hψ

Λ(Xz)m0(dz)

≤ a3

∫
�d

‖z‖p0|∇zHψ
Λ(Xz)|e−Hψ

Λ(Xz)m0(dz). (4.8)

We shall estimate |∇zHψ
Λ(Xz)| from above by using the following lemma:

Lemma 4.5. For each z ∈ R
d and 1 ≤ i ≤ d, let Y z

i (t) = (∂Xz
j (t)/∂zi)1≤j≤d. Under

the condition (i) of (A.1a), it holds that, for all z and i,

|Y z
i (t)| ≤ e−α|t|, t ∈ R.

Proof. By symmetry, we need only to consider the case t ≥ 0. Then by definition,

Xz(t) ≡ Xz,+(t) satisfies

Xz(t) = z +W (t) −
∫ t

0

∇u0(X
z(s)) ds, t ≥ 0. (4.9)

Here we simply write W for W+. Differentiating both sides of (4.9) with respect to zi

and t successively, we have

d

dt
Y (t) = −Hessu0

(Xz(t))Y (t),

where Y = Y z
i . By (2.2), it then holds that

1

2

d

dt
|Y (t)|2 = −(Y (t),Hessu0

(Xz(t))Y (t)) ≤ −α |Y (t)|2 ,

which shows |Y (t)|2 ≤ |Y (0)|2 e−2αt = e−2αt. This ends the proof.
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By Lemma 4.5, we obtain the following estimate on |∇zHψ
Λ(Xz)|.

Lemma 4.6. Under the assumptions (A.1a)(i) and (A.2)(i), we have

|∇zHψ
Λ(Xz)| ≤

√
d

∫
Λ2

(‖Xz(s)‖q0 + ‖Xz(t)‖q0) Ψα(ds, dt), (4.10)

where we set Ψα(ds, dt) = ψ0(s− t)e−α|s| dsdt.

Proof. Let Y z
i be as in Lemma 4.5. By the symmetry (2.1) of ψ, we see

∂

∂zi
Hψ

Λ(Xz) =

∫
Λ2

(∇xψ(s− t,Xz(s), Xz(t)), Y z
i (s)) dsdt

for each 1 ≤ i ≤ d. Then by (i) of (A.2) and Lemma 4.5, we have∣∣∣∣ ∂∂ziHψ
Λ(Xz)

∣∣∣∣ ≤ ∫
Λ2

ψ0(s− t)(‖Xz(s)‖q0 + ‖Xz(t)‖q0)e−α|s| dsdt

for all 1 ≤ i ≤ d. Now the assertion follows readily.

We denote by J(Xz) the RHS of (4.10). Combining this lemma and (4.8), we have∫
�d

U(z)e−Hψ
Λ(Xz)m0(dz) ≤ a3

∫
�d

‖z‖p0J(Xz)e−Hψ
Λ(Xz)m0(dz).

Plugging this estimate into (4.7), we obtain

I ≤ a3〈‖X(0)‖p0J(X)〉µΛ

=
√
da3

∫
Λ2

〈‖X(0)‖p0 (‖X(s)‖q0 + ‖X(t)‖q0)〉µΛ
Ψα(ds, dt). (4.11)

Since p0 > q0, the following is immediate from the (generalized) Hölder inequality:

Lemma 4.7. Let MΛ = maxt∈Λ〈‖X(t)‖2p0〉µΛ
. We have, for all s ∈ Λ,

〈‖X(0)‖p0‖X(s)‖q0〉µΛ
≤ 〈‖X(0)‖2p0〉

1
2
µΛM

q0
2p0
Λ .

Now we are in a position to prove Proposition 4.3:

Proof of Proposition 4.3. By (4.11) and Lemma 4.7, we see that

I ≤ 2
√
da3〈‖X(0)‖2p0〉

1
2
µΛM

q0
2p0
Λ Ψα(Λ

2).

Note that Ψα(Λ
2) ≤ Ψα(R

2) = (2/α)ψ̄0 by definition. Now we shift the origin to t0 and

obtain the proposition.

Remark 4.2. Since Lemma 4.7 remains true, the inequality (4.2) also holds in the case

p0 = q0. In this case the equation (4.3) has a unique solution m2 if a1 > a3ψ̄0Cd,α. Then

(4.4) holds with m2, from which the existence of the associated Gibbs measures follows.
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5 Construction of hard-wall Gibbs measures with

interactions

In this section we discuss the existence of hard-wall Gibbs measures; that is, we consider

an external potential ϕ+ such that ϕ+(x) = ∞ for x < 0.

In the following, boldfaced letters denote elements in R
3; e.g., x,y ∈ R

3. We often

write ρ(x) for |x|. For a function f on R
+, (f ◦ρ)(x) means f(ρ(x))(≡ f(|x|)) as usual.

