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Normalized Leonard pairs and Askey-Wilson relations

Raimundas Vidūnas∗

Abstract

Let V denote a vector space with finite positive dimension, and let (A, A∗)

denote a Leonard pair on V . As is known, the linear transformations A, A∗ satisfy

the Askey-Wilson relations

A2A∗ − βAA∗A + A∗A2 − γ (AA∗+A∗A)− % A∗ = γ∗A2 + ωA + η I,

A∗2A− βA∗AA∗+ AA∗2− γ∗(A∗A+AA∗)− %∗A = γA∗2+ ωA∗+ η∗I,

for some scalars β, γ, γ∗, %, %∗, ω, η, η∗. The scalar sequence is unique if the di-

mension of V is at least 4.

If c, c∗, t, t∗are scalars and t, t∗are not zero, then (tA+c, t∗A∗+c∗) is a Leonard

pair on V as well. These affine transformations can be used to bring the Leonard

pair or its Askey-Wilson relations into a convenient form. This paper presents

convenient normalizations of Leonard pairs by the affine transformations, and

exhibits explicit Askey-Wilson relations satisfied by them.

1 Introduction

Throughout the paper, K denotes an algebraically closed field. Apart from one remark,
we assume the characteristic of K is not equal to 2.

Recall that a tridiagonal matrix is a square matrix which has non-zero entries only
on the main diagonal, on the superdiagonal and the subdiagonal. A tridiagonal matrix
is called irreducible whenever all entries on the superdiagonal and superdiagonal are
non-zero.

Definition 1.1 Let V be a vector space over K with finite positive dimension. By a
Leonard pair on V we mean an ordered pair (A,A∗), where A : V → V and A∗ : V → V

are linear transformations which satisfy the following two conditions:

(i) There exists a basis for V with respect to which the matrix representing A∗ is
diagonal, and the matrix representing A is irreducible tridiagonal.

∗Supported by the 21 Century COE Programme ”Development of Dynamic Mathematics with High

Functionality” of the Ministry of Education, Culture, Sports, Science and Technology of Japan.
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(ii) There exists a basis for V with respect to which the matrix representing A is
diagonal, and the matrix representing A∗ is irreducible tridiagonal.

Remark 1.2 In this paper we do not use the conventional notationA∗ for the conjugate-
transpose of A. In a Leonard pair (A,A∗), the linear transformations A and A∗ are
arbitrary subject to the conditions (i) and (ii) above.

Leonard pairs occur in the theory of orthogonal polynomials, combinatorics, the
representation theory of the Lie algebra sl2 or the quantum group Uq(sl2). We refer to
[Ter04] as a survey on Leonard pairs, and as a source of further references.

We have the following result [TV04, Theorem 1.5].

Theorem 1.3 Let V denote a vector space over K with finite positive dimension. Let
(A,A∗) be a Leonard pair on V . Then there exists a sequence of scalars β, γ, γ∗, %, %∗,
ω, η, η∗ taken from K such that

A2A∗ − βAA∗A+A∗A2 − γ (AA∗+A∗A)− %A∗ = γ∗A2 + ωA+ η I, (1)

A∗2A− βA∗AA∗+AA∗2 − γ∗(A∗A+AA∗)− %∗A = γA∗2 + ωA∗+ η∗I. (2)

The sequence is uniquely determined by the pair (A,A∗) provided the dimension of V
is at least 4.

The equations (1)–(2) are called the Askey-Wilson relations. They first appeared in
the work [Zhe91] of Zhedanov, where he showed that the Askey-Wilson polynomials
give pairs of infinite-dimensional matrices which satisfy the Askey-Wilson relations.
We denote this pair of equations by AW (β, γ, γ∗, %, %∗, ω, η, η∗).

It is easy to notice that if (A,A∗) is a Leonard pair, then

(tA+ c, t∗A∗+ c∗), with c, c∗, t, t∗∈ K and t, t∗ 6= 0, (3)

is a Leonard pair as well. We say that the two Leonard pairs are related by the affine
transformation (A,A∗) 7→ (tA + c, t∗A∗+ c∗). Affine transformations act on Askey-
Wilson relations as well, as explained in Section 4 here below. For example, if β 6= 2
then the Askey-Wilson relations can be normalized so that γ = 0 and γ∗= 0. Affine
transformations can be used to normalize Leonard pairs, parameter arrays representing
them, or the Askey-Wilson relations conveniently.

This paper present convenient normalizations of Leonard pairs and their Askey-
Wilson relations. We generally assume that the dimension of the underling vector
space is at least 4, and use Terwilliger’s classification [Ter02b] (or [Ter04, Section 35])
of parameter arrays representing Leonard pairs. For parameter arrays of the q-type,
we present two normalizations: one that is close to Terwilliger’s general expressions in
[Ter02b], and one where Askey-Wilson coefficients are normalized most conveniently.
For other parameter arrays, we give one normalization. This work is more of book-
keeping kind than of deep research. Examples of Askey-Wilson relations for normalized
Leonard pairs are given in [TV04], [RT]. Indirectly, Askey-Wilson relations for Leonard
pairs arising from certain distince regular graphs are computed in [Cur01], [Go02].
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We note that Terwilliger’s classification of parameter arrays by certain families
of orthogonal polynomials from the Askey-Wilson scheme can be largely imitated to
categorize Leonard pairs and Askey-Wilson relations; see Sections 2 and 8 below. We
have the same types of Leonard pairs and of Askey-Wilson relations, except that the
quantum q-Krawtchouk and affine q-Krawtchouk types are merged.

The paper is organized as follows. In the next Section we discuss the relation
between Leonard pairs and parameter arrays. In Section 3 we recall expressions of
the Askey-Wilson coefficients in (1)–(2) in terms of parameter arrays. Section 4 deals
with possible normalizations of Askey-Wilson relations. Sections 5 and 6 present two
normalizations of q-parameter arrays and Askey-Wilson relations for them. Section
7 presents normalizations of other parameter arrays and Askey-Wilson relations for
them. In Section 8 we give a classification of Askey-Wilson relations consistent with the
classification of Leonard pairs. In the last Section we make a few general observations.

2 Leonard pairs and parameter arrays

Leonard pairs are represented and classified by parameter arrays. More precisely,
parameter arrays are in one-to-one correspondence with Leonard systems [Ter04, Def-
inition 3.2], and to each Leonard pair one associates 4 Leonard systems or parameter
arrays.

From now on, let d be a non-negative integer, and let V be a vector space with
dimension d+ 1 over K.

Definition 2.1 [Har05] Let (A,A∗) denote a Leonard pair on V . Let W denote a
vector space over K with finite positive dimension, and let (B,B∗) denote a Leonard
pair on W . By an isomorphism of Leonard pairs we mean an isomorphism of vector
spaces σ : V 7→ W such that σAσ−1 = B and σA∗σ−1 = B∗. We say that (A,A∗)
and (B,B∗) are isomorphic if there is an isomorphism of Leonard pairs from (A,A∗)
to (B,B∗).

