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Abstract. Akaike’s information criterion (AIC) is proposed for evaluating statistical models
constructed by the maximum likelihood estimators under the situation where the parametric
models contain the true model. In order to obtain AIC, it suffices to get a log likelihood
function and the maximum likelihood estimator. However, we can not generally derive AIC
for discretely observed diffusion processes since the transition densities of diffusion processes
do not commonly have explicit forms. This paper presents AIC type of information criterion
for discretely observed ergodic diffusion processes. The information criterion is constructed
by using an approximate log likelihood function and an asymptotically efficient estimator. The
approximate log likelihood function is based on a result of Dacunha-Castelle and Florens-Zmirou
(1986). The asymptotically efficient estimator is derived from a contrast function based on a
locally Gaussian approximation.
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1 Introduction

In this paper we consider a family of one-dimensional diffusion processes defined by the stochastic
differential equations

dXt = b(Xt, α)dt + σ(Xt, β)dwt, t ∈ [0, T ], (1)
X0 = x0,

where θ = (α, β) ∈ Θα × Θβ = Θ with Θα and Θβ being compact convex subsets of Rp and
Rq, respectively. Furthermore, b is an R-valued function defined on R×Θα, σ is an R-valued
function defined on R×Θβ, and w is a one-dimensional standard Wiener process. We assume
that the drift b and the diffusion coefficient σ are known apart from the parameters α and
β. Moreover, it is assumed that the process X is ergodic for every θ with invariant probability
measure µθ. For details of ergodic diffusion processes and the invariant probability measures, see
Kutoyants (2004). The data we treat are discrete observations Xn = (Xtn

k
)0≤k≤n with tnk = khn,

where hn is the discretization step. The type of asymptotics we consider is when hn → 0,
nhn →∞ and nh2

n → 0 as n →∞.
Using an information criterion, we discuss the problem of choosing a statistical model among

specified parametric models which include the true model. In order to explain the concepts
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of information criteria, we treat the following simple situation for the moment. Based on the
information contained in the observations Xn = xn, we choose a parametric model which consists
of a family of probability densities {f(xn, θ); θ ∈ Θ}. We assume that this specified family of
probability densities contain the true density g(xn) := f(xn, θ0). The adopted parametric model
is estimated by replacing the unknown parameter vector θ with an estimator θ̂(Xn), for example
the maximum likelihood estimator. Then a future observation Zn = zn derived from the true
density g(zn) is predicted by using the statistical model f(zn, θ̂(Xn)). We can also recognize
that g(zn) is predicted by the statistical model f(zn, θ̂(Xn)). After fitting a parametric model to
the observations Xn, we would like to assess the closeness of the statistical model f(zn, θ̂(Xn))
to the true density g(zn). The estimated Kullback-Leibler information

I{g(zn); f(zn, θ̂(Xn))} = EZn

[
log

g(Zn)
f(Zn, θ̂(Xn))

]

is used as an overall measure of the divergence of the statistical model f(zn, θ̂(Xn)) from the
true density g(zn), conditional on the observations Xn. It can be expressed as

I{g(zn); f(zn, θ̂(Xn))} =
∫

g(zn) log g(zn)dzn −
∫

g(zn) log f(zn, θ̂(Xn))dzn. (2)

In the same way as in Akaike (1973,1974), we use here the concept of the model selection
based on minimizing the estimated Kullback-Leibler information (2). We see that the first term
in the right hand side of (2) does not depend on the statistical model f(zn, θ̂(Xn)) while the
second term η(θ̂(Xn)) :=

∫
g(zn) log f(zn, θ̂(Xn))dzn depends on it, where η(θ̂(Xn)) is called

the expected log likelihood. Taking account of it, our selection rule is to choose a model which
is maximizing the expected log likelihood η(θ̂(Xn)) among parametric models. However, since
the expected log likelihood η(θ̂(Xn)) depends on the true density g(zn), we need to estimate
it. The simple estimator of the expected log likelihood η(θ̂(Xn)) is the estimated log likelihood
ln(Xn, θ̂(Xn)) := log f(Xn, θ̂(Xn)). Usually the estimated log likelihood ln(Xn, θ̂(Xn)) provides
an optimistic assessment (overestimation) of the expected log likelihood η(θ̂(Xn)) because the
same observations Xn are used both to estimate the unknown parameter vector θ and to evaluate
the expected log likelihood η(θ̂(Xn)). The bias of the estimated log likelihood appearing in
estimating the expected log likelihood is given by

bias = EXn

[
log f(Xn, θ̂(Xn))−

∫
g(zn) log f(zn, θ̂(Xn))dzn

]
.