We summarize the assumptions on potentials:

(A.1′) Assumptions on ϕ+. ϕ+ is bounded from below. There exist ϕ+
0 and ϕ+

1 such

that ϕ+ = ϕ+
0 + ϕ+

1 , taking values ∞ on {x < 0} and satisfying (A.1′a) and (A.1′b),

respectively:

(A.1′a) ϕ+
0 ◦ ρ satisfies (A.1a) with d = 3; that is, ϕ+

0 is continuous on {x ≥ 0}, and

the Schrödinger operator Hρ
0 = −(1/2)∆ + ϕ+

0 ◦ ρ acting on L2(R3; dx) has a strictly

positive ground state f0 of class C2(R3) satisfying (i) and (ii) of (A.1a).

(A.1′b) ϕ+
1 ◦ ρ satisfies (A.1b) with d = 3.

(A.2′) Assumptions on ψ. The function ψρ(s,x,y) := ψ(s, ρ(x), ρ(y)) satisfies (A.2)

with d = 3.

(A.3′) p0 is strictly larger than q0.

Remark 5.1. By definition, we see f0 in (A.1′a) is radially symmetric; that is, there exists

a g0 on R
+ such that f0(x) = g0(|x|).

Now we state the existence of hard-wall Gibbs measures:

Theorem 5.1. Assume (A.1′)–(A.3′). Then there exists a (ϕ+, ψ)-Gibbs measure.

The existence of hard-wall Gibbs measures with interactions had been an open prob-

lem; [17] required a certain symmetry on external potentials, which excluded hard-wall

ones. We have established the existence of such measures by Theorem 5.1.

To prove this theorem, we do the finite-volume construction in the same manner as

Section 3: For ϕ+
0 , let H+

0 be the corresponding Schrödinger operator with Dirichlet

boundary condition: ⎧⎨⎩H+
0 f = −1

2
f ′′(x) + ϕ+

0 (x)f(x), x > 0,

f(0) = 0.

Let g0 be as in Remark 5.1. As we see in Lemma 5.3, a ground state f+
0 of H+

0 is given

by f+
0 (x) = 2

√
πxg0(x). The constant 2

√
π is chosen so that

∫
�+ |f+

0 |2 dx =
∫
�3 |f0|2 dx.

The P (φ)1-process associated with H+
0 is determined by the SDE

dX(t) = dW (t) +
dt

X(t)
− v′0(X(t)) dt (5.1)
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with W a 1-dimensional Brownian motion. Here we set v0 = − log g0. The process X is

stationary under the probability measure f+
0 (x)2 dx (we assume f+

0 is normalized). We

denote by Pϕ+
0 the law on C(R; R+) of this process. For Pϕ+

0 and potentials ϕ+
1 , ψ, we

define the finite-volume Gibbs measure µϕ
+,ψ

Λ through (3.2). Similarly to Theorem 2.1,

the existence result Theorem 5.1 follows from the localization result of {µϕ+,ψ
Λ }Λ⊂�:

Theorem 5.2. Assume (A.1′a), (A.1′b), (A.2′) and (A.3′). Then the localization (∗)
for {µϕ+,ψ

Λ }Λ⊂� holds.

A key to Theorem 5.2 is the following identity in law:

(X,Pϕ+
0 )

(d)
= (|X|,Pϕ+

0 ◦ρ), (5.2)

where, on the RHS, Pϕ+
0 ◦ρ denotes the law of the P (φ)1-process associated with Hρ

0 =

−(1/2)∆ + ϕ+
0 ◦ ρ, and X ∈ C(R; R3). Here is an example:

Example 5.1. When ϕ+
0 (x) = 1

2
a2x2, x ≥ 0, the P (φ)1-process X associated with H+

0

has the following explicit representation:

{X(t), t ∈ R} (d)
= { 1√

2a
e−atR(3)(e2at), t ∈ R},

where {R(3)(s), s ≥ 0} is a 3-dimensional Bessel process starting at 0. In view of the

DLR equation, this can be seen from the fact that a Brownian bridge conditioned to be

positive has the same law as a 3-dimensional Bessel bridge.

Once the identity (5.2) is verified, then Theorem 5.2 is straightforward:

Proof of Theorem 5.2. For ϕ+
0 ◦ ρ, ϕ+

1 ◦ ρ and ψρ, let µρΛ be the finite-volume Gibbs

measure on C(Λ; R3) defined via (3.2):

dµρΛ(X) = (ZρΛ)−1e−Hρ
Λ(�) dPϕ+

0 ◦ρ
Λ (X).