Definition 2.2 By a parameter array over K, of diameter d, we mean a sequence

(θ0, θ1, . . . , θd; θ∗0 , θ
∗
1 , . . . , θ

∗
d; ϕ1, . . . , ϕd; φ1, . . . , φd) (4)

of scalars taken from K, that satisfy the following conditions:

1. θi 6= θj and θ∗1 6= θ∗j if i 6= j, for 0 ≤ i, j ≤ d.

2. ϕi 6= 0 and φi 6= 0, for 1 ≤ i, j ≤ d.

3. ϕi = φ1

i−1∑
j=0

θj − θd−j

θ0 − θd
+ (θ∗i − θ∗0) (θi−1 − θd), for 1 ≤ i, j ≤ d.

4. φi = ϕ1

i−1∑
j=0

θj − θd−j

θ0 − θd
+ (θ∗i − θ∗0) (θd−i+1− θ0), for 1 ≤ i, j ≤ d.
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5. The expressions
θi−2 − θi+1

θi−1 − θi
,

θ∗i−2 − θ∗i+1

θ∗i−1 − θ∗i

are equal and independent of i, for 2 ≤ i ≤ d− 1.

To get a Leonard pair from parameter array (4), one must choose a basis for V and
define the two linear transformations by the following matrices (with respect to that
basis): 

θ0

1 θ1

1 θ2
. . . . . .

1 θd


,



θ∗0 ϕ1

θ∗1 ϕ2

θ∗2
. . .
. . . ϕd

θ∗d


. (5)

Alternatively, the following two matrices define an isomorphic Leonard pair on V :

θd

1 θd−1

1 θd−2

. . . . . .

1 θ0


,



θ∗0 φ1

θ∗1 φ2

θ∗2
. . .
. . . φd

θ∗d


. (6)

Conversely, if (A,A∗) is a Leonard pair on V , there exists [Ter04, Section 21] a
basis for V with respect to which the matrices for A, A∗ have the bidiagonal forms
in (5), respectively. There exists other basis for V with respect to which the matri-
ces for A, A∗ have the bidiagonal forms in (6), respectively, with the same scalars
θ0, θ1, . . . , θd; θ∗0 , θ

∗
1 , . . . , θ

∗
d. Then the following 4 sequences are parameter arrays of

diameter d:

(θ0, θ1, . . . , θd; θ∗0 , θ
∗
1 , . . . , θ

∗
d; ϕ1, . . . , ϕd; φ1, . . . , φd), (7)

(θ0, θ1, . . . , θd; θ∗d, . . . , θ
∗
1 , θ

∗
0 ; φd, . . . , φ1; ϕd, . . . , ϕ1), (8)

(θd, . . . , θ1, θ0; θ∗0 , θ
∗
1 , . . . , θ

∗
d; φ1, . . . , φd; ϕ1, . . . , ϕd), (9)

(θd, . . . , θ1, θ0; θ∗d, . . . , θ
∗
1 , θ

∗
0 ; ϕd, . . . , ϕ1; φd, . . . , φ1). (10)

Up to isomorphism of Leonard pairs, each of these parameter arrays gives back (A,A∗)
by the construction above. There are no other parameter arrays with this property,
hence we associate precisely the parameter arrays in (7)–(10) to (A,A∗). Obviously,
θ0, θ1, . . . , θd and θ∗0 , θ

∗
1 , . . . , θ

∗
d are the eigenvalues of A and A∗, respectively.

We call the parameter arrays in (7)–(10) relatives of each other. They are connected
by permutations, which form the group isomorphic to Z2 × Z2. Note that the group
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action is without fixed points, since the eigenvalues θi’s (or θ∗i ’s) are distinct. Let ↓, ⇓
and ↓⇓ denote the permutations which transform (7) into (8), (9) and (10) respectively.
To be consistent with [Ter04, Section 4], we nominate the 4 parameter arrays associated
to the Leonard pair (A∗, A) as relatives of (7)–(10) as well.

Parameter arrays are classified in [Ter04, Section 35] and in [Ter02b]. For each pa-
rameter array, certain orthogonal polynomials naturally occur in entries of the transfor-
mation matrix between two bases characterized in Definition 1.1 for the corresponding
Leonard pair. Terwilliger’s classification largely mimics the terminating branch of
orthogonal polynomials in the Askey-Wilson scheme [KS94]. Specifically, the classi-
fication comprises Racah, Hahn, Krawtchouk polynomials and their q-versions, plus
Bannai-Ito and orphan polynomials. Classes of parameter arrays can be identified by
the type of corresponding orthogonal polynomials; we refer to them as Askey-Wilson
types. The type of a parameter array is unambiguously defined if d ≥ 3. We recapit-
ulate Terwilliger’s classification in Sections 5 through 7 by giving general normalized
parameter arrays of each type.

By inspecting Terwilliger’s general parameter arrays [Ter04, Section 35], one can
observe that the relation operators ↓, ⇓, ↓⇓ do not change the Askey-Wilson type of
a parameter array (but only the free parameters such as q, h, h∗, s there), except that
the ⇓ and ↓⇓ relations mix up the quantum q-Krawtchouk and affine q-Krawtchouk
types. Consequently, given a Leonard pair, all 4 associated parameter arrays have
the same type, except when parameter arrays of the quantum q-Krawtchouk or affine
q-Krawtchouk type occur. Therefore we can use the same classifying terminology for
Leonard pairs, except that we have to merge the quantum q-Krawtchouk and affine
q-Krawtchouk types.

3 Parameter arrays and AW relations

Let us consider a parameter array as in (7). Suppose that the corresponding Leonard
pair satisfies Askey-Wilson relations AW (β, γ, γ∗, %, %∗, ω, η, η∗). Note that the Askey-
Wilson relations are invariant under isomorphism of Leonard pairs. Expressions for
the 8 Askey-Wilson coefficients in terms of parameter arrays are presented in [TV04,
Theorem 4.5 and Theorem 5.3]. Here are the formulas:

β + 1 =
θi−2 − θi+1

θi−1 − θi
=
θ∗i−2 − θ∗i+1

θ∗i−1 − θ∗i
, (11)

γ = θi−1 − βθi + θi+1, (12)

γ∗ = θ∗i−1 − βθ∗i + θ∗i+1, (13)

% = θ2i − β θi θi−1 + θ2i−1 − γ (θi + θi−1), (14)

%∗ = θ∗ 2
i − βθ∗i θ

∗
i−1 + θ∗2i−1 − γ∗(θ∗i + θ∗i−1), (15)

ω = ai (θ∗i − θ∗i+1) + ai−1 (θ∗i−1 − θ∗i−2)− γ (θ∗i + θ∗i−1) (16)

= a∗i (θi − θi+1) + a∗i−1 (θi−1 − θi−2)− γ∗ (θi + θi−1), (17)

η = a∗i (θi−θi−1) (θi−θi+1)− γ∗ θ2i − ω θi, (18)
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η∗ = ai (θ∗i −θ∗i−1) (θ∗i −θ∗i+1)− γ θ∗i
2 − ω θ∗i . (19)

The expressions for β + 1 and ω are valid for 2 ≤ i ≤ d − 1, the expressions for %, %∗

are valid for 1 ≤ i ≤ d, and the expressions for γ, γ∗, η, η∗ are valid for 1 ≤ i ≤ d − 1.
The numbers ai, a

∗
i are defined (in the notation of previous Section) as

ai = trace E∗i A, a∗i = trace EiA
∗, for 0 ≤ i ≤ d.