If the maximum likelihood estimator θ̂
(ML)
n can be used, one has that under some regularity

conditions, bias = dim(Θ)+o(1) as n →∞, where dim(Θ) denotes the dimension of a parameter
space Θ. The bias corrected log likelihood is given by log f(Xn, θ̂

(ML)
n )− dim(Θ). Thus, Akaike

(1973, 1974) proposed Akaike’s information criterion (AIC) as follows:

AIC(Xn, θ̂(ML)
n ) = −2 log f(Xn, θ̂(ML)

n ) + 2dim(Θ). (3)

Consequently, we choose a statistical model which minimizes the value of AIC among a set of
competing models. Note that AIC should be used under the situation where statistical model
f contains the true model g, that is, f is a specified parametric model. For information criteria
for misspecified models, we can refer Takeuchi (1976) and Konishi and Kitagawa (1996, 2003).
For applications of model selection by information criteria, see, for example, Shibata (1976),
Hall (1990), Burman and Nolan (1995), Burnham and Anderson (1998), Hurvich et al. (1998),
Shimodaira (1998) and references therein.
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As seen above, in order to construct AIC, it is enough to obtain the log likelihood function
and the maximum likelihood estimator. For that reason, there seems no difficulty to derive
AIC even if we consider diffusion processes. As a positive fact, Yoshida and Uchida (2001,
2004) obtained several types of information criteria including AIC for continuously observed
diffusion processes. Unfortunately, as for AIC for discretely observed diffusion models, there
are two serious problems. First, we can not explicitly obtain the log likelihood functions since
the transition densities of diffusion processes do not generally have explicit forms. Because of
the first difficulty, the maximum likelihood estimators can not be derived. Therefore, it is not a
trivial problem to obtain AIC for diffusion models.

In order to obtain AIC type of information criteria for diffusion processes, we consider two
kinds of functions. One is an approximate log likelihood function un based on a result of
Dacunha-Castelle and Florens-Zmirou (1986). The other is a contrast function gn based on
a locally Gaussian approximation. The approximate log likelihood function un is used as an
approximation of the log likelihood function and an asymptotically efficient estimator is derived
from the contrast function gn. The essential point is that in general we can not use the contrast
function gn as an approximation of the log likelihood function.

The rest of this paper is organized as follows. In section 2, using an approximate log likelihood
function un and a contrast function gn based on a locally Gaussian approximation, we propose
AIC type of information criterion for discretely observed ergodic diffusion processes. In order
to check that we can not generally use the contrast function gn as an approximation of the
log likelihood function, simulation studies for both the approximate log likelihood function un

and the contrast function gn are considered in section 3. In section 4, we study an example of
model selection based on AIC including simulation results of the number of models selected by
AIC. Section 5 gives conclusion of this paper and discussion on several possibilities of both an
approximate log likelihood function and an asymptotically efficient estimator. Moreover, there
are two directions of information criteria for discretely observed diffusion processes as future
works. The results presented in section 2 are proved in section 6.

2 AIC type of information criterion

We introduce the notation used in this paper.
1. α0, β0 and θ0 denote the true values of α, β and θ, respectively.
2. For a function f(x, θ), define that δθi

f(x, θ) = ∂
∂θi

f(x, θ), f ′(x, θ) = ∂
∂xf(x, θ), δθf(x, θ) =

(δθi
f(x, θ))i=1,...,p and δ2

θf(x, θ) =
(

∂2

∂θi∂θj
f(x, θ)

)
i,j=1,...,p+q

.

3. E denotes the state space of X, E ⊆ R.
4. When the distribution of Xt given X0 = x has a strictly positive density with respect to the
Lebesgue measure on the state space E, we denote it by y 7−→ p(t, x, y, θ), y ∈ E.
5. Let

p→ be the convergence in probability and d→ be the convergence in distribution.
Moreover, we define the following functions.

s(x, β) =
∫ x

0

du

σ(u, β)
,

B(x, θ) =
b(x, α)
σ(x, β)

− 1
2
σ′(x, β),

B̃(x, θ) = B(s−1(x, β), θ),
h̃(x, θ) = B̃2(x, θ) + B̃′(x, θ).

We make three assumptions as follows.
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Assumption 1 (i) Equation (1) has a unique strong solution on [0, T ].
(ii) infx,β σ2(x, β) > 0.
(iii) The process X is ergodic for every θ with invariant probability measure µθ. All polynomial
moments of µθ are finite.
(iv) For all m ≥ 0 and for all θ, supt Eθ[|Xt|m] < ∞.
(v) For every θ, the functions b(x, α) and σ(x, β) are twice continuously differentiable with respect
to x and the derivatives are of polynomial growth in x, uniformly in θ.
(vi) The functions b(x, α) and σ(x, β) and all their partial x-derivatives up to order 2 are three
times differentiable with respect to θ for all x in the state space. All these derivatives with respect
to θ are of polynomial growth in x, uniformly in θ.

Assumption 2 (i) h̃(x, θ) = O(|x|2) as x →∞.
(ii) infx h̃(x, θ) > −∞ for all θ.
(iii) supθ supx |h̃3(x, θ)| ≤ M < ∞.
(iv) There exists γ > 0 such that for every θ and j = 1, 2, |B̃j(x, θ)| = O(|B̃|γ(x, θ)) as |x| → ∞.