Here Hρ
Λ = Hϕ+

1 ◦ρ,ψρ
Λ and ZρΛ is the normalization. Note that Hρ

Λ(X) = Hϕ+
1 ,ψ

Λ (|X|) by

definition. From this and (5.2), we easily see that, for all t ∈ Λ,

〈X(t)2p0〉
µ
ϕ+,ψ
Λ

= 〈|X(t)|2p0〉µρΛ . (5.3)

By the assumptions on potentials, we may use Theorem 3.1 to see that the localization

(∗) for {µρΛ}Λ⊂� holds with q1 = 2p0. Combining this with (5.3) ends the proof.

The identity (5.2) is an immediate consequence of the following lemma:
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Lemma 5.3. (i) Let {T+
t }t≥0 and {Tρ

t}t≥0 be the semi-group generated by H+
0 and that

generated by Hρ
0, respectively. Then it holds that, for x > 0 and x ∈ R

3 with |x| = x,

(T+
t f)(x) = x(Tρ

t

f ◦ ρ
ρ

)(x), t ≥ 0. (5.4)

In particular, a ground state of H+
0 is given by xg0(x).

(ii) Under Pϕ+
0 ◦ρ, the process {|X(t)|, t ∈ R} satisfies the SDE (5.1). Moreover, |X(0)|

has the same law as Pϕ+
0 (X(0) ∈ · ).

Remark 5.2. The identity (5.4) is related to the h-transform of Doob, cf. [19, Chap. VIII].

Proof. (i) Let Wx be the law of 1-dimensional Brownian motion starting at x. Let

τ0 = inf{t ≥ 0;X(t) = 0}. Then T+
t is expressed as

(T+
t f)(x) = 〈f(X(t ∧ τ0)) exp{−

∫ t

0

ϕ+
0 (X(s ∧ τ0)) ds}〉Wx, x > 0,

where ∧ denotes the minimum. By the conditional equivalence between absorbing Brow-

nian motion and 3-dimensional Bessel process (see, e.g., [10, Lemma 5.2.8]), this is

rewritten as, for x ∈ R
3 with |x| = x,

(T+
t f)(x) = x〈f(|X(t)|)

|X(t)| exp{−
∫ t

0

ϕ+
0 (|X(s)|) ds}〉W(3)

�

. (5.5)

Here W (3)
� is the law of 3-dimensional Brownian motion starting at x. Recalling ρ(x) =

|x|, we see that (5.5) shows (5.4). (ii) Noting ∇ log f0 = −|x|−1v′0(|x|)x, we see that the

process (X,Pϕ+
0 ◦ρ) satisfies the following SDE:

dX(t) = dW (t) − v′0(|X(t)|)
|X(t)| X(t) dt,

where W is a 3-dimensional Brownian motion. By Itô’s formula, we have

d|X(t)| = dW̃ (t) +
dt

|X(t)| − v′0(|X(t)|) dt, W̃ (t) =

∫ t

0

(
X(s)

|X(s)|, dW (s)).

Since W̃ is a Brownian motion, the former assertion is proved. For the latter, note that

Pϕ+
0 ◦ρ(X(0) ∈ dx) = f0(x)2 dx, hence that |X(0)| is distributed as f+

0 (x)2 dx. This

ends the proof.

Remark 5.3. Lemma 5.3 suggests that, in the Markovian case, namely, the case ψ = 0,

the existence of Gibbs measures for the hard-wall external potential ϕ+ is reduced to

that of the ground state for the Schrödinger operator defined by

−1

2
∆ + ϕ+(|x|) on L2(R3; dx). (5.6)
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Now let us consider the case where ϕ+ is a “single well” such as

ϕ+(x) = − β

(1 + x2)γ
, x ≥ 0,

for β, γ > 0 (the attractive potential). The parameters β and γ control the “depth” and

“width” of the well, respectively. Let Hβ ≡ Hβ,γ be the Schrödinger operator defined by

(5.6). Note that the essential spectrum of Hβ is equal to [0,∞) (see, e.g., [18]). Let λβ

be the bottom of the spectrum of Hβ . If 0 < γ < 1, then λβ < 0 for all β > 0 and λβ

is a simple eigenvalue; that is, the associated ground state exists. On the other hand, if

γ ≥ 1, then there exists a β = βc (the threshold) such that λβ ≡ 0 for β ≤ βc and λβ < 0

for β > βc. See [6, Chap. 8]. This phenomenon may be regarded as a counterpart to

wetting transitions in lattice models [4, 5]. We will return to this somewhere else.
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Transformations of Gauss hypergeometric functions

MHF2004-12 Koji NAKAGAWA & Masakazu SUZUKI
Mathematical knowledge browser

MHF2004-13 Ken-ichi MARUNO, Wen-Xiu MA & Masayuki OIKAWA
Generalized Casorati determinant and Positon-Negaton-Type solutions of the
Toda lattice equation

MHF2004-14 Nalini JOSHI, Kenji KAJIWARA & Marta MAZZOCCO
Generating function associated with the determinant formula for the solutions
of the Painlevé II equation
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