These numbers are the diagonal entries in the tridiagonal forms of A, A∗ of Definition
1.1. In terms of parameter arrays, we have [Ter02a, Section 10]:

ai = θi +
ϕi

θ∗i − θ∗i−1

+
ϕi+1

θ∗i − θ∗i+1

(20)

= θd−i +
φi

θ∗i − θ∗i−1

+
φi+1

θ∗i − θ∗i+1

, (21)

a∗i = θ∗i +
ϕi

θi − θi−1
+

ϕi+1

θi − θi+1
(22)

= θ∗d−i +
φd−i+1

θi − θi−1
+

φd−i

θi − θi+1
. (23)

Here for i ∈ {0, d} we should take

ϕ0 = 0, ϕd+1 = 0, φ0 = 0, φd+1 = 0. (24)

The numbers θ−1, θd+1, θ
∗
−1, θd+1 can be left undetermined. Surely, the Askey-Wilson

coefficients are invariant under the action of ↓, ⇓, ↓⇓ on parameter arrays.
As stated in Theorem 1.3, the coefficient sequence β, γ, γ∗, %, %∗, ω, η, η∗ is unique

if d ≥ 3. If d = 2, we can take β freely and other coefficients get determined uniquely.
If d = 1, we can take the 3 coefficients β, γ, γ∗ freely. If d = 0, we can take the 6
coefficients β, γ, γ∗, %, %∗, ω freely.

4 Normalized Askey-Wilson relations

Let (A,A∗) denote a Leonard pair on V . Suppose that it satisfies the Askey-Wilson
relations AW (β, γ, γ∗, %, %∗, ω, η, η∗). It can be computed that Leonard pair (3) then
satisfies

AW
(
β, γ t+ (2− β) c, γ∗t∗ + (2− β) c∗, % t2 − 2γ c t+ (β − 2) c2,

%∗t∗2− 2γ∗c∗t∗+ (β−2) c∗2, ω t t∗− 2γ c∗t− 2γ∗c t∗+ 2(β−2) c c∗,

η t2t∗ − % c∗t2 − ω c t t∗ + γ∗c2t∗ + 2γ∗c c∗t+ (2− β) c2c∗,

η∗t t∗2− %∗c t∗2− ω c∗t t∗ + γ c∗2t+ 2γ c c∗t∗+ (2− β) c c∗2
)
. (25)

Note that β stays invariant. The affine transformations

(A,A∗) 7→ (tA+ c, t∗A∗+ c∗), with c, c∗, t, t∗∈ K, t, t∗ 6= 0, (26)
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can be used to normalize Leonard pairs so that their Askey-Wilson relations would have
a simple form. We refer to a transformations of the form (A,A∗) 7→ (A+ c, A∗+ c∗) as
an affine translation, and to a transformation of the form (A,A∗) 7→ (tA, t∗A∗) as an
affine scaling. Generally, we can use an affine translation to set some two Askey-Wilson
coefficients to zero, and then use an affine scaling to normalize some two non-zero
coefficients. Specifically, by affine translations we can achieve the following.

Lemma 4.1 The Askey-Wilson relations AW (β, γ, γ∗, %, %∗, ω, η, η∗) can be normal-
ized as follows:

1. If β 6= 2, we can set γ = 0, γ∗ = 0.

2. If β = 2, γ 6= 0, γ∗ 6= 0, we can set % = 0, %∗ = 0.

3. If β = 2, γ = 0, γ∗ 6= 0, we can set %∗ = 0, ω = 0.

4. If β = 2, γ∗= 0, γ 6= 0, we can set % = 0, ω = 0.

5. If β = 2, γ = 0, γ∗ = 0, ω2 6= %%∗, we can set η = 0, η∗ = 0.

6. If β = 2, γ = 0, γ∗ = 0, rk
(

ω % η
%∗ ω η∗

)
≤ 1, we can set η = 0, η∗ = 0.

7. Otherwise, we have

β = 2, γ = 0, γ∗ = 0, ω2 = %%∗, rk
(
ω % η

%∗ ω η∗

)
= 2.

Then can set either η = 0 or η∗ = 0, but not both.

In the first 5 cases, there is a unique affine translation to make the normalization. In
the last 2 cases, there are infinitely many normalizations by affine translations.

Proof. The first 4 cases are straightforward, including the uniqueness statement. If
β = 2, γ = 0, γ∗ = 0, the new Askey-Wilson relations (25) are

AW
(
2, 0, 0, % t2, %∗t∗2, ω tt∗,

(
η − ω a− % a∗

)
t2t∗,

(
η∗ − %∗a− ω a∗

)
t t∗2

)
,

where a = c/t and a∗ = c∗/t∗. To set the last two parameters to zero, we have to
solve two linear equations in a, a∗. If we have det

(
ω %
%∗ ω

)
6= 0, the solution is unique.

Otherwise we have either infinitely many or none solutions, which leads us to the last
two cases. 2

As it turns out, cases 6 and 7 of Lemma 4.1 do not occur for Askey-Wilson relations
satisfied by Leonard pairs if d ≥ 3. See part 3 of Theorem 8.1 below.

In Section 5, we normalize the general q-parameter arrays in Terwilliger’s classifi-
cation [Ter04, Section 35] with most handy changes in the explicit expressions. We use
the following simplest action of (26) on parameter arrays, consistent with the transfor-
mation of Leonard pairs:

θi 7→ t θi + c, θ∗i 7→ t∗θ∗i + c∗, ϕi 7→ t t∗ϕi, φi 7→ t t∗φi. (27)
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It turns out that the corresponding Askey-Wilson relations follow the specification of
part 1 of Lemma 4.1 immediately.