Assumption 3

b(x, α) = b(x, α0) for µθ0 a.s. all x ⇒ α = α0,

σ(x, β) = σ(x, β0) for µθ0 a.s. all x ⇒ β = β0.

Remark 1 Assumptions 1 and 3 are made in order to estimate an unknown parameter θ. For
more details, see the conditions in Kessler (1997). It follows from assumptions 1 and 2 that we
can obtain an approximate log likelihood function based on lemma 2 in Dacunha-Castelle and
Florens-Zmirou (1986).

The log likelihood function of Xn is

ln(Xn, θ) =
n∑

k=1

l(hn, Xtn
k−1

, Xtn
k
, θ),

where l(t, x, y, θ) = log p(t, x, y, θ). Define the maximum likelihood estimator

θ̂(ML)
n = arg sup

θ
ln(Xn, θ).

Then, Akaike’s information criterion is as follows:

AIC = −2ln(Xn, θ̂(ML)
n ) + 2dim(Θ).

However, since the transition density p of the diffusion process X does not generally have
an explicit form, we can not directly obtain the log likelihood function ln and the maximum
likelihood estimator θ̂

(ML)
n . That is why we need to obtain both an approximation of the log-

likelihood function ln and an asymptotically efficient estimator θ̂n in order to construct AIC
type of information criteria for diffusion processes.

As an approximation of log likelihood function ln, we use the following approximate log
likelihood function based on lemma 2 in Dacunha-Castelle and Florens-Zmirou (1986).

un(Xn, θ) =
n∑

k=1

u(hn, Xtn
k−1

, Xtn
k
, θ),
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where

u(t, x, y, θ) = −1
2

log(2πt)− log σ(y, β)− [S(x, y, β)]2

2t
+ H(x, y, θ) + tg̃(x, y, θ). (4)

Here,

S(x, y, β) =
∫ y

x

du

σ(u, β)
,

H(x, y, θ) =
∫ y

x

{
b(u, α)
σ2(u, β)

− 1
2

σ′(u, β)
σ(u, β)

}
du,

g̃(x, y, θ) = −1
2

{
C(x, θ) + C(y, θ) +

1
3
B(x, θ)B(y, θ)

}
,

C(x, θ) =
1
3
[B(x, θ)]2 +

1
2
[B(x, θ)]′σ(x, β).

Next, in order to derive an asymptotically efficient estimator, we use the contrast function
based on locally Gaussian approximation as follows:

gn(Xn, θ) =
n∑

k=1

g(hn, Xtn
k−1

, Xtn
k
, θ),

where

g(t, x, y, θ) = −1
2

log(2πt)− log σ(x, β)− [y − x− tb(x, α)]2

2tσ2(x, β)
. (5)

We then define the maximum contrast estimator as

θ̂(C)
n = arg sup

θ
gn(Xn, θ).

For a process Zn which is independent of (but has the same distribution as) the observed
process Xn,

un(Xn, θ̂(C)
n (Xn))− EZn [ln(Zn, θ̂(C)

n (Xn))]
= un(Xn, θ̂(C)

n (Xn))− un(Xn, θ0) (6)
+un(Xn, θ0)− EZn [ln(Zn, θ0)] (7)
+EZn [ln(Zn, θ0)]− EZn [ln(Zn, θ̂(C)

n (Xn))]. (8)

Under the regularity conditions, one has

(6) = [D1/2δθun(Xn, θ0)]T D−1/2(θ̂(C)
n (Xn)− θ0)

+
1
2
[D−1/2(θ̂(C)

n (Xn)− θ0)]T [D1/2δ2
θun(Xn, θ0)D1/2]

×D−1/2(θ̂(C)
n (Xn)− θ0) + op(1),

(8) = −
[
D1/2EZn [δθln(Zn, θ0)]

]T
D−1/2(θ̂(C)

n (Xn)− θ0)

−1
2
[D−1/2(θ̂(C)

n (Xn)− θ0)]T D1/2EZn [δ2
θ ln(Zn, θ0)]D1/2

×D−1/2(θ̂(C)
n (Xn)− θ0) + op(1),
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where AT is the transpose of A for a vector A, D is the following (p + q)× (p + q) matrix

D =

(
1

nhn
Ip 0

0 1
nIq

)
,

and Ip is the p× p identity matrix.
Let I(θ0) denote the Fisher information matrix as follows:

I(θ0) =

(
(Iij

b (θ0))i,j=1,...,p 0
0 (Iij

σ (θ0))i,j=1,...,q

)
,

where

Iij
b (θ0) =

∫
R

δαib(x, α0)δαjb(x, α0)
σ2(x, β0)

µθ0(dx),

Iij
σ (θ0) = 2

∫
R

δβi
σ(x, β0)δβj

σ(x, β0)
σ2(x, β0)

µθ0(dx).

In order to obtain our main result, we need the following four lemmas.

Lemma 1 Suppose that assumptions 1 and 2 hold true. Then, as nh2
n → 0,

E[un(Xn, θ0)− ln(Xn, θ0)] = o(1).

Lemma 2 Suppose that assumptions 1 and 2 hold true. Then, as nh2
n → 0,

D1/2[δθun(Xn, θ0)− δθgn(Xn, θ0)] = op(1).

Lemma 3 (Kessler (1997)) Suppose that assumptions 1 and 3 hold true. Then, as nh2
n → 0,

(i) D−1/2(θ̂(C)
n − θ0) = I−1(θ0)D1/2(δθgn)(Xn, θ0) + op(1),

(ii) D1/2(δθgn)(Xn, θ0)
d→ N(0, I(θ0)).

Lemma 4 Suppose that assumptions 1 and 2 hold true. Then, as nh2
n → 0,

D1/2(δ2
θun)(Xn, θ0)D1/2 p→ −I(θ0).

The main result is as follows.

Theorem 1 Suppose that assumptions 1, 2 and 3 hold true. Then, as nh2
n → 0,

EXn

[
un(Xn, θ̂(C)

n )− EZn [ln(Zn, θ̂(C)
n (Xn))]

]
= dim(Θ) + o(1).

Remark 2 (i) By theorem 1, AIC type of information criterion for diffusion processes is

AIC = −2un(Xn, θ̂(C)
n ) + 2dim(Θ).

(ii) Instead of the maximum contrast estimator θ̂
(C)
n , we can also use the approximate maximum

likelihood estimator θ̂
(AML)
n derived from the approximate log likelihood function un. Under

assumptions 1-3, θ̂
(AML)
n has the same properties as lemma 3, that is, θ̂

(AML)
n is asymptotically

efficient. Therefore, even if θ̂
(AML)
n is used, we can make the same assertion as theorem 1 and

AIC = −2un(Xn, θ̂(AML)
n ) + 2dim(Θ).

However, as seen in several examples put later, un has a complicated expression while gn is a
simple form. Thus, as for an asymptotically efficient estimator, it is better to use gn than un.
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3 Simulation studies on approximate log likelihoods

After getting theorem 1, we immediately have the following question. ”Is it possible to use the
contrast function gn based on a locally Gaussian approximation as an approximation of the log
likelihood function ln?” The answer is negative. In order to understand this fact, we examine the
asymptotic behaviours of Eθ0 [gn(Xn, θ0)− ln(Xn, θ0)] and Eθ0 [un(Xn, θ0)− ln(Xn, θ0)] through
simulations, which are done for each T = nhn = 10, 30, 50 and hn = 1/100, 1/1000. Three
models we simulate are the Ornstein-Uhlenbeck process, the Radial Ornstein-Uhlenbeck process
and the Cox-Ingersoll-Ross process, which have explicit transition densities. For details of the
transition densities of the three models, see Karlin and Taylor (1981). For a true parameter
value θ0 and an initial value x0, 5000 independent sample paths are generated by the Milstein
scheme. For the Milstein scheme, see Kloeden and Platen (1992).

3.1 The Ornstein-Uhlenbeck process

Consider the Ornstein-Uhlenbeck process defined by the following stochastic differential equation

dXt = −αXtdt + βdwt, X0 = x0,

where α > 0 and β > 0 are unknown parameters.
It follows from (4) and (5) that

g(t, x, y, θ) = −1
2

log(2πt)− 1
2

log(β2)− (y − x + tαx)2

2tβ2
,

u(t, x, y, θ) = −1
2

log(2πt)− 1
2

log(β2)− (y − x)2

2tβ2
− α

2β2
(y2 − x2)

− t

2

{
α2

3β2
(x2 + y2 + xy)− α

}
.

The log likelihood function ln is obtained from

l(t, x, y, θ) = log p(t, x, y, θ),

p(t, x, y, θ) =
1√

πβ2(1− exp{−2αt})/α
exp

[
−(y − exp{−αt}x)2

β2(1− exp{−2αt})/α)

]
.

In tables 1 and 2, both un and gn have good approximations of ln for all cases. It is worth
mentioning that un is better than gn. For the the Ornstein-Uhlenbeck model, it seems that gn

can be substituted as an approximation of ln instead of un.

Table 1: The Ornstein-Uhlenbeck process. Means of gn − ln and un − ln for 5000 independent
simulated sample paths with α0 = 1, β0 = 2 and x0 = 10.

T hn E[gn − ln] E[un − ln]
10 1/100 -0.02436 0.00826

1/1000 -0.00227 0.00083
30 1/100 -0.06979 0.02488

1/1000 -0.00790 0.00249
50 1/100 -0.11241 0.04151

1/1000 -0.01186 0.00416
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Table 2: The Ornstein-Uhlenbeck process. Means of gn − ln and un − ln for 5000 independent
simulated sample paths with α0 = 2, β0 = 5 and x0 = 10.