Suppose that we normalized a pair of Askey-Wilson relations to satisfy implications
of Lema 4.1, and suppose that cases 6 and 7 do not apply. Then the only affine
transformations which preserve two specified zero coefficients are affine scalings. One
can use affine scalings to normalize some two non-zero coefficients to convenient values.
Sections 6 and 7 present such normalized parameter arrays that in their Askey-Wilson
relations two non-zero coefficients are basically constants. (More precisely, in the q-
cases they depend on q, or equivalently, on β.) The scaling normalization is explained
more thoroughly in Section 8.

5 Normalized q-parameter arrays

Here we present the most straightforward normalizations of the general parameter
arrays in [Ter04, Section 35] with the q-parameter. Lemma 5.2 below gives the Askey-
Wilson relations for the corresponding Leonard pairs. The Askey-Wilson relations turn
out to be normalized according to part 1 of Lemma 4.1.

Lemma 5.1 The parameter arrays in [Ter04, Examples 35.2–35.8] can be normalized
by affine transformations (27) to the following forms:

• The q-Racah case: θi = q−i + s qi+1, θ∗i = q−i + s∗qi+1.

ϕi = q1−2i
(
1− qi

) (
1− qi−d−1

) (
1− r qi

) (
r − s s∗qd+1+i

) /
r,

φi = q1−2i
(
1− qi

) (
1− qi−d−1

) (
r − s∗qi

) (
s qd+1 − r qi

) /
r.

• The q-Hahn case: θi = q−i, θ∗i = q−i + s∗qi+1,

ϕi = q1−2i
(
1− qi

) (
1− qi−d−1

) (
1− r qi

)
,

φi = −q1−i
(
1− qi

) (
1− qi−d−1

) (
r − s∗qi

)
.

• The dual q-Hahn case: θi = q−i + s qi+1, θ∗i = q−i,

ϕi = q1−2i
(
1− qi

) (
1− qi−d−1

) (
1− r qi

)
,

φi = qd+2−2i
(
1− qi

) (
1− qi−d−1

) (
s− r qi−d−1

)
.

• The q-Krawtchouk case: θi = q−i, θ∗i = q−i + s∗qi+1,

ϕi = q1−2i
(
1− qi

) (
1− qi−d−1

)
,

φi = s∗q
(
1− qi

) (
1− qi−d−1

)
.

• The dual q-Krawtchouk case: θi = q−i + s qi+1, θ∗i = q−i,

ϕi = q1−2i
(
1− qi

) (
1− qi−d−1

)
,

φi = s qd+2−2i
(
1− qi

) (
1− qi−d−1

)
.
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• The quantum q-Krawtchouk case: θi = qi+1, θ∗i = q−i,

ϕi = −r q1−i
(
1− qi

) (
1− qi−d−1

)
,

φi = qd+2−2i
(
1− qi

) (
1− qi−d−1

) (
1− r qi−d−1

)
.

• The affine q-Krawtchouk case: θi = q−i, θ∗i = q−i,

ϕi = q1−2i
(
1− qi

) (
1− qi−d−1

) (
1− r qi

)
,

φi = −r q1−i
(
1− qi

) (
1− qi−d−1

)
.

In each case, q, s, s∗, r are non-zero scalar parameters such that θi 6= θj, θ∗i 6= θj for
0 ≤ i < j ≤ d, and ϕi 6= 0, φi 6= 0 for 1 ≤ i ≤ d.

Proof. By affine translations, we adjust Terwilliger’s parameters θ0, θ∗0 so that we
have only summands depending on i in the expanded expressions for θi, θ∗i in [Ter04,
Examples 35.2–35.8]. By affine scalings, we set Terwilliger’s parameters h, h∗ to the
value 1. In the quantum q-Krawtchouk case [Ter04, Example 35.5] there is no parameter
h, so we set s = 1. Other parameters remain unchanged, except that in the q-Racah
case we rename r1 to r and set r2 = s s∗qd+1/r. 2

Lemma 5.2 Let q, s, s∗, r denote the same scalar parameters as in the previous Lemma.
We use the following notations:

S = s qd+1 + 1, S∗ = s∗qd+1 + 1, R = r +
s s∗ qd+1

r
, (28)

Q = qd+1 + 1, K = − (q2− 1)2

q
, K∗ =

(q − 1)2

qd+1
. (29)

The Askey-Wilson relations for the parameter arrays of Lemma 5.1 are:

• For the q-Racah case:

AW
(
q + q−1, 0, 0, sK, s∗K, −K∗(S S∗+RQ) ,

(q + 1)K∗(S R+ s S∗Q) , (q + 1)K∗(S∗R+ s∗S Q)
)
. (30)

• For the q-Hahn case:

AW
(
q + q−1, 0, 0, 0, s∗K, −K∗(S∗ + r Q) ,

(q + 1)K∗r, (q + 1)K∗(S∗r + s∗Q)
)
. (31)

• For the dual q-Hahn case:

AW
(
q + q−1, 0, 0, sK, 0, −K∗(S + r Q) ,

(q+1)K∗(S r + sQ) , (q+1)K∗r
)
. (32)
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• For the q-Krawtchouk case:

AW
(
q + q−1, 0, 0, 0, s∗K, −K∗S∗, 0, (q+1)K∗s∗Q

)
. (33)

• For the dual q-Krawtchouk case:

AW
(
q + q−1, 0, 0, sK, 0, −K∗S, (q+1)K∗sQ, 0

)
. (34)

• For the quantum q-Krawtchouk case:

AW
(
q + q−1, 0, 0, 0, 0, −K∗(qd+1+ r Q

)
, (q+1)(q−1)2r, (q+1)K∗r

)
. (35)

• For the affine q-Krawtchouk case:

AW
(
q + q−1, 0, 0, 0, 0, −K∗(1 + r Q) , (q+1)K∗r, (q+1)K∗r

)
. (36)

Proof. Direct computations with formulas (11)–(22). 2

6 Alternative normalized q-arrays

Here we present alternative normalizations of the general parameter arrays in [Ter04,
Section 35] with the general q-parameter. The parameters are rescaled, and the free
parameters q, s, s∗, r are different. In particular, the q of the previous Section is replaced
by q2. The normalization for the q-Racah case is proposed in [RT].

The corresponding Askey-Wilson relations are normalized according to part 1 of
Lemma 4.1, and two non-zero values are q-constants. Other advantages are: these
normalized parameter arrays are more symmetric, and the set of these parameter arrays
is preserved by the ↓, ⇓, ↓⇓ operations (see Section 9).

Lemma 6.1 The parameter arrays in [Ter04, Examples 35.2–35.8] can be normalized
by affine transformations (27) to the following forms:

• The q-Racah case: θi = s qd−2i +
q2i−d

s
, θ∗i = s∗qd−2i +

q2i−d

s∗
.