T hn E[gn − ln] E[un − ln]
10 1/100 -0.10091 0.03310

1/1000 -0.00922 0.00333
30 1/100 -0.28569 0.09944

1/1000 -0.02453 0.00999
50 1/100 -0.49459 0.16578

1/1000 -0.04084 0.01665

3.2 The Radial Ornstein-Uhlenbeck process

We consider the Radial Ornstein-Uhlenbeck process defined by

dXt = (θX−1
t −Xt)dt + dwt, X0 = x0,

where θ > 0 is an unknown parameter.
The contrast function gn, the approximate log likelihood function un and the log likelihood

function ln are constructed by

g(t, x, y, θ) = −1
2

log(2πt)− (y − x− t(θx−1 − x))2

2t
,

u(t, x, y, θ) = −1
2

log(2πt)− (y − x)2

2t
+ θ log

(
y

x

)
− 1

2
(y2 − x2)

− t

2

{
1
3

(
θ

x
− x

)2

− 1
2

(
θ

x2
+ 1

)
+

1
3

(
θ

y
− y

)2

− 1
2

(
θ

y2
+ 1

)
+

1
3

(
θ

x
− x

)(
θ

y
− y

)}
,

l(t, x, y, θ) = log p(t, x, y),

respectively, where

p(t, x, y, θ) =
(y/x)θ√xy exp{−y2 + (θ + 1

2)t}
sinh(t)

exp

[
−(x2 + y2)
exp{2t} − 1

]
Iθ− 1

2

(
xy

sinh(t)

)
and Iν is a modified Bessel function with index ν.

In tables 3 and 4, gn has a small bias when T = 30, 50 and h = 1/100, while un has a
good approximation for all cases. It follows from these tables that gn is not suitable for an
approximation of ln when T = 30, 50 and h = 1/100.

Table 3: The Radial Ornstein-Uhlenbeck process. Means of gn − ln and un − ln for 5000 inde-
pendent simulated sample paths with θ0 = 2 and x0 = 10.

T hn E[gn − ln] E[un − ln]
10 1/100 -0.24315 0.05307

1/1000 -0.10851 0.00544
30 1/100 -0.86191 0.18446

1/1000 -0.37434 0.01892
50 1/100 -1.45814 0.31463

1/1000 -0.64074 0.03222

8



Table 4: The Radial Ornstein-Uhlenbeck process. Means of gn − ln and un − ln for 5000 inde-
pendent simulated sample paths with θ0 = 100 and x0 = 10.

T hn E[gn − ln] E[un − ln]
10 1/100 -0.09708 0.03347

1/1000 -0.01881 0.00334
30 1/100 -0.29819 0.10038

1/1000 -0.05279 0.01002
50 1/100 -0.52674 0.16733

1/1000 -0.09156 0.01671

3.3 The Cox-Ingersoll-Ross process

Consider the Cox-Ingersoll-Ross process defined by the following stochastic differential equation

dXt = −α1(Xt − α2)dt + β
√

Xtdwt, X0 = x0,

where α1 > 0, α2 > 0 and β > 0 are unknown parameters.
The contrast function gn and the approximate log likelihood function un are obtained from

g(t, x, y, θ) = −1
2

log(2πt)− 1
2

log(β2x)− (y − x + tα1(x− α2))2

2tβ2x
, (9)

u(t, x, y, θ) = −1
2

log(2πt)− 1
2

log(β2y)−
2(
√

y −
√

x)2

tβ2
− α1(y − x)

β2
+
(

α1α2

β2
− 1

4

)
log

(
y

x

)
− t

2

[
1
3

{
−α1

β

√
x +

(
α1α2

β
− β

4

)
1√
x

}2

+
1
2

{
−α1

2
− 1

2

(
α1α2 −

β2

4

)
1
x

}

+
1
3

{
−α1

β

√
y +

(
α1α2

β
− β

4

)
1
√

y

}2

+
1
2

{
−α1

2
− 1

2

(
α1α2 −

β2

4

)
1
y

}

+
1
3

{
−α1

β

√
x +

(
α1α2

β
− β

4

)
1√
x

}{
−α1

β

√
y +

(
α1α2

β
− β

4

)
1
√

y

}]
, (10)

respectively. The log likelihood function ln is constructed by

l(t, x, y, θ) = log p(t, x, y, θ),

p(t, x, y, θ) =
γ(y/x)

1
2
ν exp{1

2α1νt− γy}
1− exp{−α1t}

exp
[ −γ(x + y)
exp{α1t} − 1

]
Iν

(
γ
√

xy

sinh(1
2α1t)

)
,

where γ = 2α1β
−2, ν = γα2 − 1 and Iν is a modified Bessel function with index ν.

In tables 5 and 6, un is a good approximation for all cases, while gn is a considerable bias
for all cases. These results show that we can not use gn instead of un.

Table 5: The Cox-Ingersoll-Ross process. Means of gn − ln and un − ln for 5000 independent
simulated sample paths with α1,0 = 1, α2,0 = 5, β0 = 2 and x0 = 10.

T hn E[gn − ln] E[un − ln]
10 1/100 -9.23405 0.01440

1/1000 -31.57794 0.00145
30 1/100 -28.95825 0.04840

1/1000 -98.57695 0.00489
50 1/100 -48.62306 0.08193

1/1000 -165.32443 0.00830
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Table 6: The Cox-Ingersoll-Ross process. Means of gn − ln and un − ln for 5000 independent
simulated sample paths with α1,0 = 1, α2,0 = 10, β0 = 2 and x0 = 10.

T hn E[gn − ln] E[un − ln]
10 1/100 -5.63288 0.01009

1/1000 -20.92659 0.00100
30 1/100 -17.06086 0.03066

1/1000 -63.01867 0.00305
50 1/100 -28.42232 0.05122

1/1000 -105.04559 0.00510

4 Example of model selection based on AIC

As an example of model selection based on AIC, we treat the following setting. The true model
is

dXt = −(Xt − 10)dt + 2
√

Xtdwt,

where X0 = 10 and t ∈ [0, T ]. We consider the following three statistical models:

dXt = −α1(Xt − α2)dt + β
√

Xtdwt, (11)
dXt = −α1(Xt − α2)dt +

√
β1 + β2Xtdwt, (12)

dXt = −α1(Xt − α2)dt + (β1 + β2Xt)β3dwt, (13)

where α1 > 0, α2 > 0, β > 0, β1 ≥ 0, β2 > 0 and β3 ≥ 0.
As seen in section 3, the contrast function g(1)(t, x, y, θ) of the model (11) can be used (9).

It follows from (5) that the contrast functions for the models (12) and (13) are

g(2)(t, x, y, θ) = −1
2

log(2πt)− 1
2

log(β1 + β2x)− (y − x + tα1(x− α2))2

2t(β1x + β2)
, (14)

g(3)(t, x, y, θ) = −1
2

log(2πt)− β3 log(β1 + β2x)− (y − x + tα1(x− α2))2

2t(β1x + β2)2β3
, (15)

respectively. For the approximate log-likelihood function u(1)(t, x, y, θ) of the model (11), we
have already obtained (10) in section 3. Moreover, by (4), the approximate log-likelihood func-
tions of the models (12) and (13) are

u(2)(t, x, y, θ) = −1
2

log(2πt)− 1
2

log(β1 + β2y)− 2(
√

β1 + β2y −
√

β1 + β2x)2

tβ2
2

−α1(y − x)
β2

+
(

α1α2

β2
+

α1β1

β2
2

− 1
4

)
log

(
β1 + β2y

β1 + β2x

)
− t

2

[
C(x, θ) + C(y, θ) +

1
3
B(x, θ)B(y, θ)

]
, (16)

where

B(x, θ) =
−α1x + α1α2 − β2/4√

β1 + β2x
,

C(x, θ) =
1
3

{−α1x + α1α2 − β2/4√
β1 + β2x

}2

+
1
2

{
−α1β2x/2− α1β1 − α1α2β2/2 + β2

2/8
β1 + β2x

}
,
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and

u(3)(t, x, y, θ) = −1
2

log(2πt)− β3 log(β1 + β2y)−

{
(β1 + β2y)1−β3 − (β1 + β2x)1−β3

}2

2t(1− β3)2β2
2

−α1

[
(−β1 + β2y(1− 2β3)− 2α2β2(1− β3))
2β2

2(1− β3)(1− 2β3)(β1 + β2y)2β3−1

−(−β1 + β2x(1− 2β3)− 2α2β2(1− β3))
2β2

2(1− β3)(1− 2β3)(β1 + β2x)2β3−1

]
− β3

2
log

(
β1 + β2y

β1 + β2x

)
− t

2

[
C(x, θ) + C(y, θ) +

1
3
B(x, θ)B(y, θ)

]
, (17)

where

B(x, θ) =
−α1(x− α2)
(β1 + β2x)β3

− β2β3

2(β1 + β2x)1−β3
,

C(x, θ) =
1
3

{−α1(x− α2)
(β1 + β2x)β3

− β2β3

2(β1 + β2x)1−β3

}2

+
1
2

{
−α1 +

α1(x− α2)β2β3

β1 + β2x
− β2

2β3(β3 − 1)
2(β1 + β2x)2−2β3

}
,

respectively. Note that u(3)(t, x, y, θ) is obtained under the assumption β3 6= 1/2. When β3 =
1/2, it suffices to consider the model (12).

Therefore, AIC for each model (11), (12), (13) is as follows.

AIC1(Xn, θ̂(1)
n ) = −2u(1)(Xn, θ̂(1)

n ) + 2× 3,

AIC2(Xn, θ̂(2)
n ) = −2u(2)(Xn, θ̂(2)

n ) + 2× 4,

AIC3(Xn, θ̂(3)
n ) = −2u(3)(Xn, θ̂(3)

n ) + 2× 5,

where θ̂
(i)
n is obtained from the contrast function g

(i)
n for i = 1, 2, 3.