ϕi =
q2d+2−4i

s s∗r

(
1− q2i

) (
1− q2i−2d−2

) (
s s∗ − r q2i−d−1

) (
s s∗r − q2i−d−1

)
,

φi =
q2d+2−4i

s s∗r

(
1− q2i

) (
1− q2i−2d−2

) (
s∗r − s q2i−d−1

) (
s∗ − s r q2i−d−1

)
.

• The q-Hahn case: θi = r qd−2i, θ∗i = s∗qd−2i +
q2i−d

s∗
,

ϕi =
q2d+2−4i

r

(
1− q2i

) (
1− q2i−2d−2

) (
s∗r2 − q2i−d−1

)
,

φi = −q
d+1−2i

r s∗
(
1− q2i

) (
1− q2i−2d−2

) (
s∗ − r2q2i−d−1

)
.
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• The dual q-Hahn case: θi = s qd−2i +
q2i−d

s
, θ∗i = r qd−2i,

ϕi =
q2d+2−4i

r

(
1− q2i

) (
1− q2i−2d−2

) (
s r2 − q2i−d−1

)
,

φi =
q2d+2−4i

r s

(
1− q2i

) (
1− q2i−2d−2

) (
r2 − s q2i−d−1

)
.

• The q-Krawtchouk: θi = qd−2i, θ∗i = s∗qd−2i +
q2i−d

s∗
,

ϕi = s∗ q2d+2−4i
(
1− q2i

) (
1− q2i−2d−2

)
,

φi =
1
s∗

(
1− q2i

) (
1− q2i−2d−2

)
.

• The dual q-Krawtchouk: θi = s qd−2i +
q2i−d

s
, θ∗i = qd−2i,

ϕi = s q2d+2−4i
(
1− q2i

) (
1− q2i−2d−2

)
,

φi =
q2d+2−4i

s

(
1− q2i

) (
1− q2i−2d−2

)
.

• The quantum q-Krawtchouk: θi = r q2i−d, θ∗i = r qd−2i,

ϕi = −q
d+1−2i

r

(
1− q2i

) (
1− q2i−2d−2

)
,

φi =
q2d+2−4i

r

(
1− q2i

) (
1− q2i−2d−2

) (
r3 − q2i−d−1

)
.

• The affine q-Krawtchouk: θi = r qd−2i, θ∗i = r qd−2i,

ϕi =
q2d+2−4i

r

(
1− q2i

) (
1− q2i−2d−2

) (
r3 − q2i−d−1

)
,

φi = −q
d+1−2i

r

(
1− q2i

) (
1− q2i−2d−2

)
.

In each case, q, s, s∗, r are non-zero scalar parameters such that θi 6= θj, θ∗i 6= θj for
0 ≤ i < j ≤ d, and ϕi 6= 0, φi 6= 0 for 1 ≤ i ≤ d.

Proof. In every case of Lemma 5.1, we substitute

q 7→ q2, s 7→ 1
s2 q2d+2

, s∗ 7→ 1
s∗2q2d+2

.

Besides, in the q-Racah, q-Hahn, dual q-Hahn, quantum q-Krawtchouk and affine q-
Krawtchouk cases we substitute r by, respectively,

r

s s∗qd+1
,

1
s∗r2qd+1

,
1

s r2qd+1
,

qd+1

r3
,

1
r3qd+1

.
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After that, we apply affine scaling. We use formula (27) with c = 0, c∗ = 0 and (t, t∗)
equal to, respectively in the listed order,

(s qd, s∗qd), (r qd, s∗qd), (s qd, r qd), (qd, s∗qd), (s qd, qd),

(r q−d−2, r qd), (r qd, r qd).

2

Lemma 6.2 As in the previous Lemma, let q, s, s∗, r denote non-zero scalar parame-
ters. We use the following notations:

Qj = qj + q−j , Q∗j = qj − q−j , for j = 1, 2, . . ., (37)

S = s+
1
s
, S∗ = s∗ +

1
s∗
, R = r +

1
r
. (38)

The Askey-Wilson relations for the parameter arrays of Lemma 6.1 are:

• For the q-Racah case:

AW
(
Q2, 0, 0, −Q∗22, −Q∗22, −Q∗12(S S∗+Qd+1R) ,

Q1Q
∗
1
2(S R+Qd+1S

∗) , Q1Q
∗
1
2(S∗R+Qd+1S)

)
. (39)

• For the q-Hahn case:

AW
(
Q2, 0, 0, 0, −Q∗22, −Q∗12

(
S∗r +Qd+1r

−1
)
,

Q1Q
∗
1
2, Q1Q

∗
1
2
(
S∗r−1 +Qd+1r

) )
. (40)

• For the dual q-Hahn case:

AW
(
Q2, 0, 0, −Q∗22, 0, −Q∗12

(
S r +Qd+1r

−1
)
,

Q1Q
∗
1
2
(
S r−1+Qd+1r

)
, Q1Q

∗
1
2
)
. (41)

• For the q-Krawtchouk case:

AW
(
Q2, 0, 0, 0, −Q∗22, −Q∗12S∗, 0, Q1Q

∗
1
2Qd+1

)
. (42)

• For the dual q-Krawtchouk case:

AW
(
Q2, 0, 0, −Q∗22, 0, −Q∗12S, Q1Q

∗
1
2Qd+1, 0

)
. (43)

• For the quantum q-Krawtchouk and affine q-Krawtchouk cases:

AW
(
Q2, 0, 0, 0, 0, −Q∗12

(
r2 +Qd+1r

−1
)
, Q1Q

∗
1
2, Q1Q

∗
1
2
)
. (44)

Proof. Transform the Askey-Wilson relations in Lemma 5.2 with the same substitu-
tions and affine scalings as in the previous proof. Note that in the notation of this
Lemma, the expressions S, S∗, R,Q,K,K∗ of Lemma 5.2 should be replaced by, re-
spectively, S/s, S∗/s∗, R/qd+1s s∗, qd+1Qd+1, −q2Q∗22 and q−2dQ∗1

2. 2
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7 Other parameter arrays

Here we present normalizations of the remaining general parameter arrays in [Ter04,
Section 35]. The corresponding Askey-Wilson relations are normalized according to
Lemma 4.1, and two non-zero values are constants. Since we generally assume that
char K 6= 2, the orphan case is missing in Lemmas. It is briefly discussed in Remark
7.3.

Lemma 7.1 The parameter arrays in [Ter04, Examples 35.9–35.13] can be normalized
by affine transformations (27) to the following forms:

• The Racah case: θi = (i+ u)(i+ u+ 1), θ∗i = (i+ u∗)(i+ u∗ + 1),

ϕi = i (i− d− 1) (i+ u+ u∗ + v) (i+ u+ u∗ + d+ 1− v),

φi = i (i− d− 1) (i− u+ u∗ − v) (i− u+ u∗ − d− 1 + v).

• The Hahn case: θi = i+ v − d
2 , θ∗i = (i+ u∗)(i+ u∗ + 1),

ϕi = i (i− d− 1) (i+ u∗+ 2v),

φi = −i (i− d− 1) (i+ u∗− 2v).

• The dual Hahn case: θi = (i+ u)(i+ u+ 1), θ∗i = i+ v − d
2 ,

ϕi = i (i− d− 1) (i+ u+ 2v),

φi = i (i− d− 1) (i− u+ 2v − d− 1).

• The Krawtchouk case: θi = i− d
2 , θ∗i = i− d

2 ,

ϕi = v i (i− d− 1),

φi = (v − 1) i (i− d− 1).

• The Bannai-Ito case: θi = (−1)i
(
i+ u− d

2

)
, θ∗i = (−1)i

(
i+ u∗− d

2

)
,

ϕi =


−i

(
i+ u+ u∗+ v − d+1

2

)
, for i even, d even.

−(i− d− 1)
(
i+ u+ u∗− v − d+1

2

)
, for i odd, d even.

−i (i− d− 1), for i even, d odd.

v2 −
(
i+ u+ u∗− d+1

2

)2
, for i odd, d odd.

φi =


i
(
i− u+ u∗− v − d+1

2

)
, for i even, d even.

(i− d− 1)
(
i− u+ u∗+ v − d+1

2

)
, for i odd, d even.

−i (i− d− 1), for i even, d odd.

v2 −
(
i− u+ u∗− d+1

2

)2
, for i odd, d odd.
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In each case, u, u∗, v are scalar parameters such that θi 6= θj, θ∗i 6= θj for 0 ≤ i < j ≤ d,
and ϕi 6= 0, φi 6= 0 for 1 ≤ i ≤ d.

Proof. Like in the proof of Lemma 5.1, we adjust Terwilliger’s parameters θ0, θ∗0 by an
affine translation, and then adjust other two parameters by some scaling. We also make
linear substitutions for the remaining parameters. In the Racah case, we substitute

s 7→ 2u, s∗ 7→ 2u∗, r1 7→ u+ u∗ + v, so that r2 = u+ u∗ + d+ 1− v.

Then we adjust θ0 = u2 + u, θ∗0 = u∗2 + u∗, h = 1, h∗ = 1. In the Hahn case, we
substitute s∗ 7→ 2u∗, r 7→ u∗+ 2v and adjust θ0 = v − d

2 , θ∗0 = u∗2+ u∗, h∗= 1, s = 1.
In the dual Hahn case, we substitute s 7→ 2u, r 7→ u + 2v and adjust θ0 = u2 + u,
θ∗0 = v − d

2 , h = 1, s = 1. In the Krawtchouk case, we substitute r 7→ v and adjust
θ0 = −d

2 , θ∗0 = −d
2 , s = 1, s∗= 1. In the Bannai-Ito case, we substitute

s 7→ d+ 1− 2u, s∗ 7→ d+ 1− 2u∗, r1 7→ u+ u∗ + v − d+1
2 ,

so that r2 7→ u+ u∗ − v − d+1
2 , and adjust θ0 = u− d

2 , θ∗0 = u∗− d
2 , h = 1

2 , h∗= 1
2 . 2

Lemma 7.2 Let u, u∗, v denote the same scalar parameters as in the previous Lemma.
The Askey-Wilson relations for the parameter arrays of Lemma 7.1 are:

• For the Racah case:

AW
(
2, 2, 2, 0, 0,−2u2 − 2u∗2− 2v2 − 2(d+1)(u+ u∗ + v)− 2d2 − 4d,

2u (u+ d+ 1) (v − u∗) (v + u∗ + d+ 1) , (45)

2u∗(u∗+ d+ 1) (v − u) (v + u+ d+ 1)
)
.

• For the Hahn case:

AW
(
2, 0, 2, 1, 0, 0, −(u∗+ 1)(u∗+ d)− 2v2 − d2

2 , −4u∗(u∗+ d+ 1)v
)
. (46)

• For the dual Hahn case:

AW
(
2, 2, 0, 0, 1, 0, −4u(u+ d+ 1) v, −(u+ 1)(u+ d)− 2v2 − d2

2

)
. (47)

• For the Krawtchouk case:

AW
(
2, 0, 0, 1, 1, 2v − 1, 0, 0

)
. (48)

• For the Bannai-Ito case, if d is even:

AW
(
− 2, 0, 0, 1, 1, 4uu∗− 2(d+1) v, 2uv − (d+1)u∗, 2u∗v − (d+1)u

)
. (49)

• For the Bannai-Ito case, if d is odd:

AW
(
− 2, 0, 0, 1, 1, −2u2 − 2u∗2 + 2v2 + (d+1)2

2 ,

−u2 + u∗2 − v2 + (d+1)2

4 , u2− u∗2− v2+ (d+1)2

4

)
. (50)
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Proof. Direct computations with formulas (11)–(22). 2

Remark 7.3 The orphan case (with char K = 2 and d = 3) can be normalized as
follows:

(θ0, θ1, θ2, θ3) = (0, s+ 1, 1, s) ,

(θ∗0 , θ
∗
1 , θ

∗
2 , θ

∗
3) = (0, s∗+ 1, 1, s∗) ,

(ϕ1, ϕ2, ϕ3) = (r, 1, r + s+ s∗) ,

(φ1, φ2, φ3) = (r + s+ s s∗, 1, r + s∗+ s s∗) .

Here adjusted θ0 = 0, θ∗0 = 0, h = 1, h∗ = 1 in [Ter04, Example 35.14]. The Askey-
Wilson relations are

AW (0, 1, 1, s2 + s, s∗2 + s∗, s s∗, r s, r s∗). (51)

It can be renormalized to η = 0, η∗ = 0 by affine translations (in 4 ways, generally).
The normalized the coefficients η, η∗, ω in (51) are dependent on two free parameters,
so there is a relation between them. Here is the relation, in the form invariant under
affine rescaling: (

ω2− %%∗
)2

= ω (γω − γ∗%)(γ∗ω − γ%∗). (52)

Note that in the characteristic 2, the normalization of part 1 in Lemma 4.1 is not
available, so our results are incomplete if char K = 2.

8 Classification of AW relations

Askey-Wilson relations can be consistently classified by families of orthogonal polyno-
mials in the same way as Leonard pairs. The classification is presented in the first two
columns of Table 1. In each line, the underlined equalities can be achieved by using
affine translations if the preceding conditions are satisfied. If β 6= ±2, by %̂, %̂∗, ω̂, η̂,
η̂∗ we denote the Askey-Wilson coefficients in a normalization specified by part 1 of
Lemma 4.1.

The first part of the following theorem establishes the consistency of Askey-Wilson
types for Leonard pairs and for Askey-Wilson relations.

Theorem 8.1 Assume that d ≥ 3. Let (A,A∗) denote a Leonard pair on V , and let
AW denote the Askey-Wilson relations satisfied by (A,A∗).

1. The Askey-Wilson relations AW have the same Askey-Wilson type as the Leonard
pair (A,A∗).

2. If there is other Leonard pair on V that satisfies AW, it has the same Askey-
Wilson type as (A,A∗).
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Askey-Wilson type Askey-Wilson coefficients with Leonard pairs

q-Racah β 6= ±2, γ = γ∗= 0, %̂ %̂∗ 6= 0 —

q-Hahn β 6= ±2, γ = γ∗= 0, %̂ = 0, %̂∗η̂ 6= 0 —

Dual q-Hahn β 6= ±2, γ = γ∗= 0, %̂∗= 0, %̂ η̂∗ 6= 0 —

q-Krawtchouk β 6= ±2, γ = γ∗= 0, %̂ = η̂ = 0 %̂∗η̂∗ 6= 0

Dual q-Krawtchouk β 6= ±2, γ = γ∗= 0, %̂∗= η̂∗= 0 %̂ η̂ 6= 0

Quantum/affine
q-Krawtchouk β 6= ±2, γ = γ∗= 0, %̂ = %̂∗= 0 η̂ η̂∗ 6= 0

Racah β = 2, γ γ∗ 6= 0, % = %∗ = 0 —

Hahn β = 2, γ = 0, γ∗ 6= 0, %∗ = 0 % 6= 0, ω = 0

Dual Hahn β = 2, γ∗= 0, γ 6= 0, % = 0 %∗ 6= 0, ω = 0

Krawtchouk β = 2, γ = γ∗= 0 %%∗ 6= 0, η = η∗= 0

Bannai-Ito β = −2, γ = γ∗ = 0 %̂ %̂∗ 6= 0

Table 1: Classification of Askey-Wilson relations

3. There exist unique affine translation which normalizes AW according to the spec-
ifications of Lemma 4.1.

4. The Askey-Wilson relations AW satisfy all inequalities in the last two columns of
Table 1 on the corresponding line. All underlined equalities can be achieved after
an affine translation, and such an affine translation is unique. The indicated
non-zero coefficients can be normalized to any chosen values by an affine scaling.

Proof. For the first statement, check the results in Section 5 (or Section 6) and
Section 7, and observe that the Askey-Wilson relations associated to any parameter
array have the same Askey-Wilson type as the parameter array, with the exception of
the ambiguity between the quantum q-Krawtchouk and affine q-Krawtchouk types.

The second statement is an immediate consequence.
For the third statement, we have to prove that cases 6 and 7 of Lemma 4.1 do not

apply to AW . Assuming the contrary, AW would have the Krawtchouk type. In the
corresponding normalized form of Lemma 7.2 we would have v ∈ {0, 1}. But then the
Krawtchouk parameter array of Lemma 7.1 degenerates, since φi = 0 or ψi = 0 for all
i = 1, 2, . . . , d. The third statement follows.

The inequalities of the last column of Table 1 can be checked by inspecting all
Askey-Wilson relations in Lemmas 5.2, 6.2 and 7.2. Normalization by affine transla-
tions follows from the Lemma 4.1 and the previous part here. Normalization by affine
scalings is clear. 2

Note that the normalization specified by Lemma 4.1 follows implications of part
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4 of Theorem 8.1. By part 3 of Theorem 8.1, there is a unique affine translation to
set two specified Askey-Wilson coefficients to zero. For each type of Leonard pairs, we
get two Askey-Wilson coefficients which are certainly non-zero after the normalizing
affine translation. These coefficients can be characterized as follows: they are the first
non-zero (after the normalizing translation) coefficients in the two sequences

(γ, %, η, η∗) and (γ∗, %∗, η∗, η). (53)

By affine scalings, the two coefficients can be normalized to any convenient values. In
the Askey-Wilson relations of Lemmas 6.2 and 7.2, the normalized values depend only
on β:

λ, λ∗ : 2 (if β = 2);

%, %∗ :

{
4−β2, if β 6= ±2,

1, if β = ±2;
(54)

η, η∗ :

{ √
β+2 (β−2), if ηη∗ 6= 0 or ω = 0,

√
β+2 (β−2)Qd+1, if ηη∗ = 0 and ω 6= 0.

Qd+1 can be independently defined by the linear recurrence Qn+2 = β Qn−Qn−2 with
the initial values Q−1 = Q1 =

√
β+2, Q0 = 2, Q2 = β. One can take for

√
β+2 any

of the two values of the square root. For Lemma 6.2, we should identify
√
β + 2 with

q + q−1.
The scaling normalization is not unique for individual Leonard pairs, in general. We

can usually multiply A and A∗ by some small roots of unity and keep the same values
of the two non-zero coefficents. A list of these affine scalings is given by the first two
columns of Table 2 below. The effect of changing the sign of

√
β+2 is multiplication

of A or (and) A∗ by −1; see Table 3 below.

9 Some conclusions

Our results in Sections 5 and 7 can be conveniently used to compute the Askey-Wilson
relations for any Leonard pair on V . To do this, one may take a parameter array
corresponding to the Leonard pair, find an affine transformation (26) which normalizes
by (27) the parameter array to one of the forms of Lemma 5.1 or Lemma 7.1, pick up
the corresponding normalized Askey-Wilson relations in Lemma 5.2 or Lemma 7.2, and
apply the inverse affine transformation to them using formula (25). This procedure can
be applied for any d, although for d < 3 the type of a representing parameter array is
ambiguous and the Askey-Wilson relations are not unique.

For the rest of this Section, we refer to the results of Sections 6 and 7. We assume
d ≤ 3 and adopt the following terminology. A pair of Askey-Wilson relations is called
normalized if it satisfies the specifications of Lemma 4.1 and the description in the pre-
vious Section; see (53) and (54). A Leonard pair is normalized if it satisfies normalized
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Askey-Wilson Affine scaling Converting normalized
type (t, t∗) parameter array

q-Racah (−1, 1) s 7→ −s, r 7→ −r
(1,−1) s∗ 7→ −s∗, r 7→ −r

q-Hahn (
√
−1,−1) s∗ 7→ −s∗, r 7→

√
−1 r

Dual q-Hahn (−1,
√
−1) s 7→ −s, r 7→

√
−1 r

q-Krawtchouk (1,−1) s∗ 7→ −s∗

Dual q-Krawtchouk (−1, 1) s 7→ −s
Quantum and affine
q-Krawtchouk (ζ3, ζ3) r 7→ ζ3 r

Racah — —

Hahn (−1, 1) ⇓ and v 7→ −v
Dual Hahn (1,−1) ↓ and v 7→ −v
Krawtchouk (−1, 1) ⇓

(1,−1) ↓
Bannai-Ito (−1, 1) If d even: ⇓ and u 7→ −u, v 7→ −v

(1,−1) If d even: ↓ and u∗ 7→ −u∗, v 7→ −v

Table 2: Reparametrization of different normalizations

Askey-Wilson relations. A parameter array is normalized if it can be expressed in one
of the forms of Lemma 6.1 or Lemma 7.1.

We consider the following questions:

Question 9.1 Given a Leonard pair, how unique is its normalization?

Question 9.2 Are normalized parameter arrays represented uniquely by the forms in
Lemmas 6.2 and 7.2?

Question 9.3 Do the relation operators ↓, ⇓, ↓⇓ preserve the set of normalized pa-
rameter arrays?

Question 9.4 Is every normalized Leonard pair representable by a normalized param-
eter array?

The first question is equivalent to the following: How unique is normalization of
the Askey-Wilson relations for a Leonard pair? As explained in the previous Section,
non-uniqueness occurs for two reasons:

• There exist affine scalings by small roots of unity that leave the Askey-Wilson
relations invariant.
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Askey-Wilson Change of sign Parameter array
type of

√
β+2 stays invariant

q-Racah — r 7→ 1/r; also (55), (56)

q-Hahn q 7→ −q, s∗ 7→ (−1)d+1s∗ —

Dual q-Hahn q 7→ −q, s 7→ (−1)d+1s —

q-Krawtchouk If d odd: q 7→ −q, s∗ 7→ −s∗ If d even: q 7→ −q
Dual q-Krawtchouk If d odd: q 7→ −q, s 7→ −s If d even: q 7→ −q
Quantum and affine
q-Krawtchouk q 7→ −q, r 7→ (−1)d+1r —

Racah — v 7→ −v − d− 1

Bannai-Ito — If d odd: v 7→ −v

Table 3: Alternative normalization and invariant reparametrizations

• There exists an alternative normalization of the two-nonzero Aske-Wilson coeffi-
cients, with the other sign of

√
β+2.

The affine scalings are listed in the first two columns of Table 2. By ζ3 we denote
a primitive root of unity. In the q-Racah, Krawtchouk and Bannai-Ito cases, two
given scalings can be composed. In the q-Hahn, dual q-Hahn and quantum/affine q-
Krawtchouk cases, there are non-trivial iterations of the given scalings. Normalizations
are unique only in the Racah case. The third column of Table 2 gives a conversion
of the parameter array for corresponding rescaled Leonard pairs. Apparently, in the
Bannai-Ito case with odd d, parameter arrays for rescaled Leonard pairs cannot be
reparametrized. (See part 2 of Lemma 9.5 below).

The change of sign of
√
β+2 effectively changes the sign of A or A∗ (or both). This

can happen in q-Hahn cases and q-Krawtchouk cases. Corresponding conversions of
parameter arrays are given in the second column of Table 3.

Questions 9.2 and 9.3 determine how unique are representations of normalized
Leonard pairs by normalized parameter arrays. Invariant reparametrization of param-
eter arrays do occur. They are given in the third column of Table 3. In the q-Racah
case, we also have the following invariant transformations:

q 7→ 1/q, s 7→ 1/s, s∗ 7→ 1/s∗; (55)

q 7→ −q, s 7→ (−1)ds, s∗ 7→ (−1)ds∗, r 7→ (−1)d+1r. (56)

The third question is thoroughly answered in Table 4. (“Switch” means interchanging
the quantum q-Krawtchouk and affine q-Krawtchouk types of parameter arrays.) Of
course, ↓⇓ is the composition of ↓ and ⇓. As wee see, the relation operators preserve
normalization of parameter arrays in all q-cases, in the Racah case, and in the Bannai-
Ito case with odd d.
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Askey-Wilson type Conversion to ⇓ Conversion to ↓
q-Racah s 7→ 1/s s∗ 7→ 1/s∗

q-Hahn q 7→ 1/q, s∗ 7→ 1/s∗ s∗ 7→ 1/s∗

Dual q-Hahn s 7→ 1/s q 7→ 1/q, s 7→ 1/s

q-Krawtchouk q 7→ 1/q, s∗ 7→ 1/s∗ s∗ 7→ 1/s∗

Dual q-Krawtchouk s 7→ 1/s q 7→ 1/q, s 7→ 1/s

Quantum/affine q-Krawtchouk Switch Switch and q 7→ 1/q

Racah u 7→ −u− d− 1 u∗ 7→ −u∗− d− 1

Hahn — u∗ 7→ −u∗− d− 1

Dual Hahn u 7→ −u− d− 1 —

Bannai-Ito, d odd u 7→ −u u∗ 7→ −u∗

Table 4: Relative parameter arrays

Question 9.4 is answered by the following Lemma.

Lemma 9.5 1. All normalized Leonard pairs can be represented by a normalized
parameter array, except in the Bannai-Ito case with odd d.

2. Suppose that d is odd. Let (B,B∗) denote the Leonard pair represented by the
parameter array in Lemma 7.1 of the Bannai-Ito type. Then a general normalized
Leonard pair of the Bannai-Ito type (with odd d) has one of the following forms:

(B,B∗), (−B,B∗), (B,−B∗), (−B,−B∗). (57)

Parameter arrays for these 4 Leonard pairs cannot be transformed to each other
by change of the parameters u, u∗, v or the relation operations ↓, ⇓, ↓⇓.

Proof. Let (A,A∗) denote a normalized Leonard pair on V . Let Φ denote a parameter
array for (A,A∗). Let Φ# denote a normalization of Φ by (27); it can be expressed in
one of the forms of Lemmas 6.2 and 7.2. The parameter arrays Φ and Φ# differ by
an affine scaling from Table 2, plus (in some q-cases) possibly the change of the sign
of
√
β+2 in the Askey-Wilson relations. Flipping the sign of the square root can be

reparametrized after replacing q by −q b Table 3. Table 2 indicates reparametrizations
for all relevant affine scalings, except for the Bannai-Ito case with odd d. Hence Φ is
normalized as well, except perhaps when it has the Bannai-Ito type and d is odd.

In the Bannai-Ito case with odd d, Φ# is a parameter array either for (A,A∗), or
(−A,A∗), or (A,−A∗), or (−A,−A∗). Besides, Φ# has the following property: even-
indexed θi’s and θ∗i ’s form increasing sequences. The relation operators preserve this
property, but multiplication of A or A∗ by −1 reverses it for θi’s or θ∗i ’s. Therefore only
one of the four Leonard pairs (±A,±A∗) is a specialization of (B,B∗). The conclusion
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is that (A,A∗) is a specialization of precisely one of the four Leonard pairs in (57). All
claims follow. 2
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Normalized Leonard pairs and Askey-Wilson relations