We examine the number of models selected by AIC among competing models (11), (12), (13)
for 1000 independent sample paths generated by the Milstein scheme through simulations. The
simulations are done for each T = 10, 30, 50 and hn = 1/100, 1/500.

By table 7, we see that model 1 is selected with high frequency as the best model for all
cases. However, we must note that model 2 is selected in a significant probability. This fact
implies that AIC is not a tool for estimating the true model. Note that AIC is a tool to choose
the best model among competing models from the aspect of both model-fitting and prediction.

Table 7: The number of models selected by AIC for 1000 independent simulated sample paths.

T hn model 1 model 2 model 3
10 1/100 761 185 54

1/500 744 194 62
30 1/100 803 185 12

1/500 673 238 89
50 1/100 769 186 45

1/500 610 275 115
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5 Conclusion and discussion

In order to get AIC type of information criterion, we first use the contrast function gn based on
a locally Gaussian approximation to obtain an efficient estimator. Next, for an approximation of
log likelihood ln, it is better to use the approximate log likelihood un based on Dacunha-Castelle
and Florens-Zmirou (1986) than the locally Gaussian approximation gn. As for the CIR model,
we should not use gn as an approximation of ln because gn has a considerable bias.

In this paper, we proposed AIC type of information criterion under assumptions 1-3. In order
to obtain the information criterion, however, the most important point is to show the lemmas
1-4 presented in section 2. For this reason, it is possible to consider AIC type of information
criterion by replacing assumptions 1-3 with the following assumption.

Assumption 4 There exist functions un and gn satisfying lemmas 1-4.

Under assumption 4 and appropriate regularity conditions, it is possible to make the same
assertion as theorem 1. Therefore, there is a possibility of having both other approximate log
likelihood functions and other asymptotically efficient estimators. For approximate log likelihood
functions, the essential point is to satisfy lemma 1. Nicolau (2002) considered an approximate
likelihood function by means of a simulation-based technique based on a results of Dacunha-
Castelle and Florens-Zmirou (1986). Aı̈t-Sahalia (2002) presented an explicit sequence of closed-
form transition densities by using Hermite expansion. It seems that under appropriate regularity
conditions, their approximate log likelihood functions satisfy lemma 1. Moreover, although the
contrast function gn generally has a considerable bias for an approximation of ln, the bias
corrected contrast function g̃n may be available to an approximation of ln. For asymptotically
efficient estimators satisfying lemma 3, there are a number of works for various diffusion models,
see Florens-Zmirou (1989), Yoshida (1992), Bibby and Sørensen (1995), Aı̈t-Sahalia and Mykland
(2003, 2004), Bibby et al. (2004) and reference therein.

With regard to future projects, there are three directions. One is to obtain AIC by replacing
the assumption that nh2

n → 0 with a weaker asymptotics, for example nh3
n → 0. Another is to

extend the results of this paper to a multi-dimensional diffusion model. The third is to consider
information criteria for a misspecified diffusion model, that is, Takeuchi’s information criterion
(TIC) presented in Takeuchi (1976) and the generalized information criterion (GIC) considered
in Konishi and Kitagawa (1996). For the first objective, it seems that there is no difficulty under
the situation when nh3

n → 0. Using the contrast function l3,n presented in Kessler (1997) and
the third order approximate log likelihood function u3,n based on a results of Dacunha-Castelle
and Florens-Zmirou (1986), we will be able to show that l3,n and u3,n satisfy assumption 4 under
nh3

n → 0. However, there is no doubt that l3,n and u3,n have very complicated expressions. For
a multi-dimensional diffusion model, an asymptotically efficient estimator can be obtained from
a multi-dimensional version of the contrast function based on a locally Gaussian approximation
in the same way as the case of a one-dimensional diffusion model. Therefore, it is important
to consider an approximate log likelihood function satisfying lemma 1 for a multi-dimensional
diffusion model. One possibility is to use the approximate log likelihood function based on a
result of Aı̈t-Sahalia (2003). As for information criteria for misspecified diffusion models, we
will need to compose a statistically asymptotic theory of parametric estimation for misspecified
diffusion models from discrete observations. Using the misspecified version of estimators together
with non-parametric estimators of both drift and diffusion coefficient functions for discretely
observed diffusion models, we will be able to obtain TIC and GIC for misspecified diffusion
models. However, it seems that there are a lot of difficulties in order to prove the desired result.
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6 Proof

Let R denote a function (0, 1] × R for which there exists a C > 0 such that |R(hn, x)| ≤
hn(1 + |x|)C for all n, x.

Proof of Lemma 1.

E[un(Xn, θ0)− ln(Xn, θ0)] =
n∑

k=1

E
[
E[u(Xtn

k−1
, Xtn

k
, θ0)− l(Xtn

k−1
, Xtn

k
, θ0)|Xtn

k−1
]
]
.

It follows from (3.7) and lemma 2 in Dacunha-Castelle and Florens-Zmirou (1986) that

E[u(Xtn
k−1

, Xtn
k
, θ0)− l(Xtn

k−1
, Xtn

k
, θ0)|Xtn

k−1
] = R(h2

n, Xtn
k−1

).

Thus, as n →∞, hn → 0 and nh2
n → 0,

E[un(Xn, θ0)− ln(Xn, θ0)] =
n∑

k=1

h2
nE[R(1, Xtn

k−1
)]

≤ nh2
n

1
n

n∑
k=1

C −→ 0.

This completes the proof.

Proof of Lemma 2. Set that for i = 1, . . . , p + q,

ξi
k := di[δθi

u(hn, Xtn
k−1

, Xtn
k
, θ0)− δθi

gn(hn, Xtn
k−1

, Xtn
k
, θ0)],

where di = 1/
√

nhn for i = 1, . . . , p and di = 1/
√

n for i = p + 1, . . . , p + q. By lemma 9 in
Genon-Catalot and Jacod (1993), it is enough to prove that for i, j = 1, . . . , p + q,

n∑
k=1

E[ξi
k|Xtn

k−1
]

p→ 0,

n∑
k=1

E[(ξi
k)

2|Xtn
k−1

]
p→ 0

as n →∞, hn → 0 and nh2
n → 0.

For i = 1, . . . , p, one has that

ξi
k =

1√
nhn

[
δαiH(Xtn

k−1
, Xtn

k
, θ0) + hnδαi g̃(Xtn

k−1
, Xtn

k
, θ0)

−(δαib)(Xtn
k−1

, α0)
Xtn

k
−Xtn

k−1
− hnb(Xtn

k−1
, α0)

σ2(Xtn
k−1

, β0)

]
.

By the Ito-Taylor expansion based on the generator Lθ0 = b(x, α0)(∂/∂x) + 1
2σ(x, β0)(∂/∂x)2,

E[ξi
k|Xtn

k−1
] =

1√
nhn

[
δαiH(Xtn

k−1
, Xtn

k−1
, θ0) + hnLθ0δαiH(Xtn

k−1
, Xtn

k−1
, θ0)

+hnδαi g̃(Xtn
k−1

, Xtn
k−1

, θ0) + R(h2
n, Xtn

k−1
)

−
(δαib)(Xtn

k−1
, α0)

σ2(Xtn
k−1

, β0)
E[Xtn

k
−Xtn

k−1
− hnb(Xtn

k−1
, α0)|Xtn

k−1
]

]
.
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For details of the Ito-Taylor expansion based on the generator Lθ0 , see Dacunha-Castelle and
Florens-Zmirou (1986), Florens-Zmirou (1989) and Kessler (1997). Therefore,

n∑
k=1

E[ξi
k|Xtn

k−1
] =

1√
nhn

n∑
k=1

R(h2
n, Xtn

k−1
)

=
√

nh3
n

1
n

n∑
k=1

R(1, Xtn
k−1

)
p→ 0.

Next, we obtain that for i = 1, . . . , p,
n∑

k=1

E[(ξi
k)

2|Xtn
k−1

] =
1

nhn

n∑
k=1

R(h2
n, Xtn

k−1
)

= hn
1
n

n∑
k=1

R(1, Xtn
k−1

)
p→ 0.

In the same way as the proof for i = 1, . . . , p, we can obtain the results for i = p + 1, . . . , p + q.
This completes the proof.

Proof of Lemma 3. See the proof of theorem 1 in Kessler (1997).

Proof of Lemma 4. Set that for i, j = 1, . . . , p + q,

ηij
k := didj(δθi

δθj
un)(hn, Xtn

k−1
, Xtn

k
, θ0),

where di is defined in the proof of lemma 2. In the same way as in lemma 2, we can show that
n∑

k=1

E[ηij
k |Xtn

k−1
]

p→ −Iij(θ0),

n∑
k=1

E[(ηij
k )2|Xtn

k−1
]

p→ 0

as n →∞, hn → 0 and nh2
n → 0. This completes the proof.

Proof of Theorem 1.

EXn

[
un(Xn, θ̂(C)

n (Xn))− EZn [ln(Zn, θ̂(C)
n (Xn))]

]
= EXn

[
un(Xn, θ̂(C)

n (Xn))− un(Xn, θ0)
]

(18)

+EXn [un(Xn, θ0)− EZn [ln(Zn, θ0)]] (19)

+EXn

[
EZn [ln(Zn, θ0)]− EZn [ln(Zn, θ̂(C)

n (Xn))]
]
. (20)

Lemma 1 implies that (19) = o(1). By (6) and lemmas 2-4, one has that

(18) =
1
2
tr[I(θ0)I−1(θ0)] + o(1).

It follows from (8) and lemmas 2-4 that

(20) =
1
2
tr[I(θ0)I−1(θ0)] + o(1).

This completes the proof.
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MHF2004-10 Raimundas VIDŪNAS
